486 Higher Engineering Mathematics Now try the following exercise 6. In a galvanometer the deflection θ satisfies d2θ dθ the differential equation +4 + 4 θ = 8. Exercise 189 Further problems on dt 2 dt Solve the equation for θ given that when t = 0, differential equations of the form θ = dθ = 2. d2y dy dt [θ = 2(t e−2t + 1)] a d x2 + b d x + cy = f (x) where f (x) is a constant or polynomial. In Problems 1 and 2, find the general solutions of 51.4 Worked problems on differential the given differential equations. d2 y dy equations of the form 2 dx2 5 1. + − 3y = 6 d2y dy dx a + b + cy = f (x) where d x2 d 1 x f (x) is an exponential function y = Ae 2 x + B e−3x − 2 2. d2 y + dy − 2y = 3x − 2 Problem 4. Solve the equation 6 dx2 4 d2 y dy 3e4x dx dx2 2 1 − dx + y = given the boundary 3 y = Ae x + B e− x −2 − 3 x dy 2 dx conditions that when x = 0, y= − 2 and = 4 1 3 3 In Problems 3 and 4 find the particular solutions of Using the procedure of Section 51.2: the given differential equations. 3. d2 y + dy − 4y = 8; when x = 0, y=0 and d2 y dy 3 dx2 dx dx2 2 dy = 0. (i) − + y = 3e4x in D-operator form is dx (D2 − 2D + 1)y = 3e4x . dx 4 3 y = 2 (3e− x + 4ex ) −2 (ii) Substituting m for D gives the auxiliary 7 equation m2 − 2m + 1 =0. Factorizing gives: 4. d2 y − dy + 4y = 3x − 1; when x = 0, (m − 1)(m − 1) = 0, from which, m = 1 twice. 9 dx2 12 (iii) Since the roots are real and equal the C.F., dx u = (Ax + B)ex. y = 0 and d y = − 4 dx 3 (iv) Let the particular integral, v = ke4x (see Table 51.1(c)). y = − 2 + 3 x e 2 x + 2 + 3 x 4 3 4 5. The charge q in an electric circuit at time t sat- (v) Substituting v = ke4x into (D2 − 2D + 1)v = 3e4x gives: isfies the equation d2q + R dq + 1 q=E, L dt2 dt C where L, R, C and E are constants. Solve the (D2 − 2D + 1)ke4x = 3e4x i.e. D2(ke4x ) − 2D(ke4x ) + 1(ke4x ) = 3e4x equation given L = 2H , C = 200 ×10−6 F and i.e. 16ke4x − 8ke4x + ke4x = 3e4x E = 250 V, when (a) R = 200 and (b) R is negligible. Assume that when t = 0, q = 0 and dq =0 Hence 9ke4x = 3e4x , from which, k = 1 dt 3 ⎤ ke4x 1 e4x . ⎡ q = 1 − 5t + 1 e−50t ⎥⎥⎦ Hence the P.I., v = = 3 20 2 20 ⎢⎢⎣ (a) (vi) The general solution is given by y = u + v, i.e. (b) q = 1 (1 − cos 50t ) 20 y = (Ax + B)ex + 1 e4x . 3 (vii) When x = 0, y= − 2 thus 3
Second order differential equations of the form a d2 y + b dy + cy = f (x) 487 dx2 dx − 2 = (0 + B)e0 + 1 e0, from which, B = −1. =2 ke 3 x 9 x + 3 − ke 3 x 3 x + 1 3 3 2 4 2 2 dy dx = ( Ax + B)ex + ex (A) + 4 e4x . 3 3 3 dy 1 13 4 −3 k x e 2 x = 5e 2 x When x = 0, = 4 , thus = B + A + dx 3 3 3 from which, A = 4, since B = −1. i.e. 9 kx e 3 x + 3 x − 3 3 x − 3 x 2 2 2 Hence the particular solution is: 6ke 2 xke 2 ke 2 y = (4x − 1)ex + 1 e4x − 3kx e 3 x = 5e 3 x 3 2 2 Problem 5. Solve the differential equation Equating coefficients of e 3 x gives: 5k = 5, from 2 d2 y dy 3 2 dx2 − dx − 3y = 5e 2 x . which, k = 1. Hence the P.I., v = kxe 3 x = xe 3 x. 2 2 Using the procedure of Section 51.2: (v) The general solution is y = u + v, i.e. d2 y dy 3 x y = Ae 3 x + Be−x + xe 3 x. 2 dx2 dx 2 2 2 (i) − − 3 y = 5e in D-operator form is (2D2 − D − 3)y = 5e 3 x . d2 y −4dy 2 dx2 dx Problem 6. Solve + 4y = 3e2x . (ii) Substituting m for D gives the auxiliary equation 2m2 − m − 3 = 0. Factorizing gives: (2m − 3)(m + 1) = 0, from which, m = 3 or Using the procedure of Section 51.2: 2 m = −1. Since the roots are real and different then 3 d2 y dy the C.F., u = Ae 2 x + Be−x. (i) dx2 − 4 dx + 4 y = 3e2x in D-operator form is (iii) Since e 3 x appears in the C.F. and in the (D2 − 4D +4)y = 3e2x . 2 right hand side of the differential equation, let the (ii) Substituting m for D gives the auxiliary equation m2 − 4m + 4 = 0. Factorizing gives: P.I., v = k x e 3 x (see Table 51.1(c), snag case (i)). 2 (m − 2)(m − 2) = 0, from which, m = 2 twice. (iv) Substituting v = k x e 3 x into (2D2 − D − 3)v = (iii) Since the roots are real and equal, the C.F., 2 u =(Ax + B)e2x. 5e 3 x gives: (2D2 − D − 3)k x e 3 x = 5e 3 x . (iv) Since e2x and xe2x both appear in the C.F. let the 2 2 2 P.I., v = kx2e2x (see Table 51.1(c), snag case (ii)). D kx e 3 x = (kx) 3 e 3 x + e 3 x (k), (v) Substituting v = kx2e2x into (D2 − 4D + 4)v = 2 2 2 2 3e2x gives: (D2 − 4D + 4)(kx2 e2x ) = 3e2x by the product rule, = ke 3 x 3 x + 1 D(kx2e2x ) = (kx2 )(2e2x ) + (e2x )(2kx) 2 2 = 2ke2x (x2 + x) D2 kx e 3 x =D ke 3 x 3 x + 1 D2(kx2e2x ) = D[2ke2x (x2 + x)] 2 2 2 = (2ke2x )(2x + 1) + (x2 + x)(4ke2x ) = 2ke2x (4x + 1 + 2x2) = ke 3 x 3 2 2 Hence (D2 − 4D + 4)(kx2 e2x ) = [2ke2x (4x + 1 + 2x2)] + 3 x + 1 3 ke 3 x − 4[2ke2x (x2 + x)] + 4[kx2 e2x ] 2 2 2 = 3e2x = ke 3 x 9 x + 3 2 4 Hence (2D2 − D − 3) kx e 3 x 2
488 Higher Engineering Mathematics from which, 2ke2x = 3e2x and k= 3 2 51.5 Worked problems on Hence the P.I., v = kx2e2x = 3 x2e2x . 2 differential equations of the d2y dy (vi) The general solution, y = u + v, i.e. form a dx2 + b dx + cy= f (x) y = (Ax + B)e2x + 3 x2e2x where f (x) is a sine or cosine 2 function Now try the following exercise Exercise 190 Further problems on Problem 7. Solve the differential equation differential equations of the form 2 d2 y + dy − 5y = 6 sin 2x. dx2 3 d2y dy a dx2 + b +cy = f (x) where f (x) is an dx dx exponential function Using the procedure of Section 51.2: In Problems 1 to 4, find the general solutions of the (i) 2 d2 y + dy − 5y = 6 sin 2x in D-operator form given differential equations. dx2 3 dx is (2D2 + 3D − 5)y = 6 sin 2x 1. d2 y − dy − 6y = 2ex dx2 dx (ii) The auxiliary equation is 2m2 + 3m −5 = 0, from which, y = Ae3x + B e−2x − 1 ex 3 2. d2 y − 3 dy − 4y = 3e−x (m − 1)(2m + 5) = 0, dx2 dx i.e. m = 1 or m = −25 y = Ae4x + B e− x − 3 x e−x 5 (iii) Since the roots are real and different the C.F., d2 y 3. dx2 + 9y = 26e2x u = Aex + Be− 5 x. 2 [ y = A cos 3x + B sin 3x + 2e2x ] (iv) Let the P.I., v = A sin 2x + B cos 2x (see Table 51.1(d)). 4. d2 y − dy + y = t (v) Substituting v = A sin 2x + B cos 2x into 9 dt2 6 (2D2 + 3D −5)v = 6 sin 2x gives: 12e 3 (2D2 + 3D−5)(A sin 2x + B cos 2x) = 6 sin 2x. dt y = ( At + B)e 1 t + 2 t 2e 1 t 3 3 3 D(A sin 2x + B cos 2x) In problems 5 and 6 find the particular solutions of = 2 A cos 2x − 2B sin 2x the given differential equations. D2(A sin 2x + B cos 2x) d2 y dy 1 = D(2 A cos 2x − 2B sin 2x) 5 dx2 dx 4 5. +9 − 2y = 3ex ; when x = 0, y = = −4 A sin 2x − 4B cos 2x Hence (2D2 + 3D −5)(A sin 2x + B cos 2x) and d y = 0. dx y= 5 e−2x − e 1 x + 1 ex = −8 A sin 2x − 8B cos 2x + 6 A cos 2x 5 44 4 − 6B sin 2x − 5 A sin 2x − 5B cos 2x 6. d2 y − 6 dy + 9y = 4e3t ; when t = 0, y =2 = 6 sin 2x dt dt 2 Equating coefficient of sin 2x gives: and d y = 0 [ y = 2e3t (1 − 3t + t 2)] dt −13 A − 6B = 6 (1)
Second order differential equations of the form a d2 y + b dy + cy = f (x) 489 dx2 dx Equating coefficients of cos 2x gives: D[x(C sin 4x + D cos 4x)] = x(4C cos 4x − 4D sin 4x) 6A − 13B = 0 (2) + (C sin 4x + D cos 4x)(1), by the product rule 6 × (1)gives : −78 A − 36B = 36 (3) D2[x(C sin 4x + D cos 4x)] 13 × (2)gives : 78 A − 169B = 0 (4) = x(−16C sin 4x − 16D cos 4x) + (4C cos 4x − 4D sin 4x) (3) + (4)gives : − 205B = 36 + (4C cos 4x − 4D sin 4x) from which, B = −36 205 Substituting B = −36 into equation (1) or (2) Hence (D2 + 16)[x(C sin 4x + D cos 4x)] 205 = −16Cx sin 4x −16Dx cos 4x + 4C cos 4x − 4D sin 4x + 4C cos 4x − 4D sin 4x gives A = −78 + 16Cx sin 4x + 16Dx cos 4x 205 = 10 cos4x, Hence the P.I., v = −78 sin 2x − 36 cos 2x. 205 205 (vi) The general solution, y = u +v, i.e. y = Aex + Be− 5 x 2 − 2 (39 sin 2x + 18 cos 2x) 205 Problem 8. Solve d2 y + 16y = 10 cos4x given i.e. −8D sin 4x + 8C cos 4x = 10 cos4x dx2 dy y = 3 and = 4 when x = 0. Equating coefficients of cos 4x gives: dx 8C = 10, from which, C = 10 = 5 84 Using the procedure of Section 51.2: Equating coefficients of sin 4x gives: −8D = 0, from which, D = 0. (i) d2 y + 16y = 10 cos 4x in D-operator form is dx2 Hence the P.I., v = x 5 4 sin 4x . (D2 + 16)y = 10 cos4x (vi) The general solution, y = u +v, i.e. (ii) The auxili√ary equation is m2 + 16 = 0, from y = A cos 4x + B sin 4x + 5 x sin 4x which m = −16 = ± j 4. 4 (iii) Since the roots are complex the C.F., (vii) When x = 0, y = 3, thus u =e0(A cos 4x + B sin 4x) 3 = A cos 0 + B sin 0 + 0, i.e. A = 3. i.e. u =Acos 4x + B sin4x d y = −4 A sin 4x + 4B cos 4x dx (iv) Since sin 4x occurs in the C.F. and in the right hand side of the given differential equa- + 5 x (4 cos 4x ) + 5 sin 4x tion, let the P.I., v = x(C sin 4x + D cos 4x) (see 4 4 Table 51.1(d), snag case—constants C and D are used since A and B have already been used in the When x = 0, d y = 4, thus C.F.). dx 4 = −4 A sin 0 + 4B cos 0 + 0 + 5 sin 0 4 (v) Substituting v = x(C sin 4x + D cos 4x) into i.e. 4 =4B, from which, B = 1 (D2 + 16)v = 10 cos 4x gives: Hence the particular solution is (D2 + 16)[x(C sin 4x + D cos 4x)] y = 3 cos 4x + sin 4x + 5 x sin 4x = 10 cos 4x 4
490 Higher Engineering Mathematics Now try the following exercise Exercise 191 Further problems on given by: differential equations of the form y = e−4t (A cos 2t + B sin 2t ) d2y dy + 15 (sin 4t − 8 cos4t ) a dx2 + b + cy = f (x) where f (x) is a sine or 13 dx cosine function d2q dq 1 7. L dt 2 + R dt + C q = V0 sin ωt represents the In Problems 1 to 3, find the general solutions of the given differential equations. variation of capacitor charge in an elec- tric circuit. Determine an expression for 1. d2 y − dy − 3y = 25 sin 2x q at time t seconds given that R = 40 , 2 dx2 dx L =0.02 H, C = 50 × 10−6 F, V0 = 540.8 V and ω = 200 rad/s and given the boundary y = 3 x + B e− x conditions that when t = 0, q = 0 and dq = 4.8 Ae 2 dt q = (10t + 0.01)e−1000t − 1 (11 sin 2x − 2 cos 2x ) 5 + 0.024 sin 200t − 0.010 cos 200t d2 y dy 2. dx2 − 4 dx + 4y = 5 cos x y = ( Ax + B)e2x − 4 sin x + 3 cos x 5 5 3. d2 y + y = 4 cos x 51.6 Worked problems on dx2 differential equations of the [ y = A cos x + B sin x + 2x sin x] d2y dy 4. Find the particular solution of the differen- form a d x2 + b d x + cy = f (x) where f (x) is a sum or a product tial equation d2 y − dy − 4y = 3 sin x; when dx2 3 Problem 9. Solve dx x = 0, y = 0 and d y = 0. dx d2 y + dy − 6y = 12x − 50 sin x. dx2 dx ⎡ =1 ⎤ ⎢⎣⎢y 170 (6e4x − 51e−x ) Using the procedure of Section 51.2: −1 (15 sin x − 9 cos ⎥⎥⎦ d2y dy 34 x ) (i) dx2 + dx − 6y = 12x − 50 sin x in D-operator 5. A differential equation representing the form is motion of a body is d2 y + n2 y = k sin pt , (D2 + D − 6)y = 12x − 50 sin x dt 2 where k, n and p are constants. Solve the equa- (ii) The auxiliary equation is (m2 + m − 6) = 0, from which, tion (given n =0 and p2 = n2) given that when (m − 2)(m + 3) = 0, t = 0, y = dy = 0. i.e. m = 2 or m = −3 dt (iii) Since the roots are real and different, the C.F., kp u = Ae2x + Be−3x. y = n2 − p2 sin pt − sin nt n (iv) Since the right hand side of the given differential equation is the sum of a polynomial and a sine 6. The motion of a vibrating mass is given by function let the P.I. v = ax + b + c sin x + d cos x d2 y dy (see Table 51.1(e)). dt 2 + 8 dt + 20y = 300 sin4t . Show that the general solution of the differential equation is
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434
- 435
- 436
- 437
- 438
- 439
- 440
- 441
- 442
- 443
- 444
- 445
- 446
- 447
- 448
- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- 459
- 460
- 461
- 462
- 463
- 464
- 465
- 466
- 467
- 468
- 469
- 470
- 471
- 472
- 473
- 474
- 475
- 476
- 477
- 478
- 479
- 480
- 481
- 482
- 483
- 484
- 485
- 486
- 487
- 488
- 489
- 490
- 491
- 492
- 493
- 494
- 495
- 496
- 497
- 498
- 499
- 500
- 501
- 502
- 503
- 504
- 505
- 506
- 507
- 508
- 509
- 510
- 511
- 512
- 513
- 514
- 515
- 516
- 517
- 518
- 519
- 520
- 521
- 522
- 523
- 524
- 525
- 526
- 527
- 528
- 529
- 530
- 531
- 532
- 533
- 534
- 535
- 536
- 537
- 538
- 539
- 540
- 541
- 542
- 543
- 544
- 545
- 546
- 547
- 548
- 549
- 550
- 551
- 552
- 553
- 554
- 555
- 556
- 557
- 558
- 559
- 560
- 561
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580
- 581
- 582
- 583
- 584
- 585
- 586
- 587
- 588
- 589
- 590
- 591
- 592
- 593
- 594
- 595
- 596
- 597
- 598
- 599
- 600
- 601
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610
- 611
- 612
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647
- 648
- 649
- 650
- 651
- 652
- 653
- 654
- 655
- 656
- 657
- 658
- 659
- 660
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701
- 702
- 703
- 704
- 705
- 706
- 707
- 1 - 50
- 51 - 100
- 101 - 150
- 151 - 200
- 201 - 250
- 251 - 300
- 301 - 350
- 351 - 400
- 401 - 450
- 451 - 500
- 501 - 550
- 551 - 600
- 601 - 650
- 651 - 700
- 701 - 707
Pages: