www.aydinyayinlari.com.tr                                                                  ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*,    ÖRNEK 2                 y = x3          (SBGJLUFZ= x3 ile           ÖRNEK 4                            y = x2        y = x2FôSJMFSJBSBTO-                    y                                                         y = x2 -QBSBCPMÐWFZ= x + 1                                          EBLBMBOCÌMHFOJOBMB-        EPôSVTVJMFTOSMCÌMHFOJOBMBOLBÀCS2EJS                                            OOCVMVOV[                                  x                                                   y y =x2 – 1                           x2 - 1= x + 1                                                                                                 y=x+1                    x2 - x - 2 = 0                                                                                                                          (x - 2) (x + 1) = 0                                                                           –1 O 1                               x         x =  Y= -1                                                                                    –1  x2 = x3 j x =  Y= 1       1 34                       1  # ^ x2 - x3 h dx = x       x                          -           11 1                       34         =-=  0                             0 3 4 12                                      22                                                                                   a ^ x + 1 h - ^ x2 - 1 h k dx =                          2                                                                        # #A =                                                    ^  -       +  x  +  2  h  dx                                                                                                                                        x                                                                             –1 –1                                                                                  32                    2                                                                          =  -x x                             =d      -8    +2+4n                                                                                  + + 2x                                                                           32                         –1 3                                                                          -d 1 + 1 - 2 n = 9                                                                           32                         2    ÖRNEK 3                 y = 1 x2 + 1                                  ÖRNEK 5                                2       y = x2 - 1 ve                                                          y = x2 ve y = 2x - x2                                                                        FôSJMFSJBSBTOEBLBMBOCÌMH FOJOBMBOLBÀCS2EJS  FôSJMFSJJMFTOSMCÌMHFOJOBMBOLBÀCJSJNLBSFEJS       y y = x2 +1                    x  2                      2                                    2     +  1  =    2  -  1                                                            x2 = 2x - x2                                                     x                                                                    j 2x2 =Y                                                                                                                  x                                          x  2                                     y                                                                              O1                                        x =  Y= 1     O                    x         2=            y =x2 – 1                                          2                                      x2 = 4                                      x=±2              22                                                                1    #A = f f x + 1 p - ^ x2 - 1 h p dx                                    #A =     ^  2x  -    2  h  -  x  2  dx                  2         –2                                                                                x                                                                             0       22                         32  #A = f - x + 2 p dx = - x + 2x                                              11                                                                                                                       2                  21                2               6 –2                                    #A =     ^  2x  -      2   h  dx    =    2  -       3     =1- =       –2                                                                                    2x                  x          x                                                                                                                       3 33                                                                           0                                                                                                                               0  =d -8 +4 n-d 8 -4 n        66       - 16 32 16  = +8= =          6 63                               1          16                          49                                       9                1                        2.          3.                                                                   4.               5.                          12 3                                                                                 23
TEST - 22                                                      ÷LJ'POLTJZPOVO(SBGJLMFSJ\"SBTOEB,BMBO#ÌMHFOJO\"MBO    1. y = x2 + 1 ve y = 9 - x2                                        5. y     QBSBCPMMFSJ BSBTOEB LBMBO CÌMHFOJO BMBO LBÀ                                                        g(x) = x2 – 3x        br2EJS                                                                                                                                   x  A ) 32  #   36  C ) 16  % ) 64 E ) 32                                                                       f(x) = –x2 + 6x        35                33                                                                           Denklemleri                                                                               f ( x ) = -x2 + 6x ve g(x) = x2 - 3x                                                                             PMBOFôSJMFSJOTO SMBE ôCÌMHFOJOBMBOLBÀCS2                                                                           EJS                                                                       \"    #   257 C ) 243 % ) 567 E ) 600                                                                                     8 887    2. Denklemi y = x2 -YPMBOFôSJJMFEFOLMFNJ                  6. 3x + y = 3          y = 4 - x2PMBOFôSJBSBTOEBLBMBOCÌMHFOJOala-             EPôSVTVWFZ= x2 - 4x +FôSJTJJMFTOSMCÌM-        OLBÀCS2EJS                                                     HFOJOBMBOLBÀCS2EJS          \"   #   $   %   &                                                                         A ) 17   #   8   C ) 5  %                    &   1                                                                           6       3        2                                6    3. y = x3                                                          7. y = x2 ve y2 = 4x                     2                                                                  4   FôSJTJ JMF Z = 4x dPôSVTV BSBTOEB LBMBO CÌM               FôSJMFSJBSBTOEBLBMBOBMBOLBÀCS2EJS          genin BMBOLBÀCS2EJS    \"    #   $   %   &                                                                         A) 8    #   16  C ) 25  %   32                      40                                                                          3         3                                   E)                                                                                         3 33    4. y                                                                                                       y y = ax2                                             1                         8. y = x            –1                                          x                                                   Ox                     O                                              1                    –2    õFLJMEFLJUBSBMCÌMH FOJOBMBOLBÀCS2EJS                       (SBGJLUFLJUBSBMBMBO 1 br2 ise a LBÀUS                                                                                                          24    A ) 4  #   5  $                     %   7          8      A) 1    #     $   3  %                    &   5       33                                          3     E)               2                 2                                2                                                                3            1. D 2. B 3. D 4. B                                    50           5. C 6. & 7. B 8. D
÷LJ'POLTJZPOVO(SBGJLMFSJ\"SBTOEB,BMBO#ÌMHFOJO\"MBO                                     TEST - 23    1. ôFLJMEFCJS¿JGU¿JOJOEJLпHFOõFLMJOEFLJBSB[JTJWF              4.          y = x2 + a y          UBSBM CËMHF JTF FLJN ZBQUó CËMHFZJ HËTUFSNFLUF-                                    Ox        EJS                                                   y                                                          g(x) = 2x + 8                                                                                           y = 2x                      Ox                                                       #JSJODJCÌMHFEF  Z= x2 +BQBSBCPMÑJMFCVQB-                             f(x) = 4–x2                                                                             SBCPMÑOPSJKJOEFOHFÀFOUFôFUJPMBOZ=YEPô-    #VOBHÌSF  FLJNZBQMBOCÌMHFOJOBMBOLBÀCJ-                             SVTVWFZFLTFOJBSBTOEBLBMBOöFLJMEFLJUBSBM  SJNLBSFEJS                                                                             CÌMHFOJOBMBOOWFSFOJOUFHSBMBöBôEBLJMFSEFO                                                                               IBOHJTJEJS    A ) 74  #   76  C ) 77  %   79 E) 80                                            2                                    1        33                333                                                                             #A ) ^x2 + 2hdx                     ##   ^x2– 1hdx                                                                               00                                                                                       1                                    2                                                                               #C ) ^x2 + x – 1hdx                 #%   ^x2 + xhdx                                                                                    0                                    0    2. y = 4 - x2                                                                                     1     QBSBCPMÑJMFZ= - 2x +EPôSVTVOVOTOSMBE-                                       #E ) ^x – 1h2 dx        ôCÌMHFOJOBMBOLBÀCJSJNLBSFEJS                                                                                                 0                                                                           5. f ( x ) = 4x3    A ) 43  #   32  $    %   26           14                         FôSJTJOJOY=OPLUBTOEBLJUFôFUJ  YFLTFOJWF        33                                E)                                   FôSJ BSBTOEBLJ CÌMHFOJO BMBO LBÀ CJSJN LBSF-                                                                               EJS                             33                                                                               \"        #       $          %   16 E ) 4                                                                                                                        3    3. y                                                                   6. y                         d 16                                                                                    A            A                  4x  –4                               y=16–x2                      O    ôFLJMEFEEPóSVTVWFZ= 16 - x2QBSBCPMÐ                                              O 2x          A ( -    WF	    OPLUBMBSOEBLFTJõJZPSMBS              õFLJMEFG	Y  = x2 - 2x +FôSJTJOJOUFQFOPLUB-   #VOBHÌSF  UBSBMBMBOLBÀCS2EJS                                         T\"PMEVôVOBHÌSF  UBSBMCÌMHFOJOBMBOLBÀCJ-                                                                               SJNLBSFEJS  A ) 74  #   76  C ) 79  %   80 E ) 82        33                3 33                                               \"        #   14  $           %   10 E ) 3                                                                                               3                        3    1. B 2. B 3. D                                                         51 4. & 5. D 6. D
TEST - 24                                          ÷LJ'POLTJZPOVO(SBGJLMFSJ\"SBTOEB,BMBO#ÌMHFOJO\"MBO    1. y                                                                 3. ôFLJMEFLJ HSBGJLUF Z = '	Y   GPOLTJZPOVOVO HSBGJóJ               A1 A2               y = f(x)                                    WFSJMNJõUJS                                   y = g(x)                                                                   y                                         x                                                                                       y = F(x)           O1                  47                                                                                –4         O                x                                                                                                2   5          :VLBSEBLJHSBGJLUFZ= f ( x ) ve y = g ( x ) fonksiyon-       #VOBHÌSF  CPZBMCÌMHFMFSJOBMBOMBSUPQMBNO        MBSOOHSBGJLMFSJWFSJMNJõUJS\"1 ve A2J¿JOEFCVMVO-               WFSFOJOUFHSBMBöBôEBLJMFSEFOIBOHJTJEJS        EVLMBSCËMHFMFSJOBMBOMBSPMNBLÐ[FSF                                                                                        5            7                                                                           A) # F_ x i dx       # _ f_ x i - g_ x i idx = 6 ve                                                                                   –4          1                                                                                      25            7                                                                           #   # F_ x i dx + # F_ x i dx       # _ f_ x i - g_ x i idx = - 8                                                                                   –4 2          4                                                                                     –4 2   PMNBLÑ[FSF  \"1 +\"2LBÀCJSJNLBSFEJS                                                                           C) # F_ x i dx - # F_ x i dx        \"   #   $   %   &                                                                                      25                                                                                       –4                                                                             %   # F_ x idx                                                                                      5                                                                                           25                                                                             E) - # F_ x i dx - # F_ x i dx                                                                                        –4 2                                                                         4. y                                                                                                                     g(x) = x2– 2x    2. y                          f(x) = x2 – 2x + 13                               Ox           g(x) = x2 + 4x + 1                                                                                                      F(x) = –x2+4x–4                                   x                                           :VLBSEBLJõFLJMEF                                                                                 F ( x ) = -x2 + 4x - 4 ve g ( x ) = x2- 2x             O1              3                                                                        GPOLTJZPOMBSOOHSBGJLMFSJWFSJMNJõUJS  :VLBSEBLJHSBGJLUFG	Y  = x2- 2x + 13 ve  g ( x ) = x2 + 4x +GPOLTJZPOMBSOOHSBGJLMFSJWFSJM-             #VOBHÌSF  CPZBMBMBOMBSUPQMBNLBÀCJSJNLB-                                                                             SFEJS  NJõUJS     #VOB HÌSF   CPZBM CÌMHFMFSJO BMBOMBS UPQMBN        LBÀCJSJNLBSFEJS                                                                         \"        #    $   %   &      \"        #             $   %   &                        1. \" 2. C                                      52                    3. C 4. B
÷LJ'POLTJZPOVO(SBGJLMFSJ\"SBTOEB,BMBO#ÌMHFOJO\"MBO                                  TEST - 25    1. ôFLJMEFZ='	Y  QBSBCPMÐOÐOHSBGJóJWFSJMNJõUJS       3. ôFLJMEF Z = '	Y   GPOLTJZPOVOVO HSBGJóJ WFSJMNJõ-                    y                                                    tir.                                                                                            y          10               6                                                                       8           –2       O                       5       x               a                     b                                          y = F(x)                                                                             O6                                 x                                                                                              y = F(x)     #VOBHÌSF  UBSBMCÌMHFMFSJOBMBOMBSUPQMBNLBÀ                         6        CJSJNLBSFEJS                                                                         # F_ x idx = 32  \"             #   16  C) 17  %                &   19                       3        3                         3                  0                                                                    PMEVôVOBHÌSF  UBSBMCÌMHFOJOBMBOLBÀCJSJN-                                                                       LBSFEJS                                                                   \"       #   $   %   &      2. y                                                           4. ôFLJMEFZ='	Y  GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS                                               y = F(x)                  (k ` R+)                    S1 S2                      y = g(x)                         y             F(x) = x2+k                                                     x                                                                           5                   S2          aO b                       c                                            S1                  y=5    :VLBSEBLJõFLJMEFZ= F ( x ) ve y = g ( x ) fonksiyon-                 O                               x  MBSOOHSBGJLMFSJWFSJMNJõUJS41 ve S2J¿JOEFCVMVO-                                   8  EVLMBSCËMHFMFSJOBMBOMBSPMNBLÐ[FSF      cc                                                             S1 ve S2J¿JOEFCVMVOEVLMBSCËMHFMFSJOBMBOMBSPM-    # _ F_ x i - g_ x i idx = 3 # _ g_ x i - F_ x i i dx    ab                                                             NBLÐ[FSF       PMEVôVOBHÌSF   S1 PSBOLBÀUS                                                    8                                S2                                                                 S      =  4S     ve  # F_ x i dx = 34                                                                     1           2                                                                                        0    A) 3           #     C) 5  %                 &          PMEVôVOBHÌSF   41 kaÀCJSJNLBSFEJS       2                       2                                                                   \"       #              $   %   &                              1. & 2. &                          53                             3. D 4. C
·/÷7&34÷5&:&)\";*3-*, 7. MODÜL  ÷/5&(3\"-                                                                                            www.aydinyayinlari.com.tr                                          %0ó364\"-)\"3&,&5130#-&.-&3÷     %Ñ[HÑO%PôSVTBM)BSFLFU                                   %Ñ[HÑO:BWBöMBZBO)BSFLFU        Konum (x)                      &óJN= tana = Dx          Konum (x)                                                              )[	7                                                             Dt                                                                                                                                   7                                     =)[    Dx        a           Dt Zaman (t)                                          0 Zaman (t)                                                            Dt Zaman (t)        )[	7                          Alan = V. Dt                                                                      öWNF	B                                                                                                                                 Dt                                                                                                                                      Zaman (t)    7                                                                                                                   –a                Dt Zaman (t)                                      %Ð[HÐO ZBWBõMBZBO IBSFLFU HSBGJLMFSJOEF FóJN WF      öWNF	B                                                         I[B[BMNBLUBPMVQJWNFTBCJUWFOFHBUJGUJS                                                                          FóJNJ                                                                  FóJNJ                                                                 ,POVNm[BNBO )[m[BNBO öWNFm[BNBO                             Zaman (t)                                    BMBO                                                                  BMBO    %Ð[HÐO EPóSVTBM IBSFLFU HSBGJLMFSJOEF LPOVN–[B-          ÖRNEK 1  NBOHSBGJóJOJOFóJNJBOMLI[  I[–[BNBOHSBGJLMF-  SJOEFJTFFóJNBOMLJWNFZJWFSJS                                 )[	LNTB                                         :BOEBLJ HSBGJLUF CJS BSBDO                                                               120                                                     I[m[BNBO HSBGJóJ WFSJMNJõ-   %Ñ[HÑO)[MBOBO)BSFLFU                                   80                                                     tir.                                                                   0 4 ;BNBO	TB                                          #VOB HÌSF   CV BSBDO                                                                                                                        TBBU JMF  TBBU BSBTOEB-                                     )[	7                                                                             LJLPOVNEFôJöJNJLBÀLN                                                                                                                       EJS        Konum (x)                                    7                            Denklemi y = -10x +ÀLBS                                                                    5                                                                 # ^ - 10x + 120 h dx = 160                                                                 3    0 Zaman (t)                        Dt Zaman (t)                      öWNF	B                                                                 ÖRNEK 2           a                                                          Konum (m)                                                         :BOEBLJ õFLJMEF CJS IB-                        Dt Zaman (t)                                                 x = 40 + 3t2                                                                                                                                      SFLFUMJOJOLPOVNm[BNBO  %Ð[HÐOI[MBOBOIBSFLFUHSBGJLMFSJOEFFóJNWFI[           40  BSUNBLUBPMVQJWNFTBCJUWFQP[JUJGUJS                       0 ;BNBO	TO                                                            HSBGJóJWFSJMNJõUJS                                                                                                                                      #V IBSFLFUMJOJO [BNBOB                                                                                                                                        CBóM LPOVN EFOLMFNJ                                                                                                                                      x = 40 + 3t2 PMEVóVOB                                                                                                                                        HËSF  IBSFLFUMJOJO                                                                 a)  TBOJZFEFLJBOMLI[LBÀNTOEJS                                                               b) TBOJZFEFLJBOMLJWNFTJLBÀNTO2 EJS                                                                 a) x' = 6t =W  U= 2 jNTO                                                               b) v' = 6 j a =NTO2                                                                 54 1. 160 2. a) 12 b) 6
÷OUFHSBM                                                KARMA TEST - 1    1. #      2x dx                                  4. y = F ( x ) fonksiyonunun x =OPLUBTOEBLJUFóFUJY        x4 + 2x2 + 1                                                         FLTFOJJMFMJLWFY=OPLUBTOEBLJUFóFUJJTFY  integrBMJOJOFöJUJBöBôEBLJMFSEFOIBOHJTJEJS          FLTFOJJMFMJLB¿ZBQNBLUBES    A) - 1 + c          B) 1 + c                                                   4         x2 + 1            x2 + 1                                                    #VOB HÌSF   # F' (x) .F'' _ x i dx   JOUFHSBMJOJO TP-  C) - 1 + c          D) 1 + c       2_ x2 + 1 i         2_ x2 + 1 i                                         2                                                           OVDVLBÀUS                                                           A) 1 B) 2 C) 3 D) 4 E) 5                 E) 2 + c                    x2 + 1                                                     5. ôFLJMEF Z = '	Y   GPOLTJZPOVOVO HSBGJóJ WFSJMNJõ-                                                           UJS                                                                                        y                                                                                      3 y = F(x)    2. # x2 dx                                                    –2 O                       x                                                                                     4                x6 - 4x3 + 4   JOUFHSBMJOJOFöJUJBöBôEBLJMFSEFOIBOHJTJEJS    A) - 1 + c          B) - 1 + c                                           –6       2_ x3 - 2 i         3_ x3 - 2 i    C) - 2 + c          D) - 3 + c                                    4  x.F'_ x i - F_ x i       x3 - 2              x3 - 2                                                                    #               E) 2_ x3 - 2 i + c                    #VOB HÌSF    –2 2x2                 dx  integralinin                         3                                                      TPOVDVBöBôEBLJMFSEFOIBOHJTJEJS                                                        A) - 13              B) - 12               C) - 11                                                            12                   11                     10                                                                       - 10                       -9                                                                D)                         E)                                                                         9                         8             11                        E) 6               6. N>PMNBLÐ[FSF      3. # F_ x idx = 8 PMEVôVOBHÌSF                                       m            3                                                    # _ - x2 + 4x - 3 i dx                  3                                                      1            # 72 - F_ 4x - 1 iA dx                          JOUFHSBMJOJOBMBCJMFDFôJen CÑZÑLEFôFSJLBÀUS                                                                     2 45              1                                                                A) B) 1 C) D) E) 2        integralinJOTPOVDVLBÀUS                                   3 33          A) 2 B) 3 C) 4 D) 5                        55 4. A 5. E 6. C                 1. A 2. B 3. A
KARMA TEST - 2                                                                                             ÷OUFHSBM    1. y                                                                    r                                                            y= 3x       3.  6         sin x dx                                                          x2 + y2 = 16      #                                                                x           r x4 + x2 + 1                                            O                               –          :VLBSEBLJõFLJMEFY2 + y2 =¿FNCFSJWF                     6         y = 3 x EPóSVTVWFSJMNJõUJS                                                                          JOUFHSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJOF   5BSBMCÌMHFOJOBMBOOWFSFOJOUFHSBMBöBôEBLJ-        MFSEFOIBOHJTJEJS                                                 FöJUUJS                   1                                                        A ) 4r2          B ) 3r - 1         C ) 5r                                                                                 5                 2                6      A) # a 3 x - 16 - x2 k dx                                                                                    D) 1               &                 0                 2                                                    4. #JSIBSFLFUMJJMLI[OEBOCBõMBZQEPóSVTBMCJSõF-        B) # a 3 x - 16 - x2 k dx                                             LJMEF I[MBOBSBL  TO EF  NT I[B VMBõNõUS                                                                            %BIBTPOSBI[OEPóSVTBMCJSõFLJMEFB[BMUBSBL               0                                                            TOEFNTI[BEÐõÐSNÐõUÐS4POSBTBCJUI[-                 1                                                          MB TO HJUNJõ WF EBIB TPOSB EPóSVTBM CJS õFLJMEF                                                                            ZBWBõMBZBSBLTOEFEVSNVõUVS      C) # a 16 - x2 - 3 x k dx                                                                       #VIBSFLFUMJOJO[  ]TBOJZFMFSBSBTOEBBME-               0                 2                                                          ôUPQMBNZPMLBÀNFUSFEJS        D) # a 16 - x2 - 3 x k dx                                             \"   #   $   %   &                   0                 π                 3        E) # a 16 - x2 - 3 x k dx                 0    2. y                          ôFLJMEFLJUBSBMCËM-                 5. :BUBZEÑ[MFNEFIBSFLFUFEFOCJSDJTNJOJWNF-              O ab                HFOJOBMBO                               [BNBOEFOLMFNJB	U  = 3t -WFU=BOO-                                                                            EB I[  NT   BMEô ZPM  N PMEVôVOB HÌSF                       y= k              b  iMF CVMB-                        CV DJTNJO ZPM – [BNBO EFOLMFNJ BöBôEBLJMFS-                          x     k ln f p                                    EFOIBOHJTJEJS                                a                       x                                                    A) S (t) = t3 + t2 – 8t                                CJMEJóJOFHËSF                                              2    y \"CÌMHFTJOJOBMB-                                                       B) S (t) = t3 – t2 + 8t + 20                                                                                           2                     y = 2x     OLBÀCJSJNLBSF-                                                                            C) S (t) = t3 - t2 + 8t + 3                     y = 2 EJS                             x                                              D) S (t) = t3 + t2 - 8t + 3  OA                             x                                              E) S (t) = t4 – 3t2 - 4t + 20                  2    \"  MO          #  MO            $  MO	F                                  &  MO	F     %  MO	F               1. D 2. D                                                  56 3. E 4. C 5. B
÷OUFHSBM                                                               KARMA TEST - 3    1. y = '	Y   GPOLTJZPOVOVO UBONM PMEVóV BSBMLUB      5. '	Y  GPOLTJZPOVOVOEJGFSBOTJZFMJE'	Y  PMNBL          \"	Y  Z  OPLUBTOEBLJUFóFUJOJOFóJNJ x EJS               Ñ[FSF                                                            y                 3 - x3E'	Y  =YWF'	  = 5     '	Y   GPOLTJZPOV #	      OPLUBTOEBO HFÀUJôJ-             PMEVôVOB HÌSF   '	-    BöBôEBLJMFSEFO IBOHJ-                                                                        TJEJS        OFHÌSF  F_ 13 iEFôFri BöBôEBLJMFSEFOIBOHJ-        TJEJS                                                           A) -4 B) -3 C) -2 D) - &      \"               #      $   %   &                                                                      6.       #   3 2x + 5 - 3                                                                                                dx                                                                                     2x + 5    2. f( x ) = 5x4 + 4x3 +YWFG 	  = 2                        integraliOEFV6 =Y+EFôJöLFOEFôJöUJSNF-                                                                        TJZBQMSTBBöBôEBLJJOUFHSBMMFSEFOIBOHJTJFM-    PMEVôVOBHÌSF  G 	  EFôFSJLBÀUS                              EFFEJMJS    A ) 12                17  C) 6                  11 13               A) # _ u4 - 3u2 i du                  B) 3 # _ u4 - 3u2 idu                   B)                        D) E)                                                                      C) # _ 3u2 - u4 idu                   D) 6 # _ 3u2 - u4 i du                         2                         22                                                                                              E) 6 # _ u4 - 3u2 idu                                                                                 J   9                             N                                                                           d   K                                 O  3. f'' ( x ) = 12x2 - 6x + 2                                    7.       dx  KK  #  _  x  2  -  2x  +  1  idx  OO     GPOLTJZPOVJÀJOGh	  =WFG	  = -JTF                     L3                                P        G	-  LBÀUS                                                                      integSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-        A ) - #  - $  -7 D ) -5 E ) -4                                                                      EJS                                                                        A) -2 B) - $   %   &      4. d # d ^ d f^ x hh                                                           2                     dx                                              # x . x - 1 dx   JGBEFTJOJOFöJUJBöBôEBLJMFSEFOIBOHJTJEJS                                                                              –1  \"  Gh	Y  EY           #  Gh	Y  + c     C ) f'( x )                                                                        integralJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-                                                                        EJS     %  Ghh	Y                              &  Ghh	Y  EY          A) 3            B) 5            C) 11 D) 13 E) 15                                                                           2               3                6 62                     1. A 2. D 3. E 4. E                        57                         5. B 6. B 7. C C
KARMA TEST - 4                                                                                              ÷OUFHSBM    1. # F2 _ x i dx = x5 - 2x3 + x + c                              5. (FS¿FM TBZMBS LÐNFTJOEF UBONM WF TÐSFLMJ CJS '                                   53                                                                 10   PMEVôVOBHÌSF  '	Y  GPOLTJZPOVOVOHSBGJôJJMF                                                                       fonksiyPOVJ¿JO # F_ x i dx = 12PMEVóVOBHËSF          Y FLTFOJ BSBTOEB LBMBO CÌMHFOJO BMBO LBÀ CJ-        SJNLBSFEJS                                                                                 4    A) 2   B) 1   C) 4 D) 2        E) 8                                            4    3 33                                                                     # _ 5 - F_ 3x - 2 i i dx                                                                                 2                                                                           integSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-                                                                         EJS                                                                     \"       #    $   %   &      2. F''( x ) = 4x +PMNBLÐ[FSF       '	Y  GPOLTJZPOVOB Af 1, 49 pOPLUBTOEBOÀJ-                                              6          [JMFOUFôFUJOFôJNJPMEVôVOBHÌSF  '	  EFôF-        SJBöBôEBLJMFSEFOIBOHJTJEJS    \"    #    $   %   &      3. ôFLJMEF'	Y  GPOLJTZPOVOVOUÐSFWJOJOHSBGJóJWFSJM-       6. ' HFS¿FM TBZMBS LÐNFTJ Ð[FSJOEF UÐSFWMFOFCJMJS CJS          NJõUJS                                                         GPOLTJZPO WF HFS¿FM TBZMBS LÐNFTJOEF TÐSFLMJ CJS                                    y                                    GPOLTJZPOPMNBLÐ[FSF  YHFS¿FMTBZTJ¿JO                                                                         F'( x ) =H	Y  FõJUMJóJTBóMBOZPS                                2 F'(x)                                                                    '	  =WF'	  =PMEVôVOBHÌSF                                                                                     3                                                                             # F_ x i.g_ x i dx                                                                                 2                                                                           integralinJOEFôFSJBöBôEBLJMFSEFOIBOHJTJEJS                                                                           \"   #   $   %   &                    O1            x     '	-  =PMEVôVOBHÌSF  '	  EFôFSJBöBôEB-        LJMFSEFOIBOHJTJEJS          A) 3 B) 4 C) 5 D) 6 E) 7                                                                     7. # F'_ x i dx = # 4 dx WFF_ 0 i = 1                                                                   F2_ x i                   4  4. NQP[JUJGHFS¿FLTBZPMNBLÐ[FSF  Z=NYEPóSVTV                                                                    PMEVôVOB HÌSF   '	   EFôFSJ BöBôEBLJMFSEFO        JMFZ= 3x2QBSBCPMÐBSBTOEBLBMBOTOSMCËMHFOJO            IBOHJTJEJS          BMBOCJSJNLBSFPMEVóVOBHËSF  NEFôFSJBöBô-          EBLJMFSEFOIBOHJTJEJS    \"    #    $   %   &                                   A) - 1    B) - 1 C) - 1 D) 1               E) 1                                                                          8         4 22                           4           1. C 2. A 3. E 4. D                                               5. A 6. D 7. B
÷OUFHSBM                                                            KARMA TEST - 5              8 13                                                   4. ôFLJMEFZ='	Y  GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS    1. # F_ x i dx = 10WF # F_ x i dx = 6                                                            y            35                                                                      1          PMEVóVOBHËSF                                                       –1                             x                                                                                        O  3                5 13                                                                                                   y = F(x)          # F_ x idx - # F_ x i dx                38          JöMFNJOJOTPOVDVBöBôEBLJMFSEFOIBOHJTJEJS        A) - #         $   %   &                                                          2                                                                      #VOB HÌSF   # x.F_ x i dx   JOUFHSBMJOJO TPOVDV                                                                                                 –1                                                                           BöBôEBLJMFSEFOIBOHJTJEJS                                                                     A) 17    B) 15          C) 12 D) 8         E) 5                                                                        18       16             13 9               6    2. y                                         y = F(x)           m      O            S2    S3  rx                 S1      np          :VLBSEBLJõFLJMEFZ='	Y  GPOLTJZPOVOVOHSBGJóJ      5. F_ x i = 3x - 8 PMEVóVOBHËSF          WFSJMNJõUJS                                                                                     4x - 3   41 =CJSJNLBSF  42 =CJSJNLBSF                                                                                 3   43 =CJSJNLBSF                                                                           # _ fof i_ x idx   PMNBLÑ[FSF  BöBôEBLJJGBEFMFSEFOIBOHJTJyan-        MöUS                                                                 2                   pr                                                integSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-                                                                   EJS      A) # F_ x i dx = - 2 B) # F_ x i dx = 15                                                                        3   B) 2                5             E) 7              mm                                                   A)                      C) D) 3                   rr                                                2 22        C) # F_ x i dx = 9 D) # F_ x i dx = - 7                      6. F ( -4 ) ='	  WF                nm                                                                  2                                       p                                                                           # F'_ - 2x i dx = 8                   E) # F_ x i dx = - 5                                                                               –3                                     r                                                                    PMEVôVOB HÌSF   '	   BöBôEBLJMFSEFO IBOHJTJ-  3.  4  d_ x4  +  x3 i                                                  EJS        #      2 x2        integSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-              A) –6    B) -4 C) –2 D) 2                  E) 4      EJS        \"   #   $   %   &                       1. B 2. E 3. C                              59                 4. A 5. C 6. B
KARMA TEST - 6                                                                                                          ÷OUFHSBM    1. :VLBSEBLJ õFLJMEF Z = '	Y   QBSBCPMÐ \"0#$ EJL-  4. y          EËSUHFOJOJO#LËõFTJOEFOHF¿NFLUFEJS                                      F(x) = x2                         y                                y = F(x)                                                          A          x                 C                                                                    O2                              B           x                   S2                  T S1                   AO    1BSBCPMÐO UFQF OPLUBT 5	-      PMVQ 5 OPLUBT     :VLBSEBLJ õFLJMEF '	Y   = x2 QBSBCPMÐOÐO Y = 2                                                                BQTJTMJ\"OPLUBTOEBOUFóFUJ¿J[JMNJõUJS  [AC]Ð[FSJOEFEJS41WF42J¿JOEFCVMVOEVLMBSCËM-                                                                 #VOBHÌSF  UBSBMCÌMHFOJOBMBOLBÀCJSJNLBSF-  HFMFSJOBMBOMBSPMVQ41 =42EJS                                 EJS     #VOB HÌSF   # OPLUBTOO PSEJOBU BöBôEBLJMFS-         A) 1    B) 1          C) 1         D) 2       E) 1        EFOIBOHJTJEJS                                               6       4             3            3    A) 24   B) 6              32  D) 36  &         5               C)                            55                 2m                                               5. # 1 - 3 x dx    2. # F_ 2m - x i dx                                                         1-6 x                                                                 JOUFHSBMJOEFU6 =YEFôJöLFOEFôJöUJSNFTJZBQ-              m                                                                      MSTB BöBôEBLJ JOUFHSBMMFSEFO IBOHJTJ FMEF FEJ-  integrali BöBôEBLJMFSEFOIBOHJTJOFFöJUUJS                         MJS          m                       2m                              A) 3 # _ t2 + t i dt  B) 6 # _ t6 + t5 i dt    A) # F_ u i du          B) # F_ u i du                        C) 6 # _ t2 + t idt   D) 3 # _ t6 + t5 idt        0                       m             m                      m    C) - # F_ u idu         D) # F_ u i du           0                     2m                   3m                                                     E) 3 # _ t3 + t2 i dt            E) # F_ u i du                     2m              4                                                   6. # x2.F_ x i dx = 4x4 + 6x3    3. # F_ u i du = 18PMEVóVOBHËSF                              PMEVôVOB HÌSF   '	   BöBôEBLJMFSEFO IBOHJTJ-                                                                      EJS          3                1                                                     \"   #   $   %   &              # x2.F_ 4 - x3 i dx                0     JOUFHSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-          EJS          A) -54 B) - $  -6 D) 6 E) 54            1. C 2. A 3. D 60 4. D 5. B 6. C
÷OUFHSBM                                                                      KARMA TEST - 7    1. F_ 2x - 1 i = 4x PMEVóVOBHËSF                                    4. (FS¿FMTBZMBSLÐNFTJOEFUBONMBSUBOWFTÐSFLMJ                            x+5                                                CJS'GPOLTJZPOVJ¿JO                                                                               '	  =  Ff 1 p = 6  F ( 1 ) =  Ff 3 p = 12                  3                                                                                                22          # d _ F_ 3x i i                                                                             F ( 2 ) = 14              1                                                                             FõJUMJLMFSJWFSJMNJõUJS   JOUFHSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-                                                                                                     2        EJS                                                                        #VOBHÌSF   # F_ x i dx inteHSBMJOJOEFôFSJBöB-       3             4       5              6       7  A)            B)      C)             D)      E)                                                 0         4             5       6              7       8                        ôEBLJMFSEFOIBOHJTJPMBCJMJS    2. '	Y  GPOLJTZPOV\"	    WF#	    OPLUBMBSOEBO      \"      #   $   %   &            HF¿NFLUFEJS     #VOBHÌSF           2    dx  -  2    x.F'_ x i                                   dx       #           #       1 F_ x i 1 F2_ x i     JOUFHSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-    EJS                                                                  5. NWFOQP[JUJGHFS¿FMTBZMBSWFN<OPMNBLÐ[F-         1             1       1              2       5                        SF  EJLLPPSEJOBUTJTUFNJOEFZ=NY2 +OFóSJTJJMF  A)            B)      C)             D)      E)                            x =  Y=WFZ=EPóSVMBSBSBTOEBLBMBOCËM-                                                                             HFZ=OEPóSVTVJMFBMBOMBSPSBOPMBOJLJCËMHF-       6             3       2              3       6                        ZFBZSMZPS                                                                          #VOBHÌSF   m PSBOLBÀUS                                                                                               n    3. (FS¿FM TBZMBS LÐNFTJOEF UBONMBOBO '	Y   = x2            A) 2          3   C) 2         3       5       QBSBCPMÐOÐOCJSLTNWFSJMNJõUJS[  ]BSBMóOEB-              15  B)            9  D)      E)          LJTBZMBSJ¿JOZ='	Y  HSBGJóJCJSJNLBSFMFSFCËMÐO-                     16               4       18        NÐõUÐS                                   y                                               F(x) = x2                   O 12                  x                               6. (FS¿FMTBZMBSLÐNFTJOEFUBONMWFJLJEFGBUÐSFW-    #VOB HÌSF   öFLJMEFLJ UBSBM CÌMHFMFSJO BMBOMB-                        MFOFCJMJSCJS'GPOLTJZPOVJ¿JO  S UPQMBNOO   UBSBONBNö CÌMHFMFSJO BMBOMBS  UPQMBNOBPSBOLBÀUS                                                     F ( 2 ) =  '	  =  'h	  =WF'h	  =FõJUMJL-                                                                             MFSJWFSJMJZPS                                                                                                       3                                                                          #VOBHÌSF   # x.F' '_ x i dx JOUFHSBMJOJOTPOVDV                                                                                                     2                                                                               BöBôEBLJMFSEFOIBOHJTJEJS         1             3        557                                      \"      #      $   %   &    A)            B)      C) D) E)         4             8       12 19 24                     1. D 2. A 3. D                                  61           4. D 5. B 6. C
KARMA TEST - 8                                                                                                  ÷OUFHSBM                   4                                          5. (FS¿FMTBZMBSLÐNFTJOEFUBONMWFTÐSFLMJCJS'	Y      1. # ^ 8x3 + x2 - 12x + 1 hdx                                                               8                -4                                                GPOLTJZPOVJ¿JO # F^ x hdx = 6 PMEVóVOBHËSF       JOUFHSBMJOJO TPOVDV BöBôEBLJMFSEFO IBOHJTJ-                                         5        EJS                                                               3        \"    #   151 C) 152 D) 51        E) 154                    # ^ 2 + F^ 3x - 1 hhdx                    33                          3                                                                        2                                                               JOUFHSBMJOJOTPOVDVLBÀUS                                                                    A) 3 B) 4 C) 5 D) 6 E) 7    2.  4       x.dx        #      –1 3x + 4     JOUFHSBMJOJOTPOVDVLBÀUS        A) 2 B) 4 C) 5              D) 13 E) 15               6. y =Y-Y2FôSJTJJMFY-FLTFOJBSBTOEBLBMBO                                        22                                                                  LBQ BMCÌMHFOJOBMBOLBÀCS2EJS                                                                    \"   #   $   %   &      3. N`( -    PMNBLÐ[FSF                              7. ôFLJMEFLJ HSBGJL EJL пHFO õFLMJOEFLJ CJS QBSL WF                   3                                                UBSBM CËMHF ¿JNMFOEJSJMNJõ BMBO HËTUFSNFLUFEJS                                                                  1BSLOJ¿JOEFLJ¿JNMFOEJSJMNFNJõCËMHFG	Y  = 1 - x2          # 2x - m dx - m2 = 13                                   fonksiyonuna aittiS \"QTJTi – 1   PMBO \" OPLUBT                                                                    GPOLTJZPOUFóFUOPLUBTES 2              -2                                                                                                          y   PMEVôVOBHÌSF  NLBÀUS                                                                                                  A      A) -1   B) - 1  $        %   1   E) 1                     2                 2    4. F^ x h = * 2x - 1 , x ≤ 2                                                –1 O   x                                                                                2                    3x - 2 , x > 2                                                            #VOB HÌSF   ÀJNMFOEJSJMNJö CÌMHFOJO BMBO LBÀ                                       1                    CJSJNLBSFEJS     PMEVôVOBHÌSF   # F'^ 2x + 1 hdx JOUFHSBMJOJOTP-          OVDVLBÀUS 0             5  B) 3  C) 7 D) 4                  9            A ) 59   B ) 35   C ) 87 D ) 115 E ) 123      A)                                  E)                     48       32       60 96 48        2 22                      1. C 2. A 3. C 4. B                 62           5. B 6. C 7. D
÷OUFHSBM <(1m1(6m/6258/$5    1. ôFLJM  EF FõLFOBS                                            3. #JSNÐIFOEJTCJSZÐ[NFIBWV[VUBTBSMBZQCVOMBS                               пHFOCJ¿JNJOEFLJCJS                          F ( x ) = -2x2 +YWFH	Y  = 4x2 -YGPOLTJZPO-                                                                             MBSOOBSBTOEBLJTOSMCËMHFEFPMBDBLõFLJMEFLP-                             IBWV[VO CJS LFOBS                           PSEJOBU TJTUFNJOEF  CJSJNJ  NFUSF PMBDBL õFLJMEF                                                                             NPEFMMJZPS                              NFUSFEJS #V IB-                                                                                                                         F(x)                             WV[VO UBCBOOO UB-                               NBNOO GBZBOTMBSMB                               LBQMBNBT  MJSB            NFUSF           UVUNBLUBES            ôFLJM                               #V IBWV[VO UBCB-                                  :Ð[NF                                                                                 IBWV[V                             O 3JFNBOO UPQMBN                                                                                                                              g(x)                             NBOUóZMBõFLJMEF-                               LJHJCJHFOJõMJóJNFU-                               SF PMBO BMU BSBMLMBSB                               BZSMBSBL PMVõUVSVMBO                               EJLEËSUHFOMFS ZBSE-                      :Ñ[NFIBWV[VOVOEFSJOMJôJ  NFUSFPMBDBôOB                                                                             HÌSF  UBTBSMBEôZÑ[NFIBWV[VLBÀN3TVBMS                             NZMBLBQMBOBDBLUS                                                                             \"   #   $   %   &            ôFLJM     #VOB HÌSF   öFLJM  EFLJ HJCJ CJS LBQMBNB JÀJO        ÌEFOFDFLUVUBSLBÀMJSBPMNBMES    \"   #   $   %   &      2. 4 m ôFLJMEFLJ QBSL ¿JNMFOEJSJ-                                  4. ôFLJMEF LPPSEJOBU TJTUFNJOEF NPEFMMFONJõ   BMU WF                                           MFDFLUJS)FSCJSLTNBSB-        ÐTU TOSMBS QBSBCPM õFLMJOEF PMBO CJS UÐOFM HËSÐM-                      8 m TOEBLJV[BLMLMBSCJSCJSJOF                      NFLUFEJS,PPSEJOBUTJTUFNJOEFCJSJN   NFUSF                                                                             LBCVMFEJMJQËM¿FLMFOEJSJMNJõUJS          12 m FõJU WF 2 3  NFUSFEJS                              ¥JNMFOEJSNF JõMFNJ 3JF-                                                          y                                                                                                                   36                                                                                                                 32            16 m             NBOO ÐTU UPQMBN NBOU-                                óZMBZBQMSTB9NFUSFLB-                                                                                      x          12 m SF   3JFNBOO BMU UPQMBN                                                                                     46            8 m NBOUóZMB ZBQMSTB :                                –6 –4       O                             NFUSFLBSFLTN¿JNMFOEJ-                                SJMNJõPMVZPS                            5ÑOFMJOZBOZÑ[FZMFSJOJONFUSFLBSFGJZBU5-          4m                                                                 PMBO LBQMBNB NBM[FNFTJ JMF LBQMBONBT EVSV-                                                                             NVOEBLBQMBNBNBMJZFUJLBÀ5-PMVS   #VOBHÌSF  9-:BöBôEBLJMFSEFOIBOHJTJEJS    A) 8 3            B) 12 3                   C) 16 3                  \"      #                                           $              D) 18 3            E) 24 3                                    %                                               &                    1. D 2. E                                              63                                                                                                                     3. A 4. D
<(1m1(6m/6258/$5                                                                 ÷OUFHSBM    1. # t #PMNBLÐ[FSF                                               4. :VSUEõUVSMBSEÐ[FOMFZFOCJSUVSBDFOUBTOONÐõ-          CJSIBWV[EBLJTVZVO[BNBOBHËSFCPõBMNBI[                            UFSJTBZTOOBSUõI[              V' ( t ) =-U	MJUSFEBLJLB                                                                                  F' ( t ) =	+ t )2	.ÐõUFSJTBZTZM  GPOLTJZPOV   GPOLTJZPOVJMFWFSJMNJõUJS                                                 JMFWFSJMNJõUJS   #VIBWV[CPöBMNBZBCBöMBELUBOEBLJLBTPO-                                                                           '	U   \"DFOUBOO NÑöUFSJ BMNBZB CBöMBELUBO U        SBIBWV[EBOLBÀMJUSFTVCPöBMNöUS                                    ZMTPOSBLJNÑöUFSJTBZTOHÌTUFSEJôJOFHÌSF                                                                                  CVBDFOUBOOZMTPOSBLJNÑöUFSJTBZTBöBô-        \"   #   $   %   &                                    EBLJMFSEFOIBOHJTJEJS                                                                                  \"   #   $   %   &      2. #JS LËZEFLJ JOTBO OÐGVTV  EÐS 4	U   CV LËZEF         5. 4	U     U TBOJZFEF CJS CBMPOVO ZFSEFO ZÐLTFLMJóJOJ          ZBõBZBOJOTBOOÐGVTVOVHËTUFSNFLUFEJS                                 HËTUFSNFL Ð[FSF CV CBMPOVO ZFSEFO ZÐLTFLMJóJOJO                                                                                EFóJõJNI[4h	U  =-U	NFUSFTBOJZF  GPOLTJ-        /ÐGVTVOUZMEBBSUõI[  4h	U  =+U	LJõJZM              ZPOVJMFUBONMBOZPS        GPOLTJZPOVJMFWFSJMNJõUJS                                                                                #VCBMPOZFSEFONFUSFZÐLTFLMJóJOEFLJCJSQMBU-   #VOBHÌSF  ZMTPOSBCVLÌZÑOOÑGVTVLBÀLJ-                              GPSNB LPOVQ CVSEBO ZVLBS EPóSV ZÐLTFMNFZF C-        öJPMVS                                                                 SBLMZPS          \"   #   $   %   &                               #BMPOVOTBOJZFEFZFSEFOZÑLTFLMJôJLBÀNFU-                                                                                SFPMVS                                                                                  \"   #   $   %   &      3. #JSEPóSVCPZVODBIBSFLFUFEFOCJSDJTNJOJMLI[                 6. #JSGJSNBOOU	ZM  BOOEBLJBOBQBSBNJLUBS'	U  JMF          V=NTO  UTBOJZFTPOSBLJJWNFTJ                                   CFMJSMFONJõUJS        a ( t ) = t +NTO2EJS                                             F'_ t i = 3 t 	ZMCJO5-  PMBSBLUBONMBOBOGPOLTJ-                                                                                ZPOJTFOFUZBUSNBLõPMBSBLBEMBOESMNBLUBES   )BSFLFUMJOJOUBOOEBLJI[EFOLMFNJ                                                                           #V GJSNBOO BOB QBSBT CJSJODJ ZMEBO TFLJ[JODJ         V = V0 + # a_ t iEUEJS                                              ZMBLBEBSLBÀCJO5-EFôJöNJöUJS     #VOB HÌSF   DJTJN IBSFLFUF CBöMBELUBO  TB-                           \"     #     $   %     &            OJZF TPOSB CBöMBOHÀ OPLUBTOEBO LBÀ NFUSF        V[BLMLUBCVMVOVS          \"   #   $   %   &      1. C 2. A 3. E                                                      64  4. D 5. B 6. D
                                
                                
                                Search