Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AYT Matematik Ders İşleyiş Modülleri 5. Modül Trigonometri

AYT Matematik Ders İşleyiş Modülleri 5. Modül Trigonometri

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-24 01:33:36

Description: AYT Matematik Ders İşleyiş Modülleri 5. Modül Trigonometri

Search

Read the Text Version

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m ÖRNEK 16 t (x ) =DPUYGPOLTJZPOV  Õ BSBMŽóŽOEBCJSFCJS 6ZHVO UBOŽN BSBMŽóŽOEB ZFS BMBO Z = G Y  GPOLTJZPOV ve örtendir. BõBóŽEBWFSJMNJõUJS G Y = 2cot ( 3x - 1 ) PMEVôVOBHÌSF G-1 Y JCVMVOV[ y mÕ – Õ O x y 2 Õ Õ Õ Õ y = 2cot(3x - 1) j = cot^ 3x - 1 h 22 2 yy BSDDPUd n = 3x - 1 j arcc cotd n + 1 = 3x 22 y j  G-1(x) = arc cotd x n + 1 arc cotd n + 1 2 2 3 =x 3 olur.  :VLBSŽEBWFSJMFODPUYHSBGJóJOEFHËSÐMEÐóÐHJCJ ÖRNEK 17 GPOLTJZPO  Õ BSBMŽóŽOEBCJSFCJSWFËSUFOEJS %PMBZŽTŽZMBCVBSBMŽLUBUFSTJWBSEŽS 6ZHVOUBOŽNBSBMŽôŽOEBZFSBMBOGGPOLTJZPOV  G Y =BSDDPU ÕY- 1 )  DPU Y GPOLTJZPOVU  Õ Z R ise PMEVôVOBHÌSF G-1 Y JCVMVOV[ t-1 : R Z   Õ   U-1( x ) = BSDDPUY GPOLTJZP- OVOBLPUBOKBOUGPOLTJZPOVOVOUFSTGPOLTJZPOV y denir. y =BSDDPU ÖY- 1) j = arc cot^ πx - 1 h y =BSDDPUYl x = coty olur. 2 ÖRNEK 14 y y 6ZHVOUBOŽNBSBMŽôŽOEB cotd n = πx - 1 j cotd n + 1 = πx arccot ( tanx ) 2 2 JGBEFTJOJOFöJUJOJCVMVOV[ y cot d x n + 1 UBOY= cotd π - x n jBSDDPUd cotd π - x n n cot d n + 1 2 22 j f–1 ^ x h = π olur. 2 π x= π L - x olur. ÖRNEK 18 2 \"öBôŽEBLJJGBEFMFSJOEFôFSMFSJOJCVMVOV[ ÖRNEK 15 B arccot ( 1 ) C arc cot^ - 3 h arccotx = arctany JGBEFTJOFHÌSFYWFZBSBTŽOEBCJSCBôŽOUŽCVMVOV[ π B BSDDPU= x j cotx = 1 j x = BSDDPUY=B jDPUB= x BSDUBOZ=B jUBOB= y 4 DPUBUBOB=PMEVôVOEBOYZ= 1 olur. C  arc cot^ - 3 h = x & cot x = - 3 & x = 5π olur. 6 π 15. YZ  arc cotd x n + 1 cotd x n + 1 14. - x 2 2 16.  π 18. B ÖC Ö 2 3

TEST - 20 5FST5SJHPOPNFUSJL'POLTJZPOMBS 1.  G Y = arcsin c3 - 5xm 5. arcsin 3 + arccosf - 1 p 4 22 GPOLTJZPOVOVOFOHFOJöUBOŽNBSBMŽôŽBöBôŽEB- JöMFNJOJOTPOVDVLBÀUŽS LJMFSEFOIBOHJTJEJS A) - π B) - 2π  $ Õ A) >- 3 , 7 H B) >- 3 , 7 p 3 3 55 55 5π  %) 4π E) 3 3 C) f - 1 , 7 H % >- 1 , 7 H 55 55 E) > 1 , 7 H 55 6. arcsin^ cos^ arctan 3 hh 2. arcsinx = arccosy JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS PMEVôVOBHÌSF Y2 + y2UPQMBNŽLBÀUŽS A) 3π B) 2π C) π  %  π E) π 4 3 34 6 B) 7 C) 3  %  5 E) 1 A) 2 4 24 3. 6ZHVOUBOŽNBSBMŽôŽOEB  sin f arccos 5 + 2. arcsin 2 p sin ( arcsin ( 2x - 1 ) ) = 1 13 2 PMEVôVOBHÌSF YLBÀUŽS JGBEFTJOJOEFôFSJLBÀUŽS \"  #  $  %  &  A) 12 5 C) 5  %  12 E) 24 13 B) 13 25 25 12 4. 6ZHVOUBOŽNBSBMŽôŽOEB 8. 6ZHVOUBOŽNBSBMŽôŽOEB  f^ x h = 2 sin^ x - 1 h arccos (4x - 2) 3 f (x) = PMEVôVOBHÌSF G-1 Y BöBôŽEBLJMFSEFOIBOHJ- 6  PMEVôVOBHÌSF G-1 Y BöBôŽEBLJMFSEFOIBOHJ- TJEJS TJEJS A) arcsin f 3x p + 1 B) 3 arcsin^ x h + 1 2 2 2 + cos 6x 2 - cos 6x 4 + cos 6x A) C) 3 arcsin c x + 1 m % 2 arcsin c x - 1 m B) C) 2 3 4 42 E) arccos f 3 x p + 1 %  4 - cos 6x E) -4 + 6cos6x 2 2 1. D 2. & 3. B 4. A  5. C 6. & C 8. A

5FST5SJHPOPNFUSJL'POLTJZPOMBS TEST - 21 1. BSDUBO=YPMEVôVOBHÌSF  5. arccot ( x + 1 ) + arctan 1 = π tan2 x + cot2 x 22  PMEVôVOBHÌSF YLBÀUŽS  UPQMBNŽOŽOEFôFSJLBÀUŽS A) -1 B) - 1  $  %  1 E) 1 2 2 10 B) 82  $  %  4 9 A) 9 3 E) 3 91 6. arctanx = arccot3x 2. arc cot^ 3x2 - 2x - 4 h = π  PMEVôVOB HÌSF  Y JO BMBDBôŽ EFôFSMFS UPQMBNŽ LBÀUŽS 4  EFOLMFNJOJ TBôMBZBO Y EFôFSMFSJ UPQMBNŽ LBÀ- A) - 1 B) - $  %  &  1 3 3 UŽS A) - 5 B) -1 C) - 2  %  2 E) 5 3 33 3  sin ( arctanx + arccotx )  JGBEFTJOJOEFôFSJLBÀUŽS A) π  #  $  % - π E) -1 2 2 3. a, b, iCJS\"#$ÑÀHFOJOJOEŽöBÀŽMBSŽPMNBLÑ[F- re, arccot ( -2 ) = a + b  PMEVôVOBHÌSF DPUiLBÀUŽS A) - 1 B) - $  %  1 E) 2 8. f^ x h = cotf 3x - 1 p + 1 2 2 2 PMEVôVOBHÌSF G-1 Y BöBôŽEBLJMFSEFOIBOHJTJ- EJS 2arc cot^ x - 1 h + 1 2arc cot^ x - 1 h - 1 A) B) 33 4. arcsinx = arccosy ve arctanx = arctany 3arc cot^ x - 1 h + 1 3arc cot^ x - 1 h - 1 C)  %  PMEVôVOBHÌSF Y+ZLBÀPMBCJMJS 22 A) 2 B) 3  $  %  &  5 2 arctan^ x - 1 h + 1 E) 3 1. B 2. D 3. & 4. B 51 5. B 6. C B 8. A

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ,PTJOÑT5FPSFNJ ,04÷/·47&4÷/·45&03&.-&3÷ ÖRNEK 1 %m/*m \"ZõF PLVMEB CVMVOEVóV TŽSBEB BSLBEBõŽ \"MJhZF UFMFGP- OVOEBOLPOVNHËOEFSJZPS\"ZõFEBIBTPOSB\"MJhZFLN A V[BLMŽLUBLJFWJOEFOCJSLPOVNEBIBHËOEFSJZPS ch b OKUL B BmåY H xC  :VLBSŽEBLJ\"#$пHFOJOEFLFOBSV[VOMVLMBSŽ 5 km x | | | | | |BC = a, AC = b, AB = c; 60° Ali  J¿B¿ŽËM¿ÐMFSJ m (WA) = A m (WB) = B , m (XC) = C olmak üze- 8 km re, [ AH ] m [ BC ] olsun. Ev | | | |HC =YPMEVóVOEBO BH = a - x olur. \"MJhOJOCVMVOEVóVOPLUB PLVMWFFWCJSпHFOJOLËõFMF- SJPMBDBLõFLJMEFNPEFMMFOEJóJOEF\"MJhOJOCVMVOEVóVLË-  \")$EJLпHFOJOEF1JTBHPSUFPSFNJVZHVMBOEŽ- õF™MJLB¿ŽZBQŽZPS | | | | | |óŽOEB  AC 2 = AH 2 + HC 2 \"MJhOJOPLVMV[BLMŽôŽLNPMEVôVOBHÌSF PLVMJMFFW BSBTŽLBÀLNPMVS b2 =I2 + x2 jI2 = b2 - x2 olur. (1) x2 = 52 + 82 -DPTš  \")#EJLпHFOJOEF1JTBHPSUFPSFNJVZHVMBOEŽ- x2 = 25 + 64 - 80· 1 óŽOEB 2 |AB|2 = |AH|2 + |BH|2 x2 =- x2 =j x =LN c2 =I2 + ( a - x )2PMEVóVOBHËSF  ÖRNEK 2  I2 = c2 -( a - x )2 olur. (2) (1) ve (2)EFOLMFNMFSJCJSMJLUF¿Ë[ÐMEÐóÐOEF A ABC üçgen b2 - x2 = c2 - a2 + 2ax - x2 90°– a | |AB = 6 cm b2 = c2 - a2 + 2ax olur. (3) 6 | |AC = 4 cm AHC dik üçgeninde B 4 cos C = x & x = b. cos C PMVS #V EFóFS (3) % b m ( BAC ) = 90° - a denkleminde yFSJOFZB[ŽMEŽóŽOEB sin a = 3 c2 = a2 + b2 - 2ab. cos (XC) elde edilir. C 48 | |:VLBSŽEBLJWFSJMFSFgöre, BC LBÀDNEJS  #FO[FSõFLJMEF | BC |=YPMNBLÑ[FSF a2 = b2 + c2 - 2bc. cos A b2 = a2 + c2 - 2ac. cos B ZB[ŽMBCJMJS DPT š- a) =TJOa = 3 j x2 = 62 + 42 - 2.6.4 · 3 48 48 x2 = 36 + 16 - 3 x2 =j x = 52 1.  2.

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 3 ÖRNEK 5 A Verilen üçgenlerde B \"#$%LJSJõMFSEËSUHFOJ [ AB ] m [ BC ] A4 | |AB = 4 cm a | |\"% = 5 cm 6 10 | |AB = 6 cm x 6 | |BC = 6 cm ve | |AE = 10 cm | |%$ = 3 cm aE 5 C || ||B x &% = 3 cm 5 EC = 5 cm ve 8 a 180°–a 3 3 D | |BE = x cm dir. C D | |:VLBSŽEBLJ WFSJMFSF HÌSF  DC = Y LBÀ DN PMEVôV- m ( B%AD ) = aPMNBLÑ[FSF DPTaOŽOEFôFSJOJCVMVOV[ OVCVMVOV[ ,JSJöMFSEÌSUHFOJOEFLBSöŽMŽLMŽBÀŽMBSUPQMBNŽšEJS 6 4 4 4– c7os4a 4 4 8 84 \"#&ÑÀHFOJOEFO  cos a = = x2 = 42 + 52 - 2.4.5.cosa = 62 + 32 - 2.6.3. cos^ 180° - a h 16 + 25 -DPTa = 36 ++ 36 cosa 10 5 41 -DPTa = 45 + 36 cosa -DPTa = 4 j cos a = 4 = - 1 olur. %&$ÑÀHFOJOEFO  32 + 52 - 2.3. 5 · 4 = 2 - 76 19 x + 25 - 24 = x2 5 x2=j x = 10 PMBSBLCVMVOVS ÖRNEK 6 | | | |ABC üçgeninde BC = a br, AC = b br, |AB| = c br ve % m ( ACB ) = a EŽS¶¿HFnin kenarlaSŽBSBTŽOEB af a - b p = ^ c - b h^ c + b h 2 ÖRNEK 4 CBôŽOUŽTŽPMEVôVOBHÌSF, cosaEFôFSJOJCVMVOV[ A 4D B2 - ab = c2 -C2 j c2 =B2 +C2 - ab 2 22 6 a C a c2 =B2+C2 -BCDPTaPMEVôVOEBO x ab 1 54 - = - 2 ab . cos a & = cos a olur. 24 BE | | | | | |[AE] a [#%] = {C}, AC = CE = 4 cm, AB = 6 cm, ÖRNEK 7 | | | | | |BC = 5 cm, $% = 2 cm ve BE = x cm dir. A 6B \"#$%ZBNVL | |:VLBSŽEBLJ WFSJMFSF HÌSF  BC = Y LBÀ DN PMEVôV- a [AB] // [$%] OVCVMVOV[ | |5 57 AB = 6 cm a 180°–a | |BC = 7 cm \"#$ÑÀHFOJOEF D6 1E4 8 | |C $% = 14 cm 62 = 52+ 42 - 2.5.4.cosa | |\"% = 5 cm dir. 36 = 41 -DPTa :VLBSŽEBLJWFSJMFSFHÌSF m ( D%AB ) = aPMNBLÑ[FSF  1 cosaEFôFSJOJCVMVOV[ -5 = -DPTa j cosa = 8 [AD] // [#&] PMBDBL öFLJMEF CJS [#&] EPôSV QBSÀBTŽ ÀJ[JMJS &$%ÑÀHFOJOEFO #&$ÑÀHFOJOEF 6 4 4 4– c7os4a 4 4 8 x2 = 22 + 42 - 2. 2 . 4 · 1 8 2 = 52 + 82 - 2.5.8. cos^ 180° - a h x2 = 4 + 16 - 2 1 = 25 + 64 +DPTa j - = cos a PMBSBLCVMVOVS x2 = 18 j x = 3 2 PMBSBLCVMVOVS 2 3. 10 4. 3 2 53 1 11 5. - 6.  - 19 4 2

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 8 4JOÑT5FPSFNJ %m/*m A B 1 A CL D 1 G c b ha H BH C a a E1 K 1 F  :VLBSŽEBLJ\"#$пHFOJOEFLFOBSV[VOMVLMBSŽ | | | | | | | |ôFLJMEFLJLÐQUF  EK = KF , #- = -( ve | | | | | |BC = a, AC = b, AB = c olsun. % m ( AKL ) = a EŽS m (WB) = B , m (WA) = A , m (XC) = C olmak üzere, :VLBSŽEBLJWFSJMFSFHÌSF DPTaEFôFSJOJCVMVOV[ [ AH ] m [ BC ]PMEVóVOEB ,ÑQÑOCJSLFOBSŽCSPMTVO AHB dik üçgeninde |\",|2 = |,&|2 + |%&|2 + | AD |2 sin B = ha & ha = c. sin B olur. |\",|2 = 12 + 22 + 22 =j |\",| = 3 c |,-|2 = |,'|2 + |'(|2+ |-(|2 j 12 + 22 + 12= 6 |,-| = 6 Buradan | AL |2 = | AB |2 + | BL |2 j | AL | = 5 Aa A&BC k = a.ha = a.c. sin B LPTJOÑTUFPSFNJOEFO  ^ 5 h2 = 2 + ^ 6 h2 - 2.3. 6 . cos a 22 3 5 = 9 + 6 - 6 6 cos a j -= - 6 6 cosa elde edilir. cos a = 10 olur. 66  #FO[FSõFLJMEF & = a.b. sin C ve A ( ABC ) 2 ÖRNEK 9 & = b.c. sin A FõJUMJLMFSJZB[ŽMŽS A ( ABC ) 6 A 2 a Bu durumda & = a.c. sin B = a.b. sin A A ( ABC ) 7 22 i–a 180°–i b.c. sin A olur. B 5C 2 a.c. sin B = b.c. sin A = a.b. sin a 222 ABC üçgeninde, % = a, % = i - a,  FõJUMJLMFSJ a.b.c JGBEFTJOFCËMÐOÐSTF m ( BAC ) m ( ABC ) 2 | | | | | |AC = 7 cm, AB = 6 cm, BC = 5 cm dir. sin A = sin B = sin C FõJUMJóJFMEFFEJMJS abc :VLBSŽEBLJWFSJMFre göre, cosiEFôFSJOJCVMVOV[ Buradan; 2 = 2 + 2 - 2.5.7. 6 4 4 4– c7os4i 4 48 a = b = c olarak bulunur. cos^ 180° - ih sin A sin B sin C 6 5 7 36 = 25 ++DPTa j -38 =DPTa - 38 - 19 = cos a = 70 35 10 - 19 54 8.  66 35

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m ÖRNEK 11 ABC çevrel çemberinin merkezi O ve [#%] çap ôFLJMEF 0 NFSLF[MJ \"#$ пHFOJOJO ¿FWSFM ¿FNCFSJ WF- olmak üzere, SJMNJõUJS A A bD a 10 cR 180°–2a RO B aC a O B 90°–a WA ile X% BZOŽZBZŽHËSEÐLMFSJOEFOËM¿ÐMFSJFõJU- C tir. m (WA) = A ve m (XD) = D olmak üzere, | |AB = 10 cm, % = a ve sin a = 11 sin (XD) = sin (WA) = a ise 2R = a olarak m ( ABO ) dir. 2R sin A 6 bulunur. #FO[FSõFLJMEF YuLBSŽEBLJ WFSJMFSF HÌSF  ÀFWSFM ÀFNCFSJO ÀFWSFTJOJ CVMVOV[ a = b = c = 2R sin A sin B sin C 11 5 sin a = PMEVôVOEBO cos a = olur. PMBSBLJGBEFFEJMJS 66 10 10 = 2R cos a = 2R sin^ 90° - a h 10 = 12 = 2R 5 6 ¦FWSFMÀFNCFSJOÀFWSFTJ=Ö3 PMEVôVOBHÌSF ¦=ÖPMVS ÖRNEK 10 ÖRNEK 12 A #JS \"#$ пHFOJOEF \"  #  $ пHFOJO J¿ B¿ŽMBSŽOŽO ËM¿Ð- leridir. 68 sin2 A + sin2 B = sin2 C a b PMEVôVOBHÌSF DPT$EFôFSJOJCVMVOV[ B C | | | |ABC üçgeninde, AB = 6 cm, AC = 8 cm dir. abc k = = = JTF :VLBSŽEBLJWFSJMFSFHÌSF  sin a PSBOŽOŽCVMVOVz. sin b sin A sin B sin C 2 22 a b c 2 = = = olur. 222 k sin A sin B sin C 2 A + sin 2 B 2 sin sin C = PMBSBLZB[ŽMŽS 68 2 2 2 TJOÑTUFPSFNJOFHÌSF  = PMEVôVOEBO + b a c sin b sin a sin a 8 4 TJO2A +TJO2B =TJO2C jB2 +C2 = c2 = = olur. sin b 6 3 1JTBHPSUFPSFNJOEFOm (XC) = 90°WFDPTš=PMVS 4 55 11. Ö 12.   3

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ ÖRNEK 14 www.aydinyayinlari.com.tr 4JOÑT\"MBO'PSNÑMÑ 9 A ABC üçgen %m/*m | |AB = 9 br | |8 A AC = 8 br dir. chb BC :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$  FO ÀPL LBÀ CS2 BH C PMVS a 1 A^ ABC h = 1 · a.h 9 A(ABC) = ·9.8. sin A 2 2 sin C = h iseI= b.siO$PMEVóVOEBOCVFõJUMJ- \"MBOŽOŽO NBLTJNVN PMNBTŽ sin A   OŽO NBLTJNVN PM- b NBTŽEŽS sin A FOÀPLPMBDBôŽOEBO óJ 9 EBZFSJOFZB[ŽMŽr. Bu durumda A^ ABC h = 1 ·a.b sin CPMBSBLJGBEFFEJMJS A = 1 ·9.8.1 = 36 2 olur. 2 max 2 br  #FO[FSõFLJMEF ÖRNEK 15 A^ ABC h = 1 ·a.c. sin B = 1 ·b.c. sin A 22  GPSNÐMMFSJFMEFFEJMJS  'PSNÐM ZBSEŽNŽZla alan bulunurken iki kenar A \"#% WF #&$ CJSFS WFCVJLJLFOBSŽOBSBTŽOEBLJB¿ŽOŽOTJOÐTÐOEFO x üçgen olmak üzere, ZBSBSMBOŽS EA | |4 F BE = 4 br | |B A #% = 5 br | |B 5 D 3 C %$ = 3 br || & & ÖRNEK 13 AE = x br , A^ AEF h = A^ FDC h A :VLBSŽEBLJWFSJMFSFHÌSF YLBÀCSEJS ABC üçgen | |AC = 4 cm && A^ ABD h = A^ BEC hPMEVôVOEBO 4 | |BC = 6 cm 1 ·^ 4 + x h.5. sin B = 1 ·4.8. sin B 22 60° % + 5x = 32 j 5x = 12 j x = 12 olur. m ( ACB ) = 60° dir. 5 B6 C :VLBSŽEBLJWFSJMFSFHÌSF  A^ & hLBÀDN2EJS ABC 1 13 2 A = .4.6. sin 60° = .4.6. = 6 3 cm olur. 2 22 13. 6 3 56 12 14. 36 15. 5

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 16 ÖRNEK 18 A ôFLJMEF41 42WF43 A \"#%CJSпHFO 4 3 CVMVOEVLMBSŽ CËMHele- 57 | |AB = 5 cm S1 G | |BC = 6 cm B rJO BMBOMBSŽOŽ HËTUFS- B6 | |AC = 7 cm ve C1 S2 3 mektedir. | |$% = 3 cm dir. | | | |2 C 3D S3 F AB = 2 $% = 4 br 1 | | | |D E BC = EF = 1 br | | | |AG = GF = 3 br :VLBSŽEBLJWFSJMFSFHÌSF  A^ & hOJOLBÀDN2 oldu- #VOBHÌSF  S2 PSBOŽLBÀUŽS  ACD S1 + S3 ôVOVCVMVOV[ 1 \"#$ÑÀHFOJOEFu = 5+6+7 =9 S = ·4.3. sin A = 6. sin A 2 12 11 A^ ABC h = 9.4.2.3 = 6 2 S = ·5.6. sin A - ·4.3. sin A = 9 sin A 22 6 cm olur. 2 1 1 19 A^ ABC h S = ·7.7. sin A - ·5.6. sin A = sin A A^ ACD h = 32 2 2 PMEVôVOEBO 2 #VOBHÌSF  S = 9 sin A = 18 A^ ACB h = 3 6 DN2 olur. 2 S +S 19 31 1 3 6 sin A + sin A 2 ÖRNEK 17 ABC üçgen %m/*m ,FOBS V[VOMVLMBSŽ a, b, c ve çevrel A [\"%]B¿ŽPSUBZ A ¿FNCFSJO ZBSŽ¿BQŽ x y6 | |AC = 6 br c b \"R\" olan ABC üç- A 3A R O \" \"#% =\" \"%$ HFOJOJOBMBOŽ BD C dir. C Ba | |:VLBSŽEBLJWFSJMFSFHÌSF  AB YLBÀCJSJNEJS & ) = a.b.c dir. A ( ABC 4.R 11 ÖRNEK 19 3· ·x.y. sin a = ·y.6. sin a j 3x = 6 j x = 2 olur. ,FOBSV[VOMVLMBSŽDN DNWFDNPMBOCJSÑÀHF- 22 OJOÀFWSFMÀFNCFSJOJOZBSŽÀBQŽOŽCVMVOV[ %m/*m  ,FOBSV[VOMVLMBSŽWFSJMFOCJSпHFOJOBMBOŽ A cb 5+6+7 u= =9 Ba C 2 a + b + c = 2u olmak üzere, 5.6.7 Aa & k = u^ u - a h^ u - b h^ u - c h dir. A = 9.4.3.2 = ABC 4R  #VGPSNÐMF)FSPO'PSNÑMÑdenir. 6 6 .4R = 5. 6 .7 35 R = olur. 46 18 2  18. 3 6 35 16.  31 46

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr %m/*m A a ÖRNEK 22 ABC üçgeninde b rr A | |AB = 5 cm B Or | |AC = 6 cm ve 6 | |BC = 7 cm dir. 5 C c B 7C  #JS\"#$пHFOJOJO0NFSLF[MJJ¿UFóFU¿FNCF- :VLBSŽEBWFSJMFOMFSFHÌSF JÀUFôFUÀFNCFSJOZBSŽÀB- QŽLBÀCJSJNEJS SJOZBSŽ¿BQŽSWF u = a + b + c olaSBLBMŽOEŽ- A^ ABC h = u^ u - a h^ u - b h^ u - c h = r.u 2 óŽOEB & = & + & + & 5+6+7 A ( ABC ) A ( AOC ) A ( AOB ) A ( BOC ) u = = 9 #VEVSVNEB A = 9.4.3.2 = 9.r 2 & r.a r.b r.c 66 26 ABC A = 6 6 = 9r & r = = olur.  PMEVóVOEBO A ( ) = + + 93 222 r^ a + b + c h ÖRNEK 23 = = r.u 2 olur. A Yanda verilen üçgende ÖRNEK 20 Yanda verilen üçgende 4 5 IJ¿UFóFU¿FNCFSJONFS- r Ir A I J¿ UFóFU ¿FNCFSJO kezi B r merkezi, | |AB = 4 cm 6 | |AC = 5 cm [I%] m [BC] | |BC = 6 cm dir. | |AB = 5 br ve C | |%  = 4 br dir. 5E :VLBSŽEBWFSJMFOMFSFHÌSF  A^ AIB h + A^ AIC h LBÀUŽS 4 C I A^ BIC h B 4 D I JÀ UFôFU ÀFNCFSJO NFSLF[J PMEVôVOEBO LFOBSMBSB PMBO EJL V[BLMŽLMBS FöJUUJS #V EVSVNEB TPSVMBO BMBOMBS UBCBOMBSŽZMBPSBOUŽMŽEŽS\" \"IB) =4 \" \"IC) =4WF :VLBSŽEBLJWFSJMFSFHÌSF \" \"I# ZJCVMVOV[ A(BIC) =4PMVS 4S + 5S 3 = olur. 6S 2 [&I] ve [DI]JÀUFôFUÀFNCFSJOZBSŽÀBQŽPMEVôVJÀJO | D | = |& | =CSPMVS ÖRNEK 24 A ( AIB ) = 4.5 2 A õFLJMEFWFSJMFOMFSFHÌ- = 10 br SF \"#$ ÑÀHFOJOJO JÀ- 2 3 UFôFU ÀFNCFSJOJO ZBSŽ- ÀBQŽ S  ÀFWSFM ÀFNCF 5 SJOJO ZBSŽÀBQŽ 3 PMEV- C ôVOBHÌSF S3ÀBSQŽNŽ ÖRNEK 21 B7 LBÀUŽS ¦FWSFTJ  CS PMBO CJS ÑÀHFOJO JÀ UFôFU ÀFNCFSJOJO A^ ABC h = a.b.c = r.uPMEVôVOEBO ZBSŽÀBQŽCSPMEVôVOBHÌSF BMBOŽLBÀCS2EJS 4R A =SVPMEVôVOEBO 3.5.7 = r.d 3 + 5 + 7 n j 105 15 r 14 7 A ==CS2 olur. =j = R.r = 4R 2 4R 2 4 2 olur.  21.  58 26 3 7 22. 23. 24. 3 22

,PTJOÑTWF4JOÑT5FPSFNMFSJ TEST - 22 1. A ABC bir üçgen 4. A 120° % = 120° 77 34 m ( BAC ) 3 | |AB = 3 br | |B C AC = 4 br dir. B5 D xC | | :VLBSŽEBLJWFSJMFSFHÌSF BC LBÀCJSJNEJS | | | |ABC bir üçgen, \"% = 3 cm, #% = 5 cm | AB | = | AC | = 7 cm dir. A) 5 B) 2 7 C) 3 2 | |:VLBSŽEBLJWFSJMFSF göre, DC =YLBÀDNEJS  %  29 E) 37 \"  #  $  %  &  2. A B 8 5 7 D 7 C 3 5. D6 C E \"#$WF$%&CJSFSпHFO [ AE ] a [#%] = { C } 120° |BC| = |$%| = 7 cm, | AC | = 5 cm, | CE | = 3 cm, 99 | |AB = 8 cm dir. AxB  :VLBSŽEB WFSJMFOMFSF HÌSF  \" $&%  LBÀ DN2 EJS \"  #  $  %  &  3  ôFLJMEFLJ¿FNCFSEF\"#$%LJSJõMFSEËSUHFOJ | | | | | |\"% = % CB = 9 cm, %$ = 6 cm, m ( DCB ) = 120° dir. A | | :VLBSŽEBLJWFSJMFSFHÌSF  AB =YLBÀDNEJS 3. 2 \"  #  $  %  &  E 42 17 B 5 D3 C | | | |ABC bir üçgen, AE = 2 br, EC = 4 2 br 6. #JS\"#$ÑÀHFOJOJOLFOBSMBSŽBSBTŽOEB | | | | | |&% = 17 br, #% = 5 br, %$ = 3 br b2 - 2c2 = b - 2 c | |:VLBSŽEBLJWFSJMFSFHÌSF AB LBÀCJSJNEJS a2 - c2 b A) 2 17 B) 34 34 CBôŽOUŽTŽPMEVôVOBHÌSF \"BÀŽTŽOŽOÌMÀÑTÑLBÀ C) EFSFDFEJS 2  %  3 17 17 \"  #  $  %  &  2 E) 3 1. & 2. C 3. B  4. D 5. D 6. &

TEST - 23 ,PTJOÑTWF4JOÑT5FPSFNMFSJ 1. #JS\"#$ÑÀHFOJOEF  4. A m (WA) = 120° ve a = 4 3 br B F 3 PMEVôVOBHÌSF ÑÀHFOJOÀFWSFMÀFNCFSJOJOZBSŽ ÀBQŽLBÀCJSJNEJS \"  #  $  %  &  C 4 D 2E | |\"$%WF#$&CJSFSüçgen, BC = 3 cm | | | |$% = 4 cm, %& = 2 cm ve \" \"$% = 2.A ( BCE ) dir. | | :VLBSŽEBLJWFSJMFSFHÌSF  AB LBÀDNEJS \"  #  $  %  &  2. ôFLJMEFLJ\"#$пHFOJOJO¿FWSFM¿FNCFSJOJONFS- A | | | |LF[J0OPLUBTŽ  OB = 6 cm ve BC = 8 cm, 5. % m ( BAC ) = a dir. x 30° A 48 BDC O C | | | |ABC bir üçgen, AC = 8 cm, AB = 4 cm 6 B8 | | | |#% = % % %$ , m ( DAC ) = 30° ve m ( BAD ) = x dir. :VLBSŽEBLJWFSJMFSFHÌSF TJOa LBÀUŽS  :VLBSŽEBLJWFSJMFSFHÌSF TJOYLBÀUŽS A) 1 B) 2 C) 3  %  4 5 1 2 C) 3  %  5 E) 1 2 3 45 E) A) B) 46 6 2 3 6. A ABC ikizkenar üçgen 3. \"#$пHFOJOJO¿FWSFM¿FNCFSJOJOZBSŽ¿BQŽCJSJN- 75° 6 B |AB| = |AC| dir. % | | | |AB = 4 2 CJSJN  AC =CJSJNPMEVôVOBHÌ- m ( ABC ) = 75° SF ÑÀHFOJOFOCÑZÑLJÀBÀŽTŽLBÀEFSFDFEJS | |BC = 6 cm dir. \"  #  $  %  &  C  :VLBSŽEBLJWFSJMFSFHÌSF \"#$ÑÀHFOJOJOÀFW- SFMÀFNCFSJOJOÀBQŽLBÀDNEJS \"  #  $  %  &  1. B 2. B 3. D  4. D 5. & 6. C

,PTJOÑTWF4JOÑT5FPSFNMFSJ TEST - 24 1. ,FOBSV[VOMVLMBSŽ 4. ,FOBSV[VOMVLMBSŽB C DPMBOCJS\"#$ÑÀHFOJO- a = 4 birim, b = 5 birim ve c = 7 birim de, 2sinA - sinB = sinC + sinA PMBO\"#$ÑÀHFOJJÀJOTJO$EFôFSJLBÀUŽS PMEVôVOBHÌSF a + b + c PSBOŽLBÀUŽS A) 3 2 B) 6 C) 2 6 b+c 26 A) 0 B) 1 C)  %  E) 4 E)  % 3 6 5 5. A ABC bir üçgen 2x % = 2x 5 m ( BAC ) 2. A ABC dik üçgen % = x m ( ACB ) 6 [ AB ] m [ BC ] m ( A%BC ) = m ( A%CB ) | |AB = 6 cm | |BC = 8 cm B6 | |x BC = 6 cm | |C AB = 5 cm dir. :VLBSŽEBLJWFSJMFSFHÌSF \"#$ÑÀHFOJOJOÀFWSFM B 8C ÀFNCFSJOJOZBSŽÀBQŽLBÀDNEJS :VLBSŽEBLJWFSJMFSFHÌSF \"#$ÑÀHFOJOJOÀFWSFM 15 15 C) 25  %  25 25 ÀFNC FSJOJOZBSŽÀBQŽOŽOJÀUFô FUÀFNCFSJOJOZB- A) B) E) SŽÀBQŽOBPSBOŽLBÀUŽS 4 24 68 A) 2 B) 3  $  %  5 E) 12 5 5 2 5 3. ôFLJMEFLJ\"#$WF'#%пHFOMFSJOEFUBSBMŽCËMHF- 6. \"SBMBSŽOEBLNCVMVOBO\"WF#MJNBOMBSŽOEBOõF- MFSJOBMBOMBSŽCJSCJSJOFFõJUUJS LJMEFLJHJCJJLJCPUTŽSBTŽZMBLŽZŽZMB™WF™MJLB¿Ž ZBQBDBLõFLJMEFIBSFLFUFEJZPSMBSWF$OPLUBTŽOEB A CVMVõVZPSMBS C 7 F 15° 40° LŽZŽ 5 A 60 km B E B 10 C x D  #VOBHÌSF \"EBOIBSFLFUFEFOCPUZBLMBöŽLLBÀ LNEBIBGB[MBZPMBMNŽöUŽS  | | | | | |AF = 7 cm, BF = 5 cm, BC = 10 cm dir. TJOš ,   TJOš ,   TJOš ,   | |YukBSŽEBLJWFSJMFSFHÌSF  CD =YLBÀDNEJS \"   #   $   %   &   \"  #  $  %  &  1. & 2. D 3. C 61 4. C 5. & 6. B

TEST - 25 ,PTJOÑTWF4JOÑT5FPSFNMFSJ 1. ,FOBSV[VOMVLMBSŽB C DPMBOCJSпHFOJO¿FWSFTJ 4. A \"%$пHFO 36 cm dir. 5 [#%] m [%$] m (XA) = A , m (XB) = B ve m (XC) = CPMNBLÑ[F- B re, | |AB = 5 cm x | |15 2sinC = sinA + sinB D BC = 15 cm PMEVôVOB HÌSF  D LFOBSŽOŽO V[VOMVôV LBÀ DN EJS | |%$ = 12 cm \"  #  $  %  &  12 C dir. | | :VLBSŽEBLJWFSJMFSFHÌre, AD =YLBÀDNEJS A) 2 B) 3 C) 13  %  34 E) 4 10 2. ,FOBSV[VOMVLMBSŽB C DPMBOCJSÑÀHFOEF 5. #JS\"#$пHFOJOJO¿FWSFM¿FNCFSJOJO¿FWSFTJÕCS A ( ABC ) = 9 3 cm2 ve dir. ( a + b - c ) ( a + b + c ) - ab = 0 PMEVôVOBHÌSF, BCÀBSQŽNŽLBÀUŽS m % = a PMNBLÑ[FSF ( BAC ) \"  #  $  %  &  sin a = 5 6 PMEVôVOBHÌSF [BC]LFOBSŽOŽOV[VOMVôVLBÀCS EJS \"  #  $  %  &  3. \"õBóŽEBLJ LPPSEJOBU EÐ[MFNJOEF 0 NFSLF[MJ  CS 6. B ZBSŽ¿BQMŽ¿FZSFL¿FNCFSWFSJMNJõUJS A1 2 Z C A 4 B 3 D a X | |\"#$%LJSJõMFSEËSUHFni, m( D%AC ) = a, AB = 1 br, O C | | | | | |BC = 2 br, $% = 3 br ve \"% = 4 br dir. | |BC = 8 sin a ve % = a EŽS :VLBSŽEBLJWFSJMFSFHÌSF DPTa LBÀUŽS m ( BOC ) :VLBSŽEBLJWFSJMFSFHÌSF,TJOa . cosaEFôFSJLBÀ- A) 1 B) 1 C) 1  %  1 E) 1 UŽS 2 3 45 6 A) 0 B) 1 C) 1  %  1 E) 1 2 345 1. B 2. A 3. A 62 4. & 5. A 6. D

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, 501-\".'\"3,'03.·--&3÷ %m/*m ÖRNEK 4 sin ( a + b ) = sina.cosb + cosa.sinb sin a + cos b = 1 WFcos a + sin b = 1  :VLBSŽEBLJGPSNÐMEFCZFSJOF -C ZB[ŽMEŽóŽO- 34 EB PMEVôVOBHÌSF Tin ( a +C JGBEFTJOJOFöJUJOJCVMVOV[ sin ( a - b ) = sina.cos ( -b ) + cosa.sin ( -b ) 1 = ^ sin a + cos b h2 = 2 + 2 sin a. cos b + 2 = sina.cosb - cosa.sinb  PMVS 9 sin a cos b )BUŽSMBUNB cos ( -b ) = cosb 1 = ^ cos a + sin b h2 = 2 + 2 cos a. sin b + 2 sin ( -b ) = -TJOCEJS 16 cos a sin b ÖRNEK 1 1 J sin a. cos b N cos70°. sin50° + sin40°. cos20° + K O JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ 9 1 2 2+ c4o4s42a3 2KK O 2 2+ c4o4s42b3 16 = + K + O + sin40° = cos50°ve cos20° =TJOšPMEVôVOEBO 1s4in44a 1 L b. cos O 1s4in44b4 1 cos70°.sin50° + cos50°.sin70° P sin a 3 = sin(50° + 70°) = sin120° = PMVS 25 = 2 + 2 sin^ a + b h j sin^ a + b h = - 263 PMVS 144 288 2 ÖRNEK 5 π < x < 3π ve 3π < y < 2πPMNBLÑ[FSF 22 tan x = 4 ve cos y = 12 3 13 PMEVôVOBHÌSF TJO Y+ y ) ifadesiniOFöJUJOJCVMVOV[ ÖRNEK 2 4 -4 -3 CÌMHFEF tan x = ve sin x =  cos x = cosx . sin ( x - 30 ) + sinx . cos ( 30 - x ) JGBEFTJOJOFöJUJOJCVMVOV[ 3 55 DPTYGPOLTJZPOVÀJGUGPOLTJZPOPMEVôVOEBO CÌMHFEF cos y = 12 - 5 cos ( 30° - x ) = cos ( x -š PMVS ise sin y = UÑS = cosx.sin ( x - 30° ) + sinx.cos ( x - 30° ) 13 13 = sin ( x + x - 30° ) = sin ( 2x -š PMVS sin(x + y) = sinx.cosy + siny.cosx - 4 12 - 5 - 3 - 33 PMVS = ·+ · = 5 13 13 5 65 ÖRNEK 3 ÖRNEK 6 sin^ x + y h = 1 vFcos^ x - y h = 1 sin 10° + 3 cos 10° 23 cos 20° PMEVôVOBHÌSF TJOYJOFöJUJOJCVMVOV[ ifadesJOJOFöJUJOJCVMVOV[ Not: 3 = tan 60°FõJUMJóJOJLVMMBOŽOŽ[ sin 10° + sin 60° . cos 10° sin 10° + tan 60° . cos 10° = cos 60° cos 20° cos 20° cos^ x + y h = 1 ve sin^ x - y h = 2 2 tür. sin 10° . cos 60° + sin 60° . cos 10° 23 = sin2x = sin ( x + y ) . cos ( x - y ) + sin ( x - y ).cos ( x + y ) cos 60° . cos 20° sin 70° 1 = = = 2 PMVS cos 60° . cos 20° 1 1 1 2 2 1 2 2+1 ·+ ·= 23 3 2 2 32 3 2. sin(2x – 30°) 2 2+1 63 - 263 - 33 6. 2 1. 3. 4. 5. 2 32 288 65

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr %m/*m ÖRNEK 10 cos (a + b) = cosa.cosb - sina.sinb cos^ a + b h = 1 WFcos^ a - b h = 1  :VLBSŽEBLJGPSNÐMEFCZFSJOF-CZB[ŽMEŽóŽO- 23 EB PMEVôVOB HÌSF  DPTBDPTC  JGBEFTJOJO FöJUJOJ CVMV- cos (a - b) = cosa.cos (-b) - sina.sin (-b) OV[ = cosa.cosb + sina.sinb 1  PMVS DPTBDPTC-TJOBTJOC= ÖRNEK 7 2 1 cos105° DPTBDPTC+TJOBTJOC= JGBEFTJOJOEFôFSJOJCVMVOV[ 3 11 5 DPTBDPTC= + = 23 6 5 cPTBDPTC= PMVS 12 cos ( 60° + 45° ) = cos60°.cos45° - sin60°.sin45° 12 32 2- 6 PMVS =· - · = 22 2 2 4 ÖRNEK 11 ÖRNEK 8 sin a. sin b = 1 WFcos a. cos b = 3 cos ( 50° - a ).cos ( 10° + a ) - sin ( 50° - a).sin ( a + 10° ) 38 JGBEFTJOJOEFôFSJOJCVMVOV[ PMEVôVOBHÌSF cos2 ( a +C - cos2 ( a -C JGBEFTJ- = cos(50° - a + a + 10°) OJOEFôFSJOJCVMVOV[ 1 31 1 = cos 60° = PMVS cos(a +C =DPTBDPTC-TJOBTJOC= - = 2 8 3 24 3 1 17 cos(a -C = cPTBDPTC+TJOBTJOC= + = 8 3 24 d 1 2 17 2 - 288 1 = - PMVS n -d n= 24 24 576 2 ÖRNEK 9 ÖRNEK 12 #JS\"#$ÑÀHFOJOEF m ( XA ) = A, m ( XC ) = C ve cos x = - sin x m ( XB ) = BPMNBLÑ[FSF sin y cos y cos A = 3 WFcos B = 12 | |PMEVôVOBHÌSF x - y ifadesiniOBMBDBôŽFOLÑÀÑL 5 13 QP[JUJGEFôFSJCVMVOV[ PMEVôVOBHÌSF cos COJOEFôFSJOJCVMVOV[ cosx.cosy = -sinx.siny A + B +$=š $= 180° - ( A + B) cosx.cosy + sinx.siny = 0 cos ( x - y ) = 0 DPT$= cos ( 180°- ( A + B) = -cos ( A + B) π = - ( cosA.cosA- sinA.sinA ) x-y = = -d 3 · 12 - 4 · 5 n = -d 36 - 20 n = - 16 PMVS 2 5 13 5 13 65 65 2- 6 1 16 64 5 1 π 7. 8. 9. - 10. 11. - 12. 4 2 65 12 2 2

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m ÖRNEK 15 tan^ a + b h = tan a + tan b 1 + tan 65° . tan 5° 1 - tan a. tan b tan 65° - tan 5°  :VLBSŽEBLJGPSNÐMEFCZFSJOF-CZB[ŽMEŽóŽn- JGBEFTJOJOEFôFSJOJCVMVOV[ EB 11 3 tan^ a - b h = tan a + tan^ - b h = tan a - tan b = = cot 60° = PMVS 1 - tan a. tan^ - b h 1 + tan a. tan b tan 65° - tan 5° tan 60° 3  PMVS 1 + tan 65° . tan 5° )BUŽSMBUNBUBO -a ) = -UBOBEŽS ÖRNEK 16  ,PUBOKBOUGPOLTJZPOVOVOUPQMBNWFGBSLGPSNÐ- MÐCVMVOVSLFO Y Z ` c 0 , π mPMNBLÑ[FSF tan^ a + b h = 1 WF 2 cot^ a + b h tan x = 1 WFDPUZ= 3 tan^ a - b h = 1 2 PMNBLÑ[FSF UBO Y+Z JGBEFTJOJOEFôFSJOJCVMVOV[ cot^ a - b h cot y = 3 & tan y = 1  Ë[EFõMJLMFSJOEFOGBZEBMBOŽMŽS 3 1+1 tan x + tan y 23 tan ( x + y ) = = = 1PMVS 1 - tan x. tan y 11 1- · 23 ÖRNEK 13 ÖRNEK 17  UBO™WFDPU™ JGBEFMFSJOEFôFSMFSJOJCVMVOV[ 1 - tan x 1 + tan x tan 45° + tan 30° JGBEFTJOJOFöJUJOJCVMVOV[ tan ( 45°+ 30° ) = 1 =UBOšPMEVôVOEBO  1 - tan 45° . tan 30° tan 45° - tan x = tan^ 45° - x hPMVS 3 3+ 3 1 + tan 45° . tan x 1+ 3 3+ 3 3 == = 3 3- 3 3- 3 1 - 1· 3 3 1 3- 3 tan 75° = PMEVôVOEBO cot 75° = PMVS cot 75° 3+ 3 ÖRNEK 14 ÖRNEK 18 tan 20° + tan 25° tan2 20° - tan2 10° tan 20° . tan 25° - 1 1 - tan2 20° . tan2 10° JGBEFTJOJOEFôFSJOJCVMVOV[ JGBEFTJOJOFöJUJOJCVMVOV[ tan 20° + tan 25° ^ tan 20° - tan 10° h ^ tan 20° + tan 10° h - = - tan 45° = -PMVS = 1 - tan 20° . tan 25° ^ 1 + tan 20° . tan 10° h ^ 1 - tan 20° . tan 10° h = tan ( 20° - 10° ) . tan ( 20° + 10° ) = ( tan10°.tan30°) = 3 tan 10°PMVS 3 3+ 3 3- 3 14. –1 65 3 3 13. , 15. 16. 1 17. tan(45° – x) 18. tan 10° 33 3- 3 3+ 3

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 19 4E B ÖRNEK 21 ôFLJM Ë[EFõ LBSFMFS- xa y 3 EFOPMVõNVõUVS A 3 A xy m( % = a a ABC ) D4 7 3C B PMEVôVOBHÌSF  tana EFôFSJOJ CVMV- | | | |ôFLJMEF\"#$%EJLEËSUHFO  \"& =DN  #$ =DN C OV[ | |%$ =DNWFm ( % ) = aEŽS BEC :VLBSŽEBLJWFSJMFSFHÌSF UBOaEFôFSJOJCVMVOV[ a = x +ZPMEVôVOEBOUBOa = tan ( x +Z PMVS tan x + tan y 19 +2 a = x +ZPMEVôVOEBOtana = tan ( x + y ) = 1 - tan x. tan y tan x + tan y 4 49 4 7 tan ( x + y ) = 1 - tan x. tan y = == +1 1 12 1 - ·2 33 42 = = =-7 1 - 4 ·1 - 1 33 ÖRNEK 22 ôFLJMEFLJ0NFSLF[MJZBSŽN¿FNCFSJOZBSŽ¿BQŽDNEJS C D E 3 2 a 42 ÖRNEK 20 x 3 O y A 3B A \"#$EJLпHFO [#$]¿FNCFSF#OPLUBTŽOEBUFóFU m ( A%EB ) = a  a | |\"# =DN | | | |\"% =DN  #$ =DNEJS 3 | |#% =DN :VLBSŽEBLJWFSJMFSFHÌSF cotaEFôFSJOJCVMVOV[ | |%$ =DNWF ib % a + x + y = 180° j a = 180° - (x + y) D 2 C m ( DAC ) = a EŽS B4 1 cota = cot (180°- (x + y ) ) = -cot ( x + y ) = - tan^ x + y h :VLBSŽEBLJWFSJMFSFHÌSF DotaEFôFSJOJCVMVOV[. 31 1 tan x = = ve tan y = 62 22 a = i - b DPUa = cot ( a - b ) 1- 1 · 1 31 1 - tan x. tan y 2 22 tan i = ve tan b = dir. =- =- 42 cot^ i - b h = 1 1 + tan i. tan b tan x + tan y 1+ 1 = tan^ i - b h tan i - tan b 2 22 31 3 1 4 2-1 1+ . 1+ 1- 42 8 11 4 11 4 2 4 2 4 2-1 3-1 = = ·= = - = - = - PMVS 42 1 81 2 2+1 2+1 2 2+2 4 22 22 19. –7 11 66 9 4 2-1 20. 21. 22. 2 2 2+2 2

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 23 ÖRNEK 25 :FSEÐ[MFNJOFEJLPMBOEJSFóFJLJJQõFLJMEFLJHJCJ\"WF$ A G 2B \"#$%LBSF OPLUBMBSŽOBLB[ŽLMB¿BLŽMNŽõUŽS a [(&] a [#%] = {F} B 6 F6 | | | |#( = %& =DN ab a6 | |\"% =DNWF 5 % 2 m ( BFG ) = a A 3 D2 C xy 2C 2 D2 E 2 | |BD = 5 m  AD = 3 m  %$ N m ( A%BD) = a :VLBSŽEBLJWFSJMFSFHÌSF UBOaEFôFSJOJCVMVOV[ 22 % = b EŽS m ( DBC ) :VLBSŽEBLJWFSJMFSFHÌSF  tan ( a + b LBÀUŽS a = y - x j tana = tan ( y -Y PMVS tanx = 1 ve tany =PMEVôVOEBO tan y - tan x 3-1 2 1 tan ( y - x )= = = = PMVS tan a + tan b 1 + tan y. tan x 1 + 3.1 4 2 tan ( a + b ) = 1 - tan a. tan b 34 7 + 55 5 7 25 35 = = =· = 3 4 13 5 13 13 1- · 5 5 25 ÖRNEK 24 ÖRNEK 26 ôFLJMEFLJ\"WF#OPLUBMBSŽOEBOBZOBOŽO$WF%LËõFMF- 6ZHVOUBOŽNBSBMŽôŽOEB SJOF CBLBO JLJ LJõJOJO ZFS EÐ[MFNJZMF ZBQUŽóŽ B¿ŽMBS 9 WF tan f arcsin 3 + arccos 5 p :EJS 5 13 JGBEFTJOFZFFöJUUJS D C a 6 447a 448 6 4 447b 4 4 8 xy Yer 35 AB düzlemi tan (arcsin + arccos ) :VLBSŽEBLJWFSJMFSFHÌSF UBOaLBÀUŽS 5 13 3 33 arcsin = a & sin a = & tan a = PMVS 5 54 5 5 12 arccos = b & cos b = & tan b = 13 13 5 #VEVSVNEB a + x + y = 180° j a = 180°- (x + y) 3 + 12 tana = tan ( 180° - (x + y)) = -tan ( x + y ) tan^ a + b h = tan a + tan b = 4 5 63 =- 4 7 1– tan a. tan b 3 12 3 1- · 16 =- tan x + tan y 1+ 1 45 3 - - =- 3 =7 1 - tan x. tan y 4 1 - 1· 3 35 24. 7 67 1 - 63 23. 25. 26. 2 16 13

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 27 ÖRNEK 29 A :BOEBWFSJMFOõFLJMEF \"õBóŽEBLJõFLJMEFGVUCPMDV\"OPLUBTŽOEBO[#%]EVWBSŽ- 1 [\"#] m[#$] OBEPóSVUPQBWVSEVóVOEBUPQEPóSVTBMPMBSBL$OPLUB- [ FC ] a [\"%] = {&} TŽOBHJEJZPS5FLSBSBZOŽOPLUBEBOUPQBWVSEVóVOEBUPQ F CVTFGFSEPóSVTBMPMBSBL#OPLUBTŽOB¿BSQŽZPS E | |\"' =DN B ax x 5 7 | |z y 20 15 C B 3 D 3 C #' =DN y | | | |#% =DN m % a EŽS = %$ ( DEF ) = #VOBHÌSF UBOaEFôFSJOJCVMVOV[ a9 x =[-Z UBOY= tan ( 180° - a) = -tana, A 12 D 5 | | | | | |\"% =N  \"$ =N  \"# =NWF UBO[= 2 ve tany = PMEVôVOEBO 6 5 7 m( % = a EŽS 2- BAC ) tan x = tan^ z - y h = 6 6 73 7 :VLBSŽEBLJWFSJMFSFHÌSF tanaEFôFSJOJCVMVOV[ = =·= 5 8 6 8 16 1 + 2· 63 7 a = y - x j tana = tan ( y - x ) tan a = - tan x = - PMVS 16 43 tany = j tanx = 34 ÖRNEK 28 43 7 - ôFLJMEFCJSIFMJLPQUFSJOGBSŽOEBO¿ŽLBOŽõŽLMBSŽOBZEŽOMBU- 34 12 7 UŽóŽCËMHFWFSJMNJõUJS tan a = = = 43 2 A 1+ · 24 45° a 34 5 45° y ÖRNEK 30 D5 B xC #JS\"#$ÑÀHFOJOEF VZHVOBÀŽEFôFSMFSJJÀJO   UBO\"+UBO#+UBO$=UBO\"UBO#UBO$ | |'BSŽO ZFSEFO ZÐLTFLMJóJ \"% =  LN  m ( B%AD) = 45° FöJUMJôJOJOEPôSVPMEVôVOVHÌTUFSJOJ[ % tan a = 3 EJS tanA + tanB =UBO\"UBO#UBO$-UBO$ m ( BAC ) = aWF 5 tanA + tanB =UBO$ UBO\"UBO#- 1 ) | |:VLBSŽEBLJWFSJMFSFHÌSF  B$ GBSŽOBZEŽOMBUUŽôŽCÌM- tan A + tan B = tan C HFOJOV[VOMVôVOVCVMVOV[ tan A. tan B - 1 a = 45°-ZPMEVôVOEBOUBOa = tan(45° -Z PMVS -tan (A + B) =UBO$ \"+ B +$=šPMEVôVOEBO -tan (180° -$ =UBO$ tan45° = 1 ve tany = 5 ise UBO$=UBO$PMVS 5+x tan^ 45° - y h = tan 45° - tan y = x PMVS 1 + tan 45° . tan y 10 + x x3 = PMEVôVOEBOY=PMVS 10 + x 5 7 28. 15 68 7 27. - 29. 16 24

5PQMBN'BSL'PSNÑMMFSJ TEST - 26 1. sin 73° . cos 34° + sin 34° . cos 73° 5. cos55° . sin85° - cos35° . sin5° tan 107°  JöMFNJOJOTPO VDVLBÀUŽS ifadesinJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \" TJO™ # DPT™ $ TJO™ \" - 1  #  $  1  %  &  3 2 2 2  % DPT™ & DPU™ 6. TJOšOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS sin 3π cos π - sin π cos 3π 77 77 2. \"  2 - 6 #  2 - 6 cos 3π 2 4 C) 3 - 1 14 6- 2 &  6 - 2  4 JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  %  2 \" m #  tan 3π C) 1 14  % cot 3π  &  tan 2π 14 7 7. tan 73° - tan 28° 1 + cot 17° . cot 62° 3. cos 33° . cos 23° + sin 33° . sin 23° ifadesiniOFöJUJBöBôŽEBLJMFSE FOIBOHJTJEJS sin 100° . sin 70° - cos 100° . cos 70° JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  - 3  3 C) -1  %  #  - &  3 3 \" - # UBO™ $ UBO™  % DPU™ &  8. cos80° . cos50° + sin100° . cos40° 4. DPTšOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JöMFNJOJOTPOVDVLBÀUŽS \"  2 - 6 #  2 - 6 C) 3 - 1 \" - 1  # - 3 C) 0 2 4 2 2 6- 2 6- 2 3 &  1 %   &   %  2 2 4 2 1. D 2. $ 3. & 4. B 69 5. $ 6. & 7. D 8. D

TEST - 27 5PQMBN'BSL'PSNÑMMFSJ 1. UBOšOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 5. \"#$ÑÀHFOJOJOJÀBÀŽMBSŽOŽOÌMÀÑMFSJ\" # $PM- \" - 3  # + 3 C) 3 - 1 NBLÑ[FSF  sin ( B + C )  %  3 + & - 3 cos ( A + C ) - cos ( A ) . cos ( C ) JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \" -TFD $  # -DPTFD $ $ DPTFD $  % TFD( C )   & UBO( C ) 2. tan 52° + tan 8° 6. x - y =šPMNBLÑ[FSF tan 52° . tan 8° - 1 ( sinx +TJOZ 2 + ( cosx +DPTZ 2 JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSE FOIBOHJTJEJS \" - # - $  %  &  \"  – 3  # - 3 C) -1 3  %  3 &  3 3 7. YWFZEBSBÀŽPMNBLÑ[FSF cos 5π cos 3π - sin 5π sin 3π  UBOYUBOZ= 1 3. 88 88 sin 140° cos 130° + sin 130° cos 140°  PMEVôVOBHÌSF TJO Y+Z LBÀUŽS ifadesinin FöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  2 C) 3 %  1  &  #   22 2 \" - # - 1 C) 1  %  &  22 4. cos 67° - 3 . sin 67° 8. 1 - tan2 20° . tan2 10° cos 53° tan2 20° - tan2 10°  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS iöMFNJOJOTPOVDVLBÀUŽS \" - # - $  %  &  \"  3  #  3 . tan 10° C) 3 cot 10° %  3 . sin 10°   &  3 . cos 10° 1. A 2. A 3. D 4. A 70 5. B 6. D 7. A 8. $

5PQMBN'BSL'PSNÑMMFSJ TEST - 28 1. A 4. A B \"#$%EJLEËSUHFO x _ |&$| = 3|%&| DE |\"#| = 2| #$| B DC m ( A%EB ) = aEŽS C  \"#$CJSEJLпHFO [\"#] m [#$] m( % = x :VLBSŽEBLJ WFSJMFSF HÌSF  DPUa BöBôŽEBLJMFSEFO DAC ) IBOHJTJOFFöJUUJS | \"#| = | #%| = | |%$EŽS \"  1  #  1 C) 1  %  1  &  1 10 8 7 54  :VLBSŽEBLJWFSJMFSFHÌSF UBOYLBÀUŽS \"  1  #  1 C) 1  %  &  3 4 3 2 2 2. A \"#$CJSпHFO 5. A z m ( A%BC ) = x x m ( A%CB ) = y m ( B%AC ) = z B DC x y UBOZ= 4 || || % B C UBO[=UÐS \"#$FõL FOBSпH FO  #% = 2 %$ m ( DAC ) = x  :VLBSŽEBLJWFSJMFSFHÌSF UBOYBöBôŽEBLJMFSEFO UJS IBOHJTJEJS  :VLBSŽEBLJWFSJMFSFHÌSF UBOYLBÀUŽS \" - 7  # - 5 C) 5  %  7  &  \"  5 3  # 3 55 3 5 C) 11 11 11 11 3 33 35 %   &  5 5 3. D EC \"#$%LBSF Fx [\"$]LËõFHFO 6. D C \"#$%LBSF xE [\"$] a [#&] = { F } CE =3 |%&| = 3 |&$| EB % = x UJS % = x UJS m ( CFB ) m ( DEA ) AB AB :VLBSŽEBLJWFSJMFSFHÌSF UBOYLBÀUŽS \" - 3  # - 5  :VLBSŽEBLJWFSJMFSFHÌSF DPUYLBÀUŽS 5 3 C) -1 \" - 16  # - 13 C) 16  %  13  &   %  3  &  5 13 16 13 16 5 3 1. B 2. D 3. B 71 4. B 5. B 6. $

TEST - 29 5PQMBN'BSL'PSNÑMMFSJ 1. D C 4. y y= x 3 E F D C x x x O B A A BK | | | |\"#$%WF&',#CJSFSLBSF  \", = 3 #, WF ôFLJMEF EJL LPPSEJOBU TJTUFNJOEF \"#$% LBSFTJ WF m ( A%EK ) = x UJS y = x EPóSVTVWFSJMNJõUJS 3  :VLBSŽEBLJWFSJMFSFHÌSF UBOYLBÀUŽS m % = x PMEVôVOBHÌSF UBOYLBÀUŽS ( DOC ) \" - # -2 C) - 3  % - &  1 \"  1  #  2 C) 3  %  4  &  5 22 7 7 7 77 D C 5. D C GF F 2. x x B 2E AB E A4 | | | |\"#$%WF#&'(CJSFSLBSF  \"# =DN  #& =DN \" # &WF% ' &OPLUBMBSŽLFOEJBSBMBSŽOEBEPóSV- WFm^ \\FAC h = x PMEVôVOBHÌSF DPUYLBÀUŽS I I I ITBM \"#$%LBSF  #& = 2 \"# WFm(B%DE) = x UJS \"  1  #  1 C) 1 :VLBSŽEBLJWFSJMFSFHÌSF UBOYLBÀUŽS 4 2 \"  1  #  1 C) 1  %  4  &  %  &  5 3 25 3. cosf arcsinf - 3 p + arccosf 5 p p 6. a + i = π PMNBLÑ[FSF  5 13 2 cot a + cot i = 8 3 JGBEFTJOJOFöJUJLBÀUŽS \"  56  #  39 C) 66  %  1  &  1  PMEVôVOBHÌSF TJOa . siniÀBSQŽNŽLBÀUŽS 65 44 17 9 81 \"  1  #  3 C) 4  %  17  &  2 8 5 20 1. A 2. D 3. A 72 4. A 5. $ 6. B

5PQMBN'BSL'PSNÑMMFSJ TEST - 30 1. K = arcsin 1 + arccos 2 5. cosc x - π m 33 4 =2  PMEVôVOBHÌSF DPU,LBÀUŽS cosc x + π m 3 \"  3  #  2  $  %  1  &  1 4 22 23  PMEVôVOBHÌSF UBOYLBÀUŽS \" - 1  # - 1 C) 1  %  1  &  1 3 55 3 2 2. D EC \"#$%LBSF F a | |%& = 3| |&$ A B | |#' = 2| CF| 6. x = arctan f 3 pWFY+Z= 315° % 4 m ( EAF ) = a EŽS  PMEVôVOB HÌSF  Z BöBôŽEBLJMFSEFO IBOHJTJOF FöJUUJS \" arctan 4 # arctan 3 5 5 :VLBSŽEBLJWFSJMFSFHÌSF UBOaLBÀUŽS C) arctan f - 3 p % arctan f - 4 p 5 5 \"  1  #  7 C) 7  %  6  &  5 2 13 17 17 7 & BSDUBO -7 ) 3. cos^ x + y h = 1 WFcos^ x - y h = 1 7. tancarccos 4 + arcsin 1 m 32 55 PMEVôVOBHÌSF DPUYDPUZLBÀUŽS  JGBEFTJOJOEFôFSJLBÀUŽS \" - # - $  %  &  \"  #  $  %  &  4. x + y < π PMNBLÑ[FSF 8. DPU B- 15° ) =LPMNBLÐ[FSF  2 cos ( a +š OJOLUÑSÑOEFOFöJUJBöBôŽEBLJMFS- DPUY+DPUZ=WFTJOYTJOZ= 4 EFOIBOHJTJEJS 5 \") k - 1  #  2 k 1+2 k PMEVôVOBHÌSF tan ( x +Z LBÀUŽS k+1 C) \"  1  #  1 C) 3  %  &  4 %  k - 1  2 1 + k2 4 3 4 3 2 + 2k2 &  k 2 2 + 2k2 1. B 2. D 3. A 4. & 73 5. B 6. & 7. D 8. D

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÷,÷,\"5\"¦*'03.·--&3÷ %m/*m ÖRNEK 4 sin ( a + b ) = sina.cosb +DPTBTJOCFõJUMJóJOEF sin x + cos x = 1 CZFSJOFBZB[ŽMŽSTB 4 sin ( a + a ) = sina.cosa + cosa.sina sin2a =TJOBDPTBGPSNÐMÐFMEFFEJMJS PMEVôVOBHÌSF TJOYJGBEFTJOJOFöJUJOJCVMVOV[ ÖRNEK 1 &öJUMJôJOIFSJLJUBSBGŽOŽOLBSFTJOJBMBMŽN sin 50° JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ ^ sin x + cos x h2 = d 1 2 cos 25° 4 n sin2x + 2sinx . cosx + cos2x = 1 16 1 1 - 15 1 + sin 2x = j sin 2x = - 1 = PMVS 16 16 16 sin50° = 2sin25°.cos25° #VEVSVNEB  sin 50° 2 sin 25° . cos 25° = cos 25° cos 25° ÖRNEK 5 =TJOšPMVS π < x < π PMNBLÐ[FSF ÖRNEK 2 42 4. cos 80° . cos 10° . cos 340° sin2x - cos2x = 1 cos 50° 1 - sin 2x JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ PMEVôVOBHÌSF sinx +DPTYJGBEFTJOJOEFôFSJOJCV- MVOV[ cos80°= TJOš  DPTš = cos20° ve cos50°= sin40° PMEVôVOEBO sin2x - cos2x = 1 - sin 2x ^ sin x - cos x h^ sin x + cos x h = sin2x + cos2x - 2 sin x.cosx 6 4 4 44sin7204° 4 448 ^ sin x - cos x h^ sin x + cos x h = ^ sin x - cos x h2 2. 2. cos 10° . sin 10° . cos 20° 2. sin 20° . cos 20° ^ sin x - cos x h^ sin x + cos x h = sinx - cosx == sin 40° sin 40° π < x < π JÀJO|sinx - cosx| = sinx - cosx ve sin 40° 42 = = 1PMVS sinx-DPTYâPMBDBôŽOEBOTJOY+ cosx =PMVS sin 40° ÖRNEK 3 ÖRNEK 6 sin x. cos x. cos 2x = 1 sin 36° + cos 36° ifadesinin FöJUJOJCVMVOV[ 4 sin 12° cos 12° PMEVôVOBHÌSF TJOYJOEFôFSJOJCVMVOV[ &öJUMJôJOIFSJLJUBSBGŽOŽJMFÀBSQBMŽN sin 36° cos 36° sin 36° . cos 12° + cos 36° . sin 12° += 1 sin 12° cos 12° sin 12° . cos 12° 124s4in4x2. c4o4s4x3 · cos 2x = ·2 4 (cos 12° ) (sin 12° ) sin 2x sin 48° 2. sin 24° . cos 24° 1 == = 4 cos 24° sin 2x. cos 2x = jFöJUMJôJOIFSJLJUBSBGŽOŽJMFÀBSQBMŽN sin 24° sin 24° 2 1 22 2.sin2x.cos2x = ·2 & sin 4x = 1PMVS 2 1. 2sin25° 2. 1 3. 1 74 15 5. 1 6. 4cos24° 4. - 16

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 7 ÖRNEK 9 cos52° =YPMEVôVOBHÌSF cos4 20° - sin4 20° TJOšOJOYUÑSÑOEFOFöJUJOJCVMVOV[ sin 25° . cos 25° A cos52° = sin38° =YUJS JöMFNJOJOTPOVDVOVCVMVOV[. sin76° = 2.sin38° .cos38° 64 4 4 471 4 4 448 1 PMEVôVOEBO a cos220° - sin220° k(cos220° + sin220) x sin76°= 2.x. 1 - x2 PMVS = 38° 2 B 1 – x2 C sin 25° . cos 25° 2 cos 40° 2. cos 40° = 2 PMVS == sin 50° sin 50° 2 %m/*m ÖRNEK 10 cos ( a + b ) = cosa.cosb -TJOBTJOCGPSNÐMÐO- 1 - cos 20° EFCZFSJOFBZB[BSBL 1 + cos 20° cos2a = cos2 a - sin2 aGPSNÐMÐFMEFFEJMJS#V JGBEFTJOJOFOTBEFI»MJOJCVMVOV[ GPSNÐMEFDPT2 a + sin2 a =FõJUMJóJOEFOZBSBS- MBOBSBLDPT2 aZFSJOF- sin2 BWFTJO2 BZFSJ- 1 - a 1 - 2 2 10° k 2 2 OF- cos2 BZB[BSBL cos2a = 2cos2 a - 1WF cos2a = 1 - 2sin2 a GPSNÐMMFSJPMVõUVSVMVS sin 2 sin 10° tan = 2 = 2 = 10° PMVS 1 + 2 cos 10° - 1 2 cos 10° ÖRNEK 8 ÖRNEK 11 sin2 40° - cos2 40° sin10° = x ^ 2 cos2 20° - 1 h. sin 40° PMEVôVOBHÌSF sin2 šJGBEFTJOJOYUÑSÑOEFOFöJUJ- JöMFNJOJOTPOVDVOVCVMVOV[. OJCVMVOV[ sin240° - cos240° = -(cos240° - sin240°) = -cos80° sin10° = cos80°= 1 - 2sin240° = x 2cos220° - 1 =DPTšPMEVôVOEBO 1 - x = 2sin240° - cos 80° - 2. cos 80° == 1-x 2 cos 40° . sin 40° 2. sin 40° . cos 40° = sin PMVS 2 40° - 2 cos 80° = = - 2 cot 80°PMVS sin 80° 2 8. –2cot80° 75 9. 2 10. tan210° 1-x 11. 7. 2x 1 - x 2

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 12 ÖRNEK 13 0 < x < π PMNBLÑ[FSF 3cosx = 4sinx 2 PMEVôVOBHÌSF UBOYEFôFSJOJCVMVOV[ 1 + cos x 2 3cosx = 4sinx j sin x 3 = = PMVS cos x 4 sin x 2 PMEVôVOBHÌSF DPTYJOEFôFSJOJCVMVOV[ 2· 3 tan 2x = 2 tan x & tan 2x = 4 1 + 2 cos2 x - 1 2x x 1 - tan 2 1-d 3 2 2. cos 2 cos x n 2 22 = 4 x x= x x 2. sin · cos 2 sin · cos xx 66 2 sin · cos 22 22 4 4 6 16 24 22 tan 2x = = = · = PMVS 21 2 x 9 7 47 7 ·x = ise sin = 1EJS 1- 2 sin 2 2 16 16 2 cosx = 1 - 2sin2 x PMEVôVOEBO cosx = 1 - 2.12 = -PMVS 2 ÖRNEK 14 1 - tan210° = x 2 tan 10° PMEVôVOB HÌSF  UBOš OJO Y UÑSÑOEFO FöJUJOJ CVMV- OV[ %m/*m 2 tan 10° 1 1 - tan210° = x = tan 20°EJS tan^ a + b h = tan a + tan b 1 - tan a. tan b 2 2  GPSNÐMÐOEFCZFSJOFBZB[BSBL tan 2a = 2 tan a FMEFFEJMJS 2 tan 20° x x 2x 1 - tan2a = tan 40° = ==  #FO[FSõFLJMEF 2 1 x2 - 1 x2 - 1 cot^ a + b h = cot a. cot b - 1 1 - 20° 1- cot b + cot a tan  GPSNÐMÐOEFCZFSJOFBZB[BSBL 2 cot 2a = cot2a - 1 x 2x 2 cot a x  FMEFFEJMJS oMVS DPUBUBOB=PMEVóVOEBO ÖRNEK 15 cot 2a = 1 PMVS  DPUY-UBOY= 1 tan 2a 2 #V EVSVNEB  cot 2a = 1 - tan2 a  PMBSBL EB PMEVôVOBHÌSF UBOYEFôFSJOJCVMVOV[ 2 tan a cos x sin x cos2x - sin2x 1 IFTBQMBOBCJMJS = sin x - cos x = = sin x. cos x 2 cos 2x 11 = = 2 cot 2x = j cot2x = sin 2x 24 2 PMEVôVOEBOUBOY=PMVS 12. –1 76 24 2x 15. 4 13. 14. 7 x2 - 1

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 16 ÖRNEK 18 tanc x + π m = 2 \"õBóŽEBLJõFLJMEFFOÐTULBUŽZBONBLUBPMBONZÐL- 4 TFLMJóJOEFLJCJSCJOBZB JUGBJZFFSJZFSMFaEFSFDFMJLB¿Ž ZBQBDBLõFLJMEFZBOHŽONFSEJWFOJLPZVZPS PMEVôVOBHÌSF DPUYEFôFSJOJCVMVOV[ 2 tand x + π n π 4 2.2 tand 2x + n = = 2 π 2 1 - 2 d x + n 1-2 tan 4 ÷UGBJZFFSJ tand 2x + π n = - cot 2x = 4 4 j cot 2x = PMVS 2 -3 3 ÖRNEK 17 2a 4BIJM õFSJEJOJO \" WF # OPLUBMBSŽOEBO TŽSBTŽZMB TBIJMMF a ÷UGBJZF FSJOJO IŽ[Ž TBOJZFEF ZBSŽN NFUSF  tan a = 1 WFaEFSFDFB¿ŽZBQBSBLJLJUFLOFIBSFLFUFCBõMŽZPSWF 2 $OPLUBTŽOEBLBSõŽMBõŽZPSMBS PMNBLÑ[FSF JUGBJZFFSJOJOZBOHŽOZFSJOFLBÀTOTPn- C SBVMBöBDBôŽOŽCVMVOV[ A 2 tan a tan2a = 1 - tan2 a 200 1 160 2. 2a 24 B x = 120m C == 12 3 1-d n 2 Aa 2a B 160 4 PMEVôVOEBO tan2a = = ise x = 120 NPMVS TBIJMõFSJEJ x 3 120 - 160 - 200 Ì[FMÑÀHFOJOdeONFSEJWFOJOCPZVN EJSTBOJZFEF NZPMBMBOJUGBJZFFSJNZPMVTO EFBMŽS | |\"$ =LNWe tan a = 1 PMEVôVOBHÌSF CBöMBO- ÖRNEK 19 2 HŽÀUBJLJUFLOFBSBTŽV[BLMŽLLBÀLNEJS y :BOEBLJ õFLJMEF 0 NFS- C \"%$ÑÀHFOJ1JTBHPS LF[MJ¿FZSFLCJSJN¿FNCFS UFPSFNJOEFO a2 + 4a2= 25 B WF \"0# пHFOJ WFSJMNJõ- j 5a2 = 25 5 a= 5 UJS\"OPLUBTŽOEBCVMVOBO 2a j a = 5 PMVS a D xB A IBSFLFUMJ # OPLUBTŽOB A 2a _ EPóSV IBSFLFU FEFSLFO 1 O x õFLJMEFLJ HJCJ a EFSFDFMJL 2 tan a 2· 24 | |B¿Ž ZBQUŽóŽOB HËSF AB tan 2a = = = ve nin aUÑSÑOEFOFöJUJOJCVMVOV[ 2 1-d 1 2 3 1 - tan a n 2 54 O õFLJMEFLJHJCJ0\"#JLJ[LFOBS aa %$#ÑÀHFOJOEFO tan 2a = x = 1 22 a 3 ÑÀHFOJOEFO sin = x oM- AD 1 EVôVOEBO 2 B 35 | AB | = 2x = 2.sin a x = PMVS PMVS 2 4 #VEVSVNEB| AB | = 2 5 + 3 5 = 11 5 44 4 11 5 a 16. 17. 77 18. 400 19. 2 sin 2 3 4

TEST - 31 ÷LJ,BU\"ÀŽ'PSNÑMMFSJ 1. cos345° . sin165° 5. sin x - cos x = 2 JGBEFTJOJOFöJUJBöBôŽEBLJMFSE FOIBOHJTJEJS 3  PMEVôVOB HÌSF  TJOY JGBEFTJOJO FöJUJ BöBôŽ \"  1  #  1 C) 1  %  &  8 4 2 EBLJMFSEFOIBOHJTJEJS \"  2  #  4 C) 5  %  2  &  8 9 9 9 39 2. UBO ™ DPU ™ 6. 2cos2 105°  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJT JEJS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  1 - 3 #  1 + 3 2+ 3 2 2 C) \" - # - 2 2 C) -2 2  % - 2  & -1 2- 3 3- 2 %  &  2 2 3. sin 72° - cos 72° 7. 1 + cos 4x sin 24° cos 24° 1 - cos 4x JGBEFTJOJOFöJUJBöBôŽEBLJMFSE FOIBOHJTJEJS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOH JTJEJS \"  1  #  1  \" UBOY # DPUY $ UBO2 x 4 2 $  %  &   % UBO2 Y & DPU2 2x 4. DPU ™-UBO ™ 8. 1 + sin 2x  JGBEFTJOJOFöJUJBöBôŽEBLJMFSE FOIBOHJTJEJS sin x + cos x \" - # -2 C) - %  &   JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOhanHJTJEJS 1. B 2. B 3. D 4. B \"  # -1 C) sinx -DPTY % TJOY+ cosx   & DPTY- sinx 78 5. $ 6. D 7. & 8. D

÷LJ,BU\"ÀŽ'PSNÑMMFSJ TEST - 32 1. 8. sin 3x. cos 6x. cos 12x 5. cos12° =NPMEVôVOBHÌSF sin 24x sin 36° cos 12° + sin 12° cos 36° sin 12° cos 12° JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS JGBEFTJOJO N UÑSÑOEFO FöJUJ BöBôŽEBLJMFSEFO \" DPTY # DPUY $ UBOY IBOH JTJEJS  % TFDY & DPTFDY \" N2 - # -N2 C) 4 -N2  % N2 - & N 2. tan x = 1 6. UBO™= x 2  PMEVôVOB HÌSF  DPUš OJO Y UÑSÑOEFO FöJUJ  PMEVôVOB HÌSF  UBOY JGBEFTJOJO FöJUJ BöBôŽEB BöBô ŽEBLJMFSEFOIBOHJTJEJS LJMFSE FOIBOHJTJEJS #  x2 - 1 x \"  2  #  3  $  %  3  &  4 \"  x C) 2x 3 4 23 x2 - 1 x2 - 1  %  x2 - 1  &  1 - x2 2x 2x 7.  TFD™= x 3. tan 2x = 7  PMEVôVOBHÌSF DPTšOJOYUÑSÑOEFOFöJUJBöB ôŽEBLJMFSEFOIBOHJTJEJS 24 \"  x2 - 2 #  2 - x2 C) x2 - 2  PMEVôVOBHÌSF UBOYJGBEFTJOJOFöJUJBöBôŽEBLJ x x x2 MFSEFOIBOHJTJPMBCJMJS \"  1  #  1 C) 1  %  1  &  1  %  2 - x2 &  1 - x2 7 6 5 43 x2 x2 8. sin55° = x 3 cos 25° - sin 25° 3 ifadesi- 4. sin x - cosec x = 27  PMEVôVOB HÌSF  sin 110° cos x - sec x OJO Y UÑSÑOEFO FöJUJ BöBôŽEBLJMFSEen hanHJTJ-  PMEVôVOBHÌSF  tanx ifadesiOJOFöJUJBöBôŽEBLJ- MFSEFOIBOHJTJEJS EJS \" - 1  # - 1 C) - %  1  &  1 \" Y #  x 3 C) 1 93 39  %  x 2 x3 2 & x 1. D 2. & 3. A 4. D 79 5. D 6. D 7. $ 8. $

TEST - 33 ÷LJ,BU\"ÀŽ'PSNÑMMFSJ 1. ( sin2105° - cos2105°) . ( sin4105° - cos4105° ) 5. aEBSBÀŽPMNBLÑ[FSF ifaEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS x2 + ( sina + cosa ) x + sin 2a = 0 2 \" - 1  # - 3  $  %  1  &  3 44 44  EFOLMFNJOJOLÌLMFSJBWFCPMEVôVOBHÌSF  a2 +C2LBÀUŽS \"  #  $ - %  & -2 2. 2 - 4 sin2 2x + 2 sin 2x 6. aEBSB¿ŽPMNBLÐ[FSF SFFMTBZŽMBSEBUBOŽNMŽG B C  cos 4x. cos 2x + sin 2x. cos 2x GPOLTJZPOV JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS   G B C = a2+ b2 - 3ab \" UBOY # DPUY $ TFDY  % DPTFDY & TFDY  PMBSBLWFSJMJZPS  G TJOa DPTa) = 1 2  PMEVôVOBHÌSF TJOaLBÀUŽS \" - # - 1  $  %  1  &  3 3 3. sin π . cos π . cos π . cos π 7. 1 Y CJSQPMJOPN aEBSB¿ŽPMNBLÐ[FSF 16 16 8 4 P ( x ) = x2 - 3x + sin2 aQPMJOPNVUBOŽNMBOŽZPS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  1  #  1 C) 1  %  1  &  16 8 42 1 Y QPMJOPNVOVO Y+ cosa JMFCÌMÑNÑOEFO LBMBOPMEVôVOBHÌSF DPTaLBÀUŽS \" - 1  # - 1  $  %  1  &  1 12 9 9 12 4. cos3 x + sin3 x 8. 3 tanf 2. arcsin p sin 2x - 1 5 2  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \" -cosx -TJOY # DPTY- sinx JGBEFTJOJOEFôFSJLBÀUŽS C) sinx -DPTY % TJOY \"  7  #  5 C) 24  %  12  &  24 12 75   & TJOY+ cosx 1. & 2. & 3. B 4. A 80 5. A 6. D 7. B 8. $

÷LJ,BU\"ÀŽ'PSNÑMMFSJ TEST - 34 1. 10x =ÖPMNBLÑ[FSF 4. 1 + sin x + cos x sin 45° . 1 - sin 4x 1 + sin x - cos x sin x ifadesinin en sade I»MJ BöBôŽEBLJMFSEFO IBOHJ-  JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS TJEJS \"  1 cos x  # 1 sin x \" cot x  #  tan x C) sin x 22 22 2 2 2 C) 1 sec x  %  1 cosec x % cos x  & sec x 22 22 2 2   &  1 tan x 22 2. 5. A A a y 3 2a 2 C B x | | \"#$пHFOJOEF  #$ =DN BC | | | |ôFLJMEF\"#$JLJ[LFOBSпHFO  \"# = \"$  | |\"$ =DN m ( % ) = a WFm ( % ) = 2a EŽS BAC ABC %% 1 EJS :VLBSŽEBLJWFSJMFSFHÌSF DPTaLBÀUŽS m ( BAC ) = y m ( ABC ) = x WF tan y = 2 \"  4  $  3  %  3  &  1  :VLBSŽEBLJWFSJMFSFHÌSF  UBOYLBÀUŽS 3 #  4 23 \"  3  #  4 C) - 3  % - 4  & -1 4 3 43 C 6. A 3. 4 35 a D 2a A 11 B BD C | | | |\"# % | |\"#$пHFOJOEF [\"%]B¿ŽPSUBZ  \"# =DNWF =DN  $% =DN m ( CAD ) = a WF m ( C%BD ) = 2aEŽS | |\"$ =DNWFm ( % ) = a EŽS DAC | | #VOBHÌSF  DB LBÀDNEJS  :VLBSŽEBLJWFSJMFSFHÌSF UBOaLBÀUŽS \"  #  $  %  &  \"  1  # 1 C) 3  %  4  &  2 23 1. $ 2. D 3. B 81 4. A 5. $ 6. A

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr 53÷(0/0.&53÷,%&/,-&.-&3 DPTYB%FOLMFNJOJO¦Ì[ÑN,ÑNFTJ TJOYB%FOLMFNJOJO¦Ì[ÑN,ÑNFTJ %m/*m %m/*m -1 # a #PMNBLÐ[FSF DPTY=BEFOLMFNJ- -1 # a #PMNBLÐ[FSF TJOY=BEFOLMFNJ- nin [ Õ BSBMŽóŽOEBCJSLËLÐiJTFEFOLMFNJ- nin [ Õ BSBMŽóŽOEBCJSLËLÐiJTFEFOLMFNJ- OJO¿Ë[ÐNLÐNFTJ OJO¿Ë[ÐNLÐNFTJ |Ç = {x x = i +LÕWFZBY= -i +LÕ L` Z} |Ç = {x x = i +LÕWFZBY=Õ- i +LÕ L` Z}  PMVS PMVS sin sin 1 P' 1 P P –1 1 a i r–i cos O –i a 1 –1 cos ii O P' –1 –1 ÖRNEK 1 ÖRNEK 3 2 sin x = 1 cos x = 2 2 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ dFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ sin x = 1  EFOLMFNJOJO [  Ö  OEB CJS LÌLÑ π ise 26 cos x = 2 EFOLMFNJOJO[ Ö OEBCJSLÌLÑ π PM- EFOLMFNJOÀÌ[ÑNLÑNFTJ 24 Ç = ( x: x = π + 2πk veya x = π - π + 2πk , k ! Z 2 EVôVOEBO EFOLMFNJOÀÌ[ÑNLÑNFTJ 66 Ç = (x: π veya x = - π + 2πk , k ! Z 2 PMVS x = + 2πk 44 ÖRNEK 2 ÖRNEK 4 3 2 cos x = - sin x = - 2 2 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ cos x = - 3 EFOLMFNJOJO[ Ö OEBCJSLÌLÑ 5π PM- sin x = - 2 EFOLMFNJOJO[ Ö OEBCJSLÌLÑ 5π PMEV- 26 24 ôVOEBOEFOLMFNJOÀÌ[ÑNLÑNFTJ EVôVOEB EFOLMFNJOÀÌ[ÑNLÑNFTJ 5π x = π - 5π + 2πk , k ! Z 2 + 2πk 5π x = - 5π + 2πk, k ! Z 2 Ç = ( x: x= veya + 2πk 44 Ç = ( x: x = veya 66 PMVS PMVS ππ 5π - 5π + 2πk 82 π 5π 5π -π 1. + 2πk veya - + 2πk 2. + 2πk veya 3. + 2πk veya + 2πk 4. + 2πk veya + 2πk 66 6 64 4 44

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, UBOYB%FOLMFNJOJO¦Ì[ÑN,ÑNFTJ DPUYB%FOLMFNJOJO¦Ì[ÑN,ÑNFTJ %m/*m %m/*m a `3PMNBLÐ[FSF UBOY=BEFOLMFNJOJO a `3PMNBLÐ[FSF DPUY=BEFOLMFNJOJO  Õ  BSBMŽóŽOEBCJSLËLÐiJTFEFOLMFNJO¿Ë[ÐNLÐ- [ Õ BSBMŽóŽOEBCJSLËLÐi c i ≠ π mJTFEFOL- NFTJ 2 |Ç = {x x = i +LÕ L` Z }PMVS MFNJO¿Ë[ÐNLÐNFTJ |Ç = {x x = i +LÕ L` Z }PMVS sin 1 sin PK 1 aK r+i a cot P i cos –1 r+i –1 O 1 i O 1 cos P' P' –1 –1 tan ÖRNEK 5 ÖRNEK 7 3 cot x = 3 tan x = EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 3 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ cot x = 3 EFOLMFNJOJO[ Ö OEBCJSLÌLÑ π PMEV- tan x = 3 EFOLMFNJOJO[ Ö OEBCJSLÌLÑ π PMEV- 6 ôVOEBOEFOLMFNJOÀÌ[ÑNLÑNFTJ 36 Ç = ( x: x = π + πk , k ! Z 2PMVS ôVOEBOEFOLMFNJOÀÌ[ÑNLÑNFTJ Ç = ( x: x = π + πk , k ! Z 2PMVS 6 6 ÖRNEK 6 ÖRNEK 8 tan x = - 3 3 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ cot x = - tan x = - 3 EFOLMFNJOJO[ Ö OEBCJSLÌLÑ 2π 3 PM- EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 3 cot x = - 3 EFOLMFNJOJO[ Ö OEBCJSLÌLÑ 2π PM- EVôVOEBOEFOLMFNJOÀÌ[ÑNLÑNFTJ 33 Ç = ( x: x = 2π + πk , k ! Z 2PMVS EVôVOEBOEFOLMFNJOÀÌ[ÑNLÑNFTJ 3 Ç = ( x: x = 2π + πk , k ! Z 2PMVS 3 π 2π π 2π 5. + πk 6. + πk 83 7. + πk 8. + πk 63 63

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 9 ÖRNEK 12 sinc 4x + π m = sinc x - π m 0 #U#PMNBLÐ[FSF CJS¿FLJSHFQPQVMBTZPOVOEBU 63 IBGUBEBLJ¿FLJSHFTBZŽTŽ 1 U = 7500 + 3000 sin f πt pPMBSBLNPEFMMFONJõUJS EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 8 ππ ππ 4x + = x - + 2πk ya da 4x + = π - x + + 2πk #VOBHÌSF QPQVMBTZPOVOVOFOGB[MBOÑGVTBVMBöUŽ- 63 63 ôŽIBGUBZŽWFIBOHJUEFôFSMFSJJÀJOOÑGVTVOPM- EVôVOVCVMVOV[ ππ ππ 3x = - - + 2πk 5x = π + - + 2πk 63 36 π 7π a) 1PQVMBTZPOVONBLTJNVNOÑGVTBVMBöNBTŽJÀJO 3x = - + 2πk 5x = + 2πk sind πt n = 1PMNBMŽEŽS#VEVSVNEB 8 2 6 πt π π 2πk PMVS 7π 2πk PMVS = + 2πk PMBDBôŽOEBU= 4 +LPMVSL=JÀJO x =- + x= + 63 30 5 82 cevap t =IBGUBPMBSBLCVMVOVS ÖRNEK 10 C  + 3000 sind πt n = 9000 8 cosc 2x + π m = cosc x + π m 34 3000 sind πt n = 1500 8 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ sind πt n = 1500 = 1 = sind π nPMEVôVOEBO 8 3000 2 6 πt π πt 5π = + 2πk ya da = + 2πk PMVS ππ ππ 86 86 2x + = x + + 2πk ya da 2x + = - x - + 2πk 34 34 πt π 4 = + 2πk & t = + 16k k ! Z 86 3 ππ -π π x = - + 2πk 3x = - + 2πk 4 k =JÀJO t = ve 43 34 π 3 - 7π x = - + 2πk PMVS 3x = + 2πk 12 12 πt 5π 20  j = + 2πk & t = + 16k k ! Z 86 3 - 7π 2πk PMVS x= + 36 3 4 20 t = ve t = EFôFSMFSJJÀJOOÑGVTPMVS 33 ÖRNEK 11 ÖRNEK 13 cosc π - π m = sinc 2x - π m .BSNBSB %FOJ[JhOEF  PDBL HFDF ZBSŽTŽOEB CBõMBZBO 34 ËM¿ÐNMFSEF EFOJ[EFLJ EBMHBMBSŽO ZÐLTFLMJLMFSJ IFS TBBU EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ CBõŽ ËM¿ÐMNÐõUÐS  < U <  PMNBL Ð[FSF  EBMHB ZÐL- TFLMJóJh^ t h = 3 cosf πt p + 1 NFUSFPMBSBLNPEFMMFO- sinx = cos d π - x nPMEVôVJÀJO 62 2 NJõUJS cosd x - π n = cosd π - 2x + π nPMVS %BMHBZÑLTFLMJôJOJOFOGB[MBPMEVôVTBBUJCFMJSMFZJOJ[ 3 24 π 3π π - 3π %BMHB CPZVOVO FO ZÑLTFL PMNBTŽ JÀJO cosd πt n = 1 x - = - 2x + 2πk ya da x - = + 2x + 2πk 34 34 πt 6 3π π π 3π PMNBTŽHFSFLJS cosd n = cos 0°PMEVôVOEBO 3x = + + 2πk - x = - + 2πk 6 43 34 πt = 0 + 2πk & t = 12k k ! Z PMVS 3x = 13π + 2πk 5π - x = - + 2πk 6 12 12 0 < t <JÀJOL= 1 ve t =PMVS#VEVSVNEBHFDF 13π 2πk PMVS 5π ZBSŽTŽOEBOTBBUTPOSBÌôMFOEBFOZÑLTFLEBM- x= + x = - 2πk PMVS 36 3 HBÌMÀÑMÑS 36 9. - π /6 + 2πk/3, 7π /30 + 2πk/5 10. - π /12 + 2πk, - 7π /36 + 2πk/3 84 4 20 13. 12.00 11. 13π /36 + 2πk/3, 5π /36 - 2πk 12. IBGUB  ve hafta 33

www.aydinyayinlari.com.tr 53÷(0/0.&53÷ 5. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m  B C` R - {0}PMNBLÐ[FSF  asinx +CDPTY= cCJ¿JNJOEFLJEFOLMFNMFSF TJOYWFDPTYFHÌSFMJOFFS EPôSVTBM EFOLMFNEFOJS asinx + bcosx =D FõJUMJóJOIFSJLJUBSBGŽEBBJMFCËMÐOÐSTF sin x + b · cos x = c f b = tan a ve tan a = sin a p a aa cos a sin x + sin a · cos x = c cos a a cos a. sin x + sin a. cos x = c j sin^ x + a h = c · cos a cos a a a  EFOLMFNJOJO¿Ë[ÐMFCJMNFTJJ¿JO- 1 # c · cos a # 1PMNBMŽEŽS a - 1 # c · cos a # 1& 0 # c2 · cos2 a # 1 a a2 & c2 # a2 f 1 = 1 + tan2 a p cos2 a cos2 a j c2 # a2 . (1 +UBO2a) & c2 # a2·f 1 + b2 p a2 j c2 # a2 + b2FMEFFEJMJS  #VFõJUTJ[MJóJOTBóMBONBTŽEVSVNVOEBEFOLMFNJO¿Ë[ÐNLÐNFTJCVMVOBCJMJS\"LTJEVSVNEBEFOLMFNJO¿Ë[ÐN LÐNFTJqPMVS ÖRNEK 14 ÖRNEK 15 2 sin x - 3 cos x = A EFOLMFNJO¿Ë[ÐNLÐNFTJOJO 3 cos x + sin x = 1 i) #PöLÑNFPMNBTŽJÀJO\"OŽOBMBCJMFDFôJFOLÑ- EFOLMFNJOJO[ š]BSBMŽôŽOEBLJLÌLMFSJOJCVMVOV[ ÀÑLQP[JUJGUBNTBZŽLBÀPMNBMŽEŽS 3 = tan 60°PMNBLÑ[FSF ii) %FOLMFNJO ÀÌ[ÑN LÑNFTJOJO CPö LÑNF PMNB- tan60°.cosx + sinx = 1 NBTŽJÀJO\"OŽOEFôFSBSBMŽôŽOFPMNBMŽEŽS sin 60° i) c2> a2+C2 j¦,= q · cos x + sin x = 1FöJUMJôJDPTšJMFÀBSQBMŽN A2 > ^ 2 h2 + ^ - 3 h2 j A2 >PMEVôVOEBO ANJO= 3 cos 60° sin60°.cosx + sinx.cos60° = cos60° ii) c2ãB2+C2 sin(60° + x) = cos60° = sin30° A2ã^ 2 h2 + ^ - 3 h2 j A2ã 60°+ x = 30° + 360°k veya 60° + x = 150° + 360°k - 5 # A # 5 PMVS x = -30 + 360k veya x = 90° + 360k k =JÀJOY= 330° veya k =JÀJOšPMVS 14. J  JJ 7 - 5, 5 A 85 15. \\š š^

·/÷7&34÷5&:&)\";*3-*, 5. MODÜL 53÷(0/0.&53÷ www.aydinyayinlari.com.tr ÖRNEK 16 ÖRNEK 18 2 3 sin2x + 5 sin 2x = 3 3 x `  Ö PMNBLÑ[FSF  EFOLMFNJOEFUBOYEFôFSMFSJOJCVMVOV[ 3 sin x + 3 cos x = 0 EFOLMFNJOEFDPTYJOEFôFSJOJCVMVOV[ 2 3 2 + 10. sin x. cos x = 3 3 . 2 x + 3 2 sin x sin 3 cos x 0= 3 2 - 10. sin x. cos x + 3 2 sin x - 3 sin x 3 cos x 0 = ^ 3 sin x - cos x h.^ sin x - 3 3 cos x h 3 sin x = - 3 cos x j cos x = =- 3 3 3 sin x - cos x = 0 sin x - 3 3 . cos x = 0 2π 2π 1 j tanx = - 3 j tan x = tan j cos = - 3 sin x = cos x sin x = 3 3 cos x 3 32 1 tan x = 3 3 PMVS PMVS tan x = 3 ÖRNEK 17 ÖRNEK 19  Õ BSBMŽóŽOEBTJOY- 4cosx = 5 sinc 2x + π m + cosc 2x + π m = 0 EFOLMFNJOEFDPTYJOEFôFSJOJCVMVOV[ 33 45 4 EFOLMFNJOJO [  Ö] BSBMŽôŽOEB LBÀ UBOF LÌLÑ PMEV- sin x - cos x =  tan y = PMNBLÑ[FSF 33 3 ôVOVCVMVOV[ 5 - sind 2x + π n = cosd 2x + π n sinx - tany.cosx = 33 3 tand 2x + π n = - 1 3 sin y 5 sin x - cos y · cos x = 3 π 3π 2x + = + kπ 5 cos y. sin x - sin y. cos x = · cos y 34 3 x = 5π + kπ PMVQ[ Ö]BSBMŽôŽOEB ππ 24 2 sin(x - y) = 1 j x - y = & x = + y k =   JÀJOGBSLMŽEFôFSWBSEŽS 22 cos x = cosd π + y n = - sin y = - 4 PMVS 25 %m/*m  B C` R - {0}PMNBLÐ[FSF  asinx + bcosx =  CJ¿JNJOEFLJ EFOLMFNMFSF ÖRNEK 20 CJSJODJ EFSFDFEFO IPNPKFO USJHPOPNFUSJL EFOLMFNEFOJS 5cos2 x + 3cosx.sinx - 1 = 0 asinx + bcosx =EFOLMFNJOEFFõJUMJóJOIFSJLJ EFOLMFNJOEFUBOYEFôFSMFSJOJCVMVOV[ ZBOŽDPTYáPMNBLÐ[FSF DPTYFCËMÐOÐQ sin2x + cos2x =PMEVôVOEBO a· sin x + b· cos x = 0 5cos2x + 3sinx.cosx - sin2x - cos2x = 0 cos x cos x 4cos2x + 3sinx.cosx - sin2x = 0 (4cosx - sinx) (cosx + sinx) = 0  BUBOY+ b = 0 4cosx = sinx veya cosx = -sinx 4 = tanx veya tanx = -PMVS tan x = - b a  EFOLMFNJOFEËOÐõUÐSÐMFSFL¿Ë[ÐNZBQŽMŽS 1 4 86 1 19. 4 20. \\m ^ 16. ( , 3 3 2 17. - 18. - 2 3 5

5SJHPOPNFUSJL%FOLMFNMFS TEST - 35 1. DPU Y - 2 3 = 0 5. UBO ™- x) =DPU Y- 60° ) EFOLMFNJOJOFOLÑÀÑLQP[JUJGJLJLÌLÑOÑOUPQMB- EFOLMFNJOJOFOLÑÀÑLQP[JUJGLÌLÑLBÀEFSFDF- NŽLBÀEFSFDFEJS EJS \"  #  $  %  &  \"  #  $  %  &  2. cos ( 3x - 40° ) = cos ( 2x - 50° ) 6. 2cos6x = 3 EFOLMFNJOJOFOLÑÀÑLQP[JUJGLÌLÑLBÀEFSFDF- EFOLMFNJOJO  [  Ö]  BSBMŽôŽOEB LBÀ GBSLMŽ LÌLÑ EJS WBSEŽS \"  #  $  %  &  \"  #  $  %  &  3. cosc 2x - π m = sinc x + π m 7. sec 3x = 3 12 12 cosec 3x EFOLMFNJOJOFOLÑÀÑLQP[JUJGLÌLÑLBÀEFSFDF- EJS EFOLMFNJnin [ Ö]BSBMŽôŽOEBLJFOCÑZÑLLÌLÑ \"  #  $  %  &  LBÀEFSFDFEJS \"  #  $  %  &  4. sin 5x = 1 8. UBOYUBOY= 1 2  EFOLMFNJOJO[ š]BSBMŽôŽOEBLBÀGBSLMŽLÌ- EFOLMFNJOJO [ Ö] BSBMŽôŽOEBLBÀGBSLMŽLÌLÑ LÑWBSEŽS WBSEŽS \"  #  $  %  &  \"  #  $  %  &  1. D 2. B 3. B 4. & 87 5. & 6. $ 7. & 8. B

TEST - 36 5SJHPOPNFUSJL%FOLMFNMFS 1. sin2x - 3 sinx = 0 5. \"öBôŽEBLJMFSEFO IBOHJTJ DPTY + 3cosx = 1 EFOLMFNJOJO[ Ö]BSBMŽôŽOEBLBÀGBSLMŽLÌLÑ EFOLMFNJOJOLÌLMFSJOEFOCJSJEJS WBSEŽS \" ™ #  ™ $ ™ % ™ & ™ \"  #  $  %  &  2. UBOY+DPU π = 0 6. \"öBôŽEBLJMFSEFOIBOHJTJ 12 cos2 x + sinx = sin2 x + cosx EFOLMFNJOJOLÌLMFSJOEFOCJSJEJS  EFOLMFNJnin [ Ö]BSBMŽô ŽOEBLBÀGBSLMŽLÌLÑ \" ™ #  ™ $ ™ % ™ & ™ WBSEŽS \"  #  $  %  &  3. \"öBôŽEBLJMFSEFOIBOHJTJ 7. sin3x + cos3x = 2   UBO2 x - ^ 3 + 1 hUBOY+ 3 = 0 1 - sin x cos x  EFOLMFNJOJOLÌLMFSJOEFOCJSJ EFôJMEJS  EFOLMFNJOJO [ Ö]BSBMŽôŽOEBLBÀGBSLMŽLÌLÑ \" ™ # ™ $ ™ % ™ & ™ WBSEŽS \"  #  $  %  &  8. #JMHJ cosx -DPTZ= -2sin ^x+yh ^x+yh · sin 4. DPU2 x -DPUY+ 5 = 0 22  EFOLMFNJOJO[ Ö]BSBMŽô ŽOEBLBÀGBSLMŽLÌLÑ  PMBSBLCVMVOVS WBSEŽS cos6x - sin5x = cos4x \"  #  $  %  &  EFOLMFNJOJO[ Ö]BSBMŽô ŽOEBLBÀGBSLMŽLÌLÑ WBSEŽS \"  #  $  %  &  1. D 2. & 3. $ 4. $ 88 5. D 6. D 7. A 8. &

5SJHPOPNFUSJL%FOLMFNMFS TEST - 37 1. sin10x . cos6x = sin6x . cos10x 5. 4 cos2 x - ^ 2 2 + 2 hcos x + 2 = 0 EFOLMFNJOJOFOLÑÀÑLQP[JUJGLÌLÑLBÀEFSFDF- EFOLMFNJOJOFOLÑÀÑLQP[JUJGJLJLÌLÑOÑOUPQMB- EJS NŽLBÀEFSFD FE JS \"  #   $  %  &  \"  #  $  %  &  2. cos x + 3 1 cos x + cos y sin x = 33 6. = 1 EFOLMFNJOJ TBôMBZBO FO LÑÀÑL QP[JUJG Y BÀŽTŽ sin x + sin y LBÀEFSFDFEJS FöJUMJôJOEFY ZUPQMBNŽOŽOFOLÑÀÑLQP[JUJGEF- ôFSJLBÀEFSFDFEJS \"  #  $  %  &  \"  #  $  %  &  3. cos4x + 2sin2 2x - sinx = 0 7. x ` [š š]PMNBLÑ[FSF  EFOLMFNJOJO LÌLMFSJOEFO CJSJ BöBôŽEBLJMFSEFO 2sin2 x - 3sinx + 1 = 0 IBOHJTJEJS EFOLMFN JOJO LÌLMFS UPQMBNŽ BöBôŽEBLJMFSEFO \" ™ # ™ $ ™ % ™ & ™ IBOHJTJEJS \" ™ # ™ $ ™ % ™ & ™ 8. #JMHJ sinx +TJOZ= 2sin ^x+yh · cos ^x-yh 22 PMBSBLCVMVOVS 4. 8sinx + 6cosx - 10 = 0 0 # x <šPMNBLÑ[FSF  PMEVôVOBHÌSF TJOYBöBôŽEBLJMFSEFOIBOHJTJ- sin6x + sin5x + sin4x = 0 EJS PMEVôVOBHÌSF YJOBMBCJMFDFôJLBÀGBSLMŽEFôFS \"  2  #  3 C) 3  %  4  &  5 WBSEŽS 3 4 5 5 12 \"  #  $  %  &  1. D 2. & 3. & 4. D 89 5. A 6. & 7. D 8. &

TEST - 38 5SJHPOPNFUSJL%FOLMFNMFS 1. cos ( x + 45° ) = sinx . cos30° + cosx . sin30° 5. sin 8x = 2  FöJUMJô JOJTBôMBZBOFOLÑÀÑLQP[JUJGYBÀŽTŽLBÀ 3 EFS FDFEJS \"   #   $  %   &    EFOLMFNJOJO[ Ö]BSBMŽôŽOEBLBÀGBSLMŽLÌLÑ WBSEŽS \"  #  $  %  &  2. sin3 x - 1 sin x = 0 6. sin2x - cos2x = 0 16  EFOLMFNJOJOFOLÑÀÑLQP[JUJGLÌLÑLBÀEFSFDF- EJS  EFOLMFNJOJO  [  Ö]  BSBMŽô ŽOEB LBÀ LÌLÑ WBS- \"  #   $  %  &   EŽS \"  #  $  %  &  3. sin x + 3 cos x = 2  EFOLMFNJOJO  [  Ö   BSBMŽôŽOEBLJ LÌLMFSJ UPQ 7. sinx - 2cosx = 0 MBNŽLBÀUŽS EFOLMFNJOJO [  Ö] BSBMŽôŽOEB LBÀ GBSLMŽ LÌLÑ \"  5π  #  23π 5π WBSEŽS 12 12 C) 3  % Ö &  7π \"  #  $  %  &  3 4. cos2x - cosx + 1 = 0  EFOLMFNJOJO[  Ö BSBMŽô ŽOE BLJLÌLMFSJUPQMBNŽ 8. 2sin2 x + sin2x - cos2x = 0 LBÀUŽS EFOLMFNJJÀJOUBOYEFôFSMFSJOJOÀBSQŽNŽLBÀUŽS \"  π  #  π C) 5π  % Õ &  2π \" - # - 1 C) 1  %  &  3 2 6 3 33 1. A 2. D 3. & 4. $ 90 5. & 6. B 7. $ 8. B

Trigonometri KARMA TEST - 1 1. sin x 5. sin8° = x 1 + cos x  PMEVôVOBHÌSF DPT2 šBöBôŽEBLJMFSEFOIBO-  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS HJTJEJS \" cos x  # sin x C) tan x \"  1- x  #  x + 1 C) x + 1 2 2 2 2 2 2 % sec x  & cosec x % Y &  x 2 2 2 2. x ! d 0 , π nPMNBLÑ[FSF 6. π < x < 3π PMNBLÑ[FSF  2 2 1 + cos x . 1– cos x  BöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS \" TJOY # DPTY $ -cosx sin x – cos x = - 5  % -TJOY &  2 25 PMEVôVOBHÌSF DPUYLBÀUŽS \"  3  #  1 C) 1  %  2  &  1 7. \"#$%ZBNVóVOEB[%$] // [\"#] m ( % ) = a 4 2 3 75 BCD I I I I I I%$ =DN \"# =DN  #$ =DN  I I\"% =DNEJS #VOBHÌSF  cosa kBÀUŽS 3. \"#$пHFOJOEFC=DN B= 4 3 cmWF \"  2  #  3 C) 3  % - 2  & - 3 3 4 5 34 \" \"#$ =DN2EJS  #VOBHÌSF \"#$ÑÀHFOJOEF \"$#BÀŽTŽOŽOÌMÀÑ- 8. 0 # x <ÖPMNBLÑ[FSF  TÑLBÀEFSFDFPMBCJMJS 1 - 4cos2 2x = 0 \"  #  $  %  &   EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO 4. tan x = 2 IBOHJTJEJS 2 \") * π , π , 5π 4 # * π , π , 2π 4 PMEVôVOBHÌSF UBO 45 +Y LBÀUŽS 63 6 63 3 \" - 1  # - 1 C) 3  %  4  &  5 C) ( π , π , π 2 % * π , π , 2π , 5π 4 2 77 5 4 6 43 63 3 6 & * π , 5π , 5π 4 66 3 1. $ 2. A 3. $ 4. B 91 5. A 6. D 7. & 8. D

KARMA TEST - 2 5SJHPOPNFUSJ 1. tan x = 1 PMEVôVOBHÌSF 4. G Y Z = x4 - y4WFH Y = 2x2PMEVôVOBHÌSF 2 G DPTa TJOa ) +H TJOa ) cosc π + x m. cosc π - x m  UPQMBNŽOŽOEFôFSJLBÀUŽS 66 \" TJOa  # DPTa C) 2cos2a  ÀBSQŽNŽOŽOEFôFSJLBÀUŽS \"  #  1 C) 11  %  &  11  %  &  2 20 10 5. ( 1 + cos15° + sin15° ) . ( sin15° - 1 + cos15° ) 2. i = π PMEVôVOBHÌSF   JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 7 \"  #  1 3 DPT Õ+ 4i ) -DPT Õ+ 3i ) 2 C) 4 JGBEFTJOJOFöJUJLBÀUŽS  %  2 3 &  3 3 2 \" m # - 1  $  3 2 %   &  2 6. E F ôFLJMEFLJLÐQUF K 3. C D m ( D%AK ) = a C F % 2 m ( AKC ) = b DE G 1 H A6 B AB | | | | | | | |\"#$CJSпHFO  CF = '& = &#  \"% =DN :VLBSŽEBLJ WFSJMFSF HÌSF  TJOa + cosb UPQMBNŽ LBÀUŽS | | | |$% =DN m % =DN  \"# ( FDE ) = a \"  2 + 6 2+ 3 6 3 #  C) :VLBSŽEBLJWFSJMFSFHÌSF tanaLBÀUŽS 3 3 \"  1  #  1 C) 1  %  &  3 2 4 3 2 %   &  3 3 1. $ 2. $ 3. $ 92 4. D 5. B 6. D

5SJHPOPNFUSJ KARMA TEST - 3 1. 4 cos2 a - 2 sin2 a - 2 5. #JSCJSJOFFõJUWFEŽõUBOUFóFU¿FNCFSJOPMVõUVS- 8 cos2 a - sin2 a - 5 EVóVEBJSFTFMCJS[JODJS õFLJMEFHËSÐMEÐóÐHJCJZBSŽ- ¿BQŽCSPMBOCJS¿FNCFSFEŽõUBOUFóFUUJS JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  4  #  3 C) 2  %  1  &  1 5 4 3 23 2. sin^330° – xh + sin^330° + xh + sin x  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS #VOBHÌSF LÑÀÑLÀFNCFSMFSEFOCJSJOJOZBSŽÀB- QŽBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS \" DPTY # TJOY $ DPTY \"  2 5   % m & TJOYmDPTY 5+1 #  sin 10° 1- 2 sin 10° C) cos 20° %  cos 10° 1- cos 10° 1- cos 10° 3. A   &  2 sin 10° 1- sin 10° 45° 6 4 B DC I I I I I I\"#$пHFO  #% = 2 %$  \"# = 6 br 6. y I I\"$ =CS m ( B%AD ) = 45° m ( % ) = aEŽS E DAC A :VLBSŽEBLJWFSJMFSFHÌSF sinaLBÀUŽS B \"  3  #) 3 2 33 x 8 8 C) O CD   %  3  8 4 & 3 5 ôFLJMEFLJ EJL LPPSEJOBU TJTUFNJOEF WFSJMFO  0 NFS- 8 LF[MJCSZBSŽ¿BQMŽ¿FZSFL¿FNCFSEF[\"$] m [0%]  % = a EŽS m ( AOD ) 4. \"#$ÑÀHFOJOJOLFOBSMBSŽB C DPMNBLÑ[FSF I I#VOB HÌSF AB BöBôŽEBLJMFSEFO IBOHJsine a2 + b2 + c2 = 14a + 16b + 10c - 138 FöJUUJS  PMEVôVOBHÌSF m (WA)LBÀEFSFDFEJS \"  - cosa  #  TJOa - cosa + 1 ) \"  #  $  %  &  C) 3 ( sina + cosam  %  TJOa + 1)  &  TJOa + cosa + 1 ) 1. $ 2. & 3. B 93 4. D 5. & 6. $

KARMA TEST - 4 Trigonometri 1. 0 # x #ÖPMNBLÑ[FSF 4. arccosf 1 p = arc cotf 12 - 4x p x2 + 1 9 cos x + 2 sin π 6 =1 FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS cos 5π - sin 3π \"  3  #  $  %  7  &  32 2 2  PMEVôVOBHÌSF YLBÀUŽS \"  π  #  π C) 5π  %  2π  &  5π 6 3 12 3 6 2. C 5. %JLLPPSEJOBUTJTUFNJOEFWFSJMFOBõBóŽEBLJHSBGJL y  Z= a +CTJO DY GPOLTJZPOVOBBJUUJS x Dy AB 2 \"#%$EËSUHFOJOEF [\"$] m [$%] [$%] m [%#] O Õx –2 % (BCD) I I[$#] m[\"#] m = a  \"$ =YCS   #VOBHÌSF B+C+DUPQMBNŽLBÀUŽS I I$% =ZCSEJS \"  #  $  %  &   #VOBHÌSF ZOJOYWFa DJOTJOEFOFöJUJBöB- ôŽEBLJMFSEFOIBOHJTJEJS \" YTJOa # YDPTa $ YUBOa & x sin 2a  % YTJOa 2 6. E 3. A O A 20 B 4C D x O F B x ôFLJMEFLJ0NFSLF[MJ¿FNCFSEF [&'] m [\"%]  C % ADF I I'UFóFUOPLUBTŽ m =DN  % ( ) = x  \"0 BAC 0NFSLF[MJ¿FNCFSJOZBSŽ¿BQŽDN  m ( ) = A I I#$ = 4 cNEJS 3  #VOBHÌSF UBOYLBÀUŽS sin 2A = EJS 2 I I#VOBHÌSF  #$ =YLBÀDNEJS \"  4  #  5  $  %  7  &  3 3 3 \"  #  $  %  &  1. B 2. & 3. $ 94 4. A 5. A 6. A

Trigonometri KARMA TEST - 5 1. 1 - 1 = 2 2 4. a + i = π PMNBLÑ[FSF sin a cos a 17 denkMFNJOJO  Ö BSBMŽôŽOEBLBÀLÌLÑWBSEŽS cos^ 23a - 8i h + cos^ 25i - 6a h \"  #  $  %  &   UPQMBNŽOŽOTPOVDVLBÀUŽS \" sin π  # cos 2π C) 1 17 17 %  & cot π 17 J 11π . cos 7π N–1 K cos O K 12 12 O 2. arcsinf a + 1 p = arccosc a m 5. K O cos π . sin 3π a+2 a+2 K O K O L 8 8P  EFOLMFNJOJ TBôMBZBO B EFôFSMFSJOJO UPQMBNŽ LBÀUŽS JöMFNJOJOTPOVDVLBÀUŽS \"  #  $  %  &  \") 2 + 2 #  2 C) 2+2 &  6 3  %  2 + 3  3 2 3. A 6. A 12 8 BC D B 12 D C \"#%CJSпHFO m ( % ) = a WFUBOa = 2 CAD I I I I I I\"% = $% = 2 #$ EJS I I I I\"#$CJSпHFO [\"#] m [\"$]  \"# = #% =DN  II % % m ( BAC ) = i PMNBL Ñ[FSF  ZVLBSŽEBLJ WFSJMFSe \"$ =DNWFm ( CAD ) = aEŽS  :VLBSŽEBLJWFSJMFSFHÌSF UBOaLBÀUŽS HÌSF taniLBÀUŽS \"  #  2 C) 1  %  2  &  1 \"  3  #  2 C) 1  %  &  4 3 2 53 4 3 2 3 1. B 2. $ 3. D 95 4. D 5. A 6. B

KARMA TEST - 6 Trigonometri 1. 0 < x <PMNBLÑ[FSF 4. 0 < x < π PMEVôVOBHÌSF  cos2 ( 2x ) = -1 + sin2x 4  FöJUMJôJOJTBôMBZBOYBÀŽTŽLBÀEFSFDFEJS 1 + sin 2x + 1 - sin 2x \"  #  $  %  &   JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS \" TJOY+DPTY #  TJOY- cosx ) $ DPTY % DPTY  & TJOY 2. #JMHJ sina + sinb = 2.sin ^a+bh . cos ^a-bh 5. 0 # x #ÖPMNBLÑ[FSF 22 2cos2 x + cosx - 1 = 0 cos10° =YPMEVôVOBHÌSF  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS sin10° + sin50°  UPQMBNŽOŽO Y UÑSÑOEFO EFôFSJ BöBôŽEBLJMFSEFO \" ( π , π 2 # * π , 2π 4 3 33 IBOHJTJEJS \" Y2 - # - 2x2 C) x2 - 1 C) * π , π , 11π 4 % * π , π , 5π 4 2 66 33   % 1 - x2  & Y & * π , π , 5π 4 2 36 3 6. A 8 B 2 3. A \"#$CJSпHFO L K x | \"#| = 4 br 4 6 | \"$| = 6 br DC 4 a m % = a \"#$%EJLEËSUHFO [\"$] a [%,] = { L } C ( ACB ) 2a B % | | | | | |\"# =CS br m % m (ABC ) = 2a #, =CS  KC = 4 ( KLC ) = x :VLBSŽEBLJ WFSJMFSF HÌSF  DPTa ifadesinin de-  :VLBSŽEBLJWFSJMFSFHÌSF  cos 2x - 1 + sin 2x ifa- 1 - tan x ôFSJLBÀUŽS EFTJOJOEFôFSJLBÀUŽS \"  1  #  3 C) 1  %  3  &  7 \"  2  #  1 C) 2  %  3  &  4 4 8 8 16 16 55 5 55 1. $ 2. A 3. $ 96 4. D 5. D 6. &

Trigonometri KARMA TEST - 7 1. 16sinx = a 4. sin2c π + 2a m = 1- sin2c 3a + π m 8cos x 16 8 FöJUMJôJOJTBôMBZBOLBÀBEPôBMTBZŽTŽWBSEŽS  EFOLMFNJOJO  Ö BSBMŽôŽOEBLJFOLÑÀÑLLÌLÑ \"  #  $  %  &  BöBôŽEBLJMFSEFOIBOHJTJEJS \"  23π  #  21π C) 7π  %  π  &  π 16 80 16 16 32 2. sin2 x - 5sinxcosx + 2 = 0  PMEVôVOBHÌSF  UBOY JO EFôFSJ BöBôŽEBLJMFSEFO 5. #JS\"#$пHFOJOEFB C DLFOBSV[VOMVLMBSŽWF IBOHJTJPMBCJMJS \" # $J¿B¿ŽMBSŽOŽOËM¿ÐMFSJPMNBLÐ[FSF \"  1  #  2 C) 3  %  &  5 a + b =DNWFsin A + sin B = 2 EJS 3 3 4 2 3  #VOB HÌSF  \"#$ ÑÀHFOJOJO ÀFWSFM ÀFNCFSJOJO ÀBQŽLBÀDNEJS \"  #  $  %  &  3. O C D 3 K 6. x = Arc sinf - 2 p  Z= Arc sinf 1 p  A4 x2 34 B ôFLJMEFLJ 0 NFSLF[MJ ¿FNCFSJO [%$] ¿BQŽ \"#$% [= Arc cosf 1 p  u = Arc cosf - 1 p 42 | | | |QBSBMFMLFOBSŽOLFOBSŽ  \"% = 3CS  \"# = 4 br  | |#, =CSWFm ( % ) = x UJS  TBZŽMBSŽOŽO CÑZÑLUFO LÑÀÑôF EPôSV TŽSBMBOŽöŽ ABC BöBôŽEBLJMFSEFOIBOHJTJEJS  #VOBHÌSF UBOYLBÀUŽS \" V>[>Z>Y # V>Z>[> x \" - 15  # - 11 C) - 3 C) x >Z>[>V % Y>[>Z> x  %  3  &  15  & [>Z> x > u 1. & 2. B 3. D 97 4. D 5. & 6. A

KARMA TEST - 8 Trigonometri 1. sin^ 2i + 60° h = 1 4. 1 + sin 2x = cos 2x 3 sin i + 3 cos i 2 3  FöJUMJôJOJ TBôMBZBO   Ö   BSBMŽôŽOEBLJ FO LÑ- FöJUMJôJOJ TBôMBZBO FO LÑÀÑL QP[JUJG i BÀŽTŽ LBÀ ÀÑLYBÀŽTŽLBÀSBEZBOEŽS EFSFDFEJS \"  π  #  π C) π  %  3π  & Õ \"  #  $  %  &  4 3 24 2. x ! ^ –2π, 2π h, sin 3x = 1 5. cot x - 3 = 2 6 3 cot x - 1 3  PMEVôVOB HÌSF  EFOLMFNJO ÀÌ[ÑN LÑNFTJ LBÀ EFOLMFNJOJO š  š  BSBMŽôŽOEBLJ LÌLMFSJOJO FMFNBOMŽEŽS topMBNŽLBÀEFSFDFEJS \"  #  $  %  &  \"  #  $  %  &  H G C 3. 6. D C D E x F 6 45 A8 B AB ôFLJMEFLJEJLEËSUHFOMFSQSJ[NBTŽOEB  ôFLJMEFLJ\"#$пHFOJOEF%J¿UFóFU¿FNCFSJONFS- | | | | | |&\" = 4 5 DN  \"# =DN  $# =DN   % 4 % ACB ADB % LF[J m ( ) = C  sin C = m ( ) = x UJS HCA m ( ) = a EŽS 5  #VOBHÌSF DPTaLBÀUŽS  #VOBHÌSF UBOYLBÀUŽS \"  8  #  8 C) 15  %  7  &  24 \" m # - 1 C) - 1  %  1  &  15 17 17 25 25 2 32 1. B 2. B 3. A 98 4. D 5. & 6. A


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook