pbfx/0f 5 kx| n\\ fbn] cfkm\" ;u“ ePsf] ?= 2000 dWo] 22% vr{ u/5] g\\ eg] slt arfP5g\\ < ;dfwfg oxf,“ kx| n\\ fbn] u/s] f] vr{ ?lkof“ ?= 2000 sf] 22% = ?= 2,000 x 22 = ?= 440 100 ca, kx| n\\ fbsf] art ?lkof“ = hDdf cfDbfgL — vr{ = ?= 2000 - ?= 440 = ?= 1560 csf{] tl/sf, kx| n\\ fbsf] art % = 100 % - 22% = 78% kx| n\\ fbsf] art ?lkof“ = ? 2000 sf] 78% = ?= 2000 78 = ?= 1560 100 cEof; 17.1 1. dfg kQf nufpm M -s_ ?= 50 sf] 4% -v_ 99 sf] 15% -u_ 560kg sf] 80% -3_ 875 ltr. sf] 60% -ª_ 1560 ljBfyLs{ f] 75% 2. kl| tztdf abn M -s_ 120 sf] 40 -v_ 246 sf] 123 -u_ 30 hgfdf 18 hgf -3_ 25km df 5km -ª_ ?= 650 df ?= 32.5 3. hf8f] dlxgfsf] sg' } lbg 40 hgf ljBfyL{ dWo] 24 hgf dfq pkl:yt eP5g\\ . -s_ slt kl| tzt pkl:yt eP5g\\ < -v_ slt kl| tzt cgk' l:yt eP5g\\ < 4. Pp6f sfofn{ odf k?' if sfdbf/ 32 hgf / dlxnf sfdbf/ 18 hgf /x5] g\\ . -s_ k?' if sfdbf/ slt kl| tzt /x5] g\\ < -v_ dlxnf sfdbf/ slt kl| tzt /x5] g\\ < 5. sIff 6 sf] clGtd k/LIffdf ;d' gn] 750 k0\" ffª{ s\\ df 90% cªs\\ kf| Kt u/s] f /x5] g\\ . pgn] slt cªs\\ kf| Kt u/5] g\\ < 6. lbkssf] 1 dlxgfsf] cfDbfgL ?= 12750 dWo] 20% vr{ u/5] g\\ eg] slt /sd arfP5g\\ < 7. ;b' z] sf] tna ?= 1200 af6 a9/] ?= 1500 ku' 5] . ;b' z] sf] tna slt kl| tztn] a95] < 8. lgdn{ sf] dfl;s cfDbfgL ?= 14760 5 . pgn] 20% lzIffdf, 10% oftfoftdf / 25% 3/ ef8fdf vr{ ub5{ g\\ . hDdf slt ?lkof“ art u5g{ \\ < 9. ;G' tnLsf] tna 10% jl[ 4 ePkl5 ?= 22000 eP5 eg] ;?' df slt tna /x5] < 146 ul0ft, sIff – &
17.2 cgk' ft / ;dfgk' ftsf ;/n ;d:ofx¿ (Simple Problems on Ratio and Proportion) 1. cgk' ft (Ratio) s] cgk' ftsf] kl/efiff eGg ;S5f} < 12 / 15 sf] cgk' ft nV] g] ko| f; u/, xf,] 12 / 15 sf] cgk' ft 12 4 = 4:5 xG' 5 . 15 5 bO' c{ f6] f p:tfp:t} kl/df0fx¿ a / b sf] cgk' ft a jf a:b xG' 5 . hxf“ a / b nfO{ jm| dz M a klxnf] b kb cz+ (antecedent) / b nfO{ bf;] f| ] kb x/ (consequent) elgG5 . 16 / 20 sf] cgk' ft 16 4 = 4:5 xG' 5 . 20 5 20 / 25 sf] cgk' ft 20 4 = 4:5 xG' 5 . 25 5 12 , 16 / 20 sf] cgk' ft Pp6} ePsfn] 12 16 20 ...... cflb ;dtN' o leGgx¿ xg' \\ . 15 20 25 15 20 25 pbfx/0f 1 18 ln6/ bw' df 15 ln6/ z4' bw' / afs“ L kfgL ld;fOPsf] /x5] eg] -s_ kfgL / bw' sf] cgk' ft slt xfn] f < -v_ kfgL / z4' bw' sf] cgk' ft slt xfn] f < ;dfwfg 18 ln6/ bw' df 15 ln6/ zb' w\\ bw' 5 . kfgLsf] dfqf = 18 ln6/ - 15 ln6/ = 3 ln6/ -s_ kfgL / bw' sf] cgk' ft = 3 ln6/ = 1 =1:6 18 ln6/ 6 -v_ kfgL / z4' bw' sf] cgk' ft 3 ln6/ 1 = 15 ln6/ = 5 = 1:5 ul0ft, sIff – & 147
pbfx/0f 2 ;h' g / l;kmnnfO{ cfdfn] 90 ?lkof“ 2:3 sf] cgk' ftdf af8“ /] lng eGge' of] eg] kT| os] n] slt slt ?lkof“ kfP5g\\ < ;dfwfg oxf,“ 90 ?lkofn“ fO{ nufpgk' g{] efu = 2 + 3 = 5 efu dfgf,“} ;h' gn] kf| Kt ug{] ?lkof“ = 2x l;kmnn] kf| Kt ug{] ?lkof“ = 3x ca, 2x + 3x = ?= 90 csf{] tl/sf, cyjf, 5x = ?= 90 ;h' gn] kf| Kt ug{] /sd cyjf, x = ?= 90 = ?= 90 sf] 2 efu 5 5 ∴ x = ?= 18 = ?= 90 2 = ?= 5 ca, ;h' gn] kfPsf] /sd 36 = 2x =2 x ?= 18 = ?= 36 xG' 5 . l;kmnn] kf| Kt u/s] f] /sd = ?= 90 sf] 3 efu 5 l;kmnn] kfPsf] /sd = 3x = 3 x ?= 18 = ?= 54 = ?= 90 3 = ?= 54 5 pbfx/0f 3 dLgf / kD] afsf] dfl;s cfDbfgLsf] cgk' ft 3:4 5 . olb kD] afsf] dfl;s cfDbfgL ?= 2,400 eP dLgfsf] dfl;s cfDbfgL slt xfn] f < ;dfwfg oxf,“ dLgfsf] dfl;s cfDbfgL ?= x dfgf“} . dLgfsf] dfl;s cfDbfgL / kD] afsf] dfl;s cfDbfgLsf] cgk' ft =3:4 cyjf, ?= x 3 2400 4 cyjf, x= 3 2400 = (3 x 600) = 1800 4 ∴ x = ?= 1800 To;n} ] dLgfsf] dfl;s cfDbfgL ?= 1800 /x5] . 148 ul0ft, sIff – &
2. ;dfgk' ft (Proportion) bLkG] bn| ] ul0ftsf] 30 k0\" ffª{ s\\ sf] k/LIffdf 25 cªs\\ kf| Kt u/5] g\\ . To:t} u/L lj1fgsf] 24 k0\" ffª{ s\\ sf] k/LIffdf 20 cªs\\ kf| Kt u/5] g\\ . ca, bLkG] bn| ] ul0ftdf kf| Kt u/s] f] cªs\\ sf] cgk' ft = 25 5 30 6 bLkG] bn| ] lj1fgdf kf| Kt u/s] f] cªs\\ sf] cgk' ft = 20 5 24 6 ct M 25 20 xG' 5 . 30 24 bO' c{ f6] f cgk' ftx¿ a/fa/ ePsfn] oL cgk' ftnfO{ ;dfgk' ft elgG5 . ca, 25 nfO{ klxnf] kb, 30 nfO{ bf;] f| ] kb, 20 nfO{ t;] f| ] kb / 24 nfO{ rfy} f] kb elgG5 . rf/cf6] f p:t} ks| f/sf kl/df0f jf ;ªV\\ ofx¿ a, b, c / d sf] cgk' ftdf a / b sf] cgk' ft c / d sf] cgk' ft;u“ a/fa/ ePsf] cj:yfnfO{ ;dfgk' ft (proportion) elgG5 . o;nfO{ ac jf a:b::c:d nl] vG5 . bd jf, a x d = b x c xG' 5 . pbfx/0f 4 s] 3, 4, 9 / 12 ;dfgk' ftdf 5g\\ < ;dfwfg oxf,“ 3, 4, 9 / 12 nfO{ ;dfgk' ftsf] ¿kdf nV] bf, 3 9 4 12 cyjf, 3 × 12 = 4 × 9 cyjf, 36 = 36 bj' l} t/ a/fa/ ePsfn] 3, 4, 9 / 12 ;dfgk' ftdf 5g\\ . pbfx/0f 5 4, 7, 20 / x ;dfgk' ftdf eP rfy} f] kb x sf] dfg kQf nufpm . ;dfwfg oxf,“ 4, 7, 20 / x ;dfgk' ftdf ePsfn,] ul0ft, sIff – & 149
olb klxnf,] bf;] f| ,] t;] f| ] / rfy} f] kb jm| dzM 4 20 xG' 5 . 7x cyjf, 4 x x = 7 x 20 cyjf, x 720 4 ∴ x = 35 ct M rfy} f] kb x = 35 xG' 5 . pbfx/0f 6 10 cf6] f l;;fsndsf] dN\" o ?= 30 k5{ eg] sltcf6] f l;;fsndsf] dN\" o ?= 9 k5{ < ;dfwfg M oxf,“ cfjZos l;;fsnd = x dfgf“} ;dfgk' ftsf] ¿kdf nV] bf, 10 x 30 9 cyjf, 10 x 9 = 30 x x cyjf, 10 9 x 30 cyjf, x = 3 ctM cfjZos l;;fsndsf] ;ªV\\ of = 3 cEof; 17.2 1. tnsf kT| ossf] cgk' ft nv] / n3T' td kbdf ¿kfGt/0f u/ M -s_ 10cm / 2m -v_ ?= 18 / ?= 24 -u_ 540g / 2kg -3_ 8 306f / 2 lbg -ª_ 250ml / 1l 2. 36 ln6/ bw' sf] ld>0fdf 30 ln6/ z4' bw' / afs“ L kfgL ldl;Psf] 5 eg] kfgL / bw' sf] ld>0fsf] cgk' ft lgsfn . 3. ?= 250 nfO{ /fd / ;Ltfn] jm| dzM 2:3 sf] cgk' ftdf af8“ b\\ f kT| os] JolStn] slt slt ?lkof“ kf| Kt ub5{ g\\ xfn] f < 4. bO' c{ f6] f ;ªV\\ ofx¿sf] cgk' ft 5:6 5 . klxnf] ;ªV\\ of 90 eP bf;] f| ] ;ªV\\ of kQf nufpm . 150 ul0ft, sIff – &
5. zfe] f / ls/0fsf] dfl;s cfDbfgLsf] cgk' ft 5:9 5 . olb ls/0fsf] dfl;s cfDbfgL ?= 18,000 eP zfe] fsf] dfl;s cfDbfgL slt xfn] f < 6. tn lbOPsf rf/cf6] f kbx¿ ;dfgk' ftdf eP x sf] dfg lgsfn M -s_ 2, 4, 6, x -v_ 6, 10, x, 5 -u_ 18, x, 30, 45 -3_ 50, 150, x, 15 -ª_ x, 40, 30, 20 7. cfbz{ df=lj=df lzIfs / dlxnf lzIfssf] ;ªV\\ ofsf] cgk' ft 3:4 5 . olb lzIfssf] ;ªV\\ of 12 eP dlxnf lzIfssf] ;ªV\\ of kQf nufpm . 8. 7 cf6] f SofNsn' 6] /sf] dN\" o ?= 1750 k5{ eg] 12 cf6] f SofNsn' 6] /sf] dN\" o slt knf{ < 9. Pp6f a; 160 km ofqf ug{ 4 306f nufp5“ eg] 6 306fdf slt ofqf kf/ u5{ xfn] f < 10. cfbz{ df=lj=sf] 5fqfjf;df 600 hgf ljBfyLs{ f nflu 45 lbgsf] vfgf 5 . 450 hgf ljBfyLs{ f nflu ;f] vfgf slt lbgnfO{ kU' nf < ul0ft, sIff – & 151
PsfO 18 gfkmf / gfS] ;fg (Profit and Loss) 18.1 kl| tzt;lxtsf gfkmf / gfS] ;fgsf ;d:ofx¿ xfdLn] sIff 6 df kl| tzt ;dfjz] gePsf gfkmf / gfS] ;fgsf ;d:ofsf af/d] f 5nkmn ul/;ss] f 5f+} . ca xfdL kl| tzt;lxtsf gfkmf / gfS] ;fgsf ;d:ofdf 5nkmn ug{] 5f“} . tnsf] kZ| gdf cfwfl/t k:| tl' tsf] cWoog u/L 5nkmn u/ M Ps hgf 38L Jofkf/Ln] 10 cf6] f 38L kT| os] nfO{ ?= 75 sf b/n] lsGof] / ?= 80 sf b/n] ;a} 38L aR] of] . p;nfO{ gfkmf jf gfS] ;fg s] eof] xfn] f < oxf,“ Pp6f 38Lsf] jm| o dN\" o (C.P.) = ?= 75 10 cf6] f 38Lsf] jm| o dN\" o(C.P.) = ? 75 × 10 = ?= 750 Pp6f 38Lsf] ljjm| o dN\" o (S.P. = ?= 80 10 cf6] f 38Lsf] ljjm| o dN\" o (S.P.) = ?= 80 × 10 = ?= 800 oxf,“ jm| o dN\" oeGbf ljjm| o dN\" o w/] } ePsfn] pSt 38L Jofkf/LnfO{ gfkmf xG' 5 . ca, ;q\" fg;' f/, gfkmf = ljjm| o dN\" o - jm| o dN\" o = ?= 800 - ?= 750 = ?= 50 ctM ;f] Jofkf/LnfO{ hDdf ?= 50 gfkmf eP5 . dflysf] 5nkmnaf6 gfkmf / gfS] ;fgsf] ;q\" kQf nufO{ nv] . tnsf] ;q\" x¿;u“ tn' gf u/L x/] . 1. ljjm| o dN\" o > jm| o dN\" o ePdf gfkmf xG' 5 . gfkmf = ljjm| o dN\" o — jm| o dN\" o 2. jm| o dN\" o > ljjm| o dN\" o ePdf gfS] ;fg xG' 5 . gfS] ;fg = jm| o dN\" o — ljjm| o dN\" o pSt 38L Jofkf/LnfO{ slt kl| tzt gfkmf eof] xfn] f < Jofkf/LnfO{ kf| Kt gfkmf = ? 50 p;sf] ;a} 38Lsf] jm| o dN\" o = ? 750 p;n] ?= 750 df ?= 50 gfkmf u¥of] . o; egfOnfO{ kl| tztdf abNbf, gfkmfnfO{ leGgdf nV] bf 50 xG' 5 . 750 gfkmfnfO{ kl| tztdf abNbf 50 x100% 750 152 ul0ft, sIff – &
hDdf gfkmf kl| tzt = 50 100% 20 % 62% 750 3 3 cyft{ ,\\ ?= 750 sf] ?= 50 egs] f] 62% xG' 5 . 3 dflysf] 5nkmn / k:| tl' tsf cfwf/df gfkmf / gfS] ;fg kl| tzt tnsf] ;q\" x¿af6 kQf nufOG5 M 1. gfkmf % = jf:tljs gfkmf x 100 % jm| o dN\" o 2. gfS] ;fg % = jf:tljs gfS] ;fg x 100 % jm| o dN\" o pbfx/0f 1 olb sg' } 38Lsf] jm| o dN\" o = ?= 500, gfkmf % = 5% eP ljjm| o dN\" o kQf nufpm . ;dfwfg oxf,“ pSt 38Lsf] jm| o dN\" o ?= 500 df gfkmf 5% lgsfn/] hf8] g\\ ' g} ljjm| o dN\" o xG' 5 . ca, jf:tljs gfkmf = ?= 500 sf] 5% = ? 500 × 5 = ?= 25 100 ;q\" fg;' f/ jm| o dN\" o = jm| o dN\" o ± gfkmf = ?= 500 + ?= 25 = ?= 525 To;n} ] pSt 38Lsf] ljjm| o dN\" o = ?= 525 pbfx/0f 2 /fhn' ] Pp6f 6l] nlehg ?= 13,500 df lsg/] ?= 12,195 df aR] bf p;nfO{ slt kl| tzt gfS] ;fg xG' 5 < ;dfwfg oxf“ lbOPcg;' f/ Pp6f 6l] nlehgsf] jm| o dN\" o = ?= 13,550 / 6l] nlehgsf] ljjm| o dN\" o = ?= 12,195 ;q\" fg;' f/ hDdf gfS] ;fg = jm| o dN\" o – ljjm| o dN\" o = ?= 13,550 - ?= 12,195 = ?= 1,355 ca, gfS] ;fg % = jf:tljs gfS] ;fg x 100% jm| o dN\" o ?= 1355 = 10 % = ?. 13,550 x 100 % t;y,{ /fhn' fO{ pSt 6l] nlehgdf hDdf 10% gfS] ;fg xG' 5 . ul0ft, sIff – & 153
pbfx/0f 3 dfa] fOn k;nn] ] Pp6f dfa] fOn ?= 3750 df ar] /] 25% gfkmf u/5] eg] -s_ jm| o dN\" o slt /x5] < -v_ 30% gfkmf ug{ sltdf aR] gk' Yof{] < ;dfwfg M oxf,“ dfa] fOnsf] ljjm| o dN\" o = ?= 3750 / dfa] fOndf gfkmf % = 25% 5 . -s_ dfa] fOnsf] jm| o dN\" o = x -dfgf_“} ca, ;q\" fg;' f/ ljjm| o dN\" o = jm| o dN\" o + gfkmf xG' 5 . To;n} ,] ?= 3750 = x + x sf] 25 % cyjf, ?= 3750 = x x 25 100 cyjf, ?= 3750 = x x 4 cyjf, ?= 3750 = 4x x 4 cyjf, ?= 3750 x 4 = 5x cyjf, ?= x 3750 4 5 cyjf, ?= x = 3000 ctM pSt dfa] fOn ?= 3000 df lsgs] f] /x5] . -v_ 30% gfkmf ugs{ f nflu aR] gk' g{] dN\" o -ljjm| o dN\" o_ lgsfNbf, ;q\" fg;' f/, ljjm| o dN\" o = jm| o dN\" o ± gfkmf = ? 3000 + ?= 3000 sf] 30% = ?= 3000 + ? 3000 x 30 100 = ?= 3000 + ?= 900 = ?= 3900 ct M 30% gfkmf ug{ ;f] dfa] fOn ?= 3900 df aR] gk' 5{ . 154 ul0ft, sIff – &
cEof; 18.1 1. tn lbOPsf] cj:yfx¿df gfkmf jf gfS] ;fg kl| tzt s] xG' 5 < kQf nufpm M jm| =;=+ jm| o dN\" o -?=_ ljjm| o dN\" o -?=_ -s_ 300 330 -v_ 550 495 -u_ 640 832 -3_ 720 540 -ª_ 1200 1500 2. Pp6f Jofkf/Ln] Pp6f b/fh ?= 3950 df lsg/] 10% gfkmf u/L aR] bf b/fh slt dN\" odf lajm| L ugk{' 5{ . 3. Pp6f kmnkm\" n k;nn] ] kl| tlsnf] ?= 12 sf b/n] 15 lsnf] ;G' tnf lsg5] . ?= 15 sf b/n] ;a} ;G' tnf aR] bf k;nn] fO{ slt kl| tzt gfkmf xG' 5 < 4. dg' fn] Pp6f Sofd/f ?= 1300 df lslgg\\ . pgn] 15% gfS] ;fgdf al] rg\\ . dg' fn] Sofd/] fnfO{ sltdf al] rg\\ xfn] f < 5. /fhz] n] 100 cf6] f aNax¿ kT| os] nfO{ ?= 25 sf b/n] lsg5] g\\ . kfs6] vfn] L xb] f{ 20 cf6] f aNax¿ km' 6s] f /x5] g\\ . afs“ L aNax¿ ?= 30 sf b/n] aR] bf /fhz] nfO{ gfkmf jf gfS] ;fg kl| tzt s] eof] < kQf nufpm . 6. Pp6f 6l] nlehgnfO{ ?= 16,000 df lsg/] 15% gfkmf u/L aR] bf sltdf aR] gk' nf{ < 7. Ps hgf k:' ts k;nn] ] 250 cf6] f sfkL kT| os] sf] ?= 25 sf b/n] lsg5] . 30 cf6] f sfkL d;' fn] gi6 ul/lbP5g\\ . ca, afs“ L sfkLnfO{ kT| os] sf] ?= 35 sf b/n] aR] bf pSt k;nn] fO{ gfkmf jf gfS] ;fg s] eP5 < kl| tztdf kQf nufpm . 8. ?= 1,500 df ar] s] f] Pp6f ;f8Ldf 25% gfkmf eP5 eg] pSt ;f8Lsf] jm| o dN\" o slt /x5] < 9. Pp6f Hofs6] 12% gfS] ;fg vfP/ ?= 1,540 aR] of] eg] ;f] Hofs6] sltdf lslgPsf] /x5] < olb 5% gfkmf ug{ ;f] ;fdfg sltdf aR] gk' ¥of] < 10. lrof k;n] ;fxg' L Hofl] tn] 150 cf6] f Unf; lsgs] L /lx5g\\ . ltgLx¿dWo] 50 cf6] f km' 65] g\\ . afs“ L Unf;x¿nfO{ kT| os] sf] ?= 75 df aR] bf pgnfO{ 25% gfkmf eP5 eg] 150 cf6] f Unf;nfO{ sltdf lsgs] L /lx5g\\ < ul0ft, sIff – & 155
PsfO 19 Pl] ss lgod (Unitary Method) 19.1 kT| oIf kl/jtg{ -ljr/0f_ df cfwfl/t Pl] ss lgodsf ;d:ofx¿ kT| oIf kl/jtg{ (Direct Variation) tnsf ljm| ofsnfk cWoog u/L 5nkmn u/ M -s_ tnsf] tflnsfdf l;;fsnd / dN\" o lbOPsf] 5 . pSt tflnsf k/\" f u/ M l;;fsndsf] ;ªV\\ of 5 1 3 7 10 dN\" o ?= 30 ? ? ? ? dfly lbOPsf] tflnsfdf l;;fsndsf] ;ªV\\ of / dN\" o kT| oIf kl/jtg{ ;u“ ;DalGwt 5g\\ . dflysf] tflnsfsf cfwf/df 5 cf6] f l;;fsndsf] dN\" o ?= 30 xb“' f Pp6f l;;fsndnfO{ slt k5{ < kQf nufpm . Pl] ss lgod ko| fu] u/L dN\" o lgsfNbf, 5 cf6] f l;;fsndsf] dN\" o = ?= 30 Pp6f -1 cf6] f_ l;;fsndsf] dN\" o = ?= 30 = ?= 6 xG' 5 . 5 3 cf6] f l;;fsndsf] dN\" o = ?= 6 x 3 = ?= 18 k5{ . xf,] 5 cf6] f l;;fsndnfO{ ?= 30 k5{ eg] Pp6f l;;fsndnfO{ yf/] } -sd_ k5{ To;n} ] ?= 30 nfO{ 5 n] efu ubf{ Pp6f l;;fsndsf] dN\" o cfp5“ . 3 cf6] f l;;fsndsf] dN\" o Pp6fsf] dN\" oeGbf w/] } k5,{ To;n} ] Pp6fsf] dN\" onfO{ ;ªV\\ of 3 n] u0' fg ugk{' 5{ . -v_ 6 cf6] f l;;fsndsf] dN\" o slt knf{ < o;/L dN\" o yf/] } k5{ jf sd xG' 5 eg] efu ugk{' 5{ . w/] } k5{ jf a9L xG' 5 eg] u0' fg ugk{' 5{ . bO' { kl/df0fx¿df Pp6fdf ePsf] jl[ 4 -jf sdL_ n] csfd{] f klg ToxL cgk' ftdf jl[ 4 -jf sdL_ xG' 5 eg] To:tf] kl/df0fnfO{ kT| oIf kl/jtg{ ljr/0f (direct variation) ePsf] elgG5 . pbfx/0f 1 12 cf6] f ;G' tnfsf] dN\" o ?= 36 k5{ eg,] -s_ Pp6f ;G' tnfsf] dN\" o slt k5{ < -v_ 5 cf6] f ;G' tnfsf] dN\" o slt knf{ < 156 ul0ft, sIff – &
-u_ 20 cf6] f ;G' tnfsf] dN\" o slt knf{ < ;dfwfg oxf“ 12 cf6] f ;G' tnfsf] dN\" oeGbf Pp6f (1 cf6] f_ sf] dN\" o sd k5{ . To;n} ] pSt ;G' tnfsf] hDdf dN\" onfO{ ;ªV\\ ofn] efu ugk{' 5{ . lbOPcg;' f/, 12 cf6] f ;G' tnfsf] dN\" o = ?= 36 k5{ . Pp6f -1 cf6] f_ ;G' tnfsf] dN\" o = ?= 36 =? 3 k5{ . 12 5 cf6] fsf] dN\" o 1 cf6] f ;G' tnfeGbf a9L k5{ To;n} ] ;ªV\\ of 5 n] u0' fg ugk{' 5{ . 5 cf6] f ;G' tnfsf] dN\" o = ?= 3 x 5 = ?= 15 20 cf6] f ;G' tnfsf] dN\" o = ?= 3 x 20 = ? 60 k5{ . pbfx/0f 2 5 ln6/ k6] f« n] n] Pp6f sf/df 60 km ofqf ug{ ;lsG5 . 36 km ofqf ug{ slt ln6/ k6] f« n] cfjZostf knf{ < ;dfwfg 60km ofqf ug'{eGbf 36km ofqf ug{ sd k]6«f]n cfjZostf k5{ . To;}n] of] k|ToIf kl/jtg{ xf] . 60km ofqf ug{ 5 ln6/ k6] f« n] rflxG5 . 1km ofqf ug{ 5 ln6/ k6] f« n] rflxG5 . 60 36km ofqf ug{ 5 36 = 3 ln6/ k6] f« n] rflxG5 . 60 ctM 36km ofqf ug{ 3 ln6/ k6] f« n] cfjZostf k5{ . 19.2. ckT| oIf kl/jtg{ ÷ljr/0f (Indirect Variation) df cfwfl/t Pl] ss lgodsf ;d:of tnsf] tflnsfdf 5 hgf dflg;n] ufO{ kfng Joj;fosf] 6x/f] agfpg 15 lbg nufp5“ g\\ eGg] s/' f lbOPsf] 5 . ;fyL;u“ 5nkmn u/L tflnsf e/ M dflg; -hgf_ 5 1 3 lbg 15 ? ? 5 hgf dflg;n] Pp6f pSt 6x/f] agfpg 15 lbg nfU5 eg] 1 hgf dflg;n] ;f] 6x/f] agfpg w/] } lbg nfU5 . To;n} ] lbgnfO{ dflg;sf] ;ªV\\ ofn] u0' fg ugk{' 5{ . ul0ft, sIff – & 157
dflg; 5 1 3 lbg 15 5 x 15 = 75 ? To:t} Ps hgfnfO{ 75 lbg nfU5 eg] 3 hgfn] sfd ubf{ 6x/f] agfpg sd lbg nfU5 . To;n} ] Ps hgfn] sfd ug{] lbgnfO{ dflg;sf] ;ªV\\ ofn] efu ugk{' 5{ . dflg; 5 1 3 lbg 15 75 75 ÷ 3 = 25 ctM 3 hgf ldn/] ;f] 6x/f] agfpg 25 lbg nufp5“ g\\ . bO' { kl/df0fx¿df Pp6fdf ePsf] jl[ 4 jf sdLn] csfd{] f klg ToxL cgk' ftdf sdL jf jb[ l\\ w xG' 5 eg] To:tf] kl/df0fnfO{ ckT| oIf kl/jtg{ ÷ljr/0f ePsf] elgG5 . pbfx/0f 3 12 hgf dflg;n] sg' } sfd ug{ 20 lbg nufp5“ g\\ eg] 16 hgf dflg;n] ;fx] L sfd k/\" f ug{ slt lbg nufpnfg\\ < ;dfwfg 12 hgf dflg;af6 16 hgf dflg; jb[ l\\ w ePsf] 5 . 12 hgf dflg;n] 20 lbg nufpb“ f 16 hgf dflg;n] sd lbg nufp5“ g\\ . Pp6fdf jl[ 4 xb“' f csfd{ f sdL ePsfn] ] of] ckT| oIf ljr/0f xf] . 12 hgf dflg;n] Ps sfd k/\" f ug{ 20 lbg nufp5“ g\\ . 1 hgf dflg;n] Ps sfd k/\" f ug{ 20 x12 lbg nufp5“ g\\ . 16 hgf dflg;n] Ps sfd k/\" f ug{ 20 12 = 15 lbg nufp5“ g\\ . 16 ctM 16 hgf dflg;n] ;f] sfd k/\" f ug{ 15 lbg nufp5“ g\\ . pbfx/0f 4 Pp6f 5fqfjf;df /flvPsf] vfgf slt lbgdf 180 hgfn] ;S5g\\ hals 150 hgfn] ;f] vfgf l;Wofpg 60 lbg nufp5“ g\\ . ;dfwfg oxf,“ dflg;sf] ;ªV\\ of a9b\\ f vfgf vfg] lbg 365\\ . dflg;sf] ;ªV\\ of 36b\\ f vfgf vfg] lbg a95\\ . To;n} ] of] ckT| oIf ljr/0f xf] . 150 hgfnfO{ vfgf l;Wofpg 60 lbg nfU5 . 1 hgfnfO{ vfgf l;Wofpg 60 x 150 lbg nfU5 . 158 ul0ft, sIff – &
180 hgfnfO{ vfgf l;Wofpg 60 150 = 50 lbg nfU5 . 180 ctM 180 hgfnfO{ ;f] vfgf l;Wofpg 50 lbg rflxG5 . cEof; 19.1 tnsf kZ| gsf] pTt/ nv] M 1. tnsf kT| os] pbfx/0fx¿ kT| oIf jf ckT| oIf kl/jtg{ dWo] s] xg' \\ < 56' o\\ fpm . -s_ xft / cfn“} fsf] ;ªV\\ of -v_ a/fa/ Ifq] kmn ePsf] cfotsf] nDafO / rf8} fO -u_ dflg;sf] ;ªV\\ of / sfd ug{ nfUg] lbg -3_ vfgk] fgLsf] kfOksf] kfgL eg{] Ifdtf / nfUg] ;do -ª_ uf8Lsf] ult / lglZrt b/' L kf/ ug{ nfUg] ;do 2. 3 K.g. lrgLsf] dN\" o ?= 120 k5{ eg] 5 Kg. lrgLsf] dN\" o slt k5{ . 3. 15 cf6] f ;G' tnfsf] dN\" o ?= 75 k5{ eg] 12 cf6] f ;G' tnfsf] dV' o slt k5{ < 4. sf7df8fs“} f] afuahf/sf] Pp6f k;nsf] 4 dlxgfsf] ef8f ?= 8,000 xG' 5 . 1 jifs{ f] ef8f hDdf slt ltgk{' nf{ < 5. Pp6f df6] /;fOsn 12 ln6/ k6] f« n] n] 240 km. u8' 5\\ . 60 km. ofqf ug{ slt ln6/ k6] f« n] sf] cfjZostf knf{ < 6. olb 15 kg. lrgLn] 12 kg. ld>L ;f6g\\ ;lsG5 eg] 60 kg. ld>Ln] slt kg lrgL ;f6g\\ ;lsG5 < 7. 5 hgf dflg;n] Pp6f sfd ug{ 12 lbg nufp5“ g\\ eg] 15 hgf dflg;n] ;f] sfd ug{ slt lbg nufpgnfg\\ < 8. 12 hgf dflg;n] Pp6f vt] vGg 20 lbg nufp5“ g\\ eg] ;fx] L vt] 8 hgfn] vGg slt lbg nufpnfg\\ < 9. Pp6f a;n] sf7df8fa“} f6 gk] fnuGh 40km. kl| t 306fsf b/n] u8' b\\ f 15 306fdf k¥' ofp5“ . olb ult a9fP/ 50 km kl| t 306fsf b/n] u8' fpb“ f slt 306fdf ofqf k/' f xG' 5 < 10. Pp6f Aof/s] df 250 hgf ;l} gs hjfgsf nflu 45 lbgsf] vfgf ;l~rt 5 . olb 300 hgf ;l} gs hjfgn] vfg] xf] eg] ;fx] L vfgf slt lbgnfO{ kU' nf < 11. Pp6f 7s] b] f/n] Pp6f sfd 35 lbgdf k/\" f ug{ 32 hgf sfdbf/ sfddf nufP5 . olb p;n] 40 hgf sfdbf/ nufPsf] eP ;f] sfd slt lbgdf k/\" f xG' Yof] xfn] f < 12. dfly kZ| g g=+ 1 df lbOP h:t} u/L 2/2 cf6] f ;d:ofx¿ vfh] L ;dfwfg u/ . ul0ft, sIff – & 159
PsfO 20 ;fwf/0f Aofh (Simple Interest) 20.1 ;fwf/0f Aofh (Simple Interest) tnsf] ljm| ofsnfk cWoog u/L 5nkmn u/ M bLksn] /fli6o« jfl0fHo aª} s\\ df ?= 5,000 art vftfdf hDdf u/5] . 2 jifk{ l5 pgnfO{ aª} s\\ n] ?= 1000 yk/] hDdf ?= 6,000 lkmtf{ lbP5 . 1. ;fwf/0f Aofh;DaGwL zAbfjnLsf] kl/ro oxf,“ -s_ bLksn] aª} s\\ df hDdf u/s] f] /sd ?= 5,000 ;fjf“ (Principal -P) xf] . -v_ aª} s\\ n] yk/] lbPsf] /sd ?= 1000 Aofh (Intrest -I) xf] . -u_ aª} s\\ n] yk/] hDdf lbPsf] /sd ?= 6,000 ld>wg (Amount -A) xf] . -3_ aª} s\\ n] ?= 5,000 df ?= 1000 yk/] lbPsf] 2 jif{ ;do (Time -T) xf] . -ª_ aª} s\\ n] ?= 5000 df ?= 1000 yKof] eg] slt kl| tzt yKof] xfn] f < yks] f] kl| tzt (%) = ?=1000 x 100% ?= 5000 = 20% kT| os] ?= 100 df 1 jifd{ f yKg] /sdnfO{ Aofhb/ (Interest rate-R) elgG5 . 2. Pl] ss lgodaf6 Aofh lgsfNg] tl/sf ?= 100 sf] 1 jifd{ f xg' ] Aofh = ? 20 ?= 100 sf] 2 jifd{ f xg' ] Aofh = ?= 2 x 20 2 x 20 ?= 1 sf] 2 jifd{ f xg' ] Aofh = ?= 100 6000 x 2 x 20 ?= 6,000 sf] 2 jifd{ f xg' ] Aofh = ?= 100 o;nfO{ Aofh I, ?= 6000 nfO{ ;fjf“ P, 2 jifn{ fO{ ;do T, 20 nfO{ b/ R n] hgfpg] xf] eg] Aofh I = PTR xG' 5 . 100 160 ul0ft, sIff – &
ca dflysf ljm| ofsnfkx¿af6 / ;q\" af6 ;fj“ f (P), ;do (T), Aofhb/ (R), ld>wg (A) kQf nufpg] ;q\" kQf nufpm . 1. Aofh (I) = PTR 100 2. ;fj“ f (P) = I 100 TR 3. ;do (T) = I 100 PR 4. Aofhb/ (R) = I 100 PT 5. ld>wg (A) = P +I pbfx/0f 1 ?= 2,500 sf] 2 jifd{ f 10% sf b/n] xg' cfpg] Aofh / ld>wg kQf nufpm . ;dfwfg M oxf,“ ;fjf“ (P) = ?= 2,500, ;do (T) = 2 jif,{ Aofhb/ (R) = 10%, Aofh (I) = ? ld>wg (A) = ? Aofh (I) = PTR ?= 2,500210 = ?= 500 100 100 ld>wg (A) = P+I = ? 2500 + ? 500 = ?=3000 To;n} ,] Aofh ?= 500 / ld>wg / 3000 xG' 5 . pbfx/0f 2 kl| tjif{ 12% sf b/n] 3 jifd{ f ?= 720 Aofh kfpg slt /sd hDdf ugk{' 5{ < ;dfwfg M oxf,“ Aofhb/ (R) = 12%, ;do (T) = 3 jif,{ Aofh (I) = ?= 720, ;fjf“ (P) = ? 5 . ca, ?= 2,000 ;fjf“ (P) = I 100 ?= 720 100 TR 3 12 ctM ;fjf“ = ?= 2000 hDdf ugk{' 5{ . pbfx/0f 3 ;h[ gfn] gk] fn aª} s\\ df ? 1200 hDdf ul/5g\\ . 2 jif{ 6 dlxgfkl5 Psdi' 7 ?= 1500 lkmtf{ kfO5g\\ eg] slt kl| tzt Aofhb/ aª} s\\ n] lbP5 . ul0ft, sIff – & 161
;dfwfg ;fjf“ (P) = ?. 1200 ;do (T) = 2 jif{ 6 dlxgf = 30 dlxgf = 30 jif{ = 5 jif{ = 21 jif{ 12 2 2 ld>wg (A) = ?= 1500 Aofhb/ (R) = < oxf,“ ;q\" fg;' f/ Aofh (I) = A-P = ?= 1500- ?= 1200 = ?= 300 Aofhb/ (R) I 100 = ?= 300 100 = 300 100 2 = 10% = ?= 1200 5 1200 5 PT 2 ctM aª} s\\ n] 10% Aofhb/ lbPsf] /x5] . pbfx/0f 4 slt ;dokl5 / 3000 sf] ld>wg jflifs{ 15% Aofhsf b/n] ?= 3900 xG' 5 < ;dfwfg oxf,“ ;fjf“ (P) = ?= 3000 Aofhb/ (R) = 15% ld>wg (A) = ?= 3900 Aofh (I) = A-P = ?= 3900 - ?= 3000 = ?= 900 ;do (T) = ? ;q\" fg;' f/, ;do (T) = I 100 = ?= 900 100 = 2 jif{ PR ?= 300015 ctM cfjZos ;do = 2 jif{ . 162 ul0ft, sIff – &
ul0ft, sIff – & 163
PsfO 21 tYofªs\\ zf:q (Statistics) 21.1 ;l~rt af/Daf/tf tflnsf (Cumulative Frequency Table) ;l~rt af/Daf/tf tflnsf agfpgk' j\" { ;jk{ y| d sg' } klg tYofªs\\ sf] ;ªs\\ ng ul/G5 . o; jm| ddf ldnfg lrxg\\ sf] ko| fu] u/L af/Daf/tf lgsflnG5 . o;/L kf| Kt u/L Jojl:yt ul/Psf] tYofªs\\ nfO{ tYofªs\\ sf u0' fx¿sf] cfwf/df 56' o\\ fpgk' 5{ . o; sfon{ fO{ tYofªs\\ sf] tflnsLs/0f / k:| tt' Ls/0f elgG5 . ca xfdL oxf“ ;l~rt af/Daf/tf tflnsfsf] af/d] f 5nkmn ub{} 5f“} . ;l~rt af/Daf/tf tflnsf egs] f] kf| Kt tYofªs\\ x¿nfO{ af/Daf/tfdf k:| tt' ul/;sk] l5 jm| dzM af/Daf/tfx¿ hf8] b\\ } hfb“ f aGg] af/Daf/x¿sf] ofu] jf hf8] xf] . 1. c;dx\" ut tYofªs\\ sf] ;l~rt af/Daf/tf tflnsf tnsf] ljm| ofsnfk cWoog u/L 5nkmn u/ M dfgf“} sg' } Pp6f ljBfnosf] sIff 7 sf] 30 hgf ljBfyLx{ ¿sf] ;dx\" PsfOsf] 10 k0\" ffª{ s\\ sf] PsfO k/LIffdf kf| Ktfªs\\ lgDgfg;' f/sf] kfOof] M 6, 8, 10, 6, 2, 8, 4, 6, 8, 2, 4, 6, 8, 6, 8, 6, 10, 2, 4, 6, 8, 4, 2, 4, 8, 6, 4, 6, 8, 6, 10, 6 dflysf] sf/] f (Raw) tYofªs\\ nfO{ af/Daf/tf tflnsfdf bv] fpb“ f jm| =;=+ kf| Ktfªs\\ af/Daf/tf ldnfg lrxg\\ 1. 2 4 |||| 2. 4 6 |||| | 3. 6 10 |||| |||| 4. 8 7 |||| || 5. 10 3 ||| hDdf 30 hgf oxf“ 30 hgf ljBfyLn{ ] kf| Kt u/s] f] cªs\\ nfO{ af/Daf/tf tflnsfdf bv] fOPsf] 5 . dflysf] af/Daf/tf tflnsfdf af/Daf/tfx¿nfO{ ;l~rt af/Daf/tf tflnsf agfO{ jm| dzM cl3Nnf af/Daf/tfx¿ hf8] b\\ } hfb“ f aGg] ;l~rt af/Daf/tfnfO{ kl| jm| of;lxt tn k:| tt' ul/Psf] 5 . dflysf] tYofªs\\ nfO{ ;l~rt af/Daf/tfdf nV] bf, ;l~rt af/Daf/tf lgsfNg] tl/sf k|fKtfª\\s af/Daf/tf ;l~rt af/Daf/tf 1. ;l~rt af/Daf/tfsf] klxnf] kªl\\ tdf klxnf] tYofªs\\ sf] (x) (f) (cf) af/Daf/tf nV] gk' 5{ . h:t} M kf| Ktfªs\\ 2 sf] af/Daf/tf 24 4 4 5 . To;n} ] ;l~rt af/Daf/tfsf] klxnf] nx/df 4 nl] vPsf] 5 . 4 6 4 + 6 =10 2. bf;] f| ] tYofªs\\ sf] ;l~rt af/Daf/tfsf] bf;] f| ] nx/df klxnf] / bf;] f| ] af/Daf/tf hf8] /] nV] gk' 5{ . h:t} M 6 10 10 +10 = 20 4 + 6 = 10 8 7 20 +7 =27 3. o;} u/L jm| dzM ;l~rt af/Daf/tfsf] t;] f| ,] rfy} f] === nx/df af/Daf/tfx¿ hf8] b\\ } hfgk' 5{ . 10 3 27 + 3 = 30 164 ul0ft, sIff – &
pbfx/0f 1 tn lbOPsf] tYofªs\\ af6 ;l~rt af/Daf/tf tflnsf agfpm M k|fKtfª\\s (x) af/Daf/tf (f) 10 2 20 5 30 12 40 7 50 1 ;dfwfg dflysf] tYofªs\\ sf] cfwf/df ;l~rt af/Daf/tf tflnsf agfpb“ f, kf| Ktfªs\\ (x) af/Daf/tf(f) ;l~rt af/Daf/tf (cf) 10 2 2 20 5 2 + 5 = 7 30 12 7 + 12 =19 40 7 19 +7 =26 50 1 26 +1 =27 pbfx/0f 2 tn lbOPsf] cfs“ 8fsf] cfwf/df eGbf sd ;l~rt af/Daf/tf tflnsf agfpm M k|fKtfª\\s 10 20 30 40 50 60 af/Daf/tf 5 9 15 12 6 3 ;dfwfg oxf,“ eGbf sdsf] ;l~rt af/Daf/tf tflnsf agfpb“ f, kf| Ktfªs\\ (x) ;l~rt af/Daf/tf (cf) 10 eGbf sd 20 eGbf sd 5 30 eGbf sd 9 + 5 = 14 40 eGbf sd 14 + 15 = 29 50 eGbf sd 29 + 12 = 41 60 eGbf sd 41 + 6 = 47 47 + 3 = 50 ul0ft, sIff – & 165
2. ;dx\" ut tYofªs\\ sf] ;l~rt af/Daf/tf tflnsf pko'St >]0fLcGt/ /fvL ;ª\\sng ul/Psf] tYofª\\ssf] af/Daf/tf tflnsfaf6 agfOPsf] ;l~rt af/Daf/tf tflnsfnfO{ ;d\"xut ;l~rt af/Daf/tf tflnsf elgG5 . o;sf] pbfx/0fnfO{ tn k:| tt' ul/Psf] 5 . >0] fLcGt/ lgsfNbf tYofªs\\ x¿sf] ;ªV\\ of slt 5 To;nfO{ Wofg lbgk' 5{ . ;fdfGotof 5, 10, 20 cflb /fv/] >0] fLcGt/ lgsfNbf ;lhnf] xg' hfG5 . tk} lg tYofªs\\ x¿sf] lj:tf/ yf/] } 5 eg] >0] fLcGt/ ;fgf] ;ªV\\ ofdf klg /flvG5 . To;} u/L olb lj:tf/ w/] } 5 eg] >0] fLcGt/ 7n' f] ;ªV\\ ofdf /flvG5 . tn >0] fLcGt/ 10 ePsf] pbfx/0f k:| tt' ul/Psf] 5 . pbfx/0f 1 tn lbOPsf] cfwf/df ;l~rt af/Daf/tf tflnsf agfpm M k|fKtfª\\s 0 - 10 10 - 20 20 - 30 30 - 40 40 -50 ljBfyL{ ;ªV\\ of 3 5 12 7 3 ;dfwfg oxf“ lbOPsf] tYofªs\\ nfO{ ;l~rt af/Daf/tf tflnsfdf k:| tt' ubf,{ kf| Ktfªs\\ (x) ljBfyL{ ;ªV\\ of(f) ;l~rt af/Daf/tf(cf) 0 - 10 3 3 10 - 20 5 3+5=8 20 - 30 12 8 + 12 = 20 30 - 40 7 20 + 7 = 27 40 - 50 3 27 + 3 = 30 cEof; 21.1 tn lbOPsf] tYofªs\\ sf] cfwf/df ;l~rt af/Daf/tf tflnsf agfpm M 1. k|fKtfª\\s 3 6 9 12 15 ljBfyL{ ;ªV\\ of 2 5 8 6 4 2. k|fKtfª\\s 5 10 15 20 25 30 ljBfyL{ ;ªV\\ of 4 6 10 10 7 3 166 ul0ft, sIff – &
3. v]n elnan k'm6an ljm| s6] 6]an6]lg; Sof/daf]8{ r]; ljBfyL{ ;ªV\\ of 15 22 30 25 18 10 4. Hofnf -?lkofd“ f_ 10 20 30 40 50 sfdbf/ ;ªV\\ of 3 7 10 8 7 5. k|fKtfª\\s 0-5 5 - 10 10 - 15 15 - 20 20 - 25 ljBfyL{ ;ªV\\ of 5 8 15 12 7 6. k|fKtfª\\s 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50 ljBfyL{ ;ªV\\ of 6 8 15 10 6 7. k|fKtfª\\s 0 - 20 20 - 40 40 - 60 60 - 80 80 - 100 ljBfyL{ ;ªV\\ of 15 22 30 20 10 8. Hofnf -?=_ sfdbf/ ;ªV\\ of 0 - 100 100 - 200 200 - 300 300 - 400 400-500 6 12 18 14 7 9. pd]/ -jif_{ 10 - 20 20 - 30 30 - 40 40 - 50 50 - 60 la/fdL ;ªV\\ of 40 30 50 20 10 ul0ft, sIff – & 167
21.2 ax:' tDe lrq (Multiple Bar Diagram) xfdLn] ;fwf/0f :tDe lrqsf af/d] f cl3Nnf sIffx¿df 5nkmn ul/;ss] f 5f“} . sg' } klg tYofªs\\ x¿sf] ;ªs\\ ng ul/;sk] l5 k:| tt' Ls/0fnfO{ cfsifs{ / l56} cWoog ug{ ;lsg] agfpg] pkfox¿dWo] ax:' tDe lrq klg Ps xf] . o;nfO{ tnsf] pbfx/0fx¿df k:| tt' ul/Psf] 5 . pbfx/0f 1 Pp6f ljBfnosf sIff 6 bl] v 10 ;Ddsf ljBfyLx{ ¿sf] 5fqf / 5fq ;ªV\\ ofnfO{ tnsf] ax:' tDe lrqdf k:| tt' ul/Psf] 5 . o;sf] cWoog u/L lbOPsf kZ| gx¿df 5nkmn u/ . >L c3f{ /h:yn df=lj= c3f–{ 2, c3fv{ fr“ L ljBfyL{ ljj/0f– 2068 ljBfy {L ; \\ªVof 0 9 10 6 78 sIffx¿ dflysf] tflnsfsf cfwf/df lgDg lnlvt kZ| gx¿df 5nkmn u/ M 1. ax:' tDe lrq s] s:tf] ljifodf /x5] < 2. ax:' tDe lrqsf /v] fx¿df 7f8f] / t;] f| ] nx/df /xs] f ;ªV\\ ofx¿n] s] s] hgfPsf 5g\\ < 3. sg' :tDen] s6] f / sg' n] s6] Lsf] ;ªV\\ of hgfp5“ < 4. ax:' tDe lrqsf] kT| os] 7f8fl] t/sf] 7n' f] sf7] f Pp6f sf7] fn] slt ljBfyL{ hgfPsf] 5 < 5. sIff 6 df hDdf ljBfyL{ slt /x5] g\\ < 168 ul0ft, sIff – &
6. ;aeGbf a9L / ;aeGbf sd ljBfyL{ sg' sg' sIffdf /x5] g\\ < 7. sg' sg' sIffdf 5fqeGbf 5fqfsf] ;ªV\\ of a9L /x5] < 8. sg' sg' sIffdf 5fqf eGbf 5fqsf] ;ªV\\ of a9L /x5] < 9. dflysf] ax:' tDe nv] flrqaf6 cGo s] s] ;r\" gfx¿ kf| Kt ug{ ;S5f} < PseGbf a9L cfk;df ;DalGwt ;r\" gf tyf tYofªs\\ x¿nfO{ k:| tt' ul/Psf] lrqnfO{ ax:' tDe lrq elgG5 . ax:' tDe lrqsf] /rgf ubf{ ;fwf/0f :tDe lrqdf h:t} kT| os] :tDesf] rf8} fO a/fa/ xg' k' 5{ . ax:' tDe lrqx¿sf] prfOn] ;ªV\\ of hgfpb“ 5 . pbfx/0f 2 >L efg' df=lj= tfKnh] ª' df 2067 ;fndf ;~rfng ePsf] cfv“ f, sfg, ;fdfGo lrlsT;f / bft“ k/LIf0f lzlj/df btf{ eO{ :jf:Yo k/LIf0f u/fpg] JolStx¿sf] tYofªs\\ o;ks| f/ kfOof] M :jf:Yo ;j] fsf gfd cfv“ f sfg ;fdfGo lrlsT;f bGt k/LIf0f ;ªV\\ of dlxnf k'?if dlxnf k?' if dlxnf k?' if dlxnf k?' if 21 30 22 13 85 56 28 38 pSt tYofªs\\ nfO{ uf| km kk] /df ax:' tDe lrqåf/f k:| tt' ugx{' f;] \\ . ;dfwfg oxf,“ tYofªs\\ sf] tNnf] ;Ldf 13 / dflyNnf] ;Ldf 85 5 . To;n} ] uf| kmsf] kT| os] ;fgf] sf7] f a/fa/ Pshgf JolSt 7n' f] sf7] f a/fa/ 10 hgf dfg/] ax:' tDe lrq agfO{ tn k:| tt' ul/Psf] 5 M >L efg' dfWolds ljBfno, tfKnh] ª' :jf:Yo lzlj/ btf{ tYofªs\\ – 2067 :jf:Yo k/LIf0f ul/Psf JolStsf] ; \\ªVof cfv“ f sfg ;fdfGo lrlsT;f bft“ :jf:Yo ;j] fsf] gfd ul0ft, sIff – & 169
kmn \"kmns ]f kl/df0f -ls= |uf=df_ljm| ofsnfk -s_ ltdf| ] ljBfnodf ePsf] jf sg' } cGo ;f| t] af6 kf| Kt ax:' tDe lrq lnP/ To;sf dV' o ;r\" gfx¿nfO{ nv] /] sIffdf 5nkmn u/ . -v_ ltdf| ] ljBfnodf ePsf] jf sg' } cGo ;f| t] af6 kf| Kt ;r\" gf tyf tYofªs\\ x¿ ;ªs\\ ng u/L Pp6f ax:' tDe lrq agfO{ sIffdf 5nkmn u/ . cEof; 21.2 1. ax:' tDe lrq sn] fO{ elgG5 < ax:' tDe lrqdf sg' sg' ljifo j:t' ;dfjz] ul/Psf xG' 5g\\ < 2. tn Pp6f kmnkm\" n k;nn] ] 6 lbgdf ar] s] f] :ofp / gf;kftLsf] kl/df0fnfO{ ax:' tDe lrqdf bv] fOPsf] 5 M ;fgd' fof kmnkm\" n :6f/] Onfd g=kf= – #, Onfd cfOtaf/ ;f]daf/ dª\\unaf/ aw' af/ laxLaf/ zj' m| af/ af/x¿ ca dflysf] lrqsf cfwf/df lgDg lnlvt kZ| gx¿sf] pTt/ nv] M -s_ cfOtaf/ :ofp / gf;kftL slt slt kl/df0f lajm| L ePsf] /x5] < 170 ul0ft, sIff – &
-v_ ;fd] af/ :ofp / gf;kftLdf sg' slt kl/df0fdf a9L lajm| L ePsf] /x5] < -u_ :ofp ;aeGbf a9L / ;aeGbf sd sg' sg' af/df slt slt kl/df0fdf laj|mL ePsf] /x5] < -3_ dflysf] ax:' tDe lrqaf6 kf| Kt xg' ] cGo sg' } bO' c{ f6] f ;r' gfx¿ nv] . 3. gk] fnsf] sg' } Pp6f ko6{ s Ifq] df cfPsf ko6{ sx¿dWo] ef/t / cGo dn' s' sf u/L bO' { jus{ f tYofªs\\ lgDgfg;' f/ ;ªs\\ ng ul/Psf] /x5] . ;fn -lj=;=+ _ df 2064 2065 2066 2067 ko6{ s ;ªV\\ of ef/t c=d' ef/t c=d'= ef/t c=d'= ef/t c=d'= -;odf_ 12 28 15 35 19 36 20 38 dflysf] tYofªs\\ nfO{ pkoS' t :sn] lbP/ uf| km kk] /÷uf| km sfkLdf ax:' tDe lrq agfpm . 4. ;/:jtL df=lj=, wgi' ffdf ljBfyLx{ ¿ cfpb“ f ;jf/L ;fwg ko| fu] u/L tyf lx8“ /] cfpg] u/s] f] tYofªs\\ nfO{ tn lbOPsf] 5 M ljBfno cfpg] ;fwg lx8“ /] a; df6] / ;fOsn ;fOsn ljBfyL{ ;ªV\\ of 5fq 5fqf 5fq 5fqf 5fq 5fqf 5fq 5fqf 35 25 80 42 20 34 85 60 dflysf] tYofªs\\ nfO{ pkoS' t :sn] lbP/ uf| km kk] /÷uf| km sfkLdf ax:' tDe nv] f lrq agfpm . 5. cd/ la:s6' km\\ ofS6L« a6' jnn] ul' nof] / gl' gnf] u/L bO' { ks| f/sf la:s6' x¿ pTkfbg ubf{] /x5] . jz} fv dlxgfsf] klxnf] 5 lbgdf u/s] f] pTkfbgnfO{ tn tflnsfdf lbOPsf] 5 M pTkfbg af/ cfOtaf/ ;fd] af/ dªu\\ naf/ aw' af/ laxLaf/ pTkflbt kl/df0f ul' nof] gl' gnf] u'lnof] g'lgnf] u'lnof] g'lgnf] ul' nof] gl' gnf] ul' nof] gl' gnf] lsnf]u|fddf 30 29 45 56 71 65 77 59 79 55 dflysf] tYofªs\\ nfO{ pkoS'{ t :sn] lbP/ uf| km kk] /÷uf| km sfkLdf ax:' tDe nv] f lrq agfpm . 6. ltdf| ] ljBfnosf sIff 1 bl] v 5 ;Ddsf ljBfyLx{ ¿sf] 5fq / 5fqfx¿sf] tYofªs\\ ;ªs\\ ng u/L ax:' tDe lrq agfpm . cfkm\" n] agfPsf] ax:' tDe lrqnfO{ sIffdf k:| tt' u/ . ul0ft, sIff – & 171
21.3 c;dx\" ut tyf ;dx\" ut cfs“ 8f (Ungrouped and Grouped Data) tnsf ljm| ofsnfk cWoog u/L 5nkmn u/ . hghful[ t df=lj=, a6' jnsf sIff 7 sf 20 hgf ljBfyLx{ ¿n] 20 k0\" ffª{ s\\ df kf| Kt u/s] f] cªs\\ M 8, 15, 17, 8, 13, 15, 8, 17, 8, 13, 13, 15, 18, 10, 12, 10, 12, 10, 13, 13 -s_ o; kf| Ktfªs\\ nfO{ ldnfg lrxg\\ df k:| tt' u//] x/] f“} . k|fKtfª\\s ldnfg lrxg\\ af/Daf/tf 8 |||| 4 10 ||| 3 12 || 2 13 |||| 5 15 ||| 3 17 || 2 18 | 1 dflysf] tflnsfdf lbOPsf tYofªs\\ x¿ c;dx\" ut tYofªs\\ x¿ xg' \\ . olb sg' } klg tYofªs\\ df ePsf /flzx¿sf] ;aeGbf 7n' f] dfg / ;aeGbf ;fgf] dfgsf] km/s 7n' f] ePdf c;dx\" ut tYofªs\\ af6 af/Daf/tf tflnsf lgsfNg emGeml6nf] / ufxf| ] xG' 5 . w/] } ePsf] cfs“ 8fnfO{ ;dx\" agfO{ tflnsf agfpg ;lsG5 . dflys} tflnsfaf6 ;dx\" ut tYofªs\\ sf] af/Daf/tf tflnsf agfpb“ f, ;jk{ y| d ;aeGbf 7n' f] dfg / ;aeGbf ;fgf] dfgsf] cGt/ lgsfNgk' 5{ . ctM ;aeGbf 7n' f] dfg – ;aeGbf ;fgf] dfg = 18 - 8 = 10 xG' 5 . oxf“ cGt/ 10 5 . To;n} ] olb 4 cf6] f >0] fL ;ªV\\ of agfpg] xf] eg] jufG{ t/ 10 2.5 = sl/a 3 4 sf] cGt/df agfpgk' 5{ . dflysf] tYofªs\\ nfO{ 3 sf] cGt/df jufG{ t/ u/L tn lbOPcg;' f/ ;dx\" ut af/Daf/ tflnsfdf k:| tt' ug{ ;lsG5 . jufG{ t/ ldnfg lrxg\\ af/Daf/tf 8 - 11 |||| || 7 11 - 14 |||| || 7 14 - 17 | | | | 5 17 - 20 ||| 3 ;dx\" ut cfs“ 8f agfpb“ f Wofg lbgk' g{] s/' fx¿ M ul0ft, sIff – & -s_ ;aeGbf 7n' f] dfg / ;aeGbf ;fgf] dfgsf] km/s lgsfNg] 172
-v_ ;aeGbf 7n' f] dfg / ;aeGbf ;fgf] dfgsf] km/snfO{ jufG{ t/n] efu ug{] . -jufG{ t/ cfkm“} n] 5fGg] jf 5fGg lbOG5 ._ -u_ jufG{ t/sf] tNnf] ;Ldf (lower limit) ;fx] L jufG{ t/df k5{ eg] dflyNnf] ;Ldf (upper limit) cl3Nnf] jf csf{] jufG{ t/df k5{ . -3_ ldnfg lrxg\\ n] lbPsf] dfgnfO{ af/Daf/tfdf /fVg] . pbfx/0f 1 sIff 7 sf 40 hgf ljBfyLx{ ¿sf] tfn} tn lbOPsf] 5 . o;af6 c;dx\" ut tYofªs\\ agfpm M 38, 37, 36, 35,34, 33,38, 34, 35, 32, 30, 31, 34, 30 31, 32, 30, 33, 32, 30, 33, 31, 37, 36, 35, 34, 32, 31, 30, 39, 38, 37, 30, 31, 32, 37, 30, 32, 37, 39 tfn} -ls=uf| =df_ ldnfg lrx\\g af/Daf/tf 30 |||| || 7 31 |||| 5 32 |||| | 6 33 ||| 3 34 |||| 4 35 ||| 3 36 || 2 37 |||| 5 38 ||| 3 39 || 2 pbfx/0f 2 tn lbOPsf] tYofªs\\ sf] cfwf/df ;dx\" ut tYofªs\\ sf] af/Daf/tf tflnsf agfpm M 5, 19, 14, 17, 20, 21, 35, 39, 30, 31, 6, 8, 14, 28, 27, 39, 30, 31, 32, 25, 26, 10, 11, 12, 15, 28, 30, 31, 24, 22 ;dfwfg M cGt/ = 7n' f] dfg — ;fgf] dfg = 39 - 5 = 34 jufG{ t/ ldnfg lrxg\\ af/Daf/tf 5 – 10 ||| 3 10 – 15 |||| 5 15 – 20 ||| 3 20 – 25 |||| 4 25 – 30 |||| 5 30 – 35 |||| || 7 35 – 40 ||| 3 ul0ft, sIff – & 173
cEof; 21.3 1. tn lbOPsf] cfs“ 8faf6 c;dx\" ut tYofªs\\ sf] af/Daf/tf tflnsf agfpm M -s_ sIff 7 sf] ul0ft ljifosf] Pp6f PsfO k/LIffdf 22 hgf ljBfyLn{ ] 10 k0\" ffª{ s\\ df kf| Kt u/s] f] kf| Ktfªs\\ M 4, 6, 5, 3, 2, 4, 5, 6, 3, 2, 2, 3, 5, 6, 7, 8, 4, 3, 6, 8, 9, 3 -v_ sIff 7 sf 20 hgf ljBfyLs{ f] tfn} -ls=uf| =df_ M 25, 27, 30, 25, 32, 36, 27, 30, 25, 32, 30, 25, 36, 30, 36, 32, 27, 27, 25, 30 -u_ sIff 7 sf 20 hgf ljBfyLs{ f] prfO -;=] ld=df_ M 130, 148, 135, 130, 142, 148, 142, 135, 130, 142, 48, 135, 130, 142, 130, 135, 135, 142, 148, 130 -3_ 40 hgf ljBfyLs{ f] h7] dlxgfsf] pkl:ylt lbg M 17, 18, 22, 25, 24, 16, 17, 22, 25, 18, 17, 16, 10, 17, 16, 22, 25, 16, 17, 22, 24, 25, 22, 18, 17, 10 ,16, 22, 18, 17, 25, 25, 16, 17, 24, 22, 17, 16, 18, 10 2. tn lbOPsf] cfs“ 8faf6 ;dx\" ut af/Daf/tf agfpm M -s_ 15 hgf ljBfyLn{ ] 20 k0\" ffª{ s\\ sf] k/LIffdf kf| Kt u/s] f] kf| Ktfªs\\ M 4, 14, 13, 18, 19, 7, 6, 3,10,12, 15, 16, 18, 14, 9 -v_ 20 hgf ljBfyLs{ f] pd/] -jifd{ f_ M 12, 13, 15, 14, 12, 12, 13, 14, 12, 10, 8, 16, 18, 19, 12, 13,14, 15, 16, 8, 15 -u_ sIff 7 sf] ul0ft ljifosf] 20 k0\" ffª{ s\\ df kf| Kt u/sf] kf| Ktfªs\\ M 10, 14, 16, 14, 12, 15, 12, 14, 10, 12, 14, 15, 8, 7, 10, 12, 18, 19, 14, 10, 16, 12, 4, 7, 9, 8, 13, 12, 14, 16 -3_ sg' } pBfu] df sfo/{ t 40 hgf sfdbf/sf] bl} gs Hofnf ?= df M 70, 75, 80, 70, 90, 95, 100, 110, 80, 85,115, 80, 75, 85, 70, 95, 105, 115, 100, 90 80, 70, 60, 75, 80, 65, 65, 60, 70, 75, 90, 100, 115, 105, 110, 75, 85, 90, 90, 95 174 ul0ft, sIff – &
ul0ft, sIff – & 175
176 ul0ft, sIff – &
cEof; 21.4 1. tn lbOPsf] cfs“ 8faf6 cªs\\ ul0ftLo dWos lgsfn M -s_ 4, 6, 7, 5, 8, 4, 3, 9, 8, 6 -v_ 5, 7, 12, 15, 11, 10, 15, 19, 10, 8 -u_ 6, 7, 8, 5, 4, 6, 7, 8, 3, 6, 9, 7 -3_ 16, 20, 25, 22, 21, 16, 17, 18, 25, 20, -ª_ 40, 50, 60, 70, 80, 90 2. tn lbOPsf] ljBfyLs{ f] kf| Ktfªs\\ af6 af/Daf/tf tflnsf agfO{ dWos kTtf nufpm M -s_ 1, 5, 6, 9, 8, 4, 1, 9, 8, 4, 5, 4, 5, 6, 5, 4, 1, 5, 4, 6 -v_ 9, 8, 12, 15, 20, 22, 24, 22, 15, 9, 12, 8, 9, 20, 8, 12, 8, 15, 20, 24, 22, 15, 12, 9, 8 -u_ 10, 20, 20, 40, 50, 20, 20, 30, 30, 30, 40, 50, 30, 20, 40, 30. -3_ 30, 32, 33, 32, 31, 33, 33, 31, 30, 31, 32, 33, 32, 30, 30, 33, 31, 30 -ª_ 120, 130, 120, 125, 125, 130, 135, 120, 130, 120, 135, 130 3. tn lbOPsf] af/Daf/tf tflnsfsf] cªs\\ ul0ftLo dWos lgsfn M -s_ kf| Ktfªs\\ (x) 4 8 12 16 20 af/Daf/tf (f) 2 35 4 1 -v_ kf| Ktfªs\\ (x) 5 10 15 20 25 30 ljBfyL{ ;ªV\\ of (f) 4 7 10 8 6 5 -u_ tfn} -ls= uf| = df_ (x) 30 31 32 33 34 35 ljBfyL{ ;ªV\\ of (f) 5 8 15 14 9 5 -3_ prfO (x) 120 125 130 135 140 ljBfyL{ ;ªV\\ of (f) 2 5 8 4 1 -ª_ Hofnf (x) 80 90 100 110 120 130 sfdbf/ ;ªV\\ of (f) 95, 95 10 12 20 15 4. tn lbOPsf] 45 hgf sfdbf/sf] bl} gs Hofnfsf] cfwf/df pgLx¿sf] cf;} t bl} gs Hofnf ?lkofd“ f kTtf nufpm . -c;dx\" ut cfs“ 8fsf] cªs\\ ul0ftLo dWossf cfwf/df_ 80, 90, 110, 105, 95, 95, 110, 95, 85, 80, 80, 85, 90, 105, 100, 100, 100, 95, 85, 80, 110, 105, 80, 90, 95, 95, 100, 105, 110, 110, 90, 80, 85, 90, 95, 80, 85, 90, 90, 95, 100, 110, 105, 80, 90 ul0ft, sIff – & 177
PsfO 22 aLhLo cleJo~hs (Algebraic Expression) 22.1 axk' bLosf] kl/ro tyf juLs{ /0f (Introduction and Classification of Algebric Expression) kbsf cfwf/df axk' bLosf] juLs{ /0f tnsf] tflnsf cWoog u/L lbOPsf kZ| gdf 5nkmn u/f“} M axk' bLo gxg' ] jm| =;=+ Ps kbLo låkbLo lqkbLo 1. 2x 2x + 5 x2 - 7x + 6 2x 5 , x2 2. xy x2 + y x2 + y2 + z2 x2 + 4 1 x3 3. -y2z, x0 x + y3 x4 + 8x3 + 6x2 x2 - 7x + 6 x2 -s_ dfly lbOPsf ;a} ul0ftLo ;ªs\\ t] x¿nfO{ s] elgG5 < -v_ dflysf klxnf] rf/cf6] } cleJo~hssf pbfx/0fx¿df s] s] ;dfgtf / km/s kfp5“ f} . -u_ Ps kbLo cleJohsdf sltcf6] f kbx¿ 5g\\ < -3_ låkbLo / lqkbLo cleJo~hsdf slt sltcf6] f kbx¿ 5g\\ < -ª_ axk' bLosf] cleJo~hsdf slt cf6] f;Dd kbx¿ 5g\\ < -r_ lsg clGtdsf pbfx/0f cleJo~hs ePgg\\ xfn] f < dfly lbOPsf ;a} pbfx/0fx¿df ;ªV\\ of / rn/flzx¿ ;dfjz] ePsf 5g\\ . To;n} ] oL ;a} aLhLo cleJo~hsx¿ xg' \\ . aLhLo cleJo~hsx¿sf kbsf] ;ªV\\ ofsf cfwf/df aLhLo cleJo~hs Ps kbLo tyf axk' bLo xG' 5g\\ . axk' bLo cleJo~hsx¿ klg låkbLo, lqkbLo, ======= cflb xG' 5g\\ . -5_ dflysf] 5nkmnsf cfwf/df aLhLo cleJo~hssf] kl/ro -cy_{ / o;;u“ ;DalGwt tYox¿ kQf nufO{ n]v / tnsf tYox¿;“u t'ngf u/L x]/ . sx] L dxŒjk0\" f{ tYox¿ 1. rn jf crn /flzsf lardf ul0ftLo ljm| of;r\" s lrxg\\ x¿ ko| fu] eO{ ul0ftLo ;ªs\\ t] df nl] vPsf egfOx¿nfO{ aLhLo cleJo~hs elgG5 . 2. Pp6f dfq kb ePsf] aLhLo cleJo~hsnfO{ Ps kbLo cleJo~hs (monomial expression) elgG5 . 178 ul0ft, sIff – &
3. bO' c{ f6] f dfq kb ePsf] cleJo~hsnfO{ låkbLo cleJo~hs (binomial expression) elgG5 . To:t} tLgcf6] f kb ePsf] cleJo~hsnfO{ lqkbLo cleJo~hs (trinomial expression) elgG5 . 4. Ps jf PseGbf a9L kbx¿ ePsf] aLhLo cleJo~hsdf rnx¿sf] 3ftfªs\\ k0\" f{ ;ªV\\ of ePdf To:tf] cleJo~hsnfO{ axk' bLo cleJo~hs (polynomial expression) elgG5 . o;/L axk' bLonfO{ kbsf cfwf/df Ps kbLo, låkbLo, tLg kbLo ==== u/L juLs{ /0f ug{ ;lsG5 . 5. axk' bLo cleJohsx¿ klg bO' { kbLo, lqkbLo ============== cflb xG' 5g\\ . 2. l8uL| sf cfwf/df aLhLo cleJo~hsx¿ tnsf] tflnsf cWoog u/L lbOPsf kZ| gdf 5nkmn u/f“} M l8uL| 1 l8uL| 2 l8uL| 3 ......................... 2x 4m2 5p3 ......................... 7p2 + 5p2q + 9q2 ......................... -5y 2m+7mn 3z 2 3m2 + 6mn + 4n2 5x3 7xy2 2 y3 ......................... 2 3 -s_ l8uL| 1 df kT| os] kbsf] rn (x, y / z) sf] 3ftfªs\\ x¿ slt slt 5g\\ < -v_ l8uL| 2 df kT| os] kbsf] rnsf 3ftfªs\\ x¿ slt slt 5g\\ < -u_ 2m + 7mn s;/L 2 l8uL| sf] ePsf] xfn] f < -3_ (7p2 + 5p2q + 9q2) s;/L l8uL| 3 sf] aLhLo cleJo~hs eof] xfn] f < – dfly l8uL| 1 df ;a} aLhLo cleJo~hs 2x, -5y / 3z 2 sf rn/flzx¿sf 3ftfªs\\ x¿sf] 2 dfg 1 5 . To;}n] logLx¿ l8u|L 1 sf aLhLo cleJo~hsx¿ x'g\\ . - 7mndf rnx¿ m / n sf] 3ftfªs\\ sf] ofu] 1 + 1 = 2 5 . To;}n] 2m + 7mn l8uL| 2 sf] aLhLo cleJo~hs eof] . – 7p2 + 5p2q + 9q2 df 5p2q kbsf] l8uL| ;aeGbf a9L = 2 + 1 = 3 5 . To;n} ] o;sf] l8uL| 3 x'G5 . sx] L dxTTjk0\" f{ tYox¿ 1. sg' } klg aLhLo cleJo~hssf kbx¿sf rn/flzx¿sf] clwstd 3ftfªs\\ sf] dfgnfO{ To; cleJo~hssf] l8u|L elgG5 . 2. olb rnx¿ sg' } Pp6f kbdf 2 jf 2 eGbf a9L 5g\\ eg] ltgLx¿sf] 3ftfªs\\ nfO{ hf8] /] l8uL| kQf nufOG5 . 3. olb bO' { jf bO' e{ Gbf a9L kb ePsf] aLhLo cleJo~hs 5 eg] hg' kbsf] l8uL| ;ae} Gbf a9L 5 ToxL l8uL| g} ;f] aLhLo cleJo~hssf] l8uL| xG' 5 . ul0ft, sIff – & 179
pbfx/0f 1 tnsf lbOPsf kT| os] axk' bLox¿, Ps kbLo, låkbL jf tLg kbLo s] xg' \\ < 56' o\\ fP/ nv] M -s_ a3 -v_ 4a2 + 2a -u_ 3x2 + 7x2y + 9y2 ;dfwfg -s_ a3 df Pp6f dfq kb 5 . To;n} ] a3 Ps kbLo cleJo~hs xf] . -v_ 4a2 + 2a df 4a2 / +2a u/L bO' c{ f6] f kbx¿ 5g\\ . To;n} ] 4a2 + 2a bO' { kbLo cleJo~hs xf] . -u_ 3x2 + 7x2y + 9y2 u/L 3 cf6] f kbx¿ 5g\\ . To;n} ] 3x2 + 7x2 +9y2 lqkbLo cleJo~hs xf] . pbfx/0f 2 5x3 + 7x2y2 + 7y3 sf] l8u|L kQf nufpm M ;dfwfg M 5x3 + 7x2y2 + 7y3 df ;aeGbf w/] } 3ftfªs\\ (2+2) = 4 ePsf] kb 57x2y2 . To;}n] 5x3 + 7x2y2 + 7y3 sf] l8uL| 4 eof] . pbfx/0f 3 6x4y2 + 8x2y5z + 7xy5 sf] l8u|L kQf nufpm M ;dfwfg M oxf“ kT| os] kbsf] 3ftfªs\\ sf] hf8] lgsfnf“} . 6x4y2 df 3ftfªs\\ x¿sf] hf8] = 4 + 2 = 6 8x2y5z df 3ftfªs\\ x¿sf] hf8] = 2 + 5 + 1 = 8 / 7xy5 df 3ftfªs\\ x¿sf] hf8] = 1 + 5 = 6 ;aeGbf w/] } 3ftfªs\\ f] ofu] 8 eof] . t;y{ 6x4y2 + 8x2y5z + 7xy5 sf] l8uL| 8 x'G5 . cEof; 22.1 1. tnsf cleJo~hsx¿ sg' ks| f/sf axk' bLo xg' \\ 56' o\\ fpm / nv] M -s_ 5x4 + 7x - 18 -v_ -12x2y-2 -u_ x2 + 6x -3_ 3x + xy - 8y2 -ª_ 5x - 4y + 3z -r_ 7a4 5 8x4 -5_ 5/5 cf6] f axk' bLo ePsf / axk' bLo gePsf cleJo~hsx¿nv] / ;fyL;u“ 5nkmn u/ . 2. tn lbOPsf axk' bLosf] l8uL| kQf nufpm M -s_ 5x2 + 6x2y + 7y2 -v_ 7x3 + 8xy4 + y2 -u_ a3y4 + 3a5y + y6 -3_ 9xy4 + 10x6y2 + y12 -ª_ l8uL| 1 bl] v l8uL| 5 ;Ddsf 2/2 cf]6f ax'kbLo n]v . 3. Ps÷Ps cf6] f Ps kbLo, bO' { kbLo, lqkbLo cleJo~hsx¿ nv] . 180 ul0ft, sIff – &
22.2 aLhLo cleJo~hsx¿sf] u0' fg (Multiplicaiton of Algebric Expressions) 1. låkbLo cleJo~hsnfO{ låkbLo cleJo~hsn] u0' fg ug{] ab TP tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ M M c -s_ lbOPsf] lrqdf MNOP Pp6f cfot 5 . o;sf] Ifq] kmn slt xfn] f < -v_ cfot MNOP sf] Ifq] kmn = (a+b) (c+d) xG' 5, s;/L < Q SR -u_ MTSQ sf] Ifq] kmn kQf nufpm . d -3_ To:t} TSRP, QNUS / SUOR sf] If]qkmn kQf nufpm . N UO ab -ª_ oxf,“ cfoft MNOP sf] Ifq] kmn = 4 cf6] f cfotx¿ M MTSQ, TSRP, QNUS / SUOR sf] TP Ifq] kmnx¿sf] ofu] kmn;u“ a/fa/ xG' 5, s;/L < c ac bc SR cyjf (a+b) (c+d) = ac + ad + bc + bd x'G5 . Q ca, (a+b) (c+d) = ac + ad + bc + bd sf] d ad bd ;DaGw vf]hf}“ . N UO oxf“, (a+b) n] (c+d) nfO{ u0' fg ug{' egs] f] a n] (c+d) nfO{ / +b n] (c+d) nfO{ u0' fg ug{' eg]sf] xf] . aLhLo cleJo~hsx¿sf] u0' fgsf] kl| jm| ofnfO{ tn k:| tt' ul/Psf] 5 M r/0f 1 / 2 : a(c+d) = ac + ad r/0f 3 / 4 : +b(c+d) = bc + bd t;y,{ (a+b) (c+d) = ac + ad + t;y,{ (a+b) (c+d) = ac + ad + bc + bd bc + bd x'G5 . bO' { kbLo cleJo~hsn] bO' { kbLo cleJo~hsnfO{ u0' fg ubf{ Pp6f cleJo~hssf] kT| os] bO' { kbn] csf{] cleJo~hssf] kT| os] kbnfO{ jm| dzM u0' fg ub{} hfgk' 5{ . clg ;a} kbnfO{ Ps} 7fpd“ f hDdf ugk{' 5{ . o:tf] cj:yfdf u0' fgsf] kb ljR5b] g lgod (distributive law of multiplication) ko| fu] ul/G5 . ul0ft, sIff – & 181
2. lqkbLo cleJo~hsnfO{ låkbLo cleJo~hsn] u0' fg ug{] tnsf ljm| ofsnfk cWoog u/L 5nkmn u/f“} M -s_ lbOPsf] cfot PQRS sf] hDdf nDafO / rf8} fO slt slt xfn] f < -v_ cfot PQRS nfO{ slt efudf afl“ 8Psf] 5 < -u_ kT| os] efusf] Ifq] kmn lgsfn / kT| os] sf7] fleq nv] . -3_ cfot PQRS sf] Ifq] kmn s;/L lgsflnG5 < slt xfn] f < – dflysf] cfot PQRS df nDafO (a+b+c) / rf8} fO (x+y) 5 . – lrqaf6 cfot PQRS sf] Ifq] kmn = 6 cf6] f sf7] fsf] Ifq] kmn ax + bx + cx + ay + by + cy x'G5 . – o;/L 5nkmn ubf,{ (a+b+c) (x+y) (a + b + c) = x(a+b+c) + y(a+b+c) bx cx ax (x+ycm) = ax + bx + cx + ay + by + cy cy t;y,{ cfot PQRS sf] Ifq] kmn ay by = (ax + bx + cx + ay + by + cy)cm2 låkbLo cleJo~hsn] lqkbLo cleJo~hsnfO{ u0' fg ubf{ låkbLosf kT| os] kbn] lqkbLosf] kT| os] kbnfO{ cnu cnu u'0fg ul/G5 . clg ;a} kbx¿nfO{ Ps} 7fp“df hDdf kfl/G5 . u0' fg ug{] kl| jm| of r/0f 1, 2 / 3 : x(a+b+c) = ax + bx + cx r/0f 3 r/0f 4, 5 / 6 : y(a+b+c) = ay + by + cy r/0f 2 t;y,{ r/0f 1 (x+y) (a+b+c) r/0f 4 = ax + bx + cx + ay + by + cy r/0f 5 t;y,{ (x + y) (a+b+c) r/0f 6 = ax + bx + cx + ay + by + cy 182 ul0ft, sIff – &
pbfx/0f 1 u0' fg u/ M (2x + 3y) (5x - 2y) ;dfwfg (2x + 3y) (5x - 2y) = 2x(5x - 2y) + 3y(5x - 2y) = 10x2 - 4xy + 15xy - 6y2 = 10x2 + 11xy - 6y2 pbfx/0f 2 u0' fg u/ M (3a - 2b) (6a + 7b - 8c) ;dfwfg (3a - 2b) (6a + 7b - 8c) = 3a(6a + 7b - 8c) - 2b(6a + 7b - 8c) = 18a2 + 21ab - 24ac - 12ab - 14b2 + 16bc = 18a2 + 21ab - 12ab - 24ac + 16bc - 14b2 = 18a2 + 9ab - 24ac + 16bc - 14b2 pbfx/0f 3 Pp6f cfotsf/ g;/{ Lsf] nDafO (12x - 2y)m / rf8} fO (6x - 4y)m 5 eg] To; g;/{ Lsf] Ifq] kmn kQf nufpm . ;dfwfg oxf,“ cfotsf] nDafO (l) = (12x - 2y)m, rf8} fO (b) = (6x - 4y)m / Ifq] kmn (A) = ? ;q\" cg;' f/, cfotsf] Ifq] kmn (A) = l x b = (12x - 2y) (6x - 4y)m2 = 12x (6x - 4y) - 2y(6x - 4y)m2 = (72x2 - 48xy - 12xy + 8y2)m2 = (72x2 - 60xy + 8y2)m2 t;y,{ pSt g;/{ Lsf] Ifq] kmn (72x2 - 6oxy + 8y2)m2 x'G5 . pbfx/0f 4 Pp6f cfotsf/ sIff sf7] fsf] nDafO (5x + 2y - 5) / rf8} fO (3x - y) 5 eg] To;sf] Ifq] kmn kQf nufpg'xf];\\ . ;dfwfg oxf“ cfotsf] nDafO (l) = (5x + 2y - 5), rf8} fO (b) = (3x - y) / Ifq] kmn (A) = ? ul0ft, sIff – & 183
;q\" cg;' f/, cfotsf] Ifqk] mn (A) = l x b = (3x - y) (5x + 2y - 5) = 3x(5x + 2y - 5) - y(5x + 2y - 5) = 15x2 + 6xy - 15x - 5xy - 2y2 + 5y = 15x2 + 6xy - 5xy - 15x + 5y - 2y2 = 15x2 + xy - 15x + 5y - 2y2 t;y{ pSt sIff sf7] fsf] Ifq] kmn (15x2 + xy - 15x + 5y - 2y2) ju{ PsfO x'G5 . cEof; 22.2 -v_ 2 x( x 2 y2 ) ] -u_ c ( 2 a 1 b) -3_ (2m - 3n) x 3p 1. u0' fg u/ M 3 3 4 -s_ a(3a - 2b) 2. ;/n u/ M -s_ 5x2(2x + 3) + 6x(2x - 3) -v_ 1 m(m 3) 2m( 5 m 2) 2 3 -u_ 6y - 3(5-y) + 7(3x - y) -3_ p2(q2 - r2) + q2(r2 - p2) + r2(p2-q2) 3. u0' fg u/ M -s_ (x+y) (x+y) -v_ (p - q) (p-q) -u_ (m+n)(m-n) -3_ (3x + 5y) (3x - 5y) -ª_ (a2 + b2) (2a - 3b) -r_ (3c - 5d) (5c - 3d) -5_ k l k l -h_ (2.5a2 + 5.2b2) (6.2a2 + 2.6b2) 3 2 3 2 -em_ (x+y) (x2-xy + y2) -`_ (a-b) (a2 + ab + b2) 4. (5p + 3) / (3p - 2) sf] u0' fg kmn lgsfn . olb p = 2 eP pSt u0' fg kmnsf] dfg slt xG' 5 < 5. (5a2 - 4b2) (2a + 5b) sf] u'0fg kmn lgsfn . olb a = 2 / b = -3 eP pSt u0' fg kmnsf] jf:tljs dfg slt xfn] f < 6. tnsf kT| os] lrqsf cfwf/df cfotsf/ j:ts' f] Ifq] kmn kQf nufpm M -s_ 4a -v_ 1.2x 3a 2.6y b 5x 184 ul0ft, sIff – &
-u_ p -3_ 2 y p 2 2 3 y 2 1 y 2 2 1.5p -ª_ 2x -r_ a 1.5x 5y y 5.2 cm 2.5 cm b -5_ -h_ 7m 3m 1.5x 2.5y x 2y 2.5 n 2z 1.5 n 7. Pp6f cfotsf/ sf7] fsf] nDafO (5a + 2b)m / rf8} fO (4a - b)m /x5] eg] -s_ To; sf]7fsf] If]qkmn lgsfn . -v_ olb a = 3m / b = 2m eP To; sf7] fsf] jf:tljs Ifq] kmn kQf nufpm . 8. Pp6f cfotsf/ s/;] faf/Lsf] nDafO (12a - 3b)m / rf8] fO (6a - 2b - 2c)m 5 eg,] -s_ To; s/];faf/Lsf] If]qkmn lgsfn . -v_ olb a = 5, b = 2 / c = -1 eP To; s/;] faf/Lsf] jf:tljs Ifq] kmn kQf nufpm . ul0ft, sIff – & 185
22.3 aLhLo cleJo~hsx¿sf] efu (Division of Algebraic Expression) 1. bO' { kbLo cleJo~hsn] axk' bLo cleJo~hsnfO{ efu ug{] tnsf ljm| ofsnfk cWoog u/L 5nkmn u/ M Pp6f cfotsf/ hUufsf] Ifq] kmn (a2 + 5a + 6) ju{ PsfO / nDafO (a+3) PsfO /x5] eg] rf8} fO kQf nufpg] sf]l;; u/f}“ . -s_ dflysf] ;d:of hgfpg] lrq tof/ u/L ljrf/ u/f“} . oxf“ lbPcg;' f/, Ifq] kmn (A) = (a2 + 6a + 6), nDafO = (a+3) / b = ? 5 . dflysf] ;d:ofdf rf8} fO (b) kQf nufpg' 5 . cfotsf/ l = (a+3) j:ts' f] Ifq] kmn A = l x b cyjf b A x'G5 . A = (a2 + 5a + 6) ll b=? To;}n] of] ;d:of efu;“u ;DalGwt 5 . -v_ ca, ;q\" cg;' f/ rf8} fO (b) A a2 5a 6 x'G5 . a3 ll cyjf b = (a2 + 5a + 6) ÷ (a+3) x'G5 . rf8} fO kQf nufpg nDafO (a+3) n] Ifq] kmn (a2 + 5a + 6) nfO{ efu ug'{k5{ . -3_ ca r/0fcg;' f/ efu ub{} hfcf,“} a+2 r/0fx¿ a+3) a2 + 5a + 6 r/0f 1 : a n] a2 nfO{ slt k6s efu hfnf < r/0f 2 : (a+3) x a = ? - a2 +- 3a r/0f 3 : ca 2a nfO{ a n] slt k6s efu hfnf < 2a + 6 r/0f 4 : (a+3) x 2 = ? -2a +- 6 0 ctM pSt hUufsf] rf8} fO = (a+2) PsfO x'G5 . -3_ ca hfr“ /] x/] f“} M (a+3) (a+2) = a(a+2) + 3(a+2) = a2 + 2a + 3a + 6 = a2 + 5a + 6 lbOPsf] hUufsf] If]qkmn cfof] . To;}n] xfd|f] efu u/]sf] lx;fa ldNof] . -ª_ olb a = 15 ld6/ eP pSt hUufsf] nDafO, rf8} fO / Ifq] kmn lgsfNg] ko| f; u/f“} . nDafO rf}8fO If]qkmn (a+3) (a+2) (a2 + 5a + 6) = (15+3)m = (15+2)m = (152 + 5 x 15 + 6)m = 18m = 17m = (225 + 75 + 6)m = 306m 186 ul0ft, sIff – &
pbfx/0f 1 (m2 - 7m + 12) nfO{ (m-3) n] efu u/ / hf“r]/ klg x]/ . ;dfwfg efu u//] xb] f,{ m-4 hfr“ /] xb] f,{ m - 3) m2 - 7m + 12 (m-3) (m-4) -m2 +- 3m = m(m-4) - 3(m-4) - 4m + 12 = m2 - 4m - 3m + 12 +- 4m +- 12 0 = m2 - 7m + 12 hf“Rbf ldNof] . To;}n] efu u/]sf] l7s 5 . t;y{ m2 - 7m + 12 nfO{ m-3 n] efu ubf{ (m- 4) x'G5 . pbfx/0f 2 -s_ (4y2 - 13y - 21) nfO{ (y -8) n] efu u/ . -v_ efukmn / zi] f 56' o\\ fP/ nv] . -u_ ;dfwfgnfO{ hf“r]/ klg x]/ . -3_ olb (y = 2cm) eP 4y2 - 13y - 21 sf] dfg lgsfn . ;dfwfg -s_ efu ubf{ -v_ hfr“ /] xb] f{ 4y + 19 (y - 8) (4y + 19) + 131 = y(4y + 19) - 8 (4y + 19) + 131 y - 8) 4y2 - 13y - 21 = 4y2 + 19y - 32y - 152 + 131 - 4y2 +- 32y 0 + 19y - 21 = 4y2 - 13y - 21 -19y +- 152 0 + 131 4y2 - 13y - 21 k|Zgdf lbOPsf] efHo xf] . ctM efukmn = (4y+19) / zi] f = 131 ctM xfd|f] efu u/]sf] lx;fa ldn]sf] 5 . ca dflysf] pbfx/0fsf cfwf/df aLhLo cleJo~hssf] efudf efHo, efhs, efukmn / zi] fsf] ;DaGw kQf nufpm . ul0ft, sIff – & 187
efHo = -efhs x efukmn_ ± zi] f hxf,“ zi] fsf] l8uL| < efhssf] l8u|L x'G5 . -3_ ca y = 2cm dfgnfO{ (4y2 - 13y - 21) df kl| t:yfkg ubf,{ 4y2 - 13y - 21 = (4 x 22 - 13 x 2 - 21)cm = (4 x 4 - 26 - 21)cm = (16 - 47)cm = -31cm pbfx/0f 3 olb (m+8) hgfnfO{ ?= (2m2 + 13m - 24) a/fa/ u/L afl“ 8of] eg,] -s_ kT| os] n] slt slt /sd kfpnfg\\ < -v_ olb m = Rs 10 eP kT| os] n] hDdf sltsf b/n] /sd kfP5g\\ < -u_ hDdf /sd slt /x5] < ;dfwfg dfly lbOPsf] ;d:of efusf] ;d:of xf] . ca efu u/L xb] f{ r/0fx¿ 2m - 3 1. (m+8) x 2m = 2m2 + 16m 2. +13m - 16m = -3m m+8) 2m2 + 13m - 24 3. (m + 8) (-3) = -3m - 24 -2m2 +- 16m 4. (-3m - 24) - (-3m - 24) = 0 0 - 3m - 24 +- 3m +- 24 0 -s_ To;n} ] kT| os] n] ?= (2m - 3) /sd kfp“5g\\ . -v_ olb m = ?= 10 eP kT| os] n] kfpg] /sd = ?= (2m - 3) = ?= (2 x 10 - 3) = ?= (20 - 3) = ?= 17 x'G5 . -u_ hDdf /sd = ?= (2m2 + 13m - 24) = ?= (2 x 102 + 13 x 10 - 24) = ?= (2 x 100 + 130 - 24) = ?= (200 + 106) = ?= 306 188 ul0ft, sIff – &
cEof; 22.3 1. efu u/ M -s_ 10a 15b 30 -v_ 5m6 3m5 5m3 5 m3 -u_ (4x2 + 12x) ÷ (2x + 6) -3_ (m2 + 4m + 4) ÷ (m+2) -ª_ (a2 + 7a + 12) ÷ (a+3) -r_ (3m2 - 5m - 28) ÷ (3m+7) -5_ (2y2 + 13y + 15) ÷ (y + 5) -h_ (16p2 + 24pq + 9q2) ÷ (4p + 3q) -em_ (2l3 - 5l2 - 24l - 18)÷ (2l + 3) -`_ dfly lbP h:t} u/L Ps kbLo, låkbLo / axk' bLon] efu ug{] 2/2 cf6] f ;d:ofx¿ agfO{÷vf]hL ;dfwfg u/ . ;fyL;“u Ps cfk;df ;f6]/ ;dfwfg u/L pQ/ hf“r]/ x]/ . 2. Pp6f ;nfOs{ f] Pp6f cfotsf/ ;tx Ifq] kmn 15x2 + 12x ju{ PsfO 5 . To;sf] Pp6f e'hfsf] nDafO 3x PsfO eP, -s_ csf{] eh' fsf] rf8} fO slt xfn] f < -v_ olb x = 5cm eP pSt ;txsf] Ifq] kmn, nDafO / rf8} fO kQf nufpm . 3. Pp6f 6a] nsf] dflyNnf] ;txsf] rf8} fO 4x - 3y / Ifq] kmn 24x2y - 18xy2 /x5] eg,] -s_ nDafO kQf nufpm, -v_ olb x = 12cm / y = 6cm eP pSt ;txsf] Ifq] kmn, nDafO / rf8} fOsf] jf:tljs dfg lgsfn . 4. olb (x+2) hgfnfO{ ?= (x2 + 6x + 8) a/fa/ u/L afl“ 8of] eg,] -s_ kT| os] n] slt slt /sd kfpnfg\\ < -v_ olb x = ?= 15 eP jf:tljs hDdf /sd, dflg;sf] ;ªV\\ of / kT| os] sf] efudf k/s] f] /sd kQf nufpm . 5. Pp6f cfotsf/ 38/] Lsf] nDafO (5x + 10)m / Ifq] kmn (x2 - 25x – 70)m2 /x]5 eg] . -s_ rf}8fO kQf nufpm . -v_ olb x = 10m eP pSt 38/] Lsf] jf:tljs nDafO, rf8} fO / Ifq] kmn kQf nufpm . ul0ft, sIff – & 189
22.4 (a±b)2 sf] HofldtLo wf/0ff / ko| fu] [Geometrical Concept and Application of (a±b)2] 1. (a+b)2 sf] HofldtLo wf/0ff A a Eb tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ M D -s_ sg' } Pp6f ju{ ABCD lvrf}“ . a -v_ ju{ ABCD sf] nDafO / rf8} fO H slt slt xf]nf < kQf nufpm . GI b -u_ ca kT| os] cfot / jus{ f] Ifq] kmn lgsfn]/ lrqdf e/ . B FC -3_ ca ju{ ABCD sf] hDdf Ifq] kmn = (a+b) (a+b) = (a+b)2 = ? dflysf] lrqdf ju{ ABCD sf kT| os] eh' fsf] nDafO (a+b) 5 . cyf{t\\ nDafO = (a+b) / rf8} fO = (a+b) g} 5 . k|To]s leqL ju{ / cfotnfO{ tnsf] lrqdf e/]/ b]vfOPsf] 5 . ctM ju{ ABCD sf] If]qkmn a b ED (A) = (a+b)2 = (a2 + ab + ab + b2) = (a2 + 2ab + b2) x'G5 . A hfr“ /] x/] f“} ctM ;q\" (a+b)2 = a2 + 2ab + b2 a (a+b)2 = (a+b) (a + b) a2 ab = a(a+b) + b(a+b) H = a2 + ab + ab + b2 GI b ab b2 = a2 + 2ab + b2 k|dfl0ft eof] . B FC 2. (a-b)2 sf] HofldtLo wf/0ff tnsf ljm| ofsnfkx¿ cWoog u/L 5nkmn u/ M P a W T bS -s_ Pp6f eh' f a PsfO ePsf] ju{ PQRS lvr . aV b b2 -v_ eh' f PS = a df TS = b tyf eh' f QR df UR = Q b xg' ] u/L sf6 / ca T / U hf]8 . W X U -u_ To:t} csf{] eh' f PQ = a df VQ = b xg' ] u/L sf6 . To:t} eh' f XR = b xg' ] u/L sf6 . ca V / X a Ub R hf8] . -3_ TU / VX n] cfk;df sfl6Psf] laGbn' fO{ W gfd b]pm . 190 ul0ft, sIff – &
-ª_ ca tnsf kT| os] HofldtLo lrqsf] gfk kQf nufO{ lrqdf e/ M 1. PV = ? 2. VW = ? 3. TW = ? 4. PT = ? 5. WU = ? 6. UR = ? 7. WX = ? 8. XR = ? 9. SX = ? 10. QV = ? 11. QU = ? 12. TS = ? 13. ju{ PVWT = ? 14. cfot TWXS = ? 15. cfot VQUW = ? 16. ju{ WURX = ? 17. ju{ PQRS = ? -r_ ca (a-b)2 nfO{ 5fof kf/]/ b]vfpm . -5_ (a-b)2 a/fa/ slt xG' 5 xfn] f < lrqsf cfwf/df kQf nufpm . dflysf] lrqdf PV = VW = TW = PT = (a-b) x'G5 . ju{ PVWT sf] Ifq] kmn (A) = (a-b)2 ju{ PsfO x'G5 . To;}n] cfot TWXS sf] Ifq] kmn = b(a-b) ju{ PsfO, cfot VQUW sf] Ifq] kmn = b(a-b) ju{ PsfO / ju{ WURX sf] Ifq] kmn = b2 ju{ PsfO x'G5 . To:t} ju{ PQRS sf] Ifq] kmn = a2 ju{ PsfO x'G5 . ca, 7n' f] ju{ PQRS = ju{ PVWT + cfot VQUW + cfot TWXS + ju{ WURX x'G5 . cyjf a2 = (a-b)2 + b(a-b) + b(a-b) + b2 a cyjf, a2 = (a-b)2 + ab - b2 + ab - b2 + b2 P Tb S cyjf, a2 = (a-b)2 + 2ab - b2 cyjf, -(a-b)2 = -a2 + 2ab - b2 W cyjf, (a-b)2 = -(-a2 + 2ab - b2) ctM ;q\" M (a-b)2 = a2 - 2ab + b2 a (a-b)2 b(a-b) ca (a-b)2 = a2 - 2ab + b2 nfO{ hfr“ /] x/] f“} M V WX b b(a-b) U b2 Q Ub R (a-b)2 = (a-b) (a-b) = a(a-b) - b(a-b) = a2 - ab - ab + b2 = a2 - 2ab + b2 k|dfl0ft eof] . sx] L dxŒjk0\" f{ ;q\" x¿ (1) (a+b)2 = a2 + 2ab + b2 = (a-b)2 + 4ab (2) (a-b)2 = a2 - 2ab + b2 = (a+b)2 - 4ab ul0ft, sIff – & 191
pbfx/0f 1 (x + 3) sf] ju{ lgsfn M -s_ ;q\" ko| fu] u//] -v_ ;q\" ko| fu] gul/sg -u_ (x+3) nfO{ HofldtLo lrqdf bv] fpm . -3_ (x+3)2 = x2 + 6x + 9 k|dfl0ft u/ . ;dfwfg -v_ ;q\" ko| fu] gul/sg -s_ ;q\" ko| fu] u//] (x + 3) sf] ju{ = (x+3) (x+3) x+ 3 sf] ju{ = (x+3)2 = x(x+3) + 3(x+3) = x2 + 2. x.3 + 32 [lsgls (a+b)2 = a2 + 2ab + b2] = x2 + 3x + 3x + 9 = x2 + 6x + 9 = x2 + 6x + 9 -u_ HofldtLo lrqdf bv] fpb“ f (x+3)2 = x2 + x + x + x + x + x + x + 1 + 1 x 11 1 +1+1+1+1+1+ 1+1 x2 x x x ctM (x+3)2 = x2 + 6x + 9 k|dfl0ft eof] . pbfx/0f 2 1x 1x (3x - 2y2) sf] ju{ lgsfn M 1x ;dfwfg (3x - 2y2) sf] ju{ = (3x-2y2)2 = [(3x)2 - 2 x 3x x 2y2 + (2y2)2] = 9x2 - 12xy2 + 4y4 pbfx/0f 3 (a+b+c) sf] ju{ lgsfn M -s_ ;q\" ko| fu] u//] -v_ ;\"q k|of]u gul/sg ;dfwfg -s_ (a+b+c) sf] ju{ = (a+b+c)2 = [(a+b)+c]2 -v_ (a+b+c)2 = (a+b+c) (a+b+c) = [(a+b)2 + 2(a+b) x c + c2] = a(a+b+c) + b(a+b+c) +c(a+b+c) = [a2 + 2ab + b2 + 2ac + 2bc + c2] = a2 + ab + ac + ab + b2 + bc + ac + b c + c2 = (a2 + b2 + c2 + 2ab + 2ac + 2bc) = a2 + b2 + c2 + 2ab + 2bc + 2ac 192 ul0ft, sIff – &
pbfx/0f 4 x2 1 sf] ju{ lgsfn M x ;dfwfg M x2 1 sf] ju{ x2 1 2 x 2 )2 2 x2 1 1 2 x4 2x 1 x x ( x x x2 pbfx/0f 5 olb p 1 4 eP dfg kQf nufpm -s_ p 1 2 -v_ p2 1 p p p2 ;dfwfg -s_ p 1 sf] ju{ p 1 2 42 16 p p -v_ p 1 2 p2 2p 1 1 (a b)2 a2 2ab b2 p p p2 cyjf, 42 p 2 1 2p 1 p2 p cyjf, p2 1 2 16 p2 cyjf, p2 1 16 2 p2 cyjf, p2 1 14 p2 ct M p2 1 sf] dfg 14 xG' 5 . p2 pbfx/0f 6 olb x 1 10 eP dfg kQf nufpm M -s_ x2 1 -v_ x 1 2 x x2 x ul0ft, sIff – & 193
;dfwfg -s_ oxf,“ x 1 10 x cyjf, x 1 2 102 x cyjf, x2 - 2x. 1 1 100 + 2 = 102 x x2 cyjf, x2 1 102 x2 -v_ oxf,“ x 1 2 = x2 + 2x. 1 1 x x x2 = x2 1 2 x2 = 102 + 2 = 104 t;y,{ x2 1 102 / x2 = x 1 2 104 xG' 5 . 2 pbfx/0f 7 x 1 5 eP, kd| fl0ft u/ M -s_ x2 1 27 -v_ x 1 2 29 x x2 x ;dfwfg -s_ x 1 2 x2 2 x 1 1 2 x x x cyjf, 52 x2 1 2 x2 cyjf, x2 1 25 2 x2 194 ul0ft, sIff – &
cyjf, x2 1 27 k|dfl0ft eof] . x2 -v_ x 1 2 x 1 2 4 x 1 (a b)2 (a b)2 4ab x x x cyjf, x 1 2 (5)2 4 x cyjf, x 1 2 25 4 x cyjf, x 1 2 29 k|dfl0ft eof] . x pbfx/0f 8 ;/n u/ M -s_ (a-b) (a2 + ab + b2) -v_ (a-b)2 - (a+b)2 ;dfwfg -s_ (a-b) (a2 + ab + b2) = a(a2 + ab + b2) - b (a2 + ab + b2) = a3 + a2b + ab2 - a2b - ab2 - b3 = a3 - b3 -v_ (a-b)2 - (a + b)2 = a2 - 2ab + b2 - (a2 + 2ab + b2) = a2 - 2ab + b2 - a2 - 2ab - b2) = -4ab ul0ft, sIff – & 195
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235