Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore 11. Sınıf Matematik Modülleri 1. Modül Trigonometri

11. Sınıf Matematik Modülleri 1. Modül Trigonometri

Published by Nesibe Aydın Eğitim Kurumları, 2019-09-03 03:35:06

Description: 11. Sınıf Matematik Modülleri 1. Modül Trigonometri

Search

Read the Text Version

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 8 ÖRNEK 10 H 1K 1 G ôFLJMEFLJLÐQUF D C \"#$%LJSJõMFSEËSUHFOJ a 5 |),| = |,(| WF 180°–a 3 2 2 | |AB =CS 5 2x a | |BC =CS EF % | |AD =CS 2 m ( BKD ) = a EŽS A6 B | |CD =CS 2 2D C 22 A2B :VLBSŽEBLJWFSJMFSFHÌSF DPTaEFôFSJLBÀUŽS | |:VLBSŽEBLJWFSJMFSFHÌSF  \"$ =YLBÀCJSJNEJS \"#$%LJSJöMFSEÌSUHFOJPMEVôVJÀJO ,ÑQÑOCJSLFOBSŽOŽCSLBCVMFEFMJN m ( % ) + m ( % ) = 180° EJS ])%]2 + |),]2 =],%]2 ],']2 +]'#]2 =],#]2 ABC ADC \"#$WF\"%$ÑÀHFOMFSJOEFLPTJOÑTUFPSFNJZB[ŽMŽSTB  22 + 12 =],%]2 5 2 + 22=],#]2 x2 = 22+2 -DPTa ],%]=  3 =],#] x2= 22+ 32 - 2.2.3. 1c4os4^4412804° -4 4a43h ,%#ÑÀHFOJOEFLPTJOÑTUFPSFNJZB[BSTBL – cos a 2 h2 = ^ h2 2 40 - DPTa = 13 + DPTa ^2 5 + 3 - 2.2. 5 cos a 27 =DPTa 8 = 5 + 9 - 6 5 cos a 5 cos a = 1 & cos a = 3 1 DPTa= 5 4 x2= 22+2 - 2. =cos a x2 = 4 +- 18 3 4 x2= 22 j x = 22 ÖRNEK 9 ÖRNEK 11 A8 D 7 76 #JS\"#$пHFOJOEF B CWFDпHFOJOLFOBSV[VOMVLMB- SŽEŽS 8 5a B E13 C  C+D+B  C+D- a ) =CD PMEVôVOBHÌSF m (XA)LBÀEFSFDFEJS | | | |\"#$%CJSZBNVL [AD] // [ BC ], AD =CS  BC =CS | | | |CD =CSWF AB =CSEJS C+D+F  C+D- a) =CD C2 +D2 +CD - a2 =CD :VLBSŽEBLJWFSJMFSFHÌSF TJOaEFôFSJOJCVMVOV[ a2 =C2 +D2 +CD \"#$ÑÀHFOJOEFDPTJOÑTUFPSFNJZB[BSTBL %&$ÑÀHFOJOEFDPTJOÑTUFPSFNJZB[ŽMŽSTB a2 =C2 +D2 -CDDPT X\" =+-DPTa C2+D2 +CD=C2+D2 -CDDPT X\" DPTa = 12 CD= -CDDPT X\" - 1 = cos XA 1 cos a = 2 XA = 120°EJS 5 5 26 sin a = a 1 5 26 8. 22 26  1  10. 11. 120 5 5

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 4JOÑT5FPSFNJ %m/*m TANIM & 1 BCTJO XC A^ ABC h = 2 A = 1 CDTJn WA 2 cb = 1 BDTJO WB ha 2 BH C ÖRNEK 12 a A  :VLBSŽEBLJ\"#$пHFOJOJO \"LFOBSŽOBBJUZÐL- 6 32 \"#$пHFO TFLMJóJIaPMTVO A_ ABC i = a.ha EŽS B 45° | |AB =CS 2 C | |AC = 3 2 CS \"#)EJLпHFOJOEF m (XC) = 45° 0 < m (WB ) < 90° sin WB = ha & ha = c. sin WB PMVS :VLBSŽEBLJWFSJMFSFHÌSF #BÀŽTŽLBÀEFSFDFEJS c A_ ABC i = 1 a.ha = 1 ·a.c. sin WB \"#$ÑÀHFOJOEFTJOÑTUFPSFNJZB[ŽMŽSTB 2 2 6 32  #FO[FSõFLJMEF = A_ ABC i = 1 .b.c. sin WA 2 sin 45° sin XB A_ ABC i = 1 .a.b. sin XC CVMVOVS 6 32 2 =  0IBMEF 2 sin XB 1 a.b. sin XC = 1 b.c. sin WA = 1 a.c. sin WB 2 2 22 12 sin XB = 6   sin XB = 1 ise XB = 30°EJS  FõJUMJLMFSJOJ 2 JMF¿BSQBSTBL 2 abc ÖRNEK 13 sin XC = sin WA = sin WB cab A \"#$пHFO  PMVS#VSBEBO | |AC =CS abc 4 == | |BC =CS sin XA sin XB sin XC  CVMVOVS B 6 60° m (XC ) = 60° C :VLBSŽEBLJWFSJMFSFHÌSF ÑÀHFOJOBMBOLBÀCS2 EJS A^ ABC h = 1 j A^ ABC h = 6 2 2 ·4.6.>sin 60° 3 br 3 2  12. 30° 13. 6 3

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ .0%·- 11. SINIF ÖRNEK 14 ÖRNEK 17 #JS\"#$ÑÀHFOJOEF ,FOBSV[VOMVLMBSŽCS CSWFCSPMBOÑÀHFOJO BMBOŽLBÀCS2EJS & | |A^ ABC h = 14 2 cm2, m (WB) = 45° ve BC = 8 cm A =+-DPTa | |PMEVôVOBHÌSF \"# LBÀDNEJS DPTa= 1 7 cos a = 6 5 1 ·a.c. sin XB = 14 2 a 2 B 5C 12 3 8 .c = 14 2 jD=CS 22 26 5k sin a = a 5 k ÖRNEK 15 2 6k & 1 ·6.5.<sin a A^ ABC h = 2 D C ABCD paralelkenar 26 6 |BC | = 5 br 5 | |5 CD = 6 br & m (WA ) = 60° A^ ABC h = 6 6 5 6 B ÖRNEK 18 60° A :VLBSŽEBLJ WFSJMFSF HÌSF   HÌSF  QBSBMFMLFOBSŽO BMB- x A ABC üçgen OŽLBÀCS2EJS 105° 30° |AC | = 4 br A^ ABD h = 1 B 4 ·5.6. sin 60° m (WA ) = 105° 2 45° m (WB ) = 30° C 13 | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# =YLBÀCSEJS ·5.6. 22 & 15 3 CSEJS A^ ABD h= & &2 x4 A^ ABD h = A^ BDC hj\" \"#$% =15 3 CS2 = ÖRNEK 16 sin 45° sin 30° | |A AE = 4 br x4 = j x = 4 2 21 22 4a 6 | EB | = 3 br E | AD | = 6 br ÖRNEK 19 3 D && | | | |#JS\"#$ÑÀHFOJOEF  \"# =CS  \"$ =CSWF B x A^ ABD h = A^ AEC h | |#$ =CSPMEVôVOBHÌSF  C  sin WA + sin WB sin XC | |:VLBSŽEBLJWFSJMFSFHÌSF  %$=YLBÀCSEJS JGBEFTJOJOEFôFSJLBÀUŽS & 1 ·7.6. sin a A^ ABD h = 2 & 1 ·4.^ 6 + x h. sin a A^ AEC h = 2 sin A + sin B sin C = a+b C && 1 1 A^ ABD h = A^ AEC h & ·7.6. sin a = ·4.^ 6 + x h. sin a 22 F15 sin XA + sin XB a+b =+YjY= 9 = =3 2 sin XC 5c 5 9 51  6 6  4 2 3 715 3  2

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 20 ÖRNEK 22 A A \"#$пHFO \"#$%LJSJõMFSEËSUHFOJ | |AB =CS x 45° | |CD = 3 2CS ab | |AC =CS Ba 6 |BD| = |DC| % 9 m ( ACB ) 180°–a = 30° D % m ( B%AD ) = a m ( CAD ) B DC 32 = 45° 30° % m ( DAC ) = b C :VLBSŽEBLJWFSJMFSFHÌSF  sin a EFôFSJLBÀUŽS sin b | |:VLBSŽEBLJWFSJMFSFHÌSF \"# =YLBÀCJSJNEJS && \"#$%LJSJöMFSEÌSUHFOJPMEVôVJÀJO  A^ ABD h = A^ ADC h  \"#% WF \"%$ ÑÀHFOMFSJOEF TJ- OÑTMÑPMBOGPSNÑMÑOÑZB[BSTBL m ( % ) + m ( % ) = 180° EJS 11 ABC ADC ·6. AD . sin a = ·9. AD . sin b \"#$WF\"%$ÑÀHFOMFSJOEFTJOÑTUFPSFNJOJZB[BSTBL 22 sin a 9 3 AC x AC == sin b 6 2 32 = ve = sin a sin 30° sin 45° 1s4in4^41820°4-4a43h ÖRNEK 23 sin a #JS\"#$пHFOJOEFB C DпHFOJOLFOBSV[VOMVLMBSŽEŽS x 32 j x =CS sin WA + sin WB = 3 sin XC WFB-D=-C = >sin 30° >sin 45° 1 2 2 PMEVôVOBHÌSF DLBÀCJSJNEJS 2 abc a+b = c ==& sin XA sin XB sin XC sin XA + sin XB sin XC ÖRNEK 21 a +C=D+JTF A \"#$пHFO 2c + 4 = c 30° m ( B%AD ) = 30° 3 sin XC sin XC 4 % D+ 4 =Dj 4 =DEJS m ( DAC ) 6 = i | |AB =CS ÖRNEK 24 | |AC =CS | | | |#JS\"#$пHFOJOEF AB =CS  CB =CSWF B DC m ( A%CB ) - m ( B%AC ) = 90°EJS |BD| = |DC| :VLBSŽEBLJWFSJMFSFHÌSF UBOiOŽOQP[JUJGEFôFSJLBÀ- #VOBHÌSF  cot ( % ) EFôFSJLBÀUŽS UŽS BAC \" \"#% =\" \"%$ PMEVôVJÀJO m ( B%AC ) = a PMTVOm ( A%CB ) = 90° + a PMVS 11 . sin i TJOÑTUFPSFNJOEFO ·4. AD .>sin 30° = ·6. AD B 2 2 1 8 6 2 68 90°+a = C sin a 1s4in4^4c9o20s°a4+4a4 3h 1 3k k = sin i cos a 8 i 3 j= 22k 2 sin a 6 a tan i = 4 4 A jDPUa = 3 20. 3 2  3 4 21. 22. 23. 4 24. 23 4

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 25 ÖRNEK 26 #JSDFQUFMFGPOVõJSLFUJ NÐõUFSJMFSJOFEBIBJZJIJ[NFUWF- ¶¿HFOõFLMJOEFLJCJSQJTUJO\"WF#LËõFMFSJOEFCVMVOBO SFCJMNFLJ¿JOWFSJDJTBZŽTŽOŽBSUUŽSNBZŽQMBOMŽZPS:BQŽMBO JLJBSB¿$LËõFTJOFHJEFDFLMFSEJS IFTBQMBNBMBSTPOVDVWFSJNJOFOZÐLTFLEÐ[FZEFPMNB- TŽ J¿JO WFSJDJMFSJO пHFO õFLMJOEFLJ BSB[JOJO LËõFMFSJOF A ZFSMFõUJSJMNFTJHFSFLUJóJCVMVOVZPS BC | | | |AC =LN m % =LN  BC ( BAC ) = a WF A % B m ( ABC ) = 90° + a PMEVôVOB HÌSF  UBOa EFôFSJ LBÀ- UŽS A 16 18 a = sin a sin^ 90° + a h 8 44 C 90°+a 89 B6 sin a = cos a 8 UBna = C 9 7FSJDJMFSõFLJMEFHËSÐMEÐóÐHJCJ\"#$пHFOJOJOLËõFMFSJ- ÖRNEK 27 OFZFSMFõUJSJMJZPS | | | |\"# = 40 7LN m % 45°PMEV- 2 LN  \"$ = ( BAC ) = :BOEBCJSLFOBSŽNPMBO | |ôVOBHÌSF  #$ FOÀPLLBÀLNEJS A LÐQ õFLMJOEF CJS BTBOTËS LBCJOJ HËSÐMNFLUFEJS ,B- A 5 CJOJO ÐTU LËõFTJOEF CVMV- 45° 52 OBO ËSÐNDFL  ZFSEFLJ ZJ- 40 2 ZFDFóJ GBSL FEJZPS WF IB- 1 SFLFUF HF¿JZPS ¶TU LËõF- 70 C EFOËODFLBCJOJOBMUBZSŽ- B 1 2 x 1B C UŽOŽOPSUBOPLUBTŽOB EBIB TPOSB ZJZFDFóJ BMŽQ EJóFS \"#$ÑÀHFOJOEFLPTJOÑTUFPSFNJZB[ŽMŽSTB  BZSŽUŽO PSUB OPLUBTŽOB VMBõŽZPS %BIB TPOSB ÐTU LËõFZF x2 =702+ ^ 40 2 h2 - 2.70 . 40 2 >cos 45° HFSJEËOÐZPS x =LNEJS 2 ²SÑNDFôJO J[MFEJôJ SPUB \"#$ ÑÀHFOJ öFLMJOEF PMEV- 2 % ôVOBHÌSF cos ( BAC )EFôFSJLBÀUŽS ,PTJOÑTUFPSFNJOEFO ^ 2 h2 = ^ 5 h2 + ^ 5 h2 - 2. 5. % 5 . cos ( BAC ) 2 = 10 - 10 % cos ( BAC ) cos ( B%AC ) = 4 5   8 4  27. 95

11. SINIF .0%·- 53÷(0/0.&53÷ www.aydinyayinlari.com.tr )(1/m6(/(5m1(<q1(/m. ÖRNEK 30 ABC üçgen 4JOÑT5FPSFNJOJO¦FWSFM¦FNCFSJMF÷MJöLJTJ A % = 68° 60° m ( ABC ) %m/*m % = 52° Bir ABC üçgeninde m ( ACB ) A | |52° BC = 12 br 68° 12 B C c b O C :VLBSŽEBLJ WFSJMFSF HÌSF  \"#$ ÑÀHFOJOJO ÀFWSFM R ÀFNCFSJOJOTŽOŽSMBEŽôŽBMBOLBÀÖCSEJS Ba a = b = c = 2R dir. a sin (WA) sin (WB) sin (XC) = 2R 3¥FWSFM¿FNCFSJOZBSŽ¿BQŽ sin A 12 = 2R j3= 4 3 CS 3 2 Ö3=Ö^ 4 3 h2 =Ö ÖRNEK 28 ÖRNEK 31 A | |\"#$ÑÀHFOJOEFm (XB)=šWF \"$ =DNPMEV- 12 46 C a ôVOBHÌSF \"#$ÑÀHFOJOJOÀFWSFMÀFNCFSJOJOZBSŽ- ÀBQŽLBÀDNEJS HB b = 2R sin (XB) 4 = 2R & R = 4 >sin 30° 1 2 ÖRNEK 29 ôFLJMEF\"#$пHFOJWF¿FWSFM¿FNCFSJWFSJMNJõUJS ,FOBSV[VOMVLMBSŽCS CSWFCSPMBOÑÀHFOJO | | | | | |[AH] m [BC], AB = 6 br, AH = 4 br ve AC = 12 br ÀFWSFMÀFNCFSJOJOZBSŽÀBQŽLBÀCJSJNEJS dir. :VLBSŽEBLJWFSJMFSFHÌSF ÀFNCFSJOZBSŽÀBQŽLBÀCJ- SJNEJS 4 A 4 12 = 2R = 2R a 4 B1 15 sin a sin a 4 D 1C = 2R 12 15 = 2R 4 4 8 15 6 R= 3=CS 15 8 15 54  4 15

,PTJOÑT5FPSFNJ4JOÑT5FPSFNJ TEST - 16 1. A D ôFLJMEF 4. ôFLJMEFCJSLFOBSŽCSPMBOLÐQWFSJMNJõUJS,OPLUB- 34 | |AB =CS TŽ\"%)&LBSFTJOJOBóŽSMŽLNFSLF[JEJS HG 4C | |x CE =CS | |4 BC =CS EF 6 | |B AC =CS | |E CD =CS K C D L [ BD ] a [ AE ] = { C }EJS AB | |:VLBSŽEBLJWFSJMFSFHÌSF  %& =YLBÀUŽS % FKL A) 30 B) 34  $  =| | | |BLLCPMEVôVOB HÌSF  cos ( ) EFôFSJ LBÀUŽS D) 2 15 E) 2 17 A) 15 B) 7 C) 30 10 5 10 D) 15 2. 5 3 30 E) 5 Dx 2 C A 60° 6 6 B | | | |\"#$%LJSJõMFSEËSUHFOJ  AB = BC =DN  #JS\"#$ÑÀHFOJOJOLFOBSV[VOMVLMBSŽBSBTŽOEB | |AD =DNWF m ( % ) =™EJS a =C +D +  CD BCD  CBôŽOUŽTŽPMEVôVOBHÌSF m (XA)LBÀEFSFDFEJS | |:VLBSŽEBLJWFSJMFSFHÌSF %$ =YLBÀDNEJS \"  #  $  %  &  \"  #  $  %  &  3. A \"#$пHFO  ,FOBSV[VOMVLMBSŽCS CS CSPMBOÑÀHFOJOJÀ 2 [ DE ] m [ BC ] BÀŽMBSŽOEBO LPTJOÑT EFôFSJ FO CÑZÑL PMBO BÀŽ- D OŽOTJOÑTEFôFSJLBÀUŽS  | |AD =DN x 3 B4E | |DC =DN | |2 C BE =DN | | | |&$ =DNPMEVôVOBHÌSF \"# =YLBÀDN 7 7 5 A) B) C) EJS 4 3 4 A) 21 B) 22 C) 23 5 5 D) E) 3 7 D) 2 6 E) 5 1. B 2. & 3. \"  4. $ D \"

TEST - 17 ,PTJOÑT5FPSFNJ4JOÑT5FPSFNJ A 4. A 1. 5 5 2 120° B4 C D | | | |\"#$пHFO  AB =DN  BC =DN B3 C % =™  ôFLJMEF [ BC ] m [ AC ], [ AB ] m [ AD ] m ( ABC )  :VLBSŽEBLJWFSJMFSFHÌSF A^ & h LBÀDN2EJS | | | | | |BC =DNWF AB = AD =DNEJS ABC & A^ ACD hLBÀDN2EJS :VLBSŽEBLJWFSJMFSFHÌSF \"  #  $ 2 3 $  15 2 \"  #  D) 4 3 E) 6 2 D) 25 E) 25 4 2 2. D 3 C [DC] m [AD]  A \"#$пHFO A 5 [AB] m [AD] | |AB =CS | |DC =DN 6 23 | |B BC =DN | |AC = 2 3 CS sin (WB) = 4 5 BC A^ & h FOCÑZÑLEFôFSJOJBMEŽôŽOEBsin ( % ) ABC BCA EFôFSJLBÀPMVS :VLBSŽEBLJWFSJMFSFHÌSF \"#$%EJLZBNVôVOVO A) 1 B)  2 3 BMBOŽLBÀDN2 EJS 2  C) D)  &  \"  #  $  %  &  5 2 | |3. #JS\"#$пHFOJOEFm (WA) = 60°, BC = a,  #JS\"#$пHFOJOJOJ¿B¿ŽMBSŽ XA, XB, XC CVB¿ŽMBSŽO | | | |AC =C  AB =DEJS HËSEÐLMFSJ LFOBSMBSŽO V[VOMVLMBSŽ TŽSBTŽZMB B  C  D    D-  + C-  = EJS sin (WB) = 3 sin (WA) - 2 sin (XC)  C+D= 5a -  PMEVôVOBHÌSF  A^ & h LBÀCS2EJS  PMEVôVOBHÌSF BLFOBSŽLBÀCJSJNEJS ABC \"  # 6 3 C) 10 3 D &  \"  #  $  %  &  1. $ 2. D 3. B  4. \" D $

,PTJOÑT5FPSFNJ4JOÑT5FPSFNJ )(1/m6(6m7(67m 1. #JS\"#$ÑÀHFOJOEF 4. ,FOBSV[VOMVLMBSŽCS CSWFCSPMBOÑÀ- m (WA) = 120°WF BC = 6 3 CS HFOJOÀFWSFMÀFNCFSJOJOÀBQŽOŽOJÀUFôFUÀFN- CFSJOJOZBSŽÀBQŽOBPSBOŽLBÀUŽS PMEVôVOBHÌSF ÑÀHFOJOÀFWSFMÀFNCFSJOJOZB- A) 25 B) 17 C) 17 D) 25 E) 22 SŽÀBQŽLBÀCSEJS 6 6 3 33 \"  #  $  %  &  2. #JS\"#$ÑÀHFOJOJOJÀBÀŽMBSŽ  XA , XB , XC CVBÀŽMB-  ôFLJMEF 0 NFSLF[MJ ¿FNCFS WF \"#$ пHFOJ WFSJM- SŽO HÌSEÑLMFSJ LFOBSMBSŽO V[VOMVLMBSŽ TŽSBTŽZMB NJõUJS B C DPMNBLÑ[FSF  A  TJOA -TJOB = 2 WF 3 O 4   B -C = B6  PMEVôVOBHÌSF \"#$ÑÀHFOJOJOÀFWSFMÀFNCFSJ- OJOZBSŽÀBQŽLBÀCSEJS C A) 1  #  $  3  %  &  2 2 | | | |BC =CSWF OB =CSEJS  :VLBSŽEBLJWFSJMFSFHÌSF sin ( B%AC )EFôFSJLBÀ- UŽS A) 1 B) 2 3 D) 2 E) 1 3 3 C) 5 4 4 3. A 12 10 a 2a  A ôFLJMEFLJ\"#$пHF- B C OJOJO ¿FWSFM ¿FNCF- O SJOJO ZBSŽ¿BQŽ  DN %% 6 EJS \"#$пHFO m ( ABC ) = a, m ( ACB ) = 2a B C | | | |AB =CSWF AC =CS EJS  :VLBSŽEBLJWFSJMFSFHÌSF \"#$ÑÀHFOJOJOÀFWSFM ÀFNCFSJOJOÀBQŽLBÀCSEJS  (sin2a = 2sina.cosa)  \"#$ ÑÀHFOJOJO ÀFWSFTJ  DN PMEVôVOB HÌSF  sin (XA) + sin (XB) + sin (XC)EFôFSJLBÀUŽS A) 25 B) 25 C) 13 D) 17 E) 15 4 2 2 22 #  2 4 5 7 3 C) D) E) \"  3 4 4 1. B 2. $ 3. B  4. D $ D

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 53÷(0/0.&53÷,'0/,4÷:0/-\"3*/(3\"'÷,-&3÷ ÷MJöLJMJ,B[BOŽNMBS 11.1.2.4 : 5SJHPOPNFUSJLGPOLTJZPOMBSŽOHSBGJLMFSJOJ¿J[FS 1FSJZPUWF1FSJZPEJL'POLTJZPO ÖRNEK 2 7$1,0%m/*m G Y GPOLTJZPOVOVOQFSJZPEVPMEVôVOBHÌSF  g ( x ) =G Y+ 1 ) +GPOLTJZPOVOVOQFSJZPEVOVCV- G\"Z B, rx `\"J¿JOG Y+ T ) =G Y FõJUMJóJ- MVOV[ OJTBóMBZBOQP[JUJG5SFFMTBZŽMBSŽOEBOFOLпÐ- óÐOFG Y GPOLTJZPOVOVOFTBTQFSJZPEVEFOJS Tf^ x h 4 G Y  GPOLTJZPOVOB JTF QFSJZPEJL GPOLTJZPO Tg^ x h = = =2 EFOJSrx `3WFL`;J¿JO 2 2 sin (x + k.2r) = sin x 4 oldu€undan, T = 2r cos (x + k.2r) = cos x tan (x + k.r) = tan x 4 oldu€undan, T = r cot (x + k.r) = cot x L B C`3WFLáWFBáPMNBLÐ[FSF ÖRNEK 3 % G Y =LTJOn ( ax +C G Y  GPOLTJZPOVOVO QFSJZPEV  PMEVôVOB HÌSF  H Y =LDPTn ( ax +C GPOLTJZPOMBSŽOEB ff 2x - 3 pGPOLTJZPOVOVOQFSJZPEVOVCVMVOV[  OUFLEPóBMTBZŽJTF T = 2r 3 a O¿JGUEPóBMTBZŽJTF T = r G Y JOQFSJZPEVOB51 a 2x - 3 % G Y LUBOn ( ax +C fd 3 n OJOQFSJZPEVOB52EJZFMJN  H Y LDPUn ( ax +C GPOLTJZPOMBSŽOEB T= T 6 &T = =9  OEPóBMTBZŽJTF T = r 1 a 22 22 33 %m/*m ÖRNEK 4 G Y  GPOLTJZPOVOVO QFSJZPEV 5 JTF G BY + C  G Y  GPOLTJZPOVOVO QFSJZPEV   H Y  GPOLTJZPOV- nun QFSJZPEV  GPOLTJZPOVOVOQFSJZPEV T EŽS a  G  =WFH  = ÖRNEK 1 PMEVôVOB HÌSF  H   - G   JGBEFTJOJO FöJUJOJ CVMVOV[ 3Z3 G Y =Y+ GPOLTJZPOVOVOQFSJZPEJLPMVQPMNBEŽôŽOŽCVMVOV[ F10 6 4 758 4 8 G Y =G Y+5 PMNBMŽEŽS f^ 6 h = f (6 + 4) = . . . f (6 + 4.13) = 12 G Y+ T ) = 2(x + T) + 1 = 2x + 2T + 1 F20 g^ 13 h = g (1 3 + 7) = . . .g (11434+274.1483) = 4 >2x + 1 = 124x4+22T4+413 & T = 0 f^ x h f^ x + T h 139 T ` R+ PMEVôVOEBOG Y QFSJZPEJLGPOLTJZPOEFôJMEJS 2 . 4 - 12 = -4 1. QFSJZPEJLGPOLTJZPOEFôJM  2. 2 3.  4. m

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 5 ÖRNEK 7 \"öBôŽEBLJGPOLTJZPOMBSŽOQFSJZPUMBSŽOŽCVMVOV[  G Y =TJO Y+ +DPT Y- a) Z=TJO Y+ GPOLTJZPOVOVOQFSJZPEVOVCVMVOV[ C  Z=DPT Y- D Z= 1 DPTd x + π n G Y =TJO Y+ 1) +DPT Y- 3) [[ 2 34 E Z =TJO f 2x - 1 + π p 2π 2π T= T= 3 13 22 2π π n = 2π (T1 52)PLFL = d 3 okek 2π 2π a) T = = 33 2π C  T = = 2π 1 D  T = π = 3π 1 ÖRNEK 8 3 f^ x h = 3 cos2 c x + 50° m + tan3^ x - 20° h 2 E  T = π 3π = GPOLTJZPOVOVOFTBTQFSJZPEVOVCVMVOV[ 22 3 3 2 d x + 50° n + 1ta4n434^ 2xπ-42404° 3h 44444 3 cos T = =π 1 4 4 4 442π2 T= = 2π 21 11 2 ÖRNEK 6 TG Y =0,&, 51 52) =Ö \"öBôŽEBLJGPOLTJZPOMBSŽOQFSJZPUMBSŽOŽCVMVOV[ ÖRNEK 9 a) Z=UBO5 Y C  Z=DPUd - x + π n L` R+PMNBLÑ[FSF  G Y =DPT LY+ - 1 35 D Z=DPU f 3 - x p + 4 2 2 GPOLTJZPOVOVO CJS LÌLÑ š PMEVôVOB HÌSF  CV LÌL- E  Z =UBO f x - 1 p + 2 UFOEBIBCÑZÑLPMBOFOLÑÀÑLLÌLÑOÑCVMVOV[ 3 ππ a) T = = 22 C  T = π = 3π 1 - 3 D  T = π = 2π 1 π - 'POLTJZPOVOQFSJZPEV= 2 k E) T = π = 3π %PMBZŽTŽZMBCJSTPOSBLJLÌLÑ 1 π 2k + π 3 2° + = EJS kk 2π 3π π  7. Ö 2k + π a) C ÖD ÖE  a) C ÖD ÖE Ö 8. Ö 3 22 k

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 4JOÑTWF,PTJOÑT'POLTJZPOMBSŽOŽO(SBGJLMFSJ D Z=+DPTY  7$1,0%m/*m y =TJOYGPOLTJZPOVOVOHSBGJôJ D  y 2 Õ Õ x 0 2 Õ 2 Õ mÕ Õ OÕ Õ Õ x y = sinx 0 1 0 –1 0 2 2 2 – Õ – y 2 1 mÕ – Õ O Õ Õ Õ Õ x 2 22 –1 E Z=DPT Y+Õ y =DPTYGPOLTJZPOVOVOHSBGJôJ E  y Õ Õ 1 x 0 2 Õ 2 2Õ OÕ y = cosx 1 0 –1 0 1 2 y – 3Õ –1 Õ 1 2 –Õ – Õ Õ 3Õ 2 2 Õ OÕ Õ x 2 2 2 mÕ – Õ 2Õ –1 ÖRNEK 10 F  y = - 3 cosd x n + 2 2 \"öBôŽEBLJGPOLTJZPOMBSŽOHSBGJLMFSJOJÀJ[JOJ[ a) Z= -DPTY  F  a) y mÕ y 2 –2Õ 5 Õ O Õ Õ Õ O Õ – Õ 22 –1 2 –2 x mÕ – Õ 2 C Z=TJOY | |G  Z=TJO x C  y F  y 1 mÕ 1 – Õ Õ mÕ O Õ 4 4 Õx –1 – Õ – Õ OÕ Õ x 4 2 4 2 Õ –1

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF 5BOKBOUWF,PUBOKBOU'POLTJZPOMBSŽOŽO(SBGJLMFSJ ÖRNEK 12 7$1,0%m/*m y y =UBOYGPOLTJZPOVOVOHSBGJôJ 5 2 O Õ Õx Õ 6 3 –1 12 O :VLBSŽEBLJHSBGJLG Y =BTJO CY +DGPOLTJZPOVOB BJUPMEVôVOBHÌSF B+C+DEFôFSJLBÀUŽS y =DPUYGPOLTJZPOVOVOHSBGJôJ mÕ Õ G  =PMEVôVOEBO x =JÀJOG  =DjD= 2 O Õ Õ G Y =BTJO CY +PMVS mÕ -ãG Y ã -ãBTJO CY +ã -ãBTJO CY ã a =ZBEBB= -PMVS (SBGJLUFOBOŽOPMEVôVBOMBöŽMŽS G Y =TJO CY + 2 fd π n = 5 jC=PMVS 12 a =C= D= 2 3 ++ 2 = 11 ÖRNEK 11 y ÖRNEK 13 y – Õ Õ 1 Õ x 3 4 4 4 2 O – Õ 4 1 x O Õ Õ Õ Õ 42 4 :VLBSŽEBLJHSBGJLZ= a +UBO CY GPOLTJZPOVOBBJU (SBGJLUF WFSJMFO GPOLTJZPO BöBôŽEBLJMFSEFO IBOHJTJ- PMEVôVOBHÌSF B+CEFôFSJLBÀUŽS OFBJUUJS ππ \" DPTY+ # TJOY+ $ TJOY+ T = = & b = 2 jC= HSBGJôJOöFLMJOEFO  % TJOY+ & DPTY+ b2 x =JÀJOZ= a j a = 1 D a +C= 3 11. 3  12. 11 13. D

TEST - 18 5SJHPOPNFUSJL'POLTJZPOMBSŽO(SBGJLMFSJ 1. y =G Y GPOLTJZPOVOVOQFSJZPEVJTF    G Y =+UBO Y+ 5 ) g_ x i = ff 2x - 3 p GPOLTJZPOVOVO QFSJZPEV BöBôŽEBLJMFSEFO IBO- 3 HJTJEJS  GPOLTJZPOVOVQFSJZPEVLBÀUŽS \" Õ #  π C) π D) π E) π 2 4 6 7 \"  #  $  %  &  2. G Y  GPOLTJZPOVOVO QFSJZPEV   H Y  GPOLTJZPOV-  G Y =TJO Y+ +UBO Y- OVOQFSJZPEVEJS  G 3 ) =WFH  =PMEVôVOBHÌSF  GPOLTJZPOVOVO QFSJZPEV BöBôŽEBLJMFSEFO IBO- f_ 28 i - g_ 34 i HJTJEJS _ fog i_ 10 i \" Õ #  3π  $ Õ %  π E) π 2 2 4 JGBEFTJOJOFöJUJLBÀUŽS A) - 4 B) - 2 C  %  2 E) 4 9 9 9 9 3. ôFLJMEFG Y =TJO BY GPOLTJZPOVOVOHSBGJóJWFSJM- 7. f_ x i = sin_ 2x + 5 i + cos2f x – 2π p + tan32x NJõUJS 2  GPOLTJZPOVOVO QFSJZPEV BöBôŽEBLJMFSEFO IBO- y 1 HJTJEJS O Õ x A) π  # Õ $ Õ % Õ & Õ 2 –1  #VOBHÌSF GGPOLTJZPOVOVOQFSJZPEVBöBôŽEB- LJMFSEFOIBOHJTJEJS A) π B) π C) 2π  % Õ & Õ 3 2 3 4. f_ x i = sin9_ 6x + 3 i 8. f^ x h = sin5 f x + 2 p + 7 tan6 x + cot3 ^ 2x + 7 h  GPOLTJZPOVOVO QFSJZPEV BöBôŽEBLJMFSEFO IBO- π HJTJEJS  GPOLTJZPOVOVO QFSJZPEV BöBôŽEBLJMFSEFO IBO- HJTJEJS A) π B) π C) π D) 2π  & Õ π π C) Õ % Õ & Õ 6 3 2 3 A) B) 4 2 1. B 2. \" 3. D 4. B  $ $ 7. $ 8. D

5SJHPOPNFUSJL'POLTJZPOMBSŽO(SBGJLMFSJ TEST - 19 1. G Y =+DPTY 3.  G Y = -+TJOY  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ-  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- EJS EJS A) y B) y A) y B) y 3 3 1 Õ Õ Õ 2 2 O Õ Õ 2 Õ x O 2 Õ 2 Õ x 1 1 –1 2 –1 O Õ Õ Õ Õ O Õ Õ Õ Õ x –2 x C) y D) y C) y D) y 1 Õ 1 Õ 2 Õ x O Õ Õ 2 Õ x 3 3 O ÕÕ –1 2 2 2 1 1 –1 2 O Õ Õ Õ Õ O Õ Õ Õ Õ –3 x x E) y E) y Õ Õ 2 Õ 2 x 3 O 2 Õ 1 –1 2 O Õ Õ Õ Õ x y 4. y 2 2. Õ Õ 24 Õ 2 OÕ 4 x O Õ Õ Õ x –2 Õ f(x) –2  õFLJMEF [  Ö] BSBMŽôŽOEB HSBGJôJ WFSJMFO G Y   õFLJMEFHSBGJôJWFSJMFOG Y GPOLTJZPOVBöBôŽEB- LJMFSEFOIBOHJTJEJS GPOLTJZPOVBöBôŽEBLJMFSEFOIBOHJTJEJS \" G Y =TJOY # G Y =TJOY+ \" G Y = --DPTY # G Y =+DPTY $ G Y = -+DPTY % G Y = 2 sin x $ G Y = -DPTY+ % G Y =TJOY- 2 E) G Y =DPTY- & G Y =DPTY 1. \" 2. D  3. D 4. \"

TEST - 20 5SJHPOPNFUSJL'POLTJZPOMBSŽO(SBGJLMFSJ 1. y 3. y 2 3 mÕ Õ Õ Õ x O f(x) 1 –1 Õ 4 x O Õ Õ Õ –4 24  õFLJMEF[ -Ö Ö]BSBMŽôŽOEBLJHSBGJôJWFSJMFOG Y  –1 GPOLTJZPOVBöBôŽEBLJMFSEFOIBOHJTJEJS \" G Y =DPTY # G Y = -+DPTY  õFLJMEFLJHSBGJLBöBôŽEBLJGPOLTJZPOMBSEBOIBO- HJTJOFBJUPMBCJMJS C) f^ x h = 3 cos x D) f^ x h = - 1 + 3 sin x \" +TJOY # DPTY 2 2 $ -TJOY % -DPTY E) f^ x h = - 1 + 3 cos x 2 & -TJOY 2. y 4. sin x = x 12 3  EFOLMFNJOJOLBÀLÌLÑWBSEŽS Õ \"  #  $  %  &  O 4Õ x ÕÕ 42 f(x) –3 õFLJMEF [  Ö] BSBMŽôŽOEB HSBGJôJ WFSJMFO G Y  GPOLTJZPOVBöBôŽEBLJMFSEFOIBOHJTJEJS \" G Y =TJOY # G Y =+TJOY $ G Y =TJOY % G Y =TJOY & G Y =+DPTY 1. & 2. D  3. & 4. $

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF 5&3453÷(0/0.&53÷,'0/,4÷:0/-\"3 ÷MJöLJMJ,B[BOŽNMBS 11.1.2.5 : 5SJHPOPNFUSJLGPOLTJZPOMBSŽOUFSTGPOLTJZPOMBSŽOŽB¿ŽLMBS %m/*m ÖRNEK 1 A Z#UBOŽNMŽCJSGPOLTJZPOVOVOUFSTGPOLTJZP- \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ OVOVOPMBCJMNFTJJ¿JOCVGPOLTJZPOVOVO–WF ËSUFO PMNBTŽ HFSFLJS  4JOÐT  LPTJOÐT  UBOKBOU a) BSDTJO  C BSDTJO 1 WFLPUBOKBOUGPOLTJZPOMBSŽOŽONFWDVUUBOŽNLÐ- 2 NFMFSJOEF–PMNBEŽLMBSŽJ¿JOUFSTGPOLTJZPOMB- SŽZPLUVS D BSDTJO - 3 E BSDTJOf - p  #VGPOLTJZPOMBSŽOUBOŽNLÐNFMFSJOJO–WFËS- UFO PMBO BMU LÐNFMFSJOEFO CJSJ UBOŽN LÐNFTJ 2 PMBSBL TF¿JMEJóJOEF GPOLTJZPOMBSŽO CV LÐNFEF UFSTGPOLTJZPOMBSŽWBSEŽS B  BSDTJO= a =TJOa = 0 l a = 0 1 1π C  BSDTJO = a jTJOa = j a = 2 26 π D  BSDTJO -1) = a jTJOa = -1 j a = - 2 E  BSDTJOf - 3 p = a jTJOa = - 3 π ja= - 2 23 G Y =TJOY'POLTJZPOVOVO5FSTJ ÖRNEK 2 TANIM \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ y π C sinf arcsin 5 p a) arcsind sin n 7 7 1 D cosf arcsin 7 p 25 mÕ –Õ Õx 2 O Õ 2 –1 π B  BSDTJO (sin ) = a >a 7 :VLBSŽEB CJS LŽTNŽ WFSJMFO TJOY HSBGJóJOEF HË- ππ SÐMEÐóÐ HJCJ <- π , π F  BSBMŽóŽOEB GPOLTJZPO TJOa = sin j a = 7 7 22 6 447a 448 –WFËSUFOEJS 5 C  sin (arcsin ) = x PMTVO  G <- π , π F Z [ - ] 7 22 55 5 arcsin = a & sin a = j x=  G Y =TJOYPMBSBLUBOŽNMBOEŽóŽOEB 7 7 4 7b 7  G-[- ] Z <- π , π F 6 4 4 4 8 22 7 G-( x ) =BSDTJOYGPOLTJZPOVOBTJOÑTGPOLTJZP- D  cos (arcsin ) = x 25 OVOVOUFSTGPOLTJZPOVEFOJS 77  Z=BSDTJOYl x =TJOZEJS arcsin = a & sin a = 25 25 A 24 cos a = 25 25k 7k a 24k C B  ππ π π 5 24 1. B C  D  - E  - 2. a) C  D  62 3 7 7 25

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr G Y =DPTY'POLTJZPOVOVO5FSTJ ÖRNEK 4 TANIM arccos 2 - t JGBEFTJUBOŽNMŽCJSJGBEFPMEVóVOBHËSF  3 y U OJO  BMBCJMFDFôJ FO CÑZÑL UBN TBZŽ EFôFSJOJ CVMV- 1 OV[ Õ Õ -1 ≤ 2-t ≤1 2 Õ 2x –Õ 2 O 3 –1 -ã-Uã -ã-Uã -ãUãjUJS :VLBSŽEBHSBGJóJOJOCJSLŽTNŽWFSJMFO  G Y  = DPTY HSBGJóJOEF HËSÐMEÐóÐ HJCJ [  Õ] BSBMŽóŽOEBGPOLTJZPO–WFËSUFOEJS  G[ Õ] Z [ - ]  G Y =DPTYPMBSBLUBOŽNMBOEŽóŽOEB  G-[- ] Z [ Õ]  G-( x ) =BSDDPTYGPOLTJZPOVOBLPTJOÑTGPOL- TJZPOVOVOUFSTGPOLTJZPOVEFOJS  Z=BSDDPTYl x =DPTZPMVS ÖRNEK 5 \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ a) BSDDPTd cos π n C  sinf arccos 3 p 8 5 D UBO BSDTJOY ÖRNEK 3 \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ π a) arccos (cos ) = a a) BSDDPT  C BSDDPT 8 D BSDDPT - E BSDDPTf - 1 p ππ 2  DPTa =DPT j a = 88 π 3 B  BSDDPT= a jDPTa = 0 j a = C  sin (arccos ) = sin a 14 442a 4 4543 2 C  BSDDPT= a jDPTa = 1 j a = 0 3 cos a = D  BSDDPT -1 ) = a jDPTa = -1 j a =Ö E  arccosd - 1 n = a & cos a = - 1 j a = 2π 5 2 23 5k 4k 4 TJOa = a 5 3k 6 4 7a 4 8 xk D  tan (arcsin x) = tan a tana =  BSDTJOY= a jTJOa = x k 1 - x2 k x = a LmæY2 xk 1 - 2 x  π4 x 4. a) C  D  π 2π 85 3. a) C D ÖE  1-x 2 23

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 6 ÖRNEK 7 arccosf sin 11π p \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ 3 a) BSDUBO  C BSDUBO_  i JGBEFTJOJOEFôFSJOJCVMVOV[ D BSDUBO -   E BSDUBOf -  sind 11π n = sin 5π = - 3 p 3 32  arccosf - 3 p = a & cos a = - 3 B  BSDUBOj aUBOa = 0 j a = 0 22 C  BSDUBO^ 3 h = a jUBOa = π 5π 3 ja = a= 3 6 π D  BSDUBO -1) = a jUBOa = -1 j a = - 4 E  BSDUBOf - 3 p = a & tan a = - 3π & a =- 3 36 G Y =UBOY'POLTJZPOVOVO5FSTJ ÖRNEK 8 TANIM sinf arctanf - 15 p pJGBEFTJOJOEFôFSJOJCVMVOV[ 8 y 64 4 447a 4 4 448 –Õ O Õ Õ x sin (arctand - 15 n) = sin a 2 2 2 8 arctand - 15 n = a & tan a = - 15 88 a ! d - π , 0 nPMVS 2 - 15 sin a = 17k 17 15k a 8k :VLBSŽEBHSBGJóJOJOCJSLŽTNŽWFSJMFOG Y =UBOY ÖRNEK 9 HSBGJóJOEFHËSÐMEÐóÐHJCJd - π , π nBSBMŽóŽO- tanf arcsin 3 + 3π pJGBEFTJOJOEFôFSJOJCVMVOV[ 22 52 EBGPOLTJZPO–WFËSUFOEJS  Gd - π , π n $ R 6 447a 448 tan (arcsin 3 + 3π ) = tand 3π + a n = - cot a 22 52 2  G Y =UBOYPMBSBLUBOŽNMBOEŽóŽOEB  G-3$ d - π , π n 33 arcsin = a & sin a = 22  G- ( x ) =BSDUBOY 55  GPOLTJZPOVOB UBOKBOU GPOLTJZPOVOVO UFST 4 -DPUa = - PMVS GPOLTJZPOVEFOJSZ=BSDUBOYl x =UBOZPMVS 3 5k 3k a 4k 5π πππ  15 4  7. B C  D  - E  - 8. -  - 6 346 17 3

11. SINIF 1. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 10 ÖRNEK 11 sinf arctanf 2 p + 3π p \"öBôŽEBLJJGBEFMFSJOFEFôFSMFSJOJCVMVOV[ 32 a) BSDDPU_  i C BSDDPU  JGBEFTJOJOEFôFSJOJCVMVOV[ A 2 D BSDDPUf -  p E BSDDPU - arctan = a  3 13 2 π jUBOa = 3&a= 23 a) arc cot^ 3 h = a & c ota = 6 a sind 3π + a n = - cos a 2 π C BSDDPU  = a jDPUa = 0 j a = B3C 2 D arc cotf - 3 p = a & cot a = - 3 2π j a= 2 23 E  arc cot^ - 1 h = a & cot x = - 1 & a = 3π 4 G Y =DPUY'POLTJZPOVOVO5FSTJ ÖRNEK 12 TANIM arccotf cotd - π n p 5 y JGBEFTJOJOEFôFSJOJCVMVOV[ mÕ O Õ x arc cotd cotd - π n n = a 5 cot a = cotd - π n 5 4π BSDDPUY GPOLTJZPOVOVO UBOŽNŽOEBO EPMBZŽ a = 5 PMVS :VLBSŽEBHSBGJóJOJOCJSLŽTNŽWFSJMFO ÖRNEK 13  G Y  = DPUY HSBGJóJOEF HËSÐMEÐóÐ HJCJ   Õ  TJO BSDUBO+BSDDPU BSBMŽóŽOEBGPOLTJZPO–WFËSUFOEJS JGBEFTJOJOEFôFSJOJCVMVOV[  G  Õ Z3 BSDUBO= a BSDDPU= b  G Y =DPUYPMBSBLUBOŽNMBOEŽóŽOEB UBOa =  DPUb = 4  G-3-  Õ  G-( x ) =BSDDPUYGPOLTJZPOVOBDPUYGPOLTJZP- π UBOa =DPUb j a + b = PMVS OVOVOUFSTGPOLTJZPOVEFOJS 2  Z=BSDDPUYl x =DPUZPMVS π sin = 1EŽS 2 -3  π π 2π 3π 4π 10. 11. a) C  D  E  12. 13. 1 62 3 4 5 13

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 1. MODÜL 11. SINIF ÖRNEK 14 ÖRNEK 18  BSDDPU Y- -BSDUBO Y+ =  TJO BSDDPTY JGBEFTJOJOEFôFSJOJYDJOTJOEFOCVMVOV[ PMEVôVOB HÌSF  EFOLMFNJ TBôMBZBO Y HFSÀFL TBZŽTŽ- OŽCVMVOV[ 6 447a 448 sin (arccos 2x) = sin a BSDDPU Y- 1) =BSDUBO Y+ 2) BSDDPU Y- 1) = a jDPUa = x - 1 DPTa = 2x WFUBO Y+ 2) = a jUBOa = x + 2 1 mæY2 2 a sin a = 1 - 4x 2x UBOa DPUa = 1 (x - 1) (x + 2 ) = 1 13 - 1  x = - 13 - 1 x2 + x - 3 = 0 j x = 2 22 1 5BOŽNLÑNFTJOFEFOJZMF 13 - 1 PMVS 2 ÖRNEK 15  BSDDPTY=BSDTJOY PMEVôVOBHÌSF YEFôFSJOJCVMVOV[ BSDDPTY= a jDPTa = x BSDTJOY= a jTJOa = 2x ÖRNEK 19 TJO2a +DPT2a = 1 ôFLJMEFLJ¿PDVLMBSLVMBLUBOLVMBóBPZVOVPZOBNBLUBEŽS 4x2 + x2 = 1  = 1 &x= 1 WFZB x = - 1 x 55 5 1 x = PMVS 5 ÖRNEK 16 1. çocuk 2. çocuk 3. çocuk 4. çocuk  G Y =BSDDPU Y- 0ZVOEB  ¿PDVL CJS HFS¿FL TBZŽZŽ  ¿PDVóB TËZMÐZPS PMEVôVOBHÌSF G-1 Y GPOLTJZPOVOVCVMVOV[ ¿PDVLCVHFS¿FLTBZŽOŽOBSDUBOKBOUŽOŽCVMVQ ¿PDV- óB   ¿PDVL CV EFóFSJO TJOÐTÐOÐ CVMVQ   ¿PDVóB   y =BSDDPU Y- 1) ¿PDVLCVEFóFSJOBSDDPTJOÐTÐOÐCVMVQTPOVDVTËZMÐZPS DPUZ= 2x - 1 ÀPDVLHFSÀFLTBZŽPMBSBL 3 EFôFSJOJTFÀFSTF ÀPDVôVOTÌZMFEJôJEFôFSOFPMVS cot y + 1 = x & –1 ^ x h = cot x + 1 f 22 ÖRNEK 17 π tanf arcsin 1 + 2 arcsin 3 p JGBEFTJOJOEFôFSJOJCVMVOV[ 6 4 4473 4 448 2 Arccos(1s4in4(4a4r2cta4n4433)) 3 2 3 7π 3 3 3π 6 3 Arc cos = a j cos a = j a= tan (1a44rc2sπin413 + 2 arcsin ) j tand n= 2 26 1 4 42π 424 3 2 3 13 - 1 1 cot x + 1  3 2 π 14.   17.  18. 1 - 4x 6 2 5 2 3

TEST - 21 5FST5SJHPOPNFUSJL'POLTJZPOMBS 1. \"öBôŽEBLJMFSEFOIBOHJTJ ZBOMŽöUŽS 4. f^ x h = arccosf 1– 2x p A) arcsinf 1 p = r B) arccosf 2 p = r 5 26 24  GPOLTJZPOVOVOUBOŽNLÑNFTJBöBôŽEBLJMFSEFO IBOHJTJEJS C) arctan ( 3) = r D) arcsin (- 1) = 3r A) [ - > # <- > $ <- > 3 2 E) arccosf - 1 p = 2r % <m > & <- > 23 2. \"öBôŽEBLJMFSEFOLBÀUBOFTJEPôSVEVS    G Y =BSDDPU Y+   * cosf arccos 3 p = 3 PMEVôVOBHÌSF G-1 Y GPOLTJZPOVBöBôŽEBLJMFS- 44 EFOIBOHJTJEJS A) G-( x ) = -+DPUY  ** arcsinc sinc - r m m = - r B) G-( x ) =+DPUY 44 C) f–1^ x h = 5 cot x  *** arccos c cosc - r m m = r 3 44 D) f–1^ x h = - 3 + cot x  *7 arccosf sinc - r m p = 5r 5 36 E) f–1^ x h = 3 + cot x  7 arcsinf tan 3r p = r 5 42 \"  #  $  %  &  3. arcsin 4 + arccot 4  tanf 3π + arcsin 8 p 53 2 17 EFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS  JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS A) r B) r C) r D) r E) r 15 8 C) - 1    5 A) - B) - 2 8 15 8 15 D) E) 15 8 1. D 2. B 3. \" 70 4. & D \"

5FST5SJHPOPNFUSJL'POLTJZPOMBS TEST - 22 1. arcsinf cosf arctan 3 p p 4. arctan_ - 3 i + arccosf - 3 p 3 2 JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) π B) π C) π D) π E) π π π C) π  % Õ &  5π 2 3 4 6 8 A) B) 22 6 3  sinf arctan - 3 pp 3 + arccotf 3 2. BSDUBO 1 =YPMEVôVOBHÌSF  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 2 +UBOY DPTY A) - #  C) 1 4  JGBEFTJOJOEFôFSJLBÀUŽS D) 1  2 &  5 $  1 3 A) #  2 D) E) 2 2  f_ x i = arcsinf 3 - 2x p 4  GPOLTJZPOVOVOFOHFOJöUBOŽNBSBMŽôŽBöBôŽEB- LJMFSEFOIBOHJTJEJS 3.  BSDTJOZ=BSDDPTY A) > 1 , 7 H B) >- 3 , 7 H 22 22  PMEVôVOBHÌSF  x2 + y2LBÀUŽS 1 3 $  %  3  &  C) >- 1 , 7 H D) > 3 , 7 H A) B) 2 22 22 2 2 E) >- 3 , 5 H 22 1. B 2. \" 3. $ 71 4. $ B $

KARMA TEST - 1 Trigonometri 1. x + N-O Z = n - 4. ²MÀÑTÑ - 59π SBEZBOPMBOBÀŽOŽOFTBTÌMÀÑTÑ  EFOLMFNJCJSJNÀFNCFSCFMJSUUJôJOFHÌSF NO 5 LBÀUŽS LBÀEFSFDFEJS \"  #  $  %  &  \"  #  $  %  &  2. ôFLJMEFLJ\"OPLUBTŽCJSJN¿FNCFSÐ[FSJOEFEJS  y y A 1 a 1 x D CO x A B –1 O –1  \"OPLUBTŽOŽOZFLTFOJOFV[BLMŽôŽ 1 CJSJNPM- ôFLJMEFLJCJSJN¿FNCFSEF[AC] m [BD], 2 | | | |% EVôVOB HÌSF  Y FLTFOJOF PMBO V[BLMŽôŽ LBÀ CJ- m ( BAC ) SJNEJS = a WF OC = CD EJS :VLBSŽEBLJWFSJMFSFHÌSF UBOaEFôFSJLBÀUŽS 3 B) 1  D)   &  A) 1 B) 1  $  %  5 E) 7 A) 2 C) 7 5 2  3. a =™hhh b =™hhh  a =™hhhPMNBLÐ[FSF  PMEVôVOBHÌSF a + bUPQMBNŽBöBôŽEBLJMFSEFO 4a EFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS IBOHJTJEJS 3 \" ™hhh # ™hhh A) 7™hhh # ™hhh $ ™hhh % ™hhh $ ™hhh % ™hhh & ™hhh & ™hhh 1. D 2. \" 3. $ 72 4. D & B

Trigonometri KARMA TEST - 2 1.  DPTY+UBOYTJOY-TFDY tan π cot 5π  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 4. 4+ 4 \" TFDY # DPTY $  1 + cot2 π 1 + tan2 π 33 % TJOY & DPTFDY  JöMFNJOJOTPOVDVLBÀUŽS 1 B)  $  1 D)   &  A) 3 2   DPTx +TJOYDPTx +TJOx  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 2. π < a < 3π PMNBLÑ[FSF A) - # - $  %  &  2 1 + cos a - 1 - cos a 1 - cos a 1 + cos a  JGBEFTJOJO FöJUJ BöBôŽEBLJMFSEFO IBOHJTJ PMBCJ- MJS A) -DPUa # mUBOa $ UBOa %  &   ôFLJMEFCJSJN¿FNCFSWFSJMNJõUJS y C y=1 D x A aB O 3. 5BOŽNMŽPMEVôVBSBMŽLUB  \" B1 B2 # C1 C2 $ D1 D2 WF% E1 E2 PM- NBLÑ[FSF  f tan x - sin x p.f cos2x + sin2x + cos x p C +D  E - a) sin2x tan x  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS sin3 a cos3 a sin2 a A) B) C) \" DPTY # TFDY $  cos a sin a cos a D) - & TJOY cos2 a E) cos a D) sin2 a sin a 1. $ 2. \" 3. $ 73 4. B & B

KARMA TEST - 3 Trigonometri 1. A = 13 - 2 sin x 4. GGPOLTJZPOVOVOQFSJZPEVWFHGPOLTJZPOVOVOQF- 3 SJZPEVUÐS  JGBEFTJOJOBMBCJMFDFôJUBNTBZŽEFôFSMFSJOJOUPQ-  G  =WFH  =PMEVôVOBHÌSF    GPH   + HPG    MBNŽLBÀUŽS  UPQMBNŽOŽOTPOVDVLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  2. A  DF C 7 7 a C BD | | | |\"#$JLJ[LFOBSпHFO  AB = AC =CS A EB | | | |BD = 15 - 2 CS  DC = 15 + 2 CSWF | | | |\"#$%LBSFTJOJOCJSLFOBSŽCS  DF = EB , % m ( ADC ) = aEŽS m ( B%EF ) = aWFUBOa = -UÐS  :VLBSŽEBLJWFSJMFSFHÌSF DPTaEFôFSJLBÀUŽS | |:VLBSŽEBLJWFSJMFSFHÌSF  \"& LBÀCJSJNEJS A) 1 B) 1 2 2 \"  #  $  %  &  2 3 C) D) E) 6 3 3. D C  y F a k O x –k Õ AB E | | | |ôFLJMEF\"#$%LBSF  FB = CF WF  ôFLJMEFLJHSBGJLG Y =LDPTNYGPOLTJZPOVOBBJUUJS %  #VOBHÌSF GGPOLTJZPOVOVOQFSJZPEVLBÀUŽS m ( EDC ) = aEŽS :VLBSŽEBLJWFSJMFSFHÌSF UBOaEFôFSJLBÀUŽS A) 9π B) 8π C) 4π D) 9π  & Õ 8 9 9 4 A) 3 B) 4 C) 3 D) 4 E) 2 4 3 5 5 5 1. & 2. $ 3. $ 74 4. & $ B

Trigonometri KARMA TEST - 4 1. A \"#$EJLпHFO 4. A \"#$пHFO [AB] m [BC] 8 | |AB =CS 5 H [BH] m [AC] | |x BC =CS | |BH =YCS a % B m ( ABC ) = a % C m ( CBH ) a = a | |a <šPMEVôVOBHÌSF  \"$ =YJOLBÀGBSLMŽ B C UBNTBZŽEFôFSJWBSEŽS | | :VLBSŽEBLJWFSJMFSFHÌSF  \"$ OJOaWFYUÑSÑO- \"  #  $  %  &  EFOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \" YTJOaDPTa # YTFDaDPTFDa x x C) D) cosec a sec a & YTFDaDPTa 2. H G \"#$%&'()LÐQ  \"#$пHFOJOJOB¿ŽMBSŽBSBTŽOEB E a | NF | = | BF | sin2 WA - sin2 WB = sin2 XC D F%  CBóŽOUŽTŽWBSEŽS m ( AGN ) = a % = 27°PMEVôVOBHÌSF m ( % ) LBÀEF- CN m ( BCA ) ABC SFDFEJS AB \"  #  $  %  &   :VLBSŽEBLJWFSJMFSFHÌSF DPUaEFôFSJLBÀUŽS 6 6 6 D)   &  A) B) C)  3 2 5 3. BSDUBO_ -  i BSDTJOf 1 p BSDDPTf - 3   G Y =BSDDPTf 2x - 1 p p 5 22 GPOLTJZPOVOVO FO HFOJö UBOŽN LÑNFTJOEF LBÀ UBOFUBNTBZŽEFôFSJWBSEŽS JöMFNJOJOTPOVDVLBÀUŽS π B) 2π  $ Õ %  4π 5π \"  #  $  %  &  A) 3 E) 3 33 1. B 2. B 3. B  4. \" D $

KARMA TEST - 5 Trigonometri 1. y 4. y 2 1 O Õ OÕ x Õ Õ Õ 3 Õ Õ Õ 3 63 x 4 24 –3 –1 –2  õFLJMEFLJHSBGJLBöBôŽEBLJGPOLTJZPOMBSEBOIBO-  õFLJMEFLJ HSBGJL Z = BDPTCY + D GPOLTJZPOVOB BJUPMEVôVOBHÌSF B+C+DLBÀPMBCJMJS HJTJOFBJUPMBCJMJS \" m #  $  %  &  A) - 2 cosc x - π m B) 2 sinc x - π m 6 6 C) 2 cosc x - π m D) 2 sinc x - π m 6 3 E) –2 sinc x - π m 3 2. y   BSDDPT 1 +BSDDPT 2 3 55 JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS OÕ A) π B) π C) π D) π  & Õ 3 6 2 4 x Õ –1  õFLJMEFLJHSBGJLBöBôŽEBLJGPOLTJZPOMBSEBOIBO- HJTJOFBJUPMBCJMJS \" Z=+TJOY # Z=DPTY+ $ Z=TJOY+ % Z=DPTY+ & Z=DPTYm  Õ< a < b < 3π 3. cos^ 2 arctan 3 h 2  PMEVôVOBHÌSF BöBôŽEBLJMFSEFOIBOHJTJLFTJO-  JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS MJLMFEPôSVEVS -3 B) - 1 C) -  D) 1 3 A) 2 E) \" TJOa <TJOb # DPUa <TFDb 2 $ TJOa <DPTa % UBOa <UBOb & DPUa <DPUb 22  1. D 2. D 3. B 4. $ $ D

Trigonometri YAZILI SORULARI 1. 5BOŽNMŽPMEVôVBSBMŽLUB 4. 1 + 1 = 8 sin3x - cos3x 1 - cos x 1 + cos x tan x. cot x + sin x. cos x PMEVôVOBHÌSF UBOYJOQP[JUJGEFôFSJLBÀUŽS JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ 1 1 1 + cos x + 1 - cos x =8 += 1 - cos x 1 + cos x ^ 1 + cos x h^ 1 - cos x h ^ sin x - cos x h.^ sin 2 x + sin x. cos x + 2 h ^ 1 + cos x h ^ 1 - cos x h cos x 1ta4n4x2. c4o4t x3 + sin x. cos x 2 = =8 1 1 - cosx ^ sin x - cos x h.a 1 + sin x . cos x k = sin x - cos x 1 a 1 + sin x . cos x k 2 = 8 & 2 = sin2x & sin x = ± 1 114-4c2os442x3 8 2 sin 2 x 4 2. AöBôŽEB WFSJMFO BÀŽMBSŽO FTBT ÌMÀÑMFSJOJ CVMV- A 13 tan x = = OV[ 33 a) -™ C  163π 2k k D  - 72π 7 x B 5 E ™ C 3k a) –3060° 360 b) 163 14 Ö –3240 –9 14 11 7 180° 23 14 9 c) –72 10 d) 2870 360  \"õBóŽEB0WF0NFSLF[MJEŽõUBOUFóFU¿FNCFSMF- –80 –8 2520 7 350° SJOPSUBLUFóFUJWFSJMNJõUJS 8 A 43 B Ö 3 53 3 5 33 a O2 O1 3. a =™hhh | | | |\"01 = 4 BO2 =4 3  CS WF m ( % ) = a AO1O2 b =™hhh  PMNBLÑ[FSF  a + b JöMFNJOJOTPOVDVOVCVMV- PMEVôVOBHÌSF TJOaEFôFSJLBÀUŽS 23 43 4 OV[ sin a = = EJS 53 5 44° 112' 34' ' a = & 22° 56' 17' ' 22 2 18° 45' 174' ' b = & 6° 15' 58' ' 33 3 22° 56' 17'' + 6° 15' 58'' 29° 12' 15'' 9π 8π 77 3 4 1. TJOYmDPTY 2. B šC  D  E š 4.  75 3 5 3. šhhh

YAZILI SORULARI Trigonometri  #JS\"#$ÑÀHFOJOEF  π < a < b < 3π PMNBLÑ[FSF cos2_ WB + XC i + sin2WA 2 tan_ WA + XC i. cot WB  *TJOb <TJOa **TJOa <DPTb  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS ***UBOa <UBOb *7DPUa <DPUb 7UBOa <DPTFDb \"#$ÑÀHFOPMEVôVOEBO  JGBEFMFSJOEFOIBOHJMFSJLFTJOMJLMFEPôSVEVS DPT #+$ =DPT š-\" = -DPT\" UBO \"+$ =UBO š- B) = -UBO#EJS y cota 2 64 4 4471 4 4 448 2 2 cotb ^ - cos A h2 + sin A cos + sin A A cosa = = - 1EJS cosb ^ - tan B h. cot B 1-4ta44n 2B. c4o4t4B3 sinsainb tanb –1 tana x 7. f_ x i = 3 sind x + π n *%PôSV **#JMFNFZJ[ ***%PôSV *7:BOMŽö  7UBOaWFDPTFDbPMEVôVJÀJOZBOMŽöUŽS 6 10. ôFLJMEFLJ \" OPLUBTŽOEB CVMVOBO LVSCBóB [ŽQMBZB-  GPOLTJZPOVOVOHSBGJôJOJ[ Ö]BSBMŽôŽOEBÀJ[J- SBL # OPLUBTŽOEBLJ CËDFóJ ZBLBMBZŽQ $ OPLUBTŽOB OJ[ EÐõNFLUFEJS y B 3 3 2 Ö 3x O Ö Ö Ö Ö 36 6 –3 8. ,FOBSV[VOMVLMBSŽBCS CCSWFDCSPMBOCJSÑÀ- AC HFOJOLFOBSMBSŽBSBTŽOEB  #ÌDFôJO ZFSEFO ZÑLTFLMJôJ  NFUSF  LVSCBôB- OŽOBMEŽôŽZPMNFUSFPMEVôVOBHÌSF m ( A%BC ) (a -C  B+C -D B-D = LBÀUŽS (sin2a = 2sinacosa)  CBôŽOUŽTŽPMEVôVOBHÌSF  m (XA) + m (XC)LBÀEF- B TJOaTJOaDPTa SFDFEJS aa 3 4 (a -C  B+C -D B-D = 0 TJOa = 2· · a2-C2 -BD+D2 = 0 5 5 55 C2 = a2+D2 -BDPMVS \"#$ÑÀHFOJOEFLPTJOÑTUFPSFNJOJZB[BSTBL 4 24 C2= a2+D2-BDDPT WB EJS TJOa = 25 a2 +D2 -BD= a2 +D2 -BDDPT XB A3 3C m ( A%BC ) = arcsind 24 n cos XB = 1 & m (XB) = 60° 25 2 m (XA) + m (XC) = 120°EJS m 8. 120° 78 * *** 10. arcsind 24 n 25

Trigonometri <(1m1(6m/6258/$5 1. ôFLJMEFCJSCJSJOFQBSBMFMLBMEŽSŽNMBSEBCVMVOBOCBO- 3. ôFLJMEFLJ.OPLUBTŽOEBOGŽSMBUŽMBOCJSQBS¿BDŽLTŽSB- LBNBUJL  NBSLFU WF :BóŽ[hŽO FWJ HËTUFSJMNJõUJS :B- TŽZMB WFFOHFMMFSJOF¿BSQŽQEPóSVTBMZPMMBS óŽ[NBSLFUFHJEJQCJSõFZMFSBMNBLJTUJZPS\"NBQB- J[MFZFSFLUFLSBS.OPLUBTŽOBHFMNFLUFEJS SBTŽOŽOPMNBEŽóŽOŽGBSLFEJZPS 1. 2. #BOLBNBUJL M a 3. Market :BóŽ[ŽOFWJ .BSLFU 1BS¿BDŽóŽOFOHFMJMFFOHFMBSBTŽOEBBMEŽóŽZPM  FOHFMJMF.OPLUBTŽBSBTŽOEBBMEŽóŽZPMBQBSBMFM- :BóŽ[hŽO NBSLFUUFO ËODF CBOLBNBUJóF HJEJQ  QBSB EJS ¿FLJQ EBIB TPOSB NBSLFUF HJUNFTJ HFSFLJZPS :B- óŽ[hŽOFWJJMFCBOLBNBUJLBSBTŽOEBLJFOLŽTBV[BLMŽL  4BOJZFEF  LN ZPM BMBO CV QBSÀBDŽL . OPLUB- NFUSF CBOLBNBUJLJMFNBSLFUBSBTŽFOLŽTBV[BL- TŽOEBO FOHFMFTOEF FOHFMFTOEF  MŽL  NFUSF  :BóŽ[hŽO FWJ JMF NBSLFU BSBTŽ FO LŽTB FOHFMFTOEFWFUFLSBS.OPLUBTŽOBTOEF V[BLMŽLNEJS VMBöUŽôŽOBHÌSF DPTaLBÀUŽS  :BôŽ[FOLŽTBZPMMBSŽLVMMBOBSBLÌODFCBOLBNB- A) 1 3 C) 3 D) 4 E) 5 2 B) 5 5 6 UJôF PSEBO NBSLFUUF  NBSLFUUFO EF FWJOF HFSJ 2 HFMEJôJOEF J[MFEJôJ SPUBMBSŽ CJSMFöUJSFSFL CJS ÑÀ- HFOPMVöUVSVSTBLCVÑÀHFOJOBMBOŽLBÀN2PMVS \"  # 10 2 C) 10 3 %  &  2. ôFLJMEFLJ CJMBSEP NBTBTŽOEB UPQMBN  EFMJL CVMVO- 4. ôFLJMEFLJHJCJCJSBUŽDŽEPóSVTBMCJSõFLJMEFZFSMFõUJ- NBLUBEŽS%JLEËSUHFOõFLMJOEFLJNBTBJLJFõLBSFOJO SJMNJõPMBO\" #WF$IFEFGMFSJOFBUŽõZBQBDBLUŽS CJSMFõUJSJMNFTJZMF PMVõUVSVMNVõUVS %FMJLMFS EJLEËSU- HFO WF LBSFOJO LËõFMFSJOF LPONVõUVS  OVNBSBMŽ EFMJóJOËOÐOEFOUPQBWVSBOPZVODVLBSõŽCBOEŽOPS- UBTŽOB UPQV ¿BSQUŽSŽQ  OVNBSBMŽ EFMJóF UPQV TPLV- ZPS5PQEPóSVTBMIBSFLFUFUNFLUFEJS b 123 2a a ab A BC 6 a 4 \"IFEFGJOFZBUBZMB™ #IFEFGJOFa $IFEFGJOF 5 EFaB¿ŽZBQBDBLõFLJMEFBUŽõŽOŽZBQŽZPS õFLJMEFWFSJMFOMFSFHÌSF DPUa UBObEFôFSJLBÀ- DPTa PMEVôVOBHÌSF DPUaLBÀUŽS UŽS (b > a) A) 1  #  $  5  %  &  7 2 2 2 \"  #  $  %  &  1. $ 2. &  3. $ 4. B

<(1m1(6m/6258/$5 Trigonometri 1. \"õBóŽEBLJõFLJMEFHÐOÐOJMLTBBUMFSJOEFLJBQBSUNB- 3. \"õBóŽEBCJSPEBOŽOUBWBOŽOBõFLJMEFLJHJCJBTŽMBDBL OŽOHËMHFTJJMFJMFSMFZFOTBBUMFSEFLJHËMHFTJHËTUFSJM- MBNCBMBSHËTUFSJMNJõUJS NJõUJS A 53° 37° B 53° 37° 53° 37° ab N 2.gölgenin ,BCMPMBSBõBóŽEBLJHJCJLVMMBOŽMBDBLUŽS boyu | |r AB =DNEJS 1.gölgenin boyu r ,BCMPMBSJLJ¿FõJUUJS (ÐOFõZÐLTFMEJL¿FBQBSUNBOŽOHËMHFTJOJOCPZVLŽ- r :BUBZMB™MJLB¿ŽZBQBOLBCMPMBSLFOEJJ¿JOEF TBMNŽõUŽS\"QBSUNBOZBUBZMB™MJLB¿ŽPMVõUVSBDBL õFLJMEFEÐ[CJS[FNJOFZBQŽMNŽõUŽS FõJUV[VOMVLUBWFNBWJSFOLUFEJS r :BUBZB ™ MJL B¿Ž ZBQBO LBCMPMBS LFOEJ J¿JOEF  HÌMHFOJO CPZV   HÌMHFOJO CPZVOVO ÑÀ LB- FõJUV[VOMVLUBWFTBSŽSFOLUFEJS UŽ BQBSUNBOŽOCPZVNPMEVôVOBHÌSF  sin a r ,BCMPV[VOMVLMBSŽIFTBQMBOŽSLFO sin b  TJO™=DPT™=   DPT™=TJO™=  PSBOŽLBÀUŽS  BMŽOBDBLUŽS A) 2  #  $  3 5 E) 7  #VOBHÌSF LVMMBOŽMBOTBSŽSFOLMJLBCMPMBSNBWJ 3 2 D) 4 SFOLMJLBCMPMBSEBOUPQMBNEBLBÀDNGB[MBEŽS \"  #  $  %  &  3 4. \"õBóŽEBLJõFLJMEFHËTUFSJV¿VõVZBQBOEËSUV¿BóŽO 2. 4BBUUFLJIŽ[MBSŽLNWFLNPMBOJLJCJTJLMFUMJBSB- PMVõUVSEVóVпHFOTFMCËMHFMFSHËSÐMNFLUFEJS TŽOEBLJB¿Ž™PMBDBLõFLJMEFBZOŽOPLUBEBOBZOŽ BOEBEPóSVTBMCJSZPMJ[MFZFSFLJMFSMJZPS A 60° BC D  TBBUTPOSBBSBMBSŽOEBLJV[BLMŽLYLNPMVZPS%B- && IBTPOSBIŽ[MŽPMBO IŽ[ŽOŽ 1 ünFEÐõÐSÐZPS EJóF- #VпHFOTFMCËMHFMFSEFOA^ ABC h = 3A^ ADC hEJS 4 SJ BZOŽ IŽ[EB EFWBN FEFSFL  TBBU EBIB JMFSMJZPS | | | |AB =LN  AC =LN m(B%AD) = 30°, WFBSBMBSŽOEBLJV[BLMŽLZLNPMVZPS % = a PMEVôVOB HÌSF  TJOa EFôFSJ LBÀ-  #VOBHÌSF Z-YLBÀLNEJS m ( CAD ) \"  #  $  %  &  UŽS A) 1 B) 1 C) 1 D) 3 E)  2 2 3 2 1. $ 2. $ 80 3. & 4. B

CEVAP ANAHTARI 75m*2120(75m r Sayfa 34, Örnek 30 e) y 5 a) cosx b) –sinx c) cos2x d) sin3x mÕ –2Õ O Õ e) cot4x f) –tan5x g) –sina h) –cos2a –1 Õ x j) tan3a k) –cot4i n) –tan5x o) cosx l) - sin x m) - cos i 2 2 p) cot2i r) –tan2i r Sayfa 60, Örnek 10 a) y f) y 2 mÕ 1 – Õ x x 2 O Õ Õ Õ mÕ O Õ Õ 22 –1 mÕ – Õ 2 –2 r Sayfa 78, Soru 7 b) y 1 y – Õ Õ 4 4 Õx 3 – Õ – Õ OÕ Õ 3 4 2 4 2 2 Õ –1 3 O Õ Õ Õ Õ x 36 6 –3 c) y 2 mÕ Õ OÕ Õ Õ x 2 2 2 – Õ – 2 d) y – 3Õ 1 Õ x 2 OÕ –Õ – Õ 2 Õ 3Õ 2 2 –1


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook