Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore 5G New Radio in Bullets_Chris Johnson

5G New Radio in Bullets_Chris Johnson

Published by pongtepc, 2021-01-29 10:05:19

Description: 5G New Radio in Bullets_Chris Johnson

Search

Read the Text Version

5G NewI.... Radio IN B[!LLETS 1

5G NR in BULLEIS Companion website: www.Sg-bullets.com Comments and rcquesls r�garding the content of this book can he senI lu contact(wSg-bullcts.com These will be considered for future edi110ns. Clms Johnson has worked on SU for the past 3 years. He has worked in mobile lclccommumcallons for th� past 25 years. spending musl of this lime locused on UMTS and LIE. Chris has been employed by Nokia for the past 19 years. lie 1s currently a Principal Engmccr al Nokia anc.J \"' based m the UK. Clms has previously aulhurcd the · LTE in Hullets· and 'Rad1u Access Nctworh for lJMTS l'rmciples and Pracllce' htlcs. He has also contributed content within the 'Radio Network Planning and Oplimisat1on for UMTS' and 'IISOPNHSUP/\\ for UMTS' tilles. The wntcnt ofth1s book reprcs<.:nts the understanding of the author. It do�s not neccs�arily n·present the view nor opinion oflhe author's employer. D�cnptions arc intenc.Jcd to be generic and do 1101 represent the implementation of any individual vendor. The JGPP SG logo ha-, been used with kmd pcrrmssion from ETSI. liTSI 1s theJomt copyright holder of the 3GPP SG logo. rhe author would like lo acknowledge his employer, Nokia UK LiTIUlcd for providing the opportumlics to gam valuable project expcncnce. The author would like 10 !hank his manager, Stuart l)av1s for supporting participation wilhm rrojects which have promoted continuous learning and development The author would also like to thank Juha SarkioJa and Poul l..a1¼11 for providing opportunities to work on global 5G activ1llcs within Nolda. The author woulc.J like to acknowledge colleagues from within Nokia who have supported and encouraged the dcvelormcnl of material Ii.Jr this book lllcsc include Jyri Lamminmak.i. Lorena Sema Gon7.alcz, Ian Home and Poeti Bucdhihanono. l.11 addition, lhc author would like tu thank colleagucs [rom outside Nokia who have also supported the development of this book. The,-e include Pinak1 Roychowdhury, Mark Livas. /\\mmar Khalid and Paul Clarkson TI1c author would also like to oiler special than. ks lo his parents who rruvided a pcrtcel working environment during the weeks spent in Scotland. Be would also like to thank them for lheir eontmuuus suprort and encouragement Edi11uu I, vers10n I Copyright (C 20 I 9 Chns Johnson, brnham. England All rights reserved. No part of this publication may be reproc.luccd, dislributcd, or transmitted in any fonn or by any means, including pholocupying, scanning, or other electronic or mechanical methods, without the prior written pcnnission of the author. 2

5G NR in BULLETS 1 FUNDAMENTALS........................................................................................................................................................... 8 1.1 INTRODUCTION.......................................................................................................................................................... 8 1.2 USE CASES ................................................................................................................................................................... 9 1.2.1 Enhanced Mobile Broadband (eMBB) ............................................................................................................... JO Massive Machine Type Communications (mMTC)............................................................................................. JO 1.2.2 Ultra Reliable and Low latency Communications (URLLC)............................................................................. 11 1.2.3 Vehicle to Everything (V2X) ............................................................................................................................... / I 1.2.4 1.3 REQUlREMENTS ....................................................................................................................................................... 13 1.4 NETWORK ARCHITECTURE................................................................................................................................... 15 1.4.1 REFERENCE POINT SYSTEMARClIITECTURE ............................................................................................ 16 1.4.2 SERVlCE BASED SYSTEM ARC!llTECTURE .................................................................................................. 17 /.4.3 NETWORK FUNCTIONS................................................................................................................................... 19 1.5 BASE STATION ARCHITECTURES......................................................................................................................... 30 1.5. I STANDALONE BASE STATION ........................................................................................................................ 30 1.5.2 NON-STANDALONE BASE STATION ............................................................................................................... 31 1.5.3 CU-DU SPLIT BASE STATION ......................................................................................................................... 35 1.5.4 CP-UP SEPARATION ........................................................................................................................................ 38 1.5.5 ANTENNA ARCHJTECTURES........................................................................................................................... 39 1.5.6 BASE STATION CLASSES................................................................................................................................. 42 1.6 INTERFACES.............................................................................................................................................................. 43 1.6.1 Xn lNTERPACE.................................................................................................................................................. 43 1.6.2 Fl INTERPACE.................................................................................................................................................. 46 1.6.3 El INTERPACE.................................................................................................................................................. 49 1.6.4 NG JNTERPACE................................................................................................................................................. 51 1.6.5 X2 INTERFACE.................................................................................................................................................. 55 1.7 PROTOCOL STACKS ................................................................................................................................................. 56 l.7.l USER PLANE..................................................................................................................................................... 56 1.7.2 CONTROL PLANE............................................................................................................................................. 58 1.8 RRC STATES .............................................................................................................................................................. 61 1.8.1 RRC IDLE........................................................................................................................................................... 62 1.8.2 RRC CONNECTED ............................................................................................................................................ 63 1.8.3 RRC JNACT!VE .................................................................................................................................................. 64 1.9 REGISTRATION MANAGEMENT ........................................................................................................................... 67 1.10 CONNECTION MANAGEMENT .............................................................................................................................. 68 1.1 1 ACCESS CONTROL ................................................................................................................................................... 69 1.12 SIGNALLING RADIO BEARERS.............................................................................................................................. 71 1.13 PDU SESSIONS........................................................................................................................................................... 73 1.14 QUALITY OF SERVICE............................................................................................................................................. 76 1.15 NETWORK SLICING ................................................................................................................................................. 79 1. 1 6 EDGE COMPUTING................................................................................................................................................... 81 1.17 MICOMODE............................................................................................................................................................... 82 1 .18 UE CAPABILITIES ..................................................................................................................................................... 82 1.19 SPECTRUM ................................................................................................................................................................. 84 l.19.J DUPLEX MODES. ......................................................................................................................................... 85 119.2 OPERAT!NG BANDS .................................................................................................................................... 86 1./9.3 BAND COMBINATIONS ............................................................................................................................... 89 1./9.4 MILLIMETER WAVE PROPAGATION......................................................................................................... 90 1.20 MIMO .......................................................................................................................................................................... 92 1.21 BEAMFORMING ........................................................................................................................................................ 95 1.22 3GPP SPECIFTCATIONS .......................................................................................................................................... IO I 2 AIR INTERFACE......................................................................................................................................................... 102 2.1 NUMEROLOGY ....................................................................................................................................................... 1 02 2.2 RADIO FRAMES AND SLOTS ................................................................................................................................ 106 2.3 RESOURCE BLOCKS AND BANDWIDTH PARTS............................................................................................... 113 2.3.1 COMMON RESOURCE BLOCKS ................................................................................................................... 113 2.3.2 BANDWIDTll PARTS....................................................................................................................................... I16 2.3.3 PHYSICAL RESOURCE BLOCKS................................................................................................................... 118 3

sG NR in BULLETS 2.3.4 VIRTUAL RESOURCE BLOCKS......................................................................................................................118 2.4 CHANNEL BANDWIDTHS ...................................................................................................................................... 119 2.5 FREQUENCY RASTER .............................................................................................................................................121 2.5.l CJIANNEL RASTER..........................................................................................................................................12/ 2.5.2 SYNCJIRONJSATION RASTER................... ..................................................................................................... /23 2.6 ANTENNA PORTS AND QUASI CO-LOCATION .................................................................................................. 127 2.7 MODULATION.......................................................................................................................................................... 130 2.8 CYCLIC PREFIX........................................................................................................................................................ 132 2.9 WAVEFORM .............................................................................................................................................................135 2.9. l CP-OFDM ......................................................................................................................................................... 136 2.9.2 DFT-S-OFDM................................................................................................................................................... 139 2.10 TRANSMITTER AND RECEIVER CHAIN ..............................................................................................................140 3 DOWNLJNK SIGNALS AND CHANNELS ............................................................................................................... 14I 3.1 DOWNUNKCHANNELMAPP INGS ......................................................................................................................141 3.2 SYNCHRONISATION SIGNALS ............................................................................................................................. 142 3.3 PflYSlCAL B ROADCAST ClIANNEL..................................................................................................................... 144 3.4 SS/PBCH BLOCKS AND BURSTS ........................................................................................................................... 146 3.5 PHYSICAL DOWNLINK CONTROL CHANNEL ................................................................................................... 15 I 3.5.1 CONTROL RESOURCE SET (CORESET)........................................................................................................154 3.5.2 SEARCII SPACESETS...................................................................................................................................... 157 3.5.3 SEARC!I SPACE SET(SJBI) ............................................................................................................ ...............161 3.5.4 DC/ FORMATO 0 ............................................................................................................................................ 168 3.5.5 DCJ FORMATO I ............................................................................................................................................ 169 3.5.6 DCJFORMATJ 0 ....................................................................................................................................... .... 173 3.5.7 DC/ FORMAT I l ............................................................................................................................................ /75 3.5.8 DCT FORMAT2_0 ............................................................................................................................................ !79 3.5.9 DC! FORMAT2 1 ............................................................................................................................................ 180 3.5.10 DCIFORMAT2 2........................................................................................................................................ /80 3.5.11 DC/ FORMAT2 3........................................................................................................................................181 3.6 PHYSICAL DOWNLINK SIIARED CHANNEL ...................................................................................................... 182 3.6. l MODULATION AND CODING SCHEME .......................................................................................................186 3.6.2 TRANSPORT BLOCK SIZE .............................................................................................................................. 187 3.6.3 P/JYSICAL LAYER PROCESSING................................................................................................................... 190 3.6.4 RESOURCE ALLOCATIONS............................................................................................................................198 3.6.5 RESOURCE BLOCK BUNDLING ....................................................................................................................205 3.6.6 PRE-EMPTJON.................................................................................................................................................207 3.6.7 RESERVED RESOURCES................................................................................................................................209 3.6.8 REPETITION.................................................................................................................................................... 212 3.7 REFERENCE SIGNALS ............................................................................................................................................213 3.7.1 DEMODULATJON REFERENCE SIGNALFOR PBCH .............................................................................. ...2 I3 3.7.2 DEMODULATION REFERENCE SIGNALFOR PDCCl/...............................................................................214 3.7.3 DEMODULATION REFERENCE SIGNAL FO.R PDSCH................................................................................2/4 3.7.4 CIIANNEL STATEINFORMATION REFER.ENCE SIGNAL............................................................................220 3. 7.5 TRACKJNG REFERENCE STGNAL .................. ...............................................................................................233 3.7.6 PHASE TRACK.ING REFERENCE SIGNAL.....................................................................................................234 4 DOWNLINK TRANSMISSION SCHEMES ..............................................................................................................239 4.1 PBCH ..........................................................................................................................................................................239 4.2 PDCCH .......................................................................................................................................................................239 4.3 POSCH........................................................................................................................................................................24 I 4.3.1 OPEN LOOP MIMD .........................................................................................................................................242 4.3.2 SEM-I OPENLOOP MIMO...............................................................................................................................243 4.3.3 CL OSED LOOPMTMO.....................................................................................................................................244 4.3.4 MULTI-USER MIMO ........................................................................................................................................245 4.3.5 RECIPROCITY BASED.....................................................................................................................................246 4.3.6 MULTIPLE TRP................................................................................................................................................247 4

5G NR in BULLE'IS 5 FLOW OF DOWNLINK DATA ................................................................................................................................. 248 5.1 SDAP LAYER............................................................................................................................................................ 253 5.2 PDCP LAYER............................................................................................................................................................ 254 5.3 RLC LAYER.............................................................................................................................................................. 257 5.3.1 TRANSPARENT MODE ................................................................................................................................... 258 5.3.2 UNACKNOWLEDGED MODE........................................................................................................................ 259 5.3.3 ACKNOWLEDGED MODE ............................................................................................................................. 260 5.4 MAC LAYER............................................................................................................................................................. 263 6 SYSTEM INFORMATION ......................................................................................................................................... 265 6.1 MASTER TNFORMATlON BLOCK ......................................................................................................................... 266 6.2 SYSTEM INFORMATION BLOCK I ...................................................................................................................... 269 6.3 SYSTEM TNFORMATION BLOCK 2 ...................................................................................................................... 277 6.4 SYSTEM INFORMATION BLOCK 3 ...................................................................................................................... 280 6.5 SYSTEM INFORMATION BLOCK4 ...................................................................................................................... 281 6.6 SYSTEM INFORMATION BLOCK 5 ...................................................................................................................... 284 6.7 SYSTEM INFORMATION BLOCK6 ...................................................................................................................... 285 6.8 SYSTEM INFORMATION BLOCK7 ...................................................................................................................... 286 6.9 SYSTEM INFORMATION BLOCK 8 ...................................................................................................................... 286 6.10 SYSTEM TNFORMATION BLOCK 9 ...................................................................................................................... 287 7 UPLINK SIGNALS AND CHANNELS...................................................................................................................... 288 7.1 UPLTNKCHANNELMAPPINGS............................................................................................................................. 288 7.2 PTIYSJCAL RANDOM ACCESS CHANNEL .......................................................................................................... 289 7.2.1 BACKGROUND ............................................................................................................................................... 289 7.2.2 PRACJJ GENERATION.................................................................................................................................... 293 7.2.3 LONG SEQUENCE PRACH FORMATS.......................................................................................................... 296 7.2.4 SHORT SEQUENCE PRACH FORMATS........................................................................................................ 301 7.3 PHYSICAL UPLINK CONTROL CIJANNEL.......................................................................................................... 308 7.3.1 PUCCH FORMATO......................................................................................................................................... 313 7.3.2 PUCCJJ FORMAT 1 ......................................................................................................................................... 315 7.3.3 PUCCH FORMAT 2......................................................................................................................................... 3/9 7.3.4 PUCCH FORMAT 3......................................................................................................................................... 321 7.3.5 PUCCH FORMAT 4 ......................................................................................................................................... 324 7.3.6 PUCCH REPETITION...................................................................................................................................... 326 7.4 PHYSICALUPLINKSHARED CHANNEL.............................................................................................................. 327 7.4. I MODULATlON AND CODING SCHEME....................................................................................................... 330 7.4.2 TRANSPORT BLOCK SIZE.............................................................................................................................. 332 7.4.3 PHYSICAL LAYER PROCESSING..................... ............................................................................................. 333 7.4.4 RESOURCE ALLOCATIONS ........................................................................................................................... 339 7.5 UPLINK REFERENCE SIGNALS ............................................................................................................................. 351 7.5. I DEMODULATION REF!fRENCE SIGNAL FOR PUSCII............................................................................... 35I 7.5.2 DEMODULATION REFF,RENCE SlGNAL FOR PUCCH .............................................................................. 357 7.5.3 SOUNDING REFERENCE SIGNAL ................................................................................................................ 358 7.5.4 PHASE TRACKING REPERENCE SIGNAL.................................................................................................... 369 8 UPLJNK TRANSMISSION SCtIEMES...................................................................................................................... 374 8.1 CODEBOOK BASED TRANSMISSION .................................................................................................................. 374 8.2 NON-CODEBOOK BASED TRANSMISSION........................................................................................................ 380 9 BEAM MANAGEMENT ......,...................................................................................................................................... 382 9.1 INITIAL ACQUISITION........................................................................................................................................... 383 9.2 DOWNLINKBEAM REFJNEMENT........................................................................................................................ 384 9.3 UPLINK BEAM REFINEMENT............................................................................................................................... 386 9.4 MOBILITY ................................................................................................................................................................ 386 9.5 PM! BEAM SELECTION.......................................................................................................................................... 388 9.6 BEAM FAILURE & RECOVERY............................................................................................................................. 388 5i

5G NR in BULLETS 10 UE MEASUREMENTS.................................................................................................................................................389 I 0.1 SS-RSRP .....................................................................................................................................................................389 10.2 SS-RSRQ ....................................................................................................................................................................391 I 0.3 SS-SINR ......................................................................................................................................................................393 10.4 CSI-RSRP ...................................................................................................................................................................393 10.5 CSJ-RSRQ...................................................................................................................................................................394 10.6 CSI-SINR ....................................................................................................................................................................394 10.7 SFN AND FRAME TIMING DIFFERENCE .............................................................................................................394 10.8 OTHER MEASUREMENTS ......................................................................................................................................395 I J MEASUREMENT REPORTING ................................................................................................................................396 11.1 CELL LEVEL RESULTS ...........................................................................................................................................400 1 1.2 LAYER 3 FILTERING ...............................................................................................................................................401 11.3 EVENT Al ..................................................................................................................................................................402 11.4 EVENT A2 ..................................................................................................................................................................402 11.5 EVENT A3..................................................................................................................................................................403 11.6 EVENT A4 ..................................................................................................................................................................403 11.7 EVENT A5..................................................................................................................................................................404 11.8 EVENT A6 ..................................................................................................................................................................404 11.9 EVENT B1 ..................................................................................................................................................................405 1 I. I0EVENT 82 ..................................................................................................................................................................405 12 IDLE MODE PROCEDURES......................................................................................................................................406 12.1 PLMN SELECTION ...................................................................................................................................................406 12.2 CELL SELECTION ....................................................................................................................................................407 12.3 CELL RESELECTION ...............................................................................................................................................409 12.3.1 ABSOLUTE PRIORITIES.............................................................................................................................409 /2.3.2 TRIGGERING MEASUREMENTS ...............................................................................................................410 12.3.3 MOBILITY STATES......................................................................................................................................4/ l 12.3.4 RESELECTION ............................................................................................................................................412 12.4 PAGlNG......................................................................................................................................................................415 12.4.1 PROCEDURE...............................................................................................................................................415 12.4.2 OCCASJONS.................................................................................................................................................419 13 PHYSICAL AND MAC LAYER PROCEDURES .....................................................................................................423 13.1 R/\\NDOM ACCESS ...................................................................................................................................................423 13.1./ CONTEN11ON BASED ................................................................................................................................425 13.1.2 CONTEN11ON FREE...................................................................................................................................437 13.1.3 PRIORITISED RANDOM ACCESS..............................................................................................................439 13.2 TlMfNG ADVANCE ..................................................................................................................................................440 13.3 UPLINK POWER CONTROL....................................................................................................................................443 13.3.1 PUSCH.........................................................................................................................................................443 13.3.2 PUCCH.........................................................................................................................................................449 13.3.3 SRS................................................................................................................................................................453 13.3.4 VE POWER CLASS......................................................................................................................................454 13.3.5 MULTIPLE UPLJNK CARRlERS.................................................................................................................456 13.4 DOWNLINK POWER CONTROL..............................................................................................................................457 13.5 HARQ ..........................................................................................................................................................................459 13.5. I DOWNLJNK l!ARQ......................................................................................................................................460 13.163.C5.H2 ANNEULPLSTJNAKTlElARREQPO...R..T...fN....G..............................................................................................................................................................................................................................................................446719 13.6.1 C/TANNEL QUALITY !NDTCATOR .............................................................................................................475 13.6.2 RANK INDICATOR .......................................................................................................................................477 13.6.3 PRECODTNG MATRJXJNDJCATOR............................................................................................................478 /3.6.4 LAYER TNDJCATOR......................................................................................................................................490 13.6.5 SSBRI, CRI AND LI-RSRP...........................................................................................................................491 13.7 UPLlNK RESOURCE REQUEST..............................................................................................................................493 13.7.1 SCJ!EDULTNG REQUEST ...........................................................................................................................493 6

sG NR in BULLETS 13.7.2 BUFFER STATUS REPORTING................................................................................................................. 496 13.8 POWER HEADROOM REPORTING ....................................................................................................................... 499 13.9 RADIO LINK MONITORING................................................................................................................................... 502 /3.9.1 BEAMFAILURE......................................................................................................... ................................ 503 13.9.2 RADTO LJNK FAILURE .............................................................................................................................. 505 13.l0DISCONTINUOUS RECEPTION ............................................................................................................................. 508 14 VOICE SERVICES ...................................................................................................................................................... 511 1 4.1 VOICE OVER NEW RADlO ..................................................................................................................................... 512 14.2 EPS FALLBACK ....................................................................................................................................................... 520 14.3 RAT FALLBACK...................................................................................................................................................... 521 15 SIGNALLING PROCEDURES................................................................................................................................... 522 15.1 LTE RRC IDLE MODE ............................................................................................................................................. 522 15.2 EN-DC SECONDARYCELL ADDITJON................................................................................................................ 526 15.3 RRC CONNECTION SETUP .................................................................................................................................... 536 15.4 INITIAL CONTEXT SETUP ..................................................................................................................................... 54 1 15.5 XN BASED HANDOVER .......................................................................................................................................... 544 15.6 RRC CONNECTION RELEASE ............................................................................................................................... 547 16 RADIO NETWORK PLANNING............................................................................................................................... 549 16.1 OPERATING BAND ................................................................................................................................................. 549 16.2 NR-ARFCN & GSCN ................................................................................................................................................ 549 16.3 SLOT FORMAT ........................................................................................................................................................ 550 16.4 ANTENNA SOLUTION ............................................................................................................................................ 553 16.5 DOWNLINK TRANSMIT POWER .......................................................................................................................... 555 16.6 PCI ALLOCATION ................................................................................................................................................... 555 16.7 CYCLIC PREFIX....................................................................................................................................................... 557 16.8 CSI REFERENCE SIGNAL ....................................................................................................................................... 557 16.9 PHASE TRACKING REFERENCE STCTNAI............................................................................................................ 558 16.I0PRACH PLANNING ................................................................................................................................................. 559 16./0.f PRACH FORMAT........................................................................................................................................ 559 16.10.2 PRACH CONFIGURATJON INDEX........................................................................................................... 560 16.10.3 ZERO CORRELATJON ZONR..................................................................................................................... 561 16.10.4 HlGHSPEEDFLAG ................................................................................................................................... 562 16.10.5 ROOT SEQUENCE JNDEX......................................................................................................................... 562 16./0.6 PRACH FREQUENCY OFFSET................................................................................................................. 564 16.11NEIGHBOUR PLANNING ....................................................................................................................................... 565 16. I 2CELL & BTS IDENTITY PLANNING ..................................................................................................................... 566 16.13RAN NOTIFICATION AREA PLANNING .............................................................................................................. 567 16.14TRACKING AREA PLANNING ............................................................................................................................... 568 16.15THROUGHPUT EXPECTATIONS........................................................................................................................... 569 16.15./ DOWNLJNK................................................................................................................................................. 570 16./5.2 UPL!NK....................................................................................................................................................... 571 17 DYNAMIC SPECTRUM SHARING........................................................................................................................... 574 18 UE IDENTITIES............................................................................................................................................................ 578 18.l IMS! ........................................................................................................................................................................... 578 18.2 IMEl ........................................................................................................................................................................... 578 18.3 SUP! & SUCI ............................................................................................................................................................. 579 18.4 5G-GUTI .................................................................................................................................................................... 579 18.5 5G-S-TMSI................................................................................................................................................................. 580 18.6 RNTI .......................................................................................................................................................................... 580 18.7 l-RNTl ........................................................................................................................................................................ 581 19 ABBREVIATlONS ....................................................................................................................................................... 582 20 INDEX ........................................................................................................................................................................... 586 7

5G NR in BULLETS 1 FUNDAMENTALS 1.1 INTRODUCTION * 5G has been introduced within the relea�e 15 version of the 3GPP specifications, whereas 4G was introduced within release 8 * 5G has been specified based upon the requirements of the following use cases: o enhanced Mobile Broadband (eMBB) o Ultra Reliable and Low Latency Communications (URLLC) o massive Machine Type Communications (mMTC) * The Radio Access Network (RAN) belonging to 40 is known as Long Term Evolution (LTE), whereas the RAN belonging to 50 is known as New Radio (NR) * NR has been standardised to allow tight interworking with LTE. Tight interworking supports the inter-connection of LTE and NR Base Stations. These Base Stations can then be used in combination to serve the population ofUser Equipment (UE). 5G network architectures based upon tight interworking between LTE and NR are known as Non-Standalone (NSA) * Non-Standalone architectures allow a smooth and relatively simple evolution towards a complete end-to-end 5G System (SGS). Non­ Standalone architectures allow re-use of existing LTE Base Stations and existing 4G Core Networks. ln general, a software upgrade is sufficient to allow interworking with a set ofNR Base Stations * Standalone (SA) NR Base Stations provide connectivity to a 5G Core Network. The combination ofNR Base Station and 5G Core Network is known as a 5G System (SGS). The benefits of 5G are maximised when using a 5G System * NR Dase Stations have a flexible architecn1rc which supports a range uf deployment options: o a 'classical' Base Station architecture can be adopted to keep the hardware within a single cabinet o alternatively, the Base Station can be split into a Centralised Unit (CU) and a Distir buted Unit (DU). The CU accommodates the higher protocol stack layers, while the DU accommodates the lower protocol stack layers. A single CU can host a large number of DU (typically> 100), while each DU can host multiple cells (typically> 6) o in addition, the CU can be split into Control Plane (CP) and User Plane (UP) functions. This allows independent scaling of the CP and UP processing capabilities. It also allows the two fimctions to be deployed at different geographic locations. UP functions may be located in close proximity to the DU to help reduce user plane latency, while CP funct10ns may be centralised to pool resources o all deployment options can use either passive or active antenna. Passive antenna arc connected to radio modules using RF feeder cables whereas active antenna are connected tu baseband processing hardware using high speed fibre * Congestion within the lower operating bands, combined with a requirement for wider channel bandwidths has led to the specification of both low and high operating bands for 5G. Release I 5 has adopted the use of Frequency Range I (450 MHz to 6 Gllz) and Frequency Range 2 (24.25 GHz to 52.60 GHz). Frequency Range I supports channel bandwidths from 5 to 100 MHz, whereas Frequency Range 2 supports channel bandwidths from 50 LO 400 MHz It Frequency Range 1 includes operating bands which support Frequency Division Duplexing (FDD), Time Division Duplexing (TDD), Supplemental Downlink (SOL) and Supplemental Uplink (SUL), whereas Frequency Range 2 supports only TDD. 3GPP has specified mechanisms to allow dynamic changes to the uplink and downlink transmission pattern used by TDD * The NR air-interface uses Cyclic Prefix OFDM (CP-OFDM) in both the uplink and downlink directions. In addition, Discrete Fourier Transform Spread OFDM (DFT-S-OFDM) can be used to help improve coverage in the uplink direction. Both waveforms can use QPSK, l 6QAM, 64QAM and 256QAM. DFT-S-OFDM can also use n/2 BPSK in areas of weak coverage * Subcarrier spacings of 15, 30 and 60 kHz are supported within Frequency Range 1, while subcarricr spacings of 60, 120 and 240 kJlz arc supported within Frequency Range 2. The 240 kllz subcarrier spacing is only used for the transmission of Synchronisation Signals and the Physical Broadcast Channel (PBCl I). Smaller subcarricr spacings have longer symbol durations which allow support for larger cell ranges. Larger subcarrier spacings have shorter symbol durations which allow support for lower latencies * Bcamforming and MIMO arc important for both the uplink and downlink of the NR air-interface. These can be combined within the context of massive MlMO (mMIMO). Beamfonning is particularly important to improve the link budget when using Frequency Range 2. Multi-User MIMO (MU-MlMO) can be used to improve spectrnm efficiency when lJE have sufficient spatial separation * Both 4G and SG have been designed to support Packet Switched (PS) services. 4G supports the speech service using Voice over LTE (VoLTE), whereas 5G supports the speech service using Voice over NR (VoNR). 4G networks support Single Radio Voice Call Continuity (SRVCC) to allow inter-system handover towards the Circuit Switched (CS) domain belonging to either 30 or 2G. Release 15 does not support SRVCC for 5G but Packet Switched inter-system handovers from 5G to 4G are possible. SRVCC from 5G to 3G is specified within the release 16 version of the 3GPP specifications 8

5G NR in BULLETS 1.2 USE CASES * 3GPP has adopted the set ofuse cases identified by the Radio Communications Sector ofthe International Telecommunications Union (ITU-R). These use cases are applicable to technologies being developed to support the requirements ofInternational Mobile Telecommunications for 2020 (IMT2020) and beyond. The set ofuse cases are: o enhanced Mobile Broadband (eMBB) o Ultra Reliable and Low Latency Communications (URLLC) o massive Machine Type Communications (mMTC) * 3GPP is accounting for the requirements ofthese use cases when standardising 5G. Release 15 focuses upon the eMBB and URLLC categories, but additional capabilities for mMTC will be added in Release 16. The Narrow Band Internet ofThings (NB-loT) and LTE­ Machine (LTE-M) technologies belonging to 4G provide a solution for mMTC within the timescales ofrelease 15 * Each use case category has its own set ofrequiremcnts. For example, eMBB requires high connection throughputs and high network capacity, whereas URLLC requires low latency and high reliability for devices with both low and high mobility. The ITU-R has identified a general set ofrequirements and has assigned an importance to each requirement for each use case. These requirements and their importance are summarised in Figure I p._· _·eMBB High High High High Medium Medium High High Importance Importance Importance Importance Importance Importance Importance Importance URLLC Low Low Low Low Low Hogh High Low Importance Importance Importance Importance Importance Importance Importance Importance mMTC Low Low Low Low High Low Low Medium Importance Importance Importance Importance Importance Importance Importance Spectrum Latency Importance .. Maximum Average Efficiency Area Traffic Connection Network Connection Connection Capacity Density Mobility Energy Throughput Throughput Efficiency * Figure I - Importance of various requirements for each Use Case Requirements also vary within a specific use case category. For example, deploying eMBB across a rural area requires a focus upon coverage, whereas deploying cMBB across an urban area requires a focus upon capacity * Each use case category includes many individual applications. Examples ofthese applications are shown in Figure 2 Enhanced Mobile * Existing applications arc included, e.g. voice Broadband services, video streaming, internet browsing, social media and instant messenger applications. Many I/Video emerging applications arc also included, e.g. f 1n--v�tucle automatic vehicles, remote control, home /Entertainment / automation, smart city applications, wearables, ; FI.Xed Wirel�s / Access monitors and sensors / Uve event Internet * Many applications require components from multiple use case categories. For example, virtual / streamfng Social Media \\ J/ Advertising Augmented Reality \\ reality requires low latency to provide I �::�� \\/ PublicSpace Augmented/ SecuntyShopping ..responsiveness and high mobile broadpand / Home IMS based Gaming Voice throughputs for the rapid transfer ofcontent / Security Personal Sensors Warning * 3GPP is ensuring that 5G has sufficient flexibility and capability to address the diverse set of 1 Home Activity Industrial Systems requirements belonging to this broad range of / automation applications ControtSystems J Tracking Mobile * ITU-R References: Recommendation ITU-R / Street Ught M.2083-0 / Automation Public Safety Health Care _/II Wearables Mission Critical \\ Smart Parking Remote Envionmental • Oty Support Sensors Industrial Automatic Control of Sensors Onving Vehicles * 3GPP References: TR 22.861, TR 22.862, TR Massive Machine Type Ultra Reliable and low Communications latency Communications 22.863 Figure 2 - Examples of applications associated with each Use Case category 9

1.2.1 Enhanced Mobile Broadband (eMBB) * enhanced Mobile Broadband (cMBB) represents an evolution of the Mobile Broadband services offered by 4G * cMBB applications generally involve humans accessing multi-media content, services and data * eMBB aims to improve the end-user experience for existing applications and support the introduction ofnew applications * 3GPP TR 22.863 identifies the main use case families as: o high data rate scenarios at offices, shopping centres, urban streets and residential locations. This use case family includes the broadcast of audio and video, e.g. 4K ultra high definition video. Deployments at residential locations should be capable of competing with fixed broadband services o high density scenarios to support the transfer of high data volumes per unit area, e.g. at oftices and other hotspot locations including shopping centres, urban streets, stadiums and public transport o coverage scenarios including local area coverage within offices and educational establishments, as well as wide area coverage using mobility to provide seamless connectivity o high user mobility in fast moving vehicles with services that arc supported using either on-board network equipment or an external fixed Base Station o devices with highly variable data rates, such as smart phones which often transfer small but frequent packets but can also transfer larger packets and data volumes. Smart phones may also act as a gateway for wearable sensors o fixed-mobile convergence to allow the combination offixed and mobile broadband services. Devices should be able to use both fixed and mobile broadband connections either simultaneously to increase aggregate throughput, or individually o Fcmtoccll deployments at office, residential and urban locations to provide a 5G air-interface with a fixed broadband backhaul 1.2.2 Massive Machine Type Communications (1nMTC) * massive Machine Type Communication (mMTC) is characterised by a very large number of connected devices which typically transmit low volumes of non-delay sensitive data It mMTC devices are generally required to be low cost and have a long battery life \"' 3GPP TR 22.861 identifies the main categories of application as: o Internet of Things (loT) with a large number of devices transferring small volumes of non-time critical data o Smart Wearables (personal area network) using low complexity devices with a long battery lite o Sensor Networks used to monitor a wide range of metrics, e.g. traffic. weather, parking spaces * Many existing loT devices do not use a cellular network, e.g. devices using WiFi to connect to the internet via a win�less router. These devices are typically short range, have little or no mobility and rely upon the availability ofa wireless router. 13luctooth Low Energy (BLE) and Zigl3cc are other alternative wireless technologies used to connect loT devices lo each other and to the internet * Within the context of 5G, the main focus is upon 'cellular loT' devices which use 5G as the access network. Cellular loT devices benefit from the ubiquitous wide area coverage provided by a mobile operator. These devices may support applications which involve mobility and they do not depend upon the availability ofa wireless router * The Smart Wearables category includes activity tracking devices, personal sensors. augmented reality headsets, smart watches, smart ear buds, smart glasses and identity wristbands for admission into theme parks. Most of these applications require mobility and benefit from the wide area coverage provided by cellular networks * Sensor Networks may form part ofthe Smart City ecosystem. Sensors can be used to monitor traffic conditions and car parking occupancy. These metrics can be used as inputs lo generate recommendations for drivers. Sensors can also be used to monitor environmental metrics such as air quality and weather conditions. Weather conditions can be used as an input for automatic street lighting or variable speed limits. Sensors used for security applications can detect movement or apply facial recognition ·* loT devices may not connect directly to the mobile network. For example, a smart watch may connect to a smart phone, and the smart phone connects to the mobile network, i.e. the smart phone acts as a relay device for the smart watch w

5G NR in BULLETS 1.2.3 Ultra Reliable and Low Latency Communications (URLLC) * Applications associated with Ultra Reliable and Low Latency Communications (URLLC) tend to have only moderate throughput requiremcnt5 but require very high reliability and very low latency * 3GPP TR 22.862 identifies the main use case families as: o Higher Reliability and Lower Latency applications: this family ofapplications requires low latency but does not require very low latency. For example, the remote control ofvehicles by a human operator has a latency requirement which is determined by the human reaction speed. It is not necessary for the system to have a reaction speed which is significantly faster than the human operator. Another example within this category is factory and process automation. Closed loop control systems within a factory involve a controller periodically sending commands to one or more devices which must respond with feedback within a specific time window. Both the commands and the feedback must be transferred with very high reliability o Higher Reliability, Higher Availability and Lower Latency applications: this family of applications is similar to the previous category but includes an additional requirement for high availability, i.e. system downtime must be very low. Industrial control applications can belong to this category. These applications may nonnally achieve high reliability and high availability by using cable connections rather than wireless connections. However, cable connections may not always be an attractive solution. The remote control of drones can fit into this family of applications. High availability is important to ensure that the drone is always under the control of the human operator. The latency requirement is dictated by the reaction speed of the human operator so docs not need to be especially low o Very Low Latency: this family of applications includes the concept ofthe 'Tactile Internet'. The Tactile Internet supports a remote extension to the human body. For example, it allows a surgeon to remotely operate on a patient using a mechanical arm which reacts as though it was the surgeon's own arm. The surgeon receives both visual and tactile feedback from the remote device, e.g. when the surgeon presses against something with the remote: ann then tactile feedback is provided so the surgeon can feel that he or she is pressing against something. The latency requirement for tactile control is more stringent than the latency requirement for human operated remote control vehicles o Higher Accuracy Positioning: this family ofapplications involves the measurement of location and the subsequent signalling of that location infonnation. It is applicable to autonomous vehicles which exchange location infonnation with each other to avoid collisions. Information must be trdl1sfcrrcd reliably and with low latency. The maximum pennitted latency depends upon the speed of the vehicle and the accuracy requirement. Throughput requirements for this category tend to be low o Higher Availability; this family ofapplications reters to scenarios where there is a requirement for improved network availability. This could be applicable to scenarios where the nonnal mobile network is unavailable due to congestion or outage. It could also be applicable to scenarios where the nom1al mobile network does not have coverage. An example solution is tu use satellite connectively a� a back-up to the nonnal mobile network. Latency requirements arc not particularly low but the secondary connection must be reliable and have high availability o Mission Critical Services: this family ofapplications requires prioritisation over nomial network traffic. This prioritisation is .,required to ensure that mission critical services have high availability with short connection setup times. These services also require reliable data transfer with low latency. Prioritisation becomes especially important during periods ofnetwork congestion. Communications for the emergency services is an example of a mission critical service 1.2.4 Vehicle to Everything (V2X) * Vehicle to Everything (V2X) includes the following components which are illustrated in Figure 3: o Vehicle to Vehicle (V2V) o Vehicle to Network (V2N) o Vehicle to Infrastructure (V21) o Vehicle to Pedestrian (V2P) * There are both cellular and non-cellular solutions for V2X communication. The IEEE 802.11 (WiFi) standard has been modified to create 802.1 lp specifically for the purposes ofV2X applications. This represents a non-cellular solution for V2X. WiFi typically operates using unlicensed spectrum whereas 802.11p operates in licensed spectrum to help improve pcrfonnancc. 4G has been enhanced to include support for V2X communications within the release 14 version ofthc 3GPP specifications. This represents an example ofa cellular solution for V2X. 5G provides another solution for cellular V2X * V2V involves the transfer ofdata directly between vehicles. This represents a variant of device-to-device (D2D) communication which uses the sidclink rather than the uplink or downlink. The V2V application imposes specific requirements upon the sidelink, e.g. support for reliable and low latency communication at high speeds * V2V communication is supported both inside and outside normal cellular coverage, i.e. it is not necessary for the vehicles to be within the coverage ofthe network. UE must schedule their own transmissions when operating outside the coverage of the network. In this case, UE are able to transmit and receive data while in RRC Idle mode because there is no Base Station for the RRC Connection setup procedure 11

5G NR in BULLETS Collision avoidance 1· VehiIc, le to Vehicle to Dynamic rideshanng Video sharing Vehicle Pedestrian ! (V2V) Safety alerts to pcdestnans Vehicle platooning (VZP) Pedestrian warnings to vehicles I \"' ,:, r� - c··. �I\\ I, \\_ --·,;' II/ Vehacleto \\ Everything . I .· j I (VZX) / I J CVehicleto \\/ Traffic signal timing 'Infrastructure Vehicle to J In-vehicle entertainment Car parking information Vehicle tethering r1. (VZI} } Network Internet connect1v1ty Vehicle platooning (V2N) \\ Figure] - Components helongiTI,g to Vehicle to ft;verything (V2X) * Collision avoidance is a key example of an application for V2V communication. Collision avoidance applications exchange location information between vehicles. This can supplement information provided by sensors which determine the proximity ofnearby vehicles and obstacles. Video sharing is another example of an application for V2V communication. A car driving behind a t11Jck can have limited visibility of the road ahead so can benefit from having a video feed displaying the view in front of the truck * V21 involves the transfer of data between vehicles and Road Side: Units (RSU). RSU are application servers positioned along the road with built-in Base Station functionality (or built-in lJE functionality) so they can commumcate directly with passing vehicles. They form part of the highway infrastructure and can be either standalone or can have connectivity into a larger network * The transfer of traffic signal timing infonnation is an example of V2I. fn this case, the RSU is aware of the timing used by nearby traffic signals. This timing is provided to vehicles approaching the signals so they arc able to react appropriately. The transfer of car parking information is another example ofV21. In this case, the RSU has information regarding the status of local car parking facilities. This information is provided to vehicles to help them lind a parking space * V2N involves the transfer of data between vehicles and the mobile network, e.g. providing connectivity to the internet. Vehicles may connect to the mobile network to collect weather reports or to provide information regarding local attractions. Screens and input devices within the vehicle can be used to provide end-users with internet connectivity and in-vehicle entertainment. In-vehicle entertainment allows end-users to stream audio or video, play games, access social media or browse the internet * Vehicle tethering is an example ofV2N. In this case, the vehicle acts as a relay for end-users within the vehicle. The vehicle is likely to have a better link budget than the end-users within the vehicle, e.g. antenna which arc larger and outside the vehicle. The vehicle may also have more antenna and a higher transmit power capability. The vehicle takes advantage ofthese factors to connect to the network and relay data transfer for end-users within the vehicle. The end-users arc able to transmit with a reduced power and thus help to conserve their battery life * V2P involves the transfer ofdata between vehicles and pedestrians. Similar to V?.V applicalit,ns, V2P represents a variant ofdevice-to­ dcvicc (D2D) communication which uses the sidclink rather than the uplink or downlink. The vehicle communicates directly with a device, e.g. smartphonc belonging to a pedestrian * Dynamic ride sharing is an example ofV2P. This application allows pedestrians to advertise their interest in sharing a vehicle to reach a spccitic destination. It also allows vehicles to advertise their wi llingncss to collect pedestrians and take them to their desired destination. Dynamic ride sharing could be used by taxi companies, or could be used by private vehicles * Vehicle platooning is an important application for V2X which can use a combination of V2V and V2I. Vehicle platooning involves a group ofvehicles connected to one another and effectively moving like a train. Vehicles share speed, direction and braking/accelerating intentions. This allows them to travel with a reduced distance between vehicles and also allows them to operate with improved fuel efficiency. The vehicle which creates the platoon becomes responsible for managing the platoon. This vehicle uses V2I for communication with Road Side Units (RSU). The information received from an RSU is subsequently shared with all platoon members using V2V communication * The 5G Automorive Association (5GAA) has been created to help connect the tclccon1 industry with vehicle manufacturers. This association aims to support the development of end-to-end solutions for future mobility and transportation services. 5GJ\\J\\ is a Market Representation Partner (MRP) within 3GPP * 3GPP References: TR 22.886, TS 22.185, TS 22.186 12

5G NR in BULLETS 1.3 REQUIREMENTS * The Radio Communications Sector of the International Telecommunications Union (ITU-R) has specified a set of requirements for IMT2020 technologies within report ITU-R M.2410-0. These reql1irements will be used when evaluating candidate technologies, e.g. the 5G solution specified by 3GPP. The set of requirements is presented in Table I Applicable Use Case Uplink. Downlink. eMBIJ Peak. Data Rate 10 Gbps 20 Gbps el\\1188 Peak Spe.,c.tral Efficiency 15 bps/Hz 30 bps/Hz eMBB Us er Experienced Data Rate eMBB 50 Mbps 100 Mbps eMBB User Spectral Indoor Hotspot cMBB 0.210 bps/Hz 0.300 bps/Hz Rfficiency Dense Urban eMBB (5\"' percentile) Rural cMBB 0.150 bps/Hz 0.225 bps/Hz cMBB eMBB 0.045 bps/Hz 0.120 bps/Hz cMBB Average Spectral Indoor Hotspot URLLC 6.75 bps/Hz 9.00 bps/Hz Efficiency per TRP Dense Urban cMBB&URLLC mMTC 5.40 bps/Hz 7.80 bps/Hz clv!BB Rural 1.60 bps/Hz 3.30 bps/Hz URLLC 10 Mbps/m2 Area Trnflic Capacity Indoor Hotspot eMBB - eMB8 User Plane Latency eMBB 4ms 4 ms eMBB eMBB&URLLC I ms I ms Control Plane Latency 20ms - .Connection Density I 000 000 devices ( km2 Energy Efticiency High Sleep Ra!io & Long Sleep Duration while Inactive Reliability 1- 10·5 I 10' Mobility IO km/hr Indoor Hots pot 1.50 bps/Hz - 30 km/hr Dens e Urban 1.12 bps/Hz - 120 km/hr Rural 0.80 bps/Hz - 500 kmfhr Rurjll 0.45 bps/Hz - Mobility Interruption Time Oms Table I - Minimum Requirements for IMT2020 Radio Interface (specified by ITU-R) * The Peak Data Rate requirement is a largely theoretical figure because it represents the peak throughput which could be achieved by a single user in ideal radio conditions, i.e. assuming the air-interface does not cause any bit errors. It is most likely achievable using the higher operating bands because the target values require a large quantity of spectrum. Considering the Peak Spectral Efficiency values in the next row ofthe table, the quantity of spectrum required to achieve the Peak Data Rates is 20 x l09/ 30 = 667 Mflz * Spectral Efficiency is a measure of throughput per unit of bandwidth (measured in bps/Hz). Spectral Efficiency improvements arc primarily achieved using multiple antenna transmission schemes, e.g. SxS MIMO. In the case of TDD, Spectral Efficiency calculations must account for the uplink/downlink factor, i.e. the ratio between the uplink and downlink time slots on the shared carrier * The Peak Spectral Efficiency requirement is also largely theoretical because it assumes ideal radio conditions. The Peak Spectral Efficiency corresponds to the Peak Data Rate divided by the chan:nel bandwidth. The ITU-R requirement for IMT2020 Peak Spectral Efficiency is equal to the 3GPP requirement for LTE Advanced Peak Spectral Efficiency. Both cases assume 8 spatial multiplexing streams in the downlink and 4 spatial multiplexing streams in the uplink * The User Experienced Data Rate represents the throughput which can be achieved by 95 % of the users within a dense urban coverage area. The large difference between the Peak Data Rate requirement and the User Experienced Data Rate requirement reflects the difference between ideal peak performance and the more realistic performance which can be achieved by 95 % of users. It is expected that the User Experienced Data Rate will be higher when users arc served by small cell and indoor solutions * The User Spectral Efficiency represents the Spectral Efficiency wihich can be achieved by 95 % of users within a specific type of coverage area (indoor hotspot, dense urban or rural). This requirement accounts for the frequency re-use factor. If the network is deployed using a frequency re-use of 1 then there is no impact but if the frequency re-use factor is greater than I then the channel bandwidth is multiplied by the frequency re-use factor before calculating the Spectral Efficiency. In the case of TDD, the channel bandwidth is also scaled by the uplink/downlink factor * The Average Spectral Efficiency per Transmission/ Reception Point (TRP) represents the average Spectral Efficiency per unit of hardware. This metric also accounts for the frequency re-use pattern and the TDD uplink/downlink factor. The requirements are significantly greater than the User Spectral Efficiency primarily because they are averages rather than 5 percentiles 13

5G NR in BULLETS * The Area Traffic Capacity is the total traffic throughput per m2. This metric depends upon the site density, i.e. higher site densities arc likely to generate higher area traffic capacity ( assuming intercell interference docs not dominate). The requirement for Area Traffic Capacity is only specified for the downlink of the indoor hotspot scenario * User Plane Latency represents the contribution of the radio network towards the one-way delay associated with transferring an application packet. It is defined as the delay between a packet entering layer 2/3 at the transmit side and leaving layer2/3 at the receive side. The requirement assumes that the UE is already RRC Connected and is ready to transfer data. It also assumes a small packet size. e.g. a payload which includes only an IP header. Separate requirements are specified for the cMBB and URLLC use cases * Control Plane Latency represents the delay associated with making the transition from a battery efficient state to the start of continuous data transtcr. The battery efficient state could be RRC [die mode. Separate requirements are specified for the eMBB and URLLC use cases. The lTU-R states that proposed technologies should target values less than the specified requirement of20 ms, e.g. IO ms could be targeted. The equivalent requirement for !MT-Advanced (4G) was 100 ms * Connection Density represents the maximum number of UE per unit area which allows those UE to fulfil a specific Quality of Service (QoS). The Connection Density requirement 1s applicable to the mMTC use case. The QoS requirement is defined as the ability to successfully transfer 99 % of packets with a maximum of IO s delay. The requirement assumes a Poisson packet arrival process for each UE with a minimum average packet arrival rate of I message per day per UE (an average packet arrival rate of 1 message per2 hours per UE is also suggested). Packets are assumed to have a size of32 bytes. Specific inter-site distances and system bandwidths are also specified for this requirement, i.e. either a 500 m inter-site distance with a IO MHz system bandwidth. or a 1732 m inter-site distance with a 50 MHz system bandwidth * Energy Efficiency has been included as a general requirement but without a specific target. The requirement is applicable to both the device and the network. Tt is noted that Energy Efficiency in the active state is reflected by the Average Spectral Efficiency, while Energy Efficiency in the inactive state is reflected by the sleep ratio. It is stated that proposed teclmologies should support a high sleep ratio with a long sleep duration * Reliability corresponds to the ability to transmit a specific quantity of traffic within a specific time duration with a high probability of success. This requirement is applicable to the URLLC use case so the time duration (latency) is relatively short and the reliability requirement is high. The success probability must be I I0�5 = 99.999 % when transferring 32 bytes of data within a I ms time duration. The packet must be successfully transferred from the top of layer2/3 at the transmit side to the top of layer2/3 at the receive side. In addition, it is specified that the requirement must be achieved at the edge of urban macro coverage * Mobility corresponds to the ability to maintain a specific normalised traffic channel data rate while moving at a specific speed. The normalised traffic channel data rate is similar to spectral efficiency and has units ofbps/1-tz. It is calculated by dividing the data rate by the traffic channel bandwidth rather than the complete channel bandwidth. The [TU-R has specified a set of uplink requirements for a range of environment types and speeds * Mobility Interruption Time represents the duration that a UE is unable to transfer any user plane packets when completing a handover. This requirement is applicable to both the eMBB and URLLC use cases. A requirement ofO ms is specified so data transfer must be continuous during mobility procedures * 3GPP has generated its own set of requirements which either achieve or exceed the requirements specified by the ITU-R. These requirements are defined within 3GPP TR 38.913 * 3GPP has specified a User Plane Latency requirement of0.5 ms for both the uplink and downlink of the URLLC use case. 3GPP has also specified a IO ms Control Plane Latency. 3GPP TR 38.913 includes notes to help accommodate scenarios involving sateII ite links, e. g. it is stated that User Plane Latency can be as high as 600 ms for geostationary orbits, as high as 180 ms for medium earth orbits and as high as 50 ms for low earth orbits * 3GPP also specifies a maximum uplink latency of 10 s for the transfer of infrequent small packets when the UE starts from its most battery efficient state. 171c UE must achieve this requirement with a 164dB coupling loss. The coupling loss is measured between the UE antenna connector and the Base Station antenna connector * Table2 presents throughput requirements which 3GPP has specified for a set of relatively high coupling losses. These requirements arc relatively low due to the high coupling loss Coupling Los:; Uplink Downlink 164dB J60 bps 143 dB 30 kbps 160 bps 140dB 60 kbps 1 Mbps 2 Mbps Table 2 - 3GPP requirements for Throughputs as a function of Coupling Loss * 3GPP also specifics a UE battery life requirement for the mMTC use case. The UE battery life is specified to be at least 10 years when assuming a stored energy capacity of 5 Watt Hours and a UE which transfers200 bytes per day in the uplink and20 bytes per day in the downlink while having a coupling loss of 164 dB * ITU-R References: ITU-R M2. 410-0, ITU-R M.2412-0 * 3GPP References: TR 38.913, TS22 .261 14

5G NR in BULLETS 1.4 NE1WORI{ ARCI-IITECTURE * iTllhuestSrGateSsytshteesme c(SoGmSp)oinnedntusdbeeslothneg5mGg Core Network (CN), the 50 Access Network (AN) and the User Equipment (UE). Figure 4 servers. The 5G to the 5G System. The 5G Core Network provides connectivity to the internet and to application Access Network can be a 3GPP Next Generation Radio Access Network (NG RAN), or a non-3GPP Access Network SG System (SGS/ SG Core Network j (SGCN) j 1-· :~---· · ·· ···· · ·:5G_,Cce,>_Ne_,.,,Ck'(: NJ.... ( ----------... :l j/ 3GPP Next Generationj l _: Radio Access Network or --------\\ Non-3GPP Access Network-· _ -(·N·-G- RAN) __ _ ........ '\" ···-·-::---·- .... ~ --- -- ------- -------- ----- ----------- ------ -- -- _____User Equipment (UE) . _,; Figure 4- SG System (SGS) * A 3GPP Next Generation Radio Access Network (NG RAN) can be based upon any of the following options: 0 Standalone New Radio (NR) Base Station 0 Standalone Long Term Evolution (LTE) Base Station upgraded to allow connection to the 5G Core Network 0 Non-Standalone Base Station using NR as the anchor and LTE as an extension 0 Non-Standalone Base Station using LTE as the anchor and NR as an extension These Base Station architectures are described in section 1.5. A New Radio (NR) Base Station is known as a gNode B, whereas an LTE Base Station which has been upgraded to allow connectivity with the 50 Core Network is known as an enhanced cNode B or a Next Generation cNode B * N3AGnetPewPxoairmnktspelruefsaeocfeasaNtnooownn-a-3r3dGGsPPtPhPeIAn5tcGecrewCsosorrNkeieNntgwetoFwruoknrcikstiaaonnWd(inNroe3lnIe-Ws3sGFL)PoPtocaianlltAleorrwfcaacceNosnetntowewcotarivrkdit(syWthwLeiAtnhNotn)h-eb3aG5sGPedPCuoAprcoecneNsWestwiNFoei.rtwkN.ooTrnkh-3eGNP3P1WAFccseuspsports * 3GPP has specified both 'Reference Point' and 'Service based' architectures for the 5G System (SGS) * TtFhihogesuer'ReNe5ef.tewTrehonercke'REPleeofmeinrect'nutacsre.cSPhoiitgiennctat'ullarirencgihspitbreaocscteueddreuurcpeaosnnalraeeassdeptteoocfriefNipeeedttwiftooiorrnkeawEcilhethmpioneinnthtts-et(osNp-pEeoc)iiwfnitchiaincttihoernufsasecifep.tohTienhsti-satmoty-eppoesiiognfnt aianlrltciehnrgiftaepccretosucrteeodiiusurtielelriu-sscutorsnaetndecdcitn across multiple interfaces Point-to-Point Network Point-to-Point Network Element 2 Interface Element 3 Interface Set 'B' Procedures Set 'A' Procedures specified for this specified for this interface interface �'igure 5 - Concept of Reference l'oint system architecture * The 'Service based' architecture replaces the set of Network Elements with a set of Network Functions (NF). Each Network Function can provide services to other Network Functions, i.e. each Network Function is a service provider. This type of architecture is illustrated in Fi1:,>Ure 6. The point-to-point interfaces are replaced by a common bus which inter-connects all Network Functions. Services arc specified for the Network Function providing them, rather than for each pair of providing and consuming Network Functions Common Bus r -~~1~rlr-,~- r-l:~=~=1-,--~rrNetwork Service 'A' ,.-- Service 'C' Service 'E' Network Service 'B' . Function 2 Service 'D' Service 'F' Function 1 ---�---- _,/ Figure 6 - Concept of Service based system architecture 15

sG NR in BULLETS * An important characteristic of the 50 system architecture is the separation of user plane and control plane functions. This differs from the original 40 system architecture. For example, the Packet Gateway belonging to the original 40 Evolved Packet Core (EPC) provides both control plane and user plane functions, e.g. it provides the control plane function of IP address allocation, and it provides the user plane function of packet forwarding. The 50 system architecture includes the Session Management Function (SMF) for IP address allocation, and the User Plane Function (UPF) for packet forwarding, i.e. control plane and user plane fi.mctions are separated * User plane and control plane separation allows independent scaling of the two functions. For example, operators can add more user plane capability without having to add more control plane capabiliity. It also allows different deployment strategics to be adopted for the user plane and control plane. For example, user plane functions could be distributed while control plane functions could be centralised. Distributing the user plane functions helps to keep them located geographically close to the access network and so helps to minimise latency * The release 14 version of the 3GPP specifications includes support for an enhanced version of the 40 EPC which allows user plane and control plane separation. This enhanced version of the 40 EPC is defined within 3GPP TS 23.214 * 3GPP References: TS 23.501 1.4.1 REFERENCE POINT SYSTEM ARCHITECTURE * The 50 System Reference Point architecture is illustrated in Figure 7. This architecture specifics a set of Network Elements and a set of point-to-point interfaces which inter-connect those Network Elements. The functionality associated with each Network Element is described in section I .4.3 * Figure 7 illustrates the separation of user plane and control plane functions. Uplink user plane data is transferred from the UE to the 50 Access Network. It is then transferred through one or more User Plane Functions (UPF) before being forwarded to an external data network, e.g. the internet or a private corporate network. Downlink user plane data follows the same path but in the opposite direction 5G Core Network LJ Path for User Plane Data Network Slice Selection Application Function [ J Control Plane Network Elements Function (NSSF) (AF) NS Policy Control Function N7 (PCF) Data N22 NlS Network Authentication Server Function 1--N..;.1;:.3.:._ Unified Data Mainagement (DN) (AUSF) (UDM) N6 N12 NS NlO Access & Mobility Management Function Session Management User Plane Function (AMF) Function (SMF) (UPF) N14 Nl N2 LJN3 (inter-AMF) N9 (inter-LI PF) N26 C]'--�---IL-----------------------1---, SG Access Network (AN) towards MME Uu (3GPP Radio Access) within 4G EPC User Equ;pment (UE) � Figure 7 - SG System Re-ference Point Architecture 16


































































Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook