Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore TYT AYT Geometri Ders İşleyiş Modülleri 3. Modül Çokgenler ve Dörtgenler

TYT AYT Geometri Ders İşleyiş Modülleri 3. Modül Çokgenler ve Dörtgenler

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-21 02:12:53

Description: TYT AYT Geometri Ders İşleyiş Modülleri 3. Modül Çokgenler ve Dörtgenler

Search

Read the Text Version

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 4 \"#$%FõLFOBSEËSUHFO ÖRNEK 6 \"#$%FõLFOBSEËSUHFO D |AK| = |BK| B |CE| = |ED| | |AB =CS | |OE =CS A5 E5 | |C x | |OA =CS 13 K k F AC =CS A 12 O 12 C 2k 10 10 xE 10 D B | |:VLBSŽEBLJWFSJMFSFHÌSF  BD LBÀCJSJNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  #' LBÀCJSJNEJS \"&#ÑÀHFOJOEF1JTBHPSUFPSFNJOEFO \"#$%FöLFOBSEÌSUHFOPMEVôVOEBOm ( % = 90° EJS COD ) | BE |2 +2 = 132 j |BE| = 12 $0%ÑÀHFOJOEFNVöUFöFNÑÀMÑEFO 'BôŽSMŽLNFSLF[J  3k = 12 j k = 4 |$%| =CSEJS |#'| =CSCVMVOVS 0IBMEF$0%ÑÀHFOJOEF1JTBHPSUFPSFNJOEFO Y2 + 122 = 202 Y2 =jY=CS |BD| =Y=CSCVMVOVS ÖRNEK 5 D \"#$%FõLFOBSEËSUHFO ÖRNEK 7 \"#$%FõLFOBSEËSUHFO A 2k |BE| = |EC| B |BF| = |FG| F |CF| = |FD| |AE| = |DE| 4k 2k | |GA =CS K 6F | |C AC =CS 12 8 | |BD =CS B GK A G 12 3k E E C D | |:VLBSŽEBLJWFSJMFSFHÌSF  GE LBÀCJSJNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS \"#LFOBSŽOBQBSBMFMPMBDBLöFLJMEF[EK]EPôSVQBSÀBTŽ- \"# LFOBSŽOŽO PSUB OPLUBTŽ PMBDBL öFLJMEF , OPLUBTŽOŽ OŽÀJ[FMJN BMBMŽN,'PSUBUBCBOPMEVôVOEBO|,'| =CSWF |KE| =CSPMVS[,'] // [\"$]WF[KE] // [BD]PMEVôVOEBO &,PSUBUBCBOPMEVôVOEBO|$'| = 2 |EK|PMVS m ( F%KE ) = 90°PMVS GB k = |&'|2 =2+2 12 4k |&'| =CSCVMVOVS #FO[FSMJLUFO|GE| =CSPMVS 4.  3 49 32 7. 10

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr &öLFOBS%ÌSUHFOEF¦FWSFWF\"MBO ÖRNEK 9 D \"#$%FõLFOBSEËSUHFO %m/*m A | |AH =CS AB 4 | |BH =CS H a :VLBSŽEBLJ WFSJMFSF E 5 HÌSF  \" \"#$%  LBÀ BC CJSJNLBSFEJS DH C  \"#$%FõLFOBSEËSUHFO [AH] m [DC]JTF \"&#ÑÀHFOJOEFÌLMJUEF r¥FWSF \"#$% =B |)&|2 = | |r A ( ABCD ) =B AH |)&| = 2 5 \" \"#$% = 9.2 5 5 2 CVMVOVS ·4 = 36 2 br r A ( ABCD ) = a2 sin ( % ) ADC AC . BD ÖRNEK 10 r A (ABCD) = 2 A B \"#$%FõLFOBSEËSUHFO 6 [AC] a [BD] = {E} E [ AC ] a [ BF ] = { G } ÖRNEK 8 2 |DF| = |FC| x5 | |AC =CS A B G4 & 15 10 A^ EFG h =CS2 D FC | |:VLBSŽEBLJWFSJMFSFHÌSF  ED LBÀCJSJNEJS 4 23 |%'| = |'$|WF |DE|= |BE|  PMEVôVOEBO #$% ÑÀHFOJOEF (BôŽSMŽLNFSLF[JPMVSWF|($| =CS |EG| =CSEJS 6x \" %&$ = 30 = jY=CSCVMVOVS 2 D2E 2C \"#$%FõLFOBSEËSUHFO [ AE ] m [ DC ] ÖRNEK 11 | | | |DE = EC =CS DE K C \"#$%FõLFOBS EËSUHFO :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJNLBSF- 11 x–1 EJS [ EF ] m [ AB ] xx x+1 |EF| = |EC| | | | |DE = FB =CS \"%&ÑÀHFOJOEFQJTBHPSUFPSFNJOEFO |\"&|2 + 22 = 42 |\"&| = 2 3 A x F1B \" \"#$% = 4. 2 3 :VLBSŽEBLJWFSJMFSFHÌSF ¦ \"#$% LBÀCJSJNEJS =8 3 2 CVMVOVS [KB] // [&'|ÀJ[JMJSTF#,$EJLÑÀHFOJOEF 1JTBHPSCBôŽO- br UŽTŽZB[ŽMŽSTBY2 + Y- 2 = Y+ 2 Y2 -Y= 0 jY=PMVS ¦ \"#$% ==CSCVMVOVS  8 3  9. 36 5 10. 10 11. 20

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 12 ÖRNEK 14 A k F kB ôFLJMEF WFSJMFO FõLFOBS EËSUHFO õFLMJOEFLJ LBSUPOEB k A 2A [ AD ]WF[ BC ]LFOBSMBSŽ[ AC ]LËõFHFOJOJOÐ[FSJOFHFMF- E 3A 2k DFLõFLJMEFLBUMBOEŽóŽOEB%WF#OPLUBMBSŽTŽSBTŽZMB'WF &OPLUBMBSŽZMB¿BLŽõNBLUBEŽS k D7 C 2A 7–x D 2k C F 7 | | | | | | | |\"#$%FõLFOBSEËSUHFO  AF = FB  AE = ED 7 x A ( ABCD ) =CS2 E 7–x & :VLBSŽEBLJWFSJMFSFHÌSF A^ EFC hLBÀCJSJNLBSFEJS A7 B :VLBSŽEBLJÑÀHFOMFSJOBMBOMBSŽTJOÑTMÑBMBOEBOLFOBSMB- ,BSUPOVOCJSLFOBSŽCSWF\"JMF$OPLUBMBSBSBTŽV[BL- SŽOŽO ÀBSQŽNŽZMB PSBOUŽMŽEŽS WF Ñ[FSJOEF ZB[ŽMEŽôŽ HJCJEJS MŽLCJSJNEJS 0IBMEF\"= 32 j\"= 4 \" &'$ =\"=CS2 CVMVOVS | |:VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS |\"'| =CSWF|$&|=CSPMVS 7 -Y+Y+ 7 -Y= 9 Y=CVMVOVS ÖRNEK 13 ÖRNEK 15 A D C 3k E F D k B 3k A BH G | |\"#$%FõLFOBSEËSUHFO [ CH ] m [ AH ]  DB =CS k C A (ABCD) = 8 3 br2 % \"#$%FõLFOBSEËSUHFO [ GF ] // [ BC ] &` [AD] :VLBSŽEBLJWFSJMFSFHÌSF m ( BCH ) LBÀEFSFDFEJS & =CS2 = BF   A^ EFG h | | | |AB D C A^ ADB h = 8 3 = 4 3 2 2 :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJNLBSF- EJS 30° 4.h 4 3= H 2 \"'(%QBSBMFMLFOBSŽOEB\" \"'(% =\" &'( h 2 h=2 3 \" \"'(% =CS2 30° \" '#($ =CS2PMVS 60° 60° 60° \" \"#$% =CS2 CVMVOVS A BH 0IBMEF\"#)ÑÀHFOJOEFm ( H%BA ) = 60°PMVS :BOJ m ( % ) = 30° PMVS BCH 12. 12 13. 32  14.  š

TEST - 21 &öLFOBS%ÌSUHFO 1. DE C \"#$%FõLFOBS 4. A B \"#$%FõLFOBS EËSUHFO EËSUHFO % = % E \"#'FõLFOBS m ( DAE ) m ( EAC ) пHFO m ( A%ED ) = 54° % m ( ADC ) = 56° F AB DC %  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( F%BE ) LBÀ EFSFDF-  :VLBSŽEBLJWFSJMFSFHÌSF  m ( ABC )LBÀEFSFDF- EJS EJS \"  #  $  %  &  \"  #  $  %  &  2. A E B \"#$%FõLFOBS  D C EËSUHFO D m ( A%DC ) = 70° E % m ( BEC ) = 80° AB C % \"#$%FõLFOBSEËSUHFO m ( % ) = 35° ACE BEC  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( ) LBÀ EFSFDF- | | | | | |m(E%AD) = 25°  AE = ED = EB EJS \"  #  $  %  &  %  :VLBSŽEBLJWFSJMFSFHÌSF m ( ECB )LBÀEFSFDFEJS \"  #  $  %  &  3. \"#$%FõLFOBSEËSUHFOJOEF \"%&пHFOJ\"&EPóSV-  \"#$%FõLFOBSEËSUHFOJõFLMJOEFLBSUPOEB $OPL- UBTŽOŽO [ AB ] ZF HËSF TJNFUSJóJ PMBO & OPLUBTŽ %\" TVCPZVODBLBUMBOŽODB%OPLUBTŽ$OPLUBTŽJMF¿BLŽ- õŽZPS EPóSVTVÐ[FSJOEFEJS AB AB D EC DC  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % )  LBÀ EFSFDF-  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % )  LBÀ EFSFDF- ABC DCB EJS EJS \"  #  $  %  &  \"  #  $  %  &  1. B 2. $ 3. D  4. \" B D

&öLFOBS%ÌSUHFO TEST - 22 1. D C \"#$%FõLFOBS 4. A B \"#$%FõLFOBS EËSUHFO EËSUHFO A E [ AH ] m [ CH ] F [CF]WF[EG] | |AC =CS G B¿ŽPSUBZ | |BD =CS DC | |AC =CS BH | |BD =CS | | :VLBSŽEBLJWFSJMFSFHÌSF  $) LBÀCJSJNEJS | | :VLBSŽEBLJWFSJMFSFHÌSF  EG LBÀCJSJNEJS \"   #   $   %  &   A) 2 B) 2 2 $  E) 5 D) 3 2 2. D C \"#$%FõLFOBS  ,ËõFLPPSEJOBUMBSŽ\"   #   $    EËSUHFO 0     PMBO \"#$% FõLFOBS EËSUHFOJ õFLMJOEFLJ G & 'WF#EPóSVTBM UBIUBOŽOPSJKJOFUSBGŽOEBTBBUZËOÐOEF™EËOEÐ- E SÐMNFTJZMFPMVõBOFõLFOBSEËSUHFO\"h#h$h0PMBSBL |AE| = |ED| JTJNMFOEJSJMJZPS%BIBTPOSBCVFõLFOBSEËSUHFOTB- F | |BD =CS óBEPóSVCJSJNBõBóŽEPóSVCJSJNËUFMFOJZPSWF PMVõBOFõLFOBSEËSUHFO\"hh#hh$hh0hPMBSBLJTJNMFO- A B EJSJMJZPS ¥ \"#$% =CS  #VOBHÌSF 0h#hh$hh\"hhFöLFOBSEÌSUHFOJOJOBMB- | | :VLBSŽEBLJWFSJMFSFHÌSF  (' LBÀCJSJNEJS OŽLBÀCJSJNLBSFEJS \"  #  $  %  &  \"  #  $  %  &  3. A \"#$%FõLFOBSEËSUHFO  #JSËóSFODJZFOJBMEŽóŽQFSHFMJOJEFOFNFLJ¿JOËODF DFUWFMMF [KM] EPóSV QBS¿BTŽOŽ ¿J[JZPS %BIB TPOSB B [ AC ] a [ BE ] = { F } QFSHFMJO TJWSJ ZFSJOJ , OPLUBTŽOB CBUŽSŽQ [KM] ZBSŽ- E | DE | =| AE | ¿BQMŽ¿FNCFS¿J[JZPS%BIBTPOSBQFSHFMJOTJWSJZF- | |F SJOJ . OPLUBTŽOB CBUŽSŽQ [ KM ] ZBSŽ¿BQMŽ CBõLB CJS EF =CS D ¿FNCFS ¿J[JZPS  ¥FNCFSMFSJO LFTJN OPLUBMBSŽOŽ 3 WF:PMBSBLJTJNMFOEJSJZPS C  #VOB HÌSF  ,3.: EÌSUHFOJ JMF JMHJMJ BöBôŽEBLJ- | | :VLBSŽEBLJWFSJMFSFHÌSF  #' LBÀCJSJNEJS MFSEFOIBOHJTJEPôSVEVS \"  #  $  %  &  | |A) #JSLFOBSŽ KM PMBOLBSF | |B) #JSLFOBSŽ KM PMBOLBSF | |C)#JSLFOBSŽ KM PMBOFõLFOBSEËSUHFO | |D)#JSLFOBSŽ KM PMBOFõLFOBSEËSUHFO E) #JSEJLEËSUHFO 1. \" 2. $ 3. B  4. B D $

TEST - 23 &öLFOBS%ÌSUHFO 1. D C \"#$%FõLFOBS 4. D C \"#$%FõLFOBS EËSUHFO E EËSUHFO A G [ EF] m[ AB ] G | AF | = | FB | E FB | DE | = | AG | [ EG ] m[ AD ] | AD | =CS A FB | |EF =CS | |GE =CS  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- | |BC =CS LBSFEJS \"  #  $  %  &   :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJN- LBSFEJS \"  #  $  %  &   A B 2. D C E DC AB \"#$%FõLFOBSEËSUHFO [AE]WF[DE]B¿ŽPSUBZ % % A^ & h = 12CS2 m ( ABC ) 5.m ( DAB ) AED \"#$%FõLFOBSEËSUHFO =  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS A ( ABCD ) =CS2 YVLBSŽEBLJ WFSJMFSF HÌSF  FöLFOBS EÌSUHFOJO \"  #  $  %  &  ÀFWSFTJLBÀCJSJNEJS A) 16 B) 16 2 C) 32 D) 32 2  &   \"#()FõLFOBSEËSUHFOJõFLMJOEFLJLVNBõQBS¿BTŽ '&WF%$EPóSVMBSŽCPZVODBLFTJMJODFPSUBZB¿ŽLBO õFLJMEÐ[HÐOBMUŽHFOPMVZPS 3. ôFLJMEF WFSJMFO \"#$% FõLFOBS EËSUHFOJ õFLJMEFLJ AE B LVNBõ QBS¿BTŽOB FõLFOBS EËSUHFO õFLMJOEFLJ LV- | |NBõQBS¿BMBSŽEJLJMNJõUJS AD =CS AB 2 FC 4 30 br 6 H DG D 2n C %JLJMFOLVNBõQBS¿BMBSŽOŽOËM¿ÐMFSJÐTUÐOEFCFMJSUJM- * '&WF%$EPóSVMBSŽCJSCJSJOFQBSBMFMEJS EJóJHJCJCJSËSÐOUÐZMFCFMJSMFONJõUJS & ** A ( ABGH ) = 8.A ^ AFE h  #BöMBOHŽÀUBLJ LVNBö QBSÀBTŽOŽO BMBOŽOŽO  EJ- *** % = 60° LJMFO LVNBö QBSÀBMBSŽOŽO UPQMBN BMBOŽOB PSBOŽ m ( HAB ) LBÀUŽS #VOB HÌSF  ZVLBSŽEB WFSJMFOMFSEFO IBOHJMFSJ A) 5 B) 45  $  %  42 E) 40 EPôSVEVS 11 11 11 \" :BMOŽ[** # :BMOŽ[*** $ *WF** % **WF*** & * **WF*** 1. E 2. D 3. B  4. \" E E

www.aydinyayinlari.com.tr ÇOKEGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, %÷,%²35(&/ TANIM ÖRNEK 2 B 60°  ,BSõŽMŽLMŽ LFOBSMBSŽ CJSCJSJOF EJL WF FõJU PMBO A EËSUHFOFEJLEÌSUHFOEFOJS F 60° E 30° 30° 60° 60° %m/*m DC A B | | | |\"#$%EJLEËSUHFO [ AC ] a [ BD ] = { E }  AD = EC E |BF| = |FC| :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS BEF DC |\"%| = |&$|WF|&$|= |\"&| = |ED|PMEVôVOEBO  \"#$%EJLEËSUHFO \"%&FöLFOBSÑÀHFOPMVS [BD] a [AC] = {E} |#'| = |'$|WF#&$FöLFOBSÑÀHFOPMEVôVOEBO |AE| = |EB| = |ED| = |EC|EJS m ( B%EF ) = 30°PMVS NOT: %JLEÌSUHFOQBSBMFMLFOBSŽOCÑUÑOÌ[FMMJL- MFSJOJTBôMBS ÖRNEK 1 ÖRNEK 3 AB D C 30° a 60° E 30° E 15° 75° a+30° A 15° a+30° 75° a+15° B F DC | | | |\"#$%EJLEËSUHFO [ AC ] a [ BD ] = { E }  EB = BF | | | | | | | |ABCD EJLEËSUHFO  DC = AE   AC = AD % = 15° % m ( FBC ) EBC % :VLBSŽEBLJWFSJMFSFHÌSF m ( ) LBÀEFSFDFEJS BDC :VLBSŽEBLJWFSJMFSFHÌSF m ( ) LBÀEFSFDFEJS m ( E%BF ) = a°PMTVO0IBMEFm ( B%CE ) = a + 15°PMVS |\"$| = 2 |\"%|PMEVôVOEBOm( D%CA ) = 30°PMVSWF m ( B%FE ) = a + 30° 3a +=šj a =š m ( B%AE ) = % = 30°   EJS \"#& JLJ[LFOBS ÑÀHFO PM- % m ( DCA ) m ( BDC ) = 180° - 90° - 55° = 35°CVMVOVS EVôVOEBO m % ) = 75° PMVS0IBMEF m ( % ) = 15° ( ABE EBC CVMVOVS 1. š  2. š3. š

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKEGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 4 ÖRNEK 7 D C \"#$%EJLEËSUHFO DC 5E [ AC ] a [ BD ] = { E } 2E K2 5 A 6 | |ED = (2x + CS A8 | |EC = Y- CS 4 | |B AB =CS B | |:VLBSŽEBLJWFSJMFSFHÌSF  \"% LBÀCJSJNEJS | |\"#$%EJLEËSUHFO [ DE ]åm[ AC ]  AE å=CS | |EC å=CS |ED| = |&$|PMEVôVOEBOY+ 1 =Y- 3 & 4 =YjY=CS :VLBSŽEBLJWFSJMFSFHÌSF  A^ AEB hLBÀCJSJNLBSFEJS \"%#EJLÑÀHFOJOEFQJTBHPSUFPSFNJOEFO ²LMJEUFPSFNJOEFO|DE|2 = |\"%|2 +2 = 102 j |\"%|=CSCVMVOVS |DE| =CS ÖRNEK 5 [BK] m [\"$] öFLJMEF[BK]OŽÀJ[FSTFL D 20 C \"#$%EJLEËSUHFO |BK| = |DE| =CSPMVS a a [ CF ]åm[ BD ] \" \"&# = 2.4 = 4 br2 CVMVOVS 2 ||15 E DC å=CS b | |AD å=CS ba A F xB | |:VLBSŽEBLJWFSJMFSFHÌSF  #' LBÀCJSJNEJS #$%WF$'#ÑÀHFOMFSJOJOCFO[FSMJôJOEFO ÖRNEK 8 x 15 225 45 D 17 C = x = = CSCVMVOVS a 15 20 20 4 17 88 ÖRNEK 6 a a A4G 8 B \"#$%EJLEËSUHFO A2 E 15 B k F [ AC ] a [ DG ] = { F } | |\"#$%EJLEËSUHFO [ ED ]B¿ŽPSUBZ  AD å=CS | DC |å=CS 16 k 16 | |AG =CS D E | |BG =CS & 2k | |BC =CS :VLBSŽEBLJWFSJMFSFHÌSF  A^ ADE hLBÀCJSJNLBSFEJS 12 C % = m ( % )   PMEVôVOEBO $%& JLJ[LFOBS ÑÀHFO m ( CED ) CDE | |:VLBSŽEBLJWFSJMFSFHÌSF  '& LBÀCJSJNEJS PMVS#$&ÑÀHFOJOEFQJTBHPSUFPSFNJOEFO 2 + |BE|2 = 172 j |BE| =CS \"('WF%'$ÑÀHFOMFSJOEFCFO[FSMJLUFO|'$| = 3 |'\"|EJS |\"&| = 17 -=CS WF|&$| = 2 |\"'| = 2 |'&|EJS A^ ADE h = 2.8 2 L 2 = 122+2 \"%$ÑÀHFOJOEF1JTBHPSUFPSFNJOEFO 2 = 8 br CVMVOVS 4k = 20 j |'&| = k =CSCVMVOVS 45  7. 4  4.   4

www.aydinyayinlari.com.tr ÇOKEGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m C ÖRNEK 10 P D D C \"#$%EJLEËSUHFO AB [ DE ] a [ AB ] = { F } [ CE ] a [ AB ] = { G }  \"#$%EJLEËSUHFOWF1 J¿CËMHFEFCJSOPLUB AE = 4 3 CS | | | | | | | | r PA 2 + PC 2 = PB 2 + PD 2EJS | |A F G B CE =CS ÖRNEK 9 | |BE =CS D E 6 E | |:VLBSŽEBLJWFSJMFSFHÌSF  DE LBÀCJSJNEJS 8 ^ 4 3 h2 + 72 = 42 + |DE|2 A 97 =+ |DE|2 |DE| =CSCVMVOVS C \"#$%EJLEËSUHFO %JLEÌSUHFOEF¦FWSFWF\"MBO C 10 &  J¿ CËMHFEF CJS %m/*m x OPLUB D B | DE |å=CS | AE |å=CS | |CE =CS | |:VLBSŽEBLJWFSJMFSFHÌSF  BE LBÀCJSJNEJS AB  \"#$%EJLEËSUHFO 2 + 102 =2 +Y2 =+Y2 r¥FWSF \"#$% = 2.a AD + AB k Y2 =jY= 8 2 CSCVMVOVS | | | |r A ( ABCD ) = AB  AD EJS ÖRNEK 11 A 4E x B \"#$%EJLEËSUHFO %m/*m P |AB | = |EC| C | |6 x+4 6 AE =CS D | |AD =CS DC :VLBSŽEBLJWFSJMFSFHÌSF ¦ \"#$% LBÀCJSJNEJS AB |EB| =YCSPMTVO|\"#| = |&$|PMEVôVOEBO |&$| =Y+CSPMVSY2 +2 = Y+ 2  \"#$%EJLEËSUHFOWF1 EŽõCËMHFEFCJSOPLUB 1JTBHPSUFPSFNJOEFO | | | | | | | | r PA 2 + PC 2 = PB 2 + PD 2EJS Y2+=Y2 +Y+ Y= 20 jY=  ¦ \"#$% = +  =CSCVMVOVS 9. 8 2  10. 9 11.

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKEGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 12 ÖRNEK 14 D EC \"#$%EJLEËSUHFO D C 30° 75° 45° 45° 75° m ( E%AB ) = 30° x 45° 45° x 2x % = 15° Mx E5 F xK x m ( CBE ) 2x+5 x 45° x 60° 15° ¥ \"#$% =CS 45° 45° 30° 45° 2x 75° A A B B :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS \"#$%EJLEËSUHFO [ AE ] [ BF ] [ CF ] [ DE ]B¿ŽPSUBZMBS |%\"|=YBMŽSTBL |\"&| =Y= |\"#|PMVS | AB |å+ | BC | =CS | EF |å=åCS ¦ \"#$% =Y :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% æLBÀCJSJNLBSFEJS =YjY= 3 \" \"#$% ==CS2 CVMVOVS [EM]WF [',] EPôSV QBSÀBMBSŽOŽ ÀJ[FSTFL PMVöBO ÑÀHFO- MFSJLJ[LFOBSEJLÑÀHFOPMVSWF|ME| = |DM| = |.\"| =YCS |',| = |,$|= |BK| =YCSEJS Y++Y= 21 Y=jY=CS \" \"#$% ==CS2 CVMVOVS ÖRNEK 13 ÖRNEK 15 AF B ABCD EJLEËSUHFO D C // 4 // 4 [ DF ] m [ EF ] 3h F 2h K 6 M 25 Dx x E3C |DF| = |EF| 9 E | |BC =CS 3 | |EC =CS A B :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS | | | |\"#$%EJLEËSUHFO [ AC ] a [ ED ] = {F }  BE å= EC | || AD |å=åCS  AB =CS %'&ÑÀHFOJOEFNVIUFöFNÑÀMÑEFOY=CSPMVS & 0IBMEF|%$| =Y+ 3 =CSEJS :VLBSŽEBLJWFSJMFSFHÌSF  A^ FEC hæLBÀCJSJNLBSFEJS \" \"#$% = 11.4 =CS2 CVMVOVS $'&WF%\"'ÑÀHFOMFSJOEFCFO[FSMJLUFO|',| = 2|.'|EJS I=j h =PMVS Aa & k = 6.10 = 30 2 CVMVOVS FEC 2 br 12. 13. 44  14. 104 30

www.aydinyayinlari.com.tr ÇOKEGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 16 CE ÖRNEK 18 D 15° #JSLBóŽEB\"#$%EJLEËSUHFOJOJ¿J[JQJ¿JOEFCJS&OPLUB- F 45° 6 | | | |TŽ BMŽOŽZPS [ DE ] m [ CE ]  AB =  CS  BC =  CS WF 6 ¥ %&$  =  CS PMEVôVOB HÌSF  \" \"#$&%  LBÀ CJ- SJNLBSFEJS 30° 45° K A 6 3 –6 B6 \"#$%EJLEËSUHFO [ DE ] a [ AE ] = { E } m ( E%AB ) = 30° A 8 B x E 7 | |% m ( AEB ) = 15°  AD =CS y :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% æLBÀCJSJNLBSFEJS [EK] m [\",]PMBDBLöFLJMEF[EK]OŽÀJ[FSTFL D8 C % = 45° PMVS ¦ %&$ =Y+Z+=jY+Z= 10 m ( EBK ) Y+Z 2 =  2 Y2+YZ+Z2 = 100 \" \"#$% = 6^ 6 3 - 6 h = 36 2 3 - 36 br CVMVOVS +YZ= 100 YZ=jYZ= xy A^ ABCED h = 56 - = 56 - 9 = 47 CSCVMVOVS 2 ÖRNEK 17 5 C D 34 ÖRNEK 19 H G 5 *BEŽN\"#$%EJLEËSUHFOJOJ¿J[JOJ[ F 2 **BEŽN%JLEËSUHFOJOEŽõŽOEB[ AE ] a [ DC ] = { F }PMB- A B 3 DBLõFLJMEFCJS'OPLUBTŽBMŽOŽ[ E | | | |***BEŽN AF = EF PMBSBLBMŽOŽ[ \"#$%EJLEËSUHFO [ DE ] a [ CE ] = { E } *7BEŽN A ( ABCD ) =CS2PMBSBLBMŽOŽ[ :VLBSŽEBLJ BEŽNMBSŽ J[MFZFO ÌôSFODJ \"#& ÑÀHFOJOJO | | | | | |CD å= CE å=CS  AE = 15 br  EB å= 2 CS BMBOŽOŽLBÀCJSJNLBSFPMBSBLCVMVS & AB :VLBSŽEBLJWFSJMFSFHÌSF  A^ DEC hLBÀCJSJNLBSFEJS 45 |\"&|2 + |&$|2 = |ED|2 + |EB|2 3k ^ 15 h2 +2 = |ED|2 + 22 40 = |ED|2 + 4 |ED|2 = |ED| = 30 C D F 2k %$&ÑÀHFOJOEF[$)]OŽÀJ[FSTFL |%)| = |&)| =CSPMVS1JTBHPSUFPSFNJOEFO E |$)|2 + 32 =2 j |$)| =CS \" \"'# = A^ ABCD h 90 = 45 CS2CVMVOVS & A^ AFB h = 6.4 22 A^ DEC h = 2 2 \" \"#& =+ 30 =CS2 CVMVOVS = 12 br CVMVOVS  36 3 - 36 17. 12  47 19.

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKEGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 20 ÖRNEK 22 ,FOBSMBSŽCSWFCSPMBOCJS\"#$%EJLEËSUHFOJOJ¿J[J- ôFLJM*EFLFOBSV[VOMVLMBSŽWFSJMFOEJLEËSUHFOõFLMJOEF- OJ[\"#$пHFOJOJ[ AC ]EPóSVQBS¿BTŽCPZVODBLBUMBEŽ- LJõFSJU%LËõFTJ [AB]Ð[FSJOF #LËõFTJEF[DC]Ð[FSJ- óŽNŽ[EB#OPLUBTŽOŽOZFOJZFSJOJ#hOPLUBTŽPMBSBLBMŽOŽ[ OFHFMFDFLõFLJMEFõFLJM**EFLJHJCJLBUMBOŽZPSWFË[EFõ õFLJMMFSPMVõVZPS [\"#h] a [ CD ] = { E }PMEVôVOBHÌSF  A^ & hLBÀCJ- AEC D  C SJNLBSFEJS A 10 B  ôFLJM* a 8 A B a C' C D x 5 DE 10–x x a 9 B' 8 C N B' 4  3 ôFLJM** #h&$ÑÀHFOJOEF1JTBHPSUFPSFNJOEFO Aa 9–a 4 B D' M 2 + -Y 2 =Y2 a3 + 100 -Y+Y2 =Y2 41 d A' Y=j x = 5 ôFLJM**EFEJLEËSUHFOõFSJUJO#LËõFTJ#hJMF% LËõFTJEF %hJMFHËTUFSJMNJõUJS A^ AEC h = 8.41 = 164 CS2 CVMVOVS 5.2 5 #h %hOPLUBMBSŽOEBOHFÀFOEEPôSVTV[\"#]ZFEJLPM- EVôVOBHÌSF %h.#h/EÌSUHFOJOJOBMBOŽLBÀCS2EJS ÖRNEK 21 B2 + 32 = -B 2 1JTBHPSUFPSFNJOEFO B2 + 9 =-B+B2 \"#$%EJLEËSUHFOJõFLJMEFLJHJCJ™EËOEÐSÐMÐODF%&'( EJLEËSUHFOJFMEFFEJMJZPS B= 4 AB | |EH = 4 3 CS  \" %h.#h/ = 4.3 | |HF = 2 3 CS =CS2CVMVOVS E 4 43 C 30° 23 8 30° 60° H F D 30° 63 G | |:VLBSŽEBLJWFSJMFSFHÌSF  )$ LBÀCJSJNEJS )%&EJLÑÀHFOJOEF|DE|=CSWF|%)| =CSPMVS |)$| = 6 3 - CVMVOVS 164 21. 6 3 - 8  22. 12 20. 5

%JLEÌSUHFO TEST - 24 1. F 4. A F B A 10° B E 130° E DC DC \"#$%EJLEËSUHFO BC = 2 · EF | EF | = | FB | \"#$% EJLEËSUHFO  [EC] m [CF]  m ( A%EC ) = 130°  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % )  LBÀ EFSFDF- FEB m ( F%AB ) = 10° EJS  :VLBSŽEBLJWFSJMFSFHÌSF  m ( % ) LBÀEFSFDF- \"  #   $  %   &  AFC EJS \"  #  $  %  &   A 23 B F 2. A B 2 E x F 10° D C 4E D CG | |\"#$%EJLEËSUHFO AD =CS  AB = 2 3 CS | CE | =CS % AGD  :VLBSŽEBLJWFSJMFSFHÌSF m (D%AE)LBÀEFSFDFEJS | | | |\"#$%EJLEËSUHFO m ( ) = 10°  BD = CG \"   #  $   %   &   :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- AED EJS \"  #  $  %  &   D C E 3. A E B 10 6 D 14 C AB | | | |\"#$%EJLEËSUHFO  AD =CS  EC =CS | | | | | | | |\"#$%EJLEËSUHFO AD = BE  DC = AE | |DC =CS % = 20° m ( DCE )  :VLBSŽEBLJ WFSJMFSF HÌSF  m (A%DE) LBÀ EFSFDF-  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( D%AE ) LBÀ EFSFDF- EJS EJS \"  #  $ å %  &  \"  #  $  %  &  1. $ 2. B 3. B  4. B E B

TEST - 25 %JLEÌSUHFO 1. D E C ABCD 4. D C ABCD EJLEËSUHFO EJLEËSUHFO | |15 17 AD =CS E | |AB =CS |AB| = |AE| A 23 | |B EB =CS // |DA| = |DE| A // B m (D%EB) = 120°  :VLBSŽEBLJWFSJMFSFHÌSF  m ( E%AB )LBÀEFSFDF-  :VLBSŽEBLJWFSJMFSFHÌSF  m ( C%DE )LBÀEFSFDF- EJS EJS \"  #  $  %  &  \"  #  $  %  &   D FC ABCD // EJLEËSUHFO 58° 2. E D F |DE| = |EB| 15° C |AE| = |FC| K // B m ( D%FE) = 58° 25° AE A  :VLBSŽEBLJ WFSJMFSF HÌSF   m ( % )   LBÀ EFSF- ADE B DFEJS \"#$%EJLEËSUHFO \" , ' &EPóSVTBM \"  #  $  %  &  | | | |BD=AE m ( % ) = 15°  m ( % ) = 25° BDC KAD  :VLBSŽEBLJWFSJMFSFHÌSF  m (D%CE)LBÀEFSFDF-  \"#$%EJLEËSUHFOJõFLMJOEFLJCËMHFOJO,OPLUBTŽO- EJS EBPUVSBO,BEJS .OPLUBTŽOEBLJFWFUBõŽOŽZPS \"  #  $  %  &  AB K M 3. D E C ABCD // EJLEËSUHFO DC // |DE| = |EF| ,BEJSJMLFWJOJO#LËõFTJOFPMBOV[BLMŽóŽ ZFOJFWJ- F OFPMBOV[BLMŽóŽOBFõJUUJS,BEJShJOZFOJFWJOJO$LË- m (A%FB) = 110° õFTJOFPMBOV[BLMŽóŽ #WF$LËõFMFSJBSBTŽV[BLMŽóB FõJUUJS AB  ,BEJShJOZFOJFWJOJO\"LÌöFTJOFPMBOV[BLMŽôŽ %  :VLBSŽEBLJWFSJMFSFHÌSF m ( FEC )LBÀEFSFDF- | | | |LNWF MD = 2. \", PMEVôVOBHÌSF %WF$ EJS LÌöFMFSJBSBTŽV[BLMŽLLBÀLNEJS \"  #  $  %   &  \"  #  $  %  &  1. B 2. E 3. \"  4. \" B B

%JLEÌSUHFO TEST - 26 1. E 4. D C ABCD 4 EJLEËSUHFO D // F C [ DE ] m [ EF ] // | |8 CF =CS | |A E 6B BF =CS AB | |BE =CS | | | |\"#$%EJLEËSUHFO \" $ &EPóSVTBM  AC = CE & | | | |AB =CS  AD å=CS  :VLBSŽEBLJWFSJMFSFHÌSF  A^ DEF hLBÀCJSJNLB- | | :VLBSŽEBLJWFSJMFSFHÌSF  BE LBÀCJSJNEJS  SFEJS \"  #  $  %  &  A) 13 B) 2 13 C) 3 13 D) 4 13 E) 6 13  A B 6 F E 2. D C ABCD G 8 C D A EJLEËSUHFO E | |ABCD EJLEËSUHFO [ FG ] // [ AD ]  BC =CS F [CE] m [DE] | |DC =CS | |DE =CS | |B | | | | :VLBSŽEBLJ WFSJMFSF HÌSF  &' + DG  UPQMBNŽ BE =CS LBÀCJSJNEJS | | | | :VLBSŽEBLJWFSJMFSFHÌSF  \"# + #' UPQMBNŽ \"  #  $  %  &  LBÀCJSJNEJS A) 5 5 B) 5 C) 8 5  \"õBóŽEBEJLEËSUHFOõFLMJOEFCJSCJSJOFFõEJLEËSU- D) 9 5 E) 10 5 HFO LBMBT BSBMBSŽOEB CPõMVL LBMNBZBDBL õFLJMEF  õFLJMEFLJHJCJEJ[JMNJõUJS A 3. D C ABCD CB 9 4 EJLEËSUHFO D E x | |AE =CS õFLJMEFLJ\"WF#OPLUBMBSŽBSBTŽOEBLJV[BLMŽLJMF 5 B | |EC =CS $WF%OPLUBMBSŽBSBTŽOEBLJV[BLMŽLFöJUPMEVôV- | |DE =CS OB HÌSF  CJS LBMBTŽO V[VO LFOBSŽOŽO V[VOMVôV- A OVO LŽTBLFOBSŽOŽOV[VOMVôVOBPSBOŽLBÀUŽS  A) 3 B) 7  $  %  9 E) 6 | | :VLBSŽEBLJWFSJMFSFHÌSF  EB LBÀCJSJNEJS  22 A) 10 B) 2 5 C) 3 5 4. E $ E D) 2 10 E) 3 10 1. D 2. \" 3. E

TEST - 27 %JLEÌSUHFO 1. A B ABCD 4. A B ABCD EJLEËSUHFO EJLEËSUHFO [ AE ] m [ BD ] E [ FE ] m [ CE ] F | |AD =CS | |C DF =CS | |DE =CS DE | |C EC =CS DF | | :VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀCJSJNEJS | | :VLBSŽEBLJWFSJMFSFHÌSF  EB LBÀCJSJNEJS A) 6 B) 2 10 C) 42 A) 3 5 B) 2 5 C) 4 2 D) 3 5 E) 4 3 D) 4 5  &  2. A B  A G B \"#$%LBSF E F HK &()'EJLEËSUHFO E DC D C [HK] m [BC] |EF| = |EG| | |DF =CS | |AG =CS \"#$%EJLEËSUHFO [AC] m [CE] [ BE ] // [ AC ] | | :VLBSŽEBLJWFSJMFSFHÌSF  ), LBÀCJSJNEJS | | | | | |AB = BC  EC = 3CS \"  #  $  %  &  | | :VLBSŽEBLJWFSJMFSFHÌSF  \"$ LBÀCJSJNEJS \"  #  $  %  &  3. A B  5FS[J\"INFU \"#$%EJLEËSUHFOõFLMJOEFLJLVNBõŽ [FE] WF [HG] CPZVODB LBUMBOEŽLUBO TPOSB # WF % G H OPLUBMBSŽOŽOZFOJZFSMFSJOJOBSBTŽOŽEPóSVTBMPMBDBL õFLJMEFCJSJQMFEJLJZPS E DF C AB | |\"#$%EJLEËSUHFO [ FA ] m [ BE ]  DF =CS | |EC =CS FE | | :VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀCJSJNEJS HG A) 8 B) 6 2 C) 4 5 DC D) 2 21 E) 3 10 | | | | | |%$ =N  EB + ($ = NWFLBUMBNB TPOSBTŽEJLJMFOLŽTNŽOV[VOMVôVNPMEVôVOB HÌSF CBöMBOHŽÀUBLJ#WF%OPLUBMBSŽBSBTŽV[VO- MVLLBÀNFUSFEJS \"  #  $  %  &  1. B 2. $ 3. E  4. D \" $

Dikdörtgen TEST - 28 1. A B ABCD 4. D C D E2 dikdörtgen [ DB ] m [ EC ] E | |8 EB = 2 br | |C DE = 8 br AB  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- | |ABCD dikdörtgen, AE = ( 3x + 1 ) br karedir? BE = x + 48 br, A ( ABCD ) = 112 br2 A) 40 B) 36 C) 30 D) 24 E) 20 4 YukaSŽEBLJWFSJMFSFHÌSF ¦ \"#$% LBÀCJSJN- dir? A) 58 B) 60 C) 68 D) 72 E) 78 5. \"#$%EJLEËSUHFOJõFLMJOEFLJLBSUPOFõLBSFMFSFBZ- 2. A E B ABCD SŽMNŽõUŽS A B dikdörtgen |DE| = |DC| Ç ( ABCD ) = 18 br DC D C A ( ABCD ) = 18 br2  4BSŽCPZBMŽLBSFTFMCÌMHFMFSJONFSLF[MFSJOJLÌöF % LBCVMFEFOÑÀHFOJOBMBOŽCS2PMEVôVOBHÌSF  \"#$%EJLEÌSUHFOJOJOBMBOŽLBÀCJSJNLBSFEJS  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( EDC ) LBÀ EFSFDF- dir? A) 240 B) 250 C) 280 D) 320 E) 360 A) 15 B) 30 C) 45 D) 60 E) 75 6. A B 3. D C ABCD EK M NF dikdörtgen H [ CA ] m [ DE ] | |E DE = 6 br DG C | |A B CE = 9 br | | | |ABCD dikdörtgen, [ EF ] // [ AB ], DG = GC | | | |AD = AE , A ( HGNM ) = 5 br2 &  :VLBSŽEBLJWFSJMFSFHÌSF  A(AEB)   PSBOŽ OF- dir? A (ABCD) YukarŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? A) 1 B) 3 C) 2 D) 3 E) 5 13 26 13 13 13 A) 18 B) 27 C) 36 D) 45 E) 54 1. \" 2. # 3. $ 65 4. # 5. D 6. $

TEST - 29 %JLEÌSUHFO 1. A 4. D C H B K K E D A FG B E FC \"#$%WF',)#EJLEËSUHFO & , $WF% , (EPó- \"#$%EJLEËSUHFO \" # &EPóSVTBM $ ' &EPóSV- | | | | | | | |SVTBM  AG = BG  DE = AE TBM [AF] m [EC]  A^ & h = A^ & h A (FBHK) AEF BEC | EF | =CS | FC | =CS  :VLBSŽEBLJWFSJMFSFHÌSF  PSBOŽLBÀ- UŽS A (ABCD)  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- 35 25 16 16 9 LBSFEJS A) B) C) D) E) 72 48 25 27 16 \"  #  $  %  &  2. D CF  D C ABCD E EJLEËSUHFO K A E [ DK ] m [ AE ] AB | | | | AB = AD B |EC| = |EB| ABCD EJLEËSUHFO % $ 'WF\" & 'EPóSVTBM  :VLBSŽEBLJWFSJMFSFHÌSF  A (DKEC) PSBOŽLBÀ- & =CS2 UŽS A (ABCD) A^ EFB h & A) 31 B) 21 C) 18 D) 13 E) 3  :VLBSŽEBLJWFSJMFSFHÌSF A^ DCE hLBÀCJSJNLB- 52 28 29 20 4 SFEJS \"  #  $  %  &   D E C ABCD EJLEËSUHFO 3. D E C ABCD A [ EF ] m [ AB ] H EJLEËSUHFO K L |EL| = |LB| G A^ & h =CS2 FGK F K A^ & =CS2 |AF| = |FB| GEH h & F B EKL =CS2 A^ h & =CS2 A B A^ AKB h &  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN-  :VLBSŽEBLJWFSJMFSFHÌSF  A^ HBC hLBÀCJSJNLB- LBSFEJS SFEJS \"  #  $  %  &  \"  #  $  %  &  1. B 2. $ 3. B  4. \" D D

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ,\"3& 7ANnM ÖRNEK 2 B \"#$%LBSF  5ÐNLFOBSMBSŽCJSCJSJOFFõJUWFEJLPMBOEËSUHF- A ne LBSFEFOJS |AE| = |DE| % k m ( ECB ) = 60° %m/*m M E 2k 60° A B k 15° k 60° 75° 30° K D C // :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS / / ADE [EK] m [%$]WF[EM] m [\"%]ÀJ[FSTFLPMVöBOÑÀHFOMFSEF E |&$| = |\"%| =LPMVS DC 0IBMEF&%$JLJ[LFOBSÑÀHFOJOEF m ( % ) = 75° PMVS  \"#$%LBSFJTF EDC r [ AC ] m [ BD ] % = 90° - 75° = 15° CVMVOVS r [ AC ]WF[ BD ]B¿ŽPSUBZ m ( ADE ) r |AE| = |EC| = |DE| = | |BE EJS ÖRNEK 1 ÖRNEK 3 A B \"#$%LBSF #JSLBóŽEB\"#$%LBSFTJOJ¿J[JQ %$EPóSVTVOVOÐ[FSJO- 15° #&$FõLFOBS de [ AE] a [ BC ] = { F}PMBDBLõFLJMEFCJS&OPLUBTŽBMŽ- 60° пHFO OŽ[ 15° E 30° | | | |'& = 2 2 . %$ PMEVôVOB HÌSF  m( B%AE ) LBÀ EF- 15° SFDFEJS 60° A B C a 15° D 2a :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS k F AED k2 #&$FöLFOBSÑÀHFOWF\"#$%LBSFPMEVôVOEBO k2 2a H k2 3a 2 a ak |\"#| = |BE|EJSWF|$&|= |%$|EJS D kC E \"#&WF$%&JLJ[LFOBSÑÀHFOMFSJOEF '$& EJL ÑÀHFOJOEF [$)] LFOBSPSUBZ EPôSVTV ÀJ[JMJSTF % = % =šPMVS \"$)ÑÀHFOJJLJ[LJOBSÑÀHFOPMVSa =š m ( AEB ) m ( DEC ) 0IBMEF m ( % ) = 30° CVMVOVS a =šCVMVOVS AED 1. š  2. š3. š

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 4 ÖRNEK 6 D E \"#$%LBSF A B \"#$%LBSF 30° a C [ AE ] a [ BE ] = { E ] 90°–a m % ) = % a 90°–2a a+45° F ( DAE m ( FAB ) % m ( CBE ) = 15° | |EF = 4 2 CS 46 | |AB = 4 3 CS 42 4 K a+45° 26 15° 90°–a 45° 45° D E 4C 4 3 45° 45° B | |:VLBSŽEBLJWFSJMFSFHÌSF  &$ LBÀCJSJNEJS A | |:VLBSŽEBLJWFSJMFSFHÌSF  BE LBÀCJSJNEJS \"#'WF\"%&ÑÀHFOMFSJFöPMEVôVOEBO|\"&| = |\"'|PMVS [BK] m [\"$]ÀJ[FSTFL\",#ÑÀHFOJOEF m ( % ) = a PMTVO DAE |BK| = 2 6 CSPMVS &,#ÑÀHFOJOEF|BE| = 4 6 CSPMVS \"&'JLJ[LFOBSÑÀHFOJOEF m ( A%EF ) = m ( A%FE ) = a + 45° UJS0IBMEF'&$ÑÀHFOJJLJ[LFOBSEJLÑÀHFOPMVSWF |&$| =CSPMVS ÖRNEK 5 A 6 B \"#$%LBSF ÖRNEK 7 a 2 m ( B%AF ) = % D C \"#$%LBSF b m ( EFC ) 45° 15° F | |BF =CS 45° m % = 15° a ( ECD ) | |CF =CS E x |AE| = |EC| 60° 4 2x 4 2 | |ED = 2 3 - 2CS b 15°30° D EC | |:VLBSŽEBLJWFSJMFSFHÌSF  DE LBÀCJSJNEJS AB \"#'WF'&$ÑÀHFOMFSJCFO[FSÑÀHFOMFSEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  \"& LBÀCJSJNEJS 2 6 j |&$| = 4 &%$ WF &%\" ÑÀHFOMFSJ Fö PMEVôVOEBO [DE] BÀŽPSUBZ = EC 4 3 PMVS 4 14 |DE| = x 3 - x = 2 3 - 2 DE = 6 - = br CVMVOVS Y=CS 33 |\"&| =Y=CSCVMVOVS 4. 4 6 14  4 7. 4  3

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 8 ÖRNEK 10 E A B \"#$%LBSF 9 12 a F b |AB| = |BF| Db aC b b | |EC =CS 12 a x | |DE =CS K x a 8 F a . D 6 E 2C K | |:VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS 9b #hEFO |\"'|hZF EJL JOEJSFMJN  \"%& ÑÀHFOJOEF QJTBHPS UF- AB PSFNJOEFO \"#$%LBSF [ DE ] m [ CE ] [ AF ] m [ CE ] |\"&| = 10 | | | |ED =CS  EC =CS | |:VLBSŽEBLJWFSJMFSFHÌSF  \"' LBÀCJSJNEJS \"%&WF#,\"ÑÀHFOMFSJCFO[FSPMEVôVOEBO 6x %,\"WF%&$ÑÀHFOMFSJFöPMEVôVOEBO|KD| =CS = |\",| =CSPMVS 10 8 0IBMEF|\"'| = 12 + 9 =CSCVMVOVS Y= CS |\"'| = = CS |&'| = 10 - = CSCVMVOVS ÖRNEK 9 ÖRNEK 11 D 16 C \"#$%LBSF D C \"#$%LBSF 4k [ AC ] a [ DF ] = { E } x \"#,FõLFOBSпHFO 16 E K | |AF =CS | |AB =CS 3k | |BF =CS 60° 4 4 4 A 12 F4B 30° 4 60° 60° B A | |:VLBSŽEBLJWFSJMFSFHÌSF DE LBÀCJSJNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  KD LBÀCJSJNEJS %&$WF\"&'ÑÀHFOMFSJCFO[FSÑÀHFOMFSPMEVôVOEBO \"%,ÑÀHFOJOEFDPTJOÑTUFPSFNJZB[ŽMŽSTB Y2 = 42 + 42 -DPTš= 32 - 32· 3 4 |&'| = 3 |DE|EJS 2 \"%'ÑÀHFOJOEF1JTBHPSUFPSFNJOEFO = 32 - 16 3 |%'|2 = 122 +2 j |%'| =CS x = 32 - 16 3 = 32 - 2 192 = 24 - 8 20 = ^ 2 6 - 2 2 h br CVMVOVS 7k = 20 j k = 7 |DE| = 4k = 80 br CVMVOVS 7   80  10. 21 11. 2 6 - 2 2 9. 7

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 12 ÖRNEK 13 #JSLBóŽEB\"#$%LBSFTJOJ¿J[JQ J¿CËMHFEF[ AK ] m [ BK ] \"#$%WF&',-CJSFSLBSFPMNBLÐ[FSF BMBOMBSŽPSB- OŽUÐS PMBDBLõFLJMEF,OPLUBTŽBMŽOŽ[ #ÑZÑLLBSFOJOÀFWSFTJCSPMEVôVOBHÌSF LÑÀÑL LBSFOJOBMBOŽLBÀCJSJNLBSFEJS | | | | | |AK =CSWF BK =CSPMEVôVOBHÌSF  KD LBÀ #ÑZÑLLBSFOJOÀFWSFTJCSJTFCJSLFOBSŽCJSJNEJS CJSJNEJS \"MBOŽJTFCJSJNLBSFEJS ,ÑÀÑLLBSFOJOBMBOŽJTFCS2PMVS A B b a 5 a5 M 7 K 12 b DC \",#WF\".%ÑÀHFOMFSJFöPMEVôVOEBO |.\"| =CS |MD|=CSWF|MK| =CSEJS |KD|2 = 122+ 72 = 193 D&MK 1JTBHPSUFPSFNJOEF |KD| = 193 br CVMVOVS Karede Çevre ve Alan ÖRNEK 14 B \"#$%LBSF A %m/*m 45° 3 % = 15° .. m ( EDC ) A B 32 3 M | |DE = 2 3 CS // 45° 3 // 30° 60° E // 15° 23 D C // :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS D C  \"#$%LBSF [DM] m [\"$]ÀJ[FSTFLPMVöBO%.&ÑÀHFOJOEF  | |r¥ \"#$% = AB | |r A ( ABCD ) = AB 2 |DM| =CSPMVS \".%ÑÀHFOJOEF|%\"| = 3 2 CSEJS \" \"#$% = ^ 3 2 h2 = 18 2 CVMVOVS br NOT: ,BSF  EJLEÌSUHFO WF QBSBMFMLFOBSŽO CÑ- UÑOÌ[FMMJLMFSJOJTBôMBS 12. 193 70 13. 3 14.

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 15 C \"#$%WF&'(\"LBSF ÖRNEK 17 B \"#$%LBSF D |EF| = |FC| A [ AE] m [ CE ] | |AB = ^ 3 2 + 3 hCS y2 y a |DF| = |FC| 2k k 5 | |EF =CS E x Fy xx x A x Gy B bF k Dk ba C 3 :VLBSŽEBLJWFSJMFSFHÌSF \" \"('& LBÀCJSJNLBSFEJS E |\"(|=YCSWF|BG|=ZCSPMTVO :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJNLBSF- EJS 1JTBHPSUFPSFNJOEFO|'$| = y 2 |&'| = |'$| |%'| = L CS PMTVO \"%' WF '&$ ÑÀHFOMFSJ CFO[FS PMEV- x=y 2 ôVOEBO 3k x+y=3 2+3 j k = 3 5 br = y+y 2=3 2+3 k k5 Z=CS AD = 6 5 br x=3 2 A^ ABCD h = ^ 6 5 h2 = 180 2 CVMVOVS br A^ AGFE h = ^ 3 2 h2 = 18 2 CVMVOVS br ÖRNEK 16 ÖRNEK 18 A 18 B \"#$%LBSF DE C \"#$%LBSF F 6 12 | DE | = | AG | =CS ECGF VE KMNA 45° K | AB | =CS KM G G EJLEËSUHFO 2k | |BC =BCS 12 2A F 45° A k D 6 E 12 C AN B :VLBSŽEBLJWFSJMFSFHÌSF \" \"('# LBÀCJSJNLBSFEJS :VLBSŽEBLJWFSJMFSFHÌSF LBSFOJOJÀFSJTJOEFOJLJEJL- EÌSUHFO ÀŽLBSŽMŽSTB LBMBO öFLMJO ÀFWSFTJ LBÀ CJSJN [GK] // [%$]PMBDBLöFLJMEF[GK]OŽÀJ[FMJN#VEVSVN- PMVS EB[GK| =CSPMVS(,'WF'%&ÑÀHFOMFSJCFO[FSPMEV- :VLBSŽEBLJöFLJMEFCFMJSUJMFOLFOBSMBSBHÌSF öFLMJOÀFW- ôVOEBO|('| = 2 |'&|PMVS SFTJEFôJöNF[:BOJBCSPMVS \" %(' =\" %'& =\"PMTVO 12.6 \"= 2 \"= \"= \"= 24 18 2 \" \"('# = 2 - 24 = 138 CS2 CVMVOVS  71 17. B

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 19 ÖRNEK 21 #JS LBóŽEB BMBOŽ  CS2 PMBO CJS \"#$% LBSFTJOJ ¿J[JOJ[ A 32 B \"#$%LBSF | |CE m [ AE ] PMBDBL õFLJMEF LBSFOJO EŽõŽOEB CJS & BMŽ- 45° [ DB ] m [ BF ] | | | |OŽ[ CE OJO AD LFOBSŽOŽLFTUJóJOPLUBZB'JTNJOJWFSJ- 45° 45° 4 | | | | DE = EF OJ[m ( D%FC ) = 75° 6 2k F | |BF = 3k | |#VOBHÌSF  \"& V[VOMVôVLBÀCJSJNEJS E A 62 B DC 6 12 62 | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# LBÀCJSJNEJS 15° 45° 30° [#$]BÀŽPSUBZPMEVôVOEBO BÀŽPSUBZUFPSFNJOEFO E F 4 BD 75° = DC 2k 3k |BD| =CSWF\"#$%LBSFTJOEF|\"#| = 3 2 CSCVMVOVS [\"$]LÌöFHFOJÀJ[JMJSTF m ( % ) = 60° PMEVôVHÌSÑMÑS EAC |\"$| =CSPMEVôVOEBO|\"&| =CSCVMVOVS --ÑÀHFOJOEFO ÖRNEK 20 ÖRNEK 22 *BEŽN#JS\"#$%LBSFTJOJ¿J[JOJ[ \"#$%LBSFTJõFLMJOEFLJUBSMBOŽOJ¿CËMHFTJOEFCJSOPLUB- ZBCJSLB[ŽL¿BLŽMŽQ UBSMBOŽOLËõFMFSJOFCJSJQZBSEŽNŽZMB **BEŽN\"%LFOBSŽÐ[FSJOEFCJS&OPLUBTŽBMŽOŽ[ CJSMFõUJSNFJõMFNJZBQŽMŽZPS ***BEŽN [ EF ] m [ FC ]PMBDBLõFLJMEFLBSFOJOJ¿CËMHF- AB TJOEFCJS'OPLUBTŽBMŽOŽ[ K *7BEŽN [ FH ] m [ AB ] DC ,B[ŽLJMF\" #WF$LÌöFMFSJBSBTŽOEBLJHFSJMFOJQMFSJO | | | | | |7BEŽN DE =CS  AH =CSWF HB =CSBMŽOŽ[ V[VOMVLMBSŽ TŽSBTŽZMB  N   N WF  N PMEVôVOB HÌ- SF  LB[ŽL JMF % LÌöFTJ BSBTŽOEBLJ JQJO V[VOMVôV LBÀ Yukarıdaki adımları izleyerek ABCD karesini çizen NFUSFEJS | |biri FH uzunluğunu kaç birim olarak bulur? |,\"|2 + |,$|2 = | KB |2 + | KD |2 2 +2 =2 + | KD |2 A8 H3B | KD |2 = | KD | = 53 CSCVMVOVS x xx 83 M b aK 9–x a F b 11–x E 2 DC ,'$WF'.&ÑÀHFOMFSJCFO[FSÑÀHFOMFSPMEVôVOEBO 3 11 - x = jY=CSCVMVOVS 9-x 8 19.  20.  72 21. 3 2 22. 53

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 23 B ÖRNEK 24 A ôFLJMEF\"#$%LBSFTJõFLMJOEFLJLVNBõQBS¿BTŽWFSJMNJõ- UJS#VLVNBõQBS¿BTŽOEBпHFOõFLMJOEFJLJLVNBõQBS- // //K MK ¿BTŽLFTJMJZPS M AB a 45° Ca D CD 45°–a \"#$%LBSFTJ[KM]CPZVODBLBUMBOEŽóŽOEBPLMBHËTUFSJ- E 12 16 MFOõFLJMFMEFFEJMJZPS KP M P M DF C E.'. | | | |% m ( EBF ) DR C R C = 45° EB =CSWF BF =CSPMEVôV- OB HÌSF  LFTJMFO JLJ LVNBö QBSÀBTŽOŽO UPQMBN BMBOŽ %BIBTPOSB,.$%EJLEËSUHFOJUBNPSUBTŽOEBO[13]CP- LBÀCJSJNLBSFEJS ZVODBLBUMBOŽODBPLMBHËTUFSJMFOõFLJMFMEFFEJMJZPS \"#&ÑÀHFOJOJ #$LFOBSŽZMBÀŽLBöBDBLöFLJMEFZBQŽöUŽSŽS- PM 1 TBL \" #'&h = ppTJOš 2 XY 1 2 = 48 2 CS2 CVMVOVS TZ = ·16·12· 22 RC 4POPMVõBOõFLJMEFOCFMJSUJMFOEJLEËSUHFOLFTJMJQ¿ŽLBSŽMŽ- ZPSWFUFLSBSB¿ŽMŽZPS 4POEVSVNEBBÀŽMEŽLUBOTPOSBPMVöBOöFLMJCVMVOV[ AB// // ZTZ YXY KM YXY ZTZ DC 23. A ZTZ B 73 24. 48 2 YX Y M K YX Y C D Z TZ

TEST - 30 ,BSF 1. A B \"#$%LBSF 4. A B \"#$%LBSF |AF| = |AD| F |BC| = |EA| E % = 75° % = 76° m ( BEC ) m ( EDA ) F DC D EC  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( E%BC ) LBÀ EFSFDF- EJS  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- BAF \"  #  $  %  &  EJS \"  #  $  %  &   A B 2. E \"#$%LBSF A B |BE| = |AD| % = 20° m ( BAE ) D CE | | | |\"#$%LBSF % $ &EPóSVTBM  AC = DE DC  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % )  LBÀ EFSFDF- EBC  :VLBSŽEBLJ WFSJMFSF HÌSF  m (B%CE) LBÀ EFSFDF- EJS EJS \"  #  $  %  &  \"   #  $  %   &   D C L 3. E \"#$%LBSF H AB = 4 2 CS E A | |B EC =CS A FB G DC \"#$%LBSF [ AL ] a [ DG ] = { E} [ DL ] a [ AL ] = {L}   :VLBSŽEBLJ WFSJMFSF HÌSF  m (D%EC) LBÀ EFSFDF- |CL| = |BG| EJS \"  #  $  %  &  %  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( LEG ) LBÀ EFSFDF- EJS \"  #  $  %  &  1. B 2. $ 3. B 74 4. \" D B

,BSF C \"#$%LBSF 4. E TEST - 31 1. D % # &EPóSVTBM D \"#$%LBSF m (C%EB) = m (C%BE) |DB| = |CE| C // // AB AB E :VLBSŽEBLJWFSJMFSFHÌSF m % LBÀEFSFDFEJS  :VLBSŽEBLJ WFSJMFSF HÌSF m (C%ED) LBÀ EFSFDF- (DEB) EJS \"   #   $  %  &   \"  #  $  %  &  2. \"#$%LBSF \"#(FõLFOBSпHFOWF\"(&'FõLFOBS  D C \"#$%LBSF EËSUHFOEJS E $ & 'EPóSVTBM D C % % G m ( BAE ) = m ( ECB ) F F AB AB E  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( C%EB ) LBÀ EFSFDF-  :VLBSŽEBLJWFSJMFSFHÌSF  m ( % )  LBÀ EFSFDF- EFD EJS EJS \"   #  $   %  &  \"   #  $   %  &   3. A B \"#$%LBSF  D C \"#$%LBSF F \" ' $ & D EPóSVTBM K \" . , $ C EPóSVTBM |CE| = |AD| |DE| = |EF| L % = 28° M m ( KBC ) 28° % m ( LBA ) E = 17°  :VLBSŽEBLJ WFSJMFSF HÌSF  m (A%FD) LBÀ EFSFDF- 17° EJS AB \"   #   $    :VLBSŽEBLJWFSJMFSFHÌSF  m ( K%LB )LBÀEFSFDF- EJS   %   &   \"  #  $   %  &   1. D 2. \" 3. \"  4. $ B D

TEST - 32 ,BSF 1. A D 4. #JS LBóŽEB CJS LFOBSŽ  CS PMBO CJS \"#$% LBSF- TJ ¿J[JOJ[ ,BSFOJO EŽõŽOEB [ DE ] m [ EC ] PMBDBL F õFLJMEF CJS & OPLUBTŽ BMŽOŽ[ &$ LFOBSŽ Ð[FSJOEF LE [ AF ] m [ EC ]PMBDBLõFLJMEFCJS'OPLUBTŽBMŽOŽ[ K C B | | | |ED =CSPMEVôVOBHÌSF  \"' LBÀCJSJNEJS \"  #  $  %  &  \"#$%LBSF [ EF ] m [ BD ] [ LK ] m [ BD ]  D C \"#$%LBSF | | | | | |KL + FK + FE =12 CS |DE| = |AE| | |:VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀCJSJNEJS  |FC| = |BF| | |AB = 4 3 CS \"  #  $ 4 2 D) 6 E) 6 2 EF 2. A B \"#$%LBSF ,  J¿ CËMHFEF CJS AB OPLUB K % % | |AK =CS m ( EDA ) m ( FCB ) | |KB =CS = = 30° | |KD =CS | |:VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS C A) 4^ 3 - 1 h B) 4 3 - 3 C) 4 3 - 2 D D) 4 3 - 1 E) 4 3 | | :VLBSŽEBLJWFSJMFSFHÌSF  ,$ LBÀCJSJNEJS A) 6 B) 2 10 C) 3 5 D) 4 3 E) 5 2  ôFLJMEF LBSF õFLMJOEFLJ LºóŽU UBN PSUBTŽOEBO IFS BEŽNEBBõBóŽEBWFSJMEJóJHJCJLBUMBOŽZPS 3. D C \"#$%LBSF [ DE ]B¿ŽPSUBZ | |BC = 4 2 CS BEŽN BEŽN AE B ,BUMBOBOLºóŽUUBOBEŽNEBCJSLBSFTFMCËMHFLFTJ- MJQ¿ŽLBSŽMŽZPS%BIBTPOSBLBUMBOBOLºóŽUB¿ŽMŽZPSWF | | :VLBSŽEBLJWFSJMFSFHÌSF  BE LBÀCJSJNEJS BMBOŽOEBCS2B[BMNBPMEVóVHËSÐMÐZPS A) 4^ 2 - 2 h B) 4^ 2 + 2 h C) 8^ 2 - 1 h  #VOBHÌSF LFTJMJQÀŽLBSUŽMBOLBSFOJOCJSLFOBSŽ LBÀCJSJNEJS D) 8^ 2 + 1 h E) 2 A) 2 B) 2 2 C) 3 D) 3 2 E) 5 1. E 2. $ 3. $  4. B \" $

,BSF F \"#$%LBSF 4. A TEST - 33 1. [ AF ] m [ FB ] B \"#$%LBSF A B [ AE ] m [ BE ] E | |FD =CS |BC| = |ED| | |BF =CS | |E AE =CS DC | | :VLBSŽEBLJWFSJMFSFHÌSF  %$ LBÀCJSJNEJS DC A) 2 15 B) 8 C) 6 2 D) 4 5  &  | | :VLBSŽEBLJWFSJMFSFHÌSF  \"' LBÀCJSJNEJS \"  #  $  %  &   D C \"#$%LBSF [ DE ] m [ CE ] 2. A B \"#$%LBSF [ EF ] m [ AB ] # &WF%EPóSVTBM E E m ( B%AE ) = 30° | |AF =CS | |BE =CS | |FE =CS A FB | | :VLBSŽEBLJWFSJMFSFHÌSF  #' LBÀCJSJNEJS A) 1 B) 2 $  %  &  DC | | :VLBSŽEBLJWFSJMFSFHÌSF  \"& LBÀCJSJNEJS  \"MJ\"OPLUBTŽOEBO#ZF )BLBOhEB$OPLUBTŽOEBO% A) 8 2 B) 8 C) 4 3 ZFFOLŽTBZPMMBSŽLVMMBOBSBLHJEFDFLUJS CK D) 4 2  &  B M P 3. AB A E D F  \"MJ\"OPLUBTŽOEBO )BLBO$OPLUBTŽOEBOBZOŽIŽ[- DC MBSMBIBSFLFUFEJZPSMBS % | | | | õFLJMEFCÑUÑOLBSFMFSFöLBSFWF MP = 2. KM EAD | |\"#$%LBSF m =CS EJS\"MJhOJOEBLJLBEB\"EBO#ZFHJUUJôJOFHÌ- ( ) = 45°  AB SF )BLBOBZOŽIŽ[MB$EFO%ZFLBÀEBLJLEBHJ- EFS | |AE =CS 10 85 8 85 | | :VLBSŽEBLJWFSJMFSFHÌSF  &$ LBÀCJSJNEJS A) B) 8 C) \"  #  $  %  &  106 106 D) 6 5 85 E) 106 1. B 2. \" 3. B 77 4. D $ \"

TEST - 34 ,BSF 1. D C \"#$%LBSF 4. A B \" \"%$& =\" &#$ E | |DC =CS AE B D CF | | :VLBSŽEBLJWFSJMFSFHÌSF  \"& LBÀCJSJNEJS | | | |\"#$%LBSF [ AF ] a [ BC ] = { E }  AB = EC | |EF = 13 CS \"   #   $   %  &   :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS \"  #  $  %  &  2. D C \"#$%LBSF  A B \"#$%LBSF | | | |F F |AE | |= EF| EB = GH | | | | DE = EC | |AB =CS E | | | | CF = EF G A^ & h =CS2 H FGH AB D EC  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN-  :VLBSŽEBLJWFSJMFSFHÌSF \" #'&$ LBÀCJSJNLB- LBSFEJS SFEJS \"  #  $  %  &  \"  #  $  %  &   \"#$% LBSFTJ õFLMJOEFLJ UBIUB QBS¿BTŽOB õFLJMEFLJ FõLFOBSпHFOUBIUBMBSNPOUFMFONJõUJS AB 3. A B \"#$%LBSF [ DE ]B¿ŽPSUBZ | |CE = 4^ 2 - 1 hCS E DC  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- DC LBSFEJS  0MVöBO UBSBMŽ CÌMHFOJO ÀFWSFTJ  CS PMEVôVOB \"  #  $  %  &  HÌSF  CBöMBOHŽÀUB LVMMBOŽMBO UBIUBOŽO BMBOŽ LBÀ CJSJNLBSFEJS \"  #  $  %  &  1. $ 2. D 3. D  4. \" B $

,BSF TEST - 35 1. A B \"#$%LBSF 4. A B \"#$%LBSF 'PSUBOPLUB E F [ AE ] m [ EF ] [ DE ] m [ AF ] E [ EF ] m [ FC ] F DE = 4 5 br D | |AE =CS DC | |FC =CS  :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJN- | |C EF =CS LBSFEJS  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS \"  #  $  %  &  \"  #  $  %  &  2. A B G  AE B F E DC F & \"#$%LBSF A^ AFD h = A ( ABCD ) :VLBSŽEBLJWFSJMFSFHÌSF  GE PSBOŽLBÀUŽS AB DH C A) 1 2 1 1 1 G B) C) D) E) \"#$%LBSF &'($EJLEËSUHFO  3 2 3 4 | | | | | |EB = AE HG =CS 3. ôFLJMEFLJ \"#$% LBSFTJOEFO NBLBT ZBSEŽNŽZMB  :VLBSŽEBLJWFSJMFSFHÌSF \" &'($ LBÀCJSJNLB- SFEJS ,-./LBSFTFMCËMHFTJLFTJMJZPS \"  #  $  %  &  A LB K M DN C ,BMBOпHFOMFSCJSCJSJOFZBQŽõUŽSŽMBSBLZJOFCJSLBSF-  \"MBOŽ ^ 6 + 4 2 h CJSJNLBSF PMBO CJS \"#$% LBSFTJ- TFMCËMHFZBQŽMBCJMJZPS OJ¿J[JOJ[%$LFOBSŽ [ BD ]LËõFHFOJJMF¿BLŽõBDBL  ,-./CÌMHFTJOJOBMBOŽ\"CS2PMEVôVOEB LBSF- õFLJMEF LBUMBOEŽóŽOEB $ OPLUBTŽ , OPLUBTŽOB EFOL OJOCJSLFOBSŽ 7 2 CSPMEVôVOBHÌSF \"LBÀCJ- HFMNFLUFEJS SJNLBSFEJS | | #VOBHÌSF  KB LBÀCJSJNEJS \"  #  $  %  &  A) 1 B) 2 C) 3 D) 2 E) 2 2 1. D 2. $ 3. E 79 4. B E B

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr %&-50÷% TANIM ÖRNEK 2 A 2k  5BCBOMBSŽPSUBLJLJJLJ[LFOBSпHFOJOUBCBOMBSŽ- 8 E OŽOCJSMFõNFTJZMFPMVõBOEËSUHFOFEFMUPJE de- OJS %m/*m 3k A |AB| = |AC| B 8C D | | | |BD = CD JTF | | | |\"#%пHFO \"#$&EFMUPJE  AB = BC =CS | | | | AE = ED \"#%$EFMUPJEUJS | |:VLBSŽEBLJWFSJMFSFHÌSF  $% LBÀCJSJNEJS B C \"#%$EFMUPJEJTF \"#$&EFMUPJEJOEF[BE]BÀŽPSUBZPMEVôVOEBO E D r [ AD ] m [ BC ] 8 BD = r [ AD ]B¿ŽPSUBZ 2k 3k r |BE| = |EC| |BD | =CS r [ AD ]TJNFUSJFLTFOJ |$%| = 12 -=CSCVMVOVS r m ( A%BD ) = % m ( ACD ) ÖRNEK 1 \"#$%EFMUPJE ÖRNEK 3 4B A A a a |AB| = |AD| 4 E [ AC ]LËõFHFO 130° % ) = 110° E D m ( ABC B 110° 110° % m ( AEC ) = 130° a 20° D7 C \"#$%ZBNVL [ AB ] // [ DC ]  C | | | | | |\"#&%EFMUPJE  AB = BE =CS  DC =CS :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) LBÀEFSFDFEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  &$ LBÀCJSJNEJS ECD % % \"#&% EFMUPJEJOEF #% BÀŽPSUBZ WF \"#$% ZBNVL PMEV- ABC ADC m ( ) = m ( ) PMEVôVOEBO ôVOEBO š=š+ m ( E%CD ) % = m ( % ) EJS m ( BDC ) CBD m ( E%CD ) = 20°PMVS E&KF EF1JTBHPSUFPSFNJOEFO #%$JLJ[LFOBSÑÀHFOPMEVôVOEBO|%$| = |#$|EJS |&$| = 7 - 4 =CSCVMVOVS 1. š  2. 4 3. 3

www.aydinyayinlari.com.tr ÇOKGENLER VE DÖRTGENLER 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 4 \"#$%EFMUPJE %FMUPJEEF\"MBO %m/*m A |BC| = |CD| A 16 16 | |BC =CS B6 6D 60° | |AB =CS 60° O % m ( BCO ) = 30° B C E 12 12 30° 30° C D | |:VLBSŽEBLJWFSJMFSFHÌSF  \"0 LBÀCJSJNEJS  \"#%$EFMUPJEWF[AD] a [BC] = {E} #$%FöLFOBSÑÀHFOJOEF|OD| =CSEJS r A^ ABCD h = 1 BC . AD 2 \"0%ÑÀHFOJOEF1JTBHPSUFPSFNJOEFO |\"0|2 +2 =2 |\"0|2 = 220 |\"0| = 2 55 CVMVOVS ÖRNEK 5 ÖRNEK 6 A \"#$%EFMUPJE D K F |AD| = |AB| AE C D B |ED| = |EC| |AF| = |FB| E | |AC =CS B | |BD =CS | | | |\"#$%EFMUPJE [ AC ] a [ BD ] = { E }  AB = AD C | | | | | | | |AC + BD =CS  AC 2 + BD 2 =CS2 | |:VLBSŽEBLJWFSJMFSFHÌSF  &' LBÀCJSJNEJS :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJNLBSF- EJS , OPLUBTŽ \"% LFOBSŽOŽO PSUB OPLUBTŽ PMBDBL öFLJMEF BMŽ- |\"$|+ |BD| 2 = |\"$|2 + 2.|\"$|.|BD| + |BD|2 OŽSTB[,'] // [BD]PMVSWF m ( % ) = 90° EJS FKE [,']WF[KE]PSUBUBCBOPMEVôVOEBO 121 =+ 2|\"$|. |BD| |KE| =CS |\"$|.|BD| = |,'|=CS A^ ABCD h = AC . BD 2 |&'|2 =2+2 = &,'ÑÀHFOJOEF1JTBHPSUFPSFNJO- den |&'| =CSCVMVOVS 2 = 14 br CVMVOVS 4. 2 55 10  14

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ÇOKGENLER VE DÖRTGENLER www.aydinyayinlari.com.tr ÖRNEK 7 \"#$%EFMUPJE ÖRNEK 9 D 43 |CD| = |CB| | | | | | | | |AB = AD WF BC = CD PMBDBLõFLJMEF\"#$%EFM- 4 % 6 C m ( BAD ) = 120° UPJEJOJ¿J[JOJ[[ AC ] a [ BD ] = { E }PMTVO#$LFOBSŽÐ[F- 33 43 SJOEF[ EF ] m [ BC ]PMBDBLõFLJMEFCJS'OPLUBTŽBMŽOŽ[ | |BC = 43 CS A 60° 3 | | | | | |BF =CS  FC =CSWF AE = 3 5 CSPMEVôVOB 60° K | |AB =CS HÌSF \"#$%EFMUPJEJOJOBMBOŽLBÀCJSJNLBSFEJS 33 6 B :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLBSFEJS &#$ÑÀHFOJOEF²LMJEUFP- A \"#$%EFMUPJEJOEF[$\"]BÀŽPSUBZPMEVôVOEBO SFNJOEFO |&$|2 = % 3 5 |&$| = 4 5 CS m ( DAC ) = 60° PMVS0MVöBOÑÀHFOEF|DK| = 3 3 CSEJS |BE|2 = 2.10 B 2 5 E 2 5 D |BE| = 2 5 CS %,$ÑÀHFOJOEF1JTBHPSUFPSFNJOEFO ^ 3 3 h2 + KC 2 = ^ 43 h2 2 F 45 A^ ABCD h = 7 5 .4 5 8 2 |,$| =CS C =CS2 CVMVOVS A^ ABCD h = 7.6 3 = 21 3 CS2 CVMVOVS 2 ÖRNEK 10 \"#$%EËSUHFO A ÖRNEK 8 m ( % ) 2 90° ABC D 6 C 13 13 | | | |AB = AD =CS 60° 60° Da B | | | |BC = CD =CS 45° 6 11 11 A ( ABCD ) =CS2 32 6 60° C 45° | |:VLBSŽEBLJWFSJMFSFHÌSF  \"$ LBÀCJSJNEJS A 32 B | | | |\"#$%EFMUPJE [ DA ] m [AB ]  AB = AD = 3 2 CS m ( % ) = a° PMTVO ADC % = 105° A^ ABCD h = 13.11. sin a ·2 =TJOa m ( ABC ) 2 TJOa = 132 :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJNLBSF- 12 - 5 EJS sin a = j cos a = 13 13 (a >šPMEVôVOEBODPTaOFHBUJGUJS [DB]OŽÀJ[FSTFLPMVöBOÑÀHFOMFSEF & EFDPTJOÑTUFPSFNJ ADC \" \"#$% =\" %\"# +\" %#$ PMVS |\"$|2 = 132+ 112 + 2.13.11· 5 2 13 3 2 .3 2 + 6 . 3 = ^ 9 + 9 3 hbr2 CVMVOVS = 290 + 110 = 400 24 |\"$| =CSCVMVOVS 7. 21 3  9 + 9 3  9. 70 10. 20

Deltoid TEST - 36 1. A ABCD deltoid 4. A ABCD bir deltoid B |AB| = |AD| x |AB| = |AD| m ( A%DC ) = 115° B % = % E m (BAC) m (CAD) 5 D % = 80° | |BD = 24 br E m ( BEC ) D % = 90° m ( ABE ) | |EC = 5 br Ç ( ABCD ) = 66 br C C  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) kaç derece- | |:VLBSŽEBLJWFSJMFSFHÌSF AB kaç birimdir? BCE dir? A) 20 B) 18 C) 15 D) 13 E) 12 A) 60 B)65 C) 70 D) 75 E) 80 2. A ABCD deltoid 5. D 4 |BC| = |CD| A 2E |AB| = |BD| C B D % = 130° m ( ADC ) B | | | | | |ABCD deltoid, AD = AB , AE = 2 br | |DE = 4 br m ( A%DB ) = % m ( ACB ) C | |:VLBSŽEBLJWFSJMFSFHÌSF  EC kaç birimdir? % A) 4 B) 5 C) 6 D) 7 E) 8  :VLBSŽEBLJWFSJMFSFHÌSF m ( BCD ) kaç derece- dir? A) 30 B) 36 C) 40 D) 45 E) 50 3. D 6. A ABCD deltoid [ EF ] m [ AD ] 32 [ EF ] // [ CD ] A C 10 8 I IAF = 8 br E B I IFD = 2 br F I IAB = 10 br 32 E 2 B D I IABCD deltoid, AC = 11 br, [AB] m [AD] C I I I IAD = AB = 3 2 br I I:VLBSŽEBLJWFSJMFSFHÌSF EC kaç birimdir? I I:VLBSŽEBLJWFSJMFSFHÌSF  CD kaç birimdir? A) 6 B) 7 C) 8 D) 9 E) 10 A) 9 B) 8 C) 7 D) 6 E) 5 1. D 2. C 3. C 83 4. A 5. E 6. E

TEST - 37 Deltoid 1. D 6 C ABCD yamuk , 4. A ABCD deltoitd [ AB ] // [ DC ] 10 I IAB = 10 br BE F DEFC bir deltoid D I IBC = 12 br 12 3 I DCI = I CFI 2 2 = 172 br2 + AE I IB DC = 6 br AE CE I IFB = 3 br I I :VLBSŽEBLJWFSJMFSFHÌSF  EB kaç birimdir? C A) 7 B) 8 C) 9 D) 10 E) 11 I I:VLBSŽEBLJWFSJMFSFHÌSF  BE kaç birimdir? A) 8 B) 6 3 C) 5 3 D) 6 E) 4 3 2. A 4 B 4 5. A ABC üçgen C x F [AE] m [BD] D 11 E B D I I I IBE = ED = 6 br I IABCD bir deltoid, [AB] // [DE], DE = 11 br 6 6 I IDC = 3 br I I I IAB = BC = 4 br E I IEC = 8 br I I :VLBSŽEBLJWFSJMFSFHÌSF  CE = x kaç birimdir? 8 A) 7 B) 6 C) 5 D) 4 E) 3 C 3. D I I:VLBSŽEBLJWFSJMFSFHÌSF  AE kaç birimdir? 1 A) 4 6 B) 8 5 C) 12 3 KL D) 2 30 E) 2 15 2 AC 6. A ABCD deltoid 6 K E IAEI = IEBI M N B ICFI = IFDI 2 IBKI = IKDI D I IEF = 10 br B BD = 2 2 br ABCD deltoid, [CK] m [DA], [AL] m [DC] F I I I I[CM] m [AB], [AN] m [BC], DA = DC I I I I I I I IKD = 1 cm, LC = MB = 2 cm, CN = 6 cm C KL I I:VLBSŽEBLJWFSJMFSFHÌSF  AC kaç birimdir? :VLBSŽEBLJWFSJMFSFHÌSF  oranŽLBÀUŽS MN 4 3 8 7 A) 5 2 B) 7 2 C) 10 2 A) B) C) D) E) 2 D) 12 2 E) 14 2 3 2 3 3 1. C 2. A 3. A 84 4. D 5. E 6. E

Deltoid TEST - 38 1. D 4. A ABCD deltoid 13 20 43 m % = 150° A 24 B 150° (ABC) C 43 AB = AD = 4 3 br D AC = 2 39 br 13 20 B I I I I I IABCD deltoid, AB = AD = 13 br, DB = 24 br C I I I IBC = DC = 20 br  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? karedir? A) 20 3 B) 18 3 C) 16 3 A) 238 B) 242 C) 246 D) 248 E) 252 D) 12 3 E) 8 3 2. A ABCD deltoid 5. A ABCD deltoid E I AEI = 3.I ECI IABI = IADI B A ( BEC ) = 2 br2 T I ATI = 3.I TDI D I CKI = 3.I KDI D CP = 3. PB I I I IB PK C I IKT = 5 br C I IPT = 61 br :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$  LBÀ CJSJNLB- redir? A) 8 B) 10 C) 12 D) 14 E) 16 A) 44 B) 42 C) 40 D) 36 E) 34 3. A ABCD deltoid 6. A ABCD deltoid BE IADI = IABI [BC] m [DC] 15° IBCI = ICDI IBAI = IBCI I I I IB D [AB] m [BC] O D DA = DC AC = 4 2 br I BDI = 2.I BCI m % = 15° I IC BO = 3 br (BCA) C :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? A) 12 B) 12 3 C) 16 A) 10 B) 8 C) 6 D) 4 E) 2 D) 16 3 E) 24 3 1. E 2. E 3. B 85 4. D 5. C 6. B

KARMA TEST - 1 Çokgenler ve Dörtgenler 1. B 4. D C ABCD kare A | |DP = 2 br C 21 | |CP = 1 br P | |BP = 2 br D 2 K E AB F \" # $ % & 'EÐ[HÐOCJS¿PLHFOJOBSEŽõŽLLË- | | :VLBSŽEBLJWFSJMFSFHÌSF  BC kaç birimdir? õFMFSJ [ BK ] a [ FK ] = {K}, m ( % ) = 1 44° BKF A) 5 B) 7 C) 2 2  :VLBSŽEBLJWFSJMFSFHÌSF CVÀPLHFOJOLFOBSTB- D) 10 E) 2 3 ZŽTŽLBÀUŽS A) 20 B) 24 C) 27 D) 30 E) 32 5. D ABCD yamuk C [AB] // [DC] 2. A K B 4 [EF] // [DA] L E 2 [DE] m [EF] DC | CE| = 2| EB| | | | |A F B ABCD paralelkenar , [ KL ] m [ AB ], DC = 4 FB % % DCA ACB | |DE = 12 br | | | |m = | |EF = 5 br ( ) m ( ), AB = 6 br, AL = 4 br | |LC = 2 br :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? &  :VLBSŽEBLJWFSJMFSFHÌSF  A^ AKL h kaç birimka- A) 200 B) 180 C) 169 D) 165 E) 145 redir? A) 2 B) 2 3 C) 4 D) 4 3 E) 6 6. A L 3. B P C 25° E D E D 15° K C AB | | | |\"%$&CJSEJLEËSUHFO  AB = % = 25° DE , m ( BAD ) | |ABCD ve \",-1EJLEËSUHFOMFSJFõ  EC = 2 br | | | |DE = 7 br, BC = 6 br % = 15° | |:VLBSŽEBLJWFSJMFSFHÌSF  EL kaç birimdir? m ( BCD )  :VLBSŽEBLJWFSJMFSFHÌSF  m ( % ) kaç derece- AED dir? A) 5 B) 4 C) 3 D) 2 E) 1 A) 30 B) 35 C) 40 D) 45 E) 50 1. D 2. B 3. B 86 4. A 5. D 6. B

Çokgenler ve Dörtgenler KARMA TEST - 2 1. E D 4. D C ABCD bir kare F4 A 15° m ( B%CE ) = 15° 60° FC 3 m % = 60° (CEF) E K | |FE = 3 br B A 6B | |CE = 4 br L | |AB = 3 6 br | |\"#$%&'EÐ[HÐOBMUŽHFO#-,$LBSF  AB = 6 br | | :VLBSŽEBLJWFSJMFSFHÌSF  AF kaç birimdir? & A) 3 3 B) 3 5 C) 5  :VLBSŽEBLJWFSJMFSFHÌSF  A^ ACK h kaç birimka- D) 6 E) 7 redir? A) 21 B) 24 C) 27 D) 30 E) 36 2. D C 5. 1 A2 F D E 4 E O AB | | | | | |ABCD paralelkenar, ED = 1 br, EB = BC BC & A_ ABE i = 3 % A_ EBCD i 5 m ( EBC ) = 90° , | | :VLBSŽEBLJWFSJMFSFHÌSF  AB kaç birimdir? ABCD dik yamuk, [ AB ]  & OPLUBTŽOEB  [ BC ], C OPLUBTŽOEB0NFSLF[MJ¿FNCFSFUFóFU [AD] // [ BC ] A) 5 B) 6 C) 7 D) 8 E) 9 | | | |[AB] m [BC], AE = 4 br , AF = 2 br 3. D F C  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? E GK H A) 45 B) 54 109 117 C) D) E) 60 22 AB \"#$%EJLEËSUHFO & = 4 br2 A^ FGK h Aa & k = 13 br2 , & = 10 br2 6. &OV[VOLFOBSŽDNPMBOCJSZBNVôVOEJôFS BKC A^ AHB h UÑN LFOBS V[VOMVLMBSŽ CJSCJSJOF FöJUUJS #V ZB- &  :VLBSŽEBLJWFSJMFSFHÌSF  A^ EHG h kaç birimka- NVôVOÀFWSFTJDNPMEVôVOBHÌSF BMBOŽLBÀ cm2 dir? redir? A) 1 B) 2 C) 3 D) 4 E) 5 A) 13 B) 26 C) 30 D) 32 E) 36 1. C 2. A 3. A 87 4. E 5. D 6. D

KARMA TEST - 3 Çokgenler ve Dörtgenler 1. B 4. A KB ABCD paralelkenar // CA // [DK] m [KL] 3 3 [KM] m [DL] G D M L D 36° | |BL = 3 br 6 | |LC = 6 br | |KM = 3 br E C F & ABCDEF...... düzgün çokgen, maD%GFk = 36° :VLBSŽEBLJWFSJMFSFHÌSF  A^ KDL h kaç birimka- redir?  :VLBSŽEBLJWFSJMFSFHÌSF CVÀPLHFOLBÀLFOBS- MŽEŽS A) 6 B) 9 C) 12 D) 18 E) 24 5. D C A) 12 B) 15 C) 18 D) 20 E) 24 | |2. ABCD bir yamuk, [AD] // [BC], BD = 24 br H | |AC = 10 br, [AD] ve [BC]OJOPSUBOPLUBMBSŽTŽSBTŽ | |ile E ve F, EF = 13 br dir. A BE :VLBSŽEBLJ WFSJMFSF HÌSF \" \"#$%  LBÀ CJSJN- ABCD ikizkenar yamuk [AB] // [DC], [BH] m [DE] karedir? | | | | | |AC = BE = 2. BH = 8 br A) 100 B) 110 C) 120 D) 130 E) 150 :VLBSŽEBLJ WFSJMFSF HÌSF \" \"#$%  LBÀ CJSJN- 3. ôFLJM- EFLJ \"#$% EJLEËSUHFOJOEF  [AB] LFOBSŽ karedir? [BD] LËõFHFOJ Ð[FSJOF HFMFDFL CJ¿JNEF LBUMBOŽZPS A) 16 B) 16 3 C) 32 WFõFLJM-2 elde ediliyor. AD D) 32 3 E) 64 6. C ABCD deltoid 120° |CD| = |CB| B C % = 120° ôFLJM D m ( DCB ) E D B |AD| = |DE| 8 30° m ( A%DE ) = 30° A' F A E AD =3 B C ôFLJM DC AE | | | | | |A' E =CSPMEVôVOBHÌSF  BC - DE GBSLŽ :VLBSŽEBLJWFSJMFSFHÌSF  PSBOŽLBÀUŽS kaç birimdir? BE A) 10 B) 8 C) 6 D) 4 E) 2 23 A) 1 B) 2 C) 3 D) E) 23 1. B 2. C 3. B 88 4. D 5. B 6. A

Çokgenler ve Dörtgenler KARMA TEST - 4 1. D C 4. D C G F A3 E 2B A EB % \"#$% CJS FõLFOBS EËSUHFO  [DB] LËõFHFO  [DE] ABCD paralelkenar, m ( DEG ) = 90° | | | |B¿ŽPSUBZ, AE = 3 br, EB = 2 br % % :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCS2 dir? EDF FDG | | | |mak ma k = , AE = EB 80 2 | | | | | | | | | |EF = 3 br, BG = GC , ED + DG = 16 br C) A) 35 B) 25 2 9 :VLBSŽEBLJ WFSJMFSF HÌSF \" \"#$%  LBÀ CJSJN- D) 50 100 2 karedir? E) 9 A) 40 B) 48 C) 56 D) 64 E) 72 2. ôFLJMEFLJ\"#$%EJLEËSUHFOJFõUVóMBEBOPMVõVZPS DC 5. D 10 C 6 AB A EB Çevre ( ABCD ) = 92 br dir. ôFLJMEF[DC] ZBSŽN¿FNCFSJO¿BQŽ   :VLBSŽEBLJ WFSJMFSF HÌSF  Fö EJLEÌSUHFOMFSEFO | | | |ABCD paralelkenar, DC = 10 br, AD = 6 br biSJOJOÀFWSFTJLBÀCJSJNEJS  #VOBHÌSF \" \"#$% LBÀCJSJNLBSFEJS A) 24 B) 28 C) 32 D) 36 E) 40 3. D C ABCD kare A) 40 B) 45 C) 48 D) 50 E) 54 |EF| = |BF| E A FB 6. ,FOBSV[VOMVLMBSŽCSWFCSPMBOCJSEJLEËSUHFO :VLBSŽEBLJWFSJMFSFHÌSF  m ( A%DF ) kaç derece- CJ¿JNJOEFLJCJSLBóŽUIFSIBOHJCJSLËõFHFOJOEFOCÐ- dir? LÐMFSFL JLJZF LBUMBOŽZPS WF UFL LBU LBMBO LŽTŽNMBS LFTJMJZPSWFLBóŽUUFLSBSB¿ŽMŽZPS  0MVöBOöFLMJOBMBOŽLBÀCJSJNLBSFEJS 75 B) 38 77 79 81 A) C) D) E) A) 10 B) 15 C) 20 D) 30 E) 40 2 22 2 1. E 2. C 3. D 89 4. D 5. C 6. A

KARMA TEST - 5 Çokgenler ve Dörtgenler 1. D C ABCD dikEËSUHFO | |4. Bir ABC üçgeninde m(WA) = 90°, AB = 6 br | |AC =  CS пHFOJO EŽõŽOB EPóSV BDEC karesi x [ DE ] m [ EL ] PMVõUVSVMVZPS'OPLUBTŽLBSFOJONFSLF[JEJS A3 E 5 | |:VLBSŽEBLJWFSJMFSFHÌSF  AF kaç birimdir? | | | |AE = BL = 3 br A) 6 2 B) 7 2 C) 8 2 D) 9 2 E) 10 2 L | |3 CL = 5 br B | | :VLBSŽEBLJWFSJMFSFHÌSF  EC kaç birimdir? A) 10 B) 6 3 C) 4 7 B D) 8 2 E) 12 5. ABCD deltoid H |BC| = |CD| A 15° 4 K 75° C [AC] ve [BD] N LËõFHFOMFS 2. D E C [HD] m [AB] D F % = 15°  m ( % ) = 75° \" ,WF$EPóru- m(DAC) BCA | |sal, HK = 4 br AB  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? [ BE ]B¿ŽPSUBZ [AC] m [CB], [CD] m [AD], A) 64 B) 60 C) 56 D) 52 E) 48 | | | |[DA] m [AB], AF = 5 br, FC = 3 br | | :VLBSŽEBLJWFSJMFSFHÌSF  DE kaç birimdir? 6. ôFLJMEFLJ\"#$%QBSBMFMLFOBSŽOEB [AC] ve [DB]LË- A) 0,4 B) 0,5 C) 0,6 D) 0,8 E) 1 õFHFOMFSJ0OPLUBTŽOEBLFTJõNFLUFEJS  AB 3. D 6 P3C ABCD, ATLE ve O F FCPK birer kare E 5 K E L F | |ED = 5 br | |DP = 6 br | |PC = 3 br DC A TB [AC] a [DF] = {E}, CF = 3  :VLBSŽEBLJWFSJMFSFHÌSF \" 5#',- LBÀCJSJN- BC 5 karedir? & A_ DEO i :VLBSŽEBLJWFSJMFSFHÌSF  & PSBOŽLBÀUŽS? A_ EFC i A) 26 B) 27 C) 28 D) 29 E) 30 5 5 5 7 6 A) B) C) D) E) 8 7 9 9 7 1. D 2. A 3. C 90 4. B 5. A 6. C

Çokgenler ve Dörtgenler KARMA TEST - 6 1. E ABCD yamuk 4. \"#$ пHFOJOEF \" B¿ŽTŽOŽO J¿ B¿ŽPSUBZŽ [BC] yi D 5 C [ AB ] // [ CD ] OPLUBTŽOEBLFTNFLUFEJS K // F |CF| = |FB| | | | | | |AC - AB = BD ve m % ) = 60° D // (BAC 8 [ AE ] m [ FE ] B PMEVôVOBHÌSF m ( % ) kaç derecedir? A | |AD = 8 br ADC A) 90 B) 100 C) 110 D) 120 E) 130 | |EK = 5 br, A ( ABCD ) = 88 br2 | | :VLBSŽEBLJWFSJMFSFHÌSF  ,' = x kaç birimdir? A) 7 B) 6,5 C) 6 D) 5,5 E) 5 5. A 10 2. ôFLJMEFLJ \"#$% EJLEËSUHFOJOEF [AC] LËõFHFOJ & 10 8 D WF'OPLUBMBSŽZMBпFõQBS¿BZBBZSŽMNŽõUŽS E m AB 9 // B E // n F // C D KC | | | |ABCD konveks CJSEËSUHFO  AB = AD = 10 br | | | | | |DK = KC , [BF] m [AC], BC = 2 3 br | |:VLBSŽEBLJWFSJMFSFHÌSF  &, kaç birimdir? | | | |% A) 3 2 B) 2 3 C) 2 3 D) 6 E) 3 m(ACB) = m ( B%DA ), AE = 8, BE = 9 br  :VLBSŽEBLJWFSJMFSFHÌSF  m PSBOŽLBÀUŽS n 4 5 3 9 9 A) B) C) D) E) 9 9 4 5 4 3. ôFLJMEFLJ \"#$%&' EÐ[HÐO BMUŽHFOJO NFSLF[J , OPLUBTŽEŽS AB P S3 FK C 6. A B ABCD kare S1 S2 // K [EB] m [KC] EHD 7 E |AE| = |ED| // | |KD = 7 br S1, S2 ve S3J¿JOEFCVMVOEVLMBSŽLBQBMŽCËMHFMFSJO DC | | | |BMBOMBSŽ [ KH ] m [ DE ], 3. AP = PF , S3 = 18 br2  :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJN- karedir? :VLBSŽEBLJ WFSJMFSF HÌSF  41 + 42 UPQMBNŽ LBÀ birimkaredir? A) 44 B) 40 C) 36 D) 30 E) 28 A) 25 B) 27 C) 32 D) 36 E) 49 1. C 2. C 3. D 91 4. C 5. A 6. E

KARMA TEST - 7 Çokgenler ve Dörtgenler DE 1. C ABCD ... 4. A B D düzgün onikigen 4 | |A x E BD = 4 br F K | |:VLBSŽEBLJWFSJMFSFHÌSF  AE kaç birimdir? BC A) 4 2 B) 4 3 C) 7 | | | |ABCD kare, BK = DE  :VLBSŽEBLJWFSJMFSFHÌSF  m ( A%KE ) kaç derece- dir? A) 150 B) 135 C) 120 D) 112,5 E) 105 D) 8 E) 12 2. A D 10° 120° 5. #JS LºóŽEB CJS \"#$% QBSBMFMLFOBSŽ ¿J[JMJZPS %BIB E TPOSBQBSBMFMLFOBSŽOEŽõŽOEBCJS,OPLUBTŽBMŽOŽZPS BC [AK] a [DC] = { M }, [BK] a [DC] = {N}BMŽOŽQ%,$ | | | | | | | |ABCD paralelkenar, AE = BC , DE = AB ve ABK üçgenleri çiziliyor. % = 120° , % = 10° & = 20 br2 & = 9 br2PMEVôV- m(BCD) m(CDE) A^ ABK h WF A^ DKC h % OBHÌSF \" \"#$% LBÀCJSJNLBSFEJS CEA  :VLBSŽEBLJWFSJMFSFHÌSF m ( ) BÀŽTŽLBç de- recedir? A) 18 B) 19 C) 20 D) 22 E) 24 A) 5 B) 10 C) 15 D) 17 E) 18 3. E [ KE ] m [ EA ] 6. #JSLºóŽEB\"#$%QBSBMFMLFOBSŽ¿J[JMJZPS%BIBTPO- DF C ra %$LFOBSŽWF#$LFOBSŽÐ[FSJOEFTŽSBTŽZMB,WF | |CK = 5 br -OPLUBMBSŽOŽBMŽOŽ[ [LK] m [ BC ], [ BL ]B¿ŽPSUBZ 5 | | | |LA = 12 br, LK = 6 br dir. | |BK = 4 br K | |4 AB = 26 br A 26 | |B CD = 14 br :VLBSŽEBLJWFSJMFSFHÌSF  m ( % ) kaç derece- DLA | |:VLBSŽEBLJWFSJMFSFHÌSF  &, kaç birimdir? dir? A) 52 B) 54 C) 56 D) 12 E) 62 A) 75 B) 60 C) 45 D) 30 E) 15 5 5 5 5 1. B 2. C 3. E 92 4. E 5. D 6. D

Çokgenler ve Dörtgenler KARMA TEST - 8 1. A B 4. D G C F FH E AE B DC ABCD paralelkenar, [ BG ] ve [ CE ]B¿ŽPSUBZ ABCD ikizkenar yamuk, [DF] m [AC], [BE] m [AC] | | | |[ FH ] m [ BC ], HC = 2 br, BC = 10 br | |DC = 20 br | | | | | |DF = 8 br, EB = 4 br, FE = 5 br % m ( ACD ) = 22, 5°  :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLB- redir?  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- karedir? A) 140 B) 150 C) 152 D) 158 E) 160 A) 35 2 75 2 C) 42 2 B) 2 169 2 85 2 5. A E B ABCD D) E) EJLEËSUHFO D 4 2 F | DE| = 3|EF | | |EB = 2 br 2. C ABCD dik yamuk C B m % = % ) ( DEC ) 2.m ( AEB A | |AB = 2br | |AD = 10 br | |DC = 8 br DEF üçgeni [ DF ]CPZVODBLBUMBOŽODB%'$пHFOJ ED elde ediliyor. | | :VLBSŽEBLJWFSJMFSFHÌSF  CE kaç birimdir? | | :VLBSŽEBLJWFSJMFSFHÌSF  DC kaç birimdir? A) 9 B) 10 C) 12 D) 15 E) 20 A) 8 B) 9 C) 10 E) 12 E) 15 3. D KL . C 6. A 12 B ABCD M 6 EJLEËSUHFO D |BF| = |FC| G F AE GB |DE| = |EC| | | | | | | | |ABCD paralelkenar, 5. KL = DC , AB = 2. EG | |AD = 6 br A^ & h = 25 br2 EC EMG | |AB = 12 br  :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% LBÀCJSJNLB- | | | | :VLBSŽEBLJWFSJMFSFHÌSF  GE 2 + GF 2UPQMBNŽ redir? kaç birimkaredir? A) 140 B) 138 C) 135 D) 130 E) 120 A) 25 B) 30 C) 35 D) 40 E) 45 1. D 2. B 3. A 93 4. E 5. C 6. A

<(1m1(6m/6258/$5 Çokgenler ve Dörtgenler 1. &õJU V[VOMVLUB EËSU UBIUB QBS¿BTŽ CJSCJSJOF NPOUF 2. .FUFIBO JMF (ÐOEÐ[ BSBMBSŽOEB CJS PZVO PZOVZPS- FEJMFSFLõFLJM*EFLJLBSFFMEFFEJMFSFLEVWBSBNPO- MBS .FUFIBO \"#$% LBSFTJ õFLMJOEFLJ UBIUBOŽO FU- UFMFONJõUJS SBGŽOB CFMJSUJMFO ZËOEF  CS V[VOMVóVOEB CJS UF- MJHFSHJOõFLJMEFTBSŽZPS5FMJOVDVOVOHFMEJóJOPL- AB UBZŽ , JMF JTJNMFOEJSJMJZPS (ÐOEÐ[ JTF .FUFIBO JMF [ŽUZËOEFCSV[VOMVóVOEBCJSUFMJHFSHJOõFLJMEF TBSŽQ UFMJOV¿OPLUBTŽOŽ.JMFJTJNMFOEJSJMJZPS AB D C DC ôFLJM–* B A  5BIUBOŽOÀFWSFTJCSPMEVôVOBHÌSF ,JMF. OPLUBMBSŽBSBTŽV[BLMŽLLBÀCJSJNEJS A) 9 2 B) 10 2  $ 4 13 D)    &  D 3. 4FMJO BõBóŽEBLJ ZBNVL õFLMJOEFLJ UBIUBOŽO CFMJSUJ- C MFOOPLUBTŽOBMB[FSUVUBSBL\"#LFOBSŽOŽOHËMHFTJOJ PMVõUVSVZPS ôFLJM-** CB  # WF $ OPLUBMBSŽOEBLJ SBQUJZFMFS ¿ŽLUŽóŽOEBO õFLJM **EFLJFõLFOBSEËSUHFONFZEBOBHFMNJõUJS#WF$ OPLUBMBSŽOŽOZFSEFOZÐLTFLMJóJCSB[BMNŽõUŽS #BöMBOHŽÀUBLJ LBSFOJO ÀFWSFTJ  CS PMEVôVOB HÌSF JMLEVSVNEBLJWFTPOEVSVNEBLJDJTJNMF- SJOBMBOMBSŽPSBOŽLBÀPMBCJMJS \"  #  4  $  5 D) 2 E) 8 DA 3 3 3 | | | | | | | |AB =CS  %$ =CS  AD =CS  #$ =CS PMEVôVOB HÌSF  \"# LFOBSŽOŽO HÌMHFTJOJO CPZV %$LFOBSŽLBEBSPMEVôVBOEBLJVÀOPLUBTŽJMF# OPLUBTŽBSBTŽOEBLJV[BLMŽLLBÀCJSJNEJS A) 212 B) 42  $  206 5 5 D) 41 E) 2 10 1. C 94 2. C 3. \"

Çokgenler ve Dörtgenler <(1m1(6m/6258/$5 1. \"MQFSEÐ[HÐOBMUŽHFOõFLMJOEFLJNBTBOŽO¿FWSFTJOJ 3. \"#$%EJLZBNVóVCFMJSUJMFOZËOEF\"#LFOBSŽUBCB- IFTBQMBNBLJ¿JOCJSCJSJOFEJLUBIUBZŽõFLJMEFLJHJ- OBEFóFDFLCJ¿JNEFEËOEÐSÐMÐZPS bi birbirine çiviliyor. BC AB K FC AD L | | | | | |CD =CS  AD =CSWF AB = 16 br ol- ED EVôVOBHÌSF $OPLUBTŽJMFZBNVôVOEÌOEÑSÑM- ',LBMBTŽOŽOCPZVCS ,-LBMBTŽOŽOCPZVCSWF NFTJTPOVDVPMVöBO$OJOCVMVOEVôVZFOJOPL- -$LBMBTŽOŽOCPZVCSEJS UBBSBTŽOEBLJV[BLMŽLLBÀCJSJNEJS  #VOBHÌSF NBTBOŽOÀFWSFTJLBÀCJSJNEJS A) 20 2 B) 12 5 C) 8 10 D) 10 6 E) 24 A) 42 B) 45 C) 48 D) 51 E) 58 4. ôFLJM * EF WFSJMFO \"#$% QBSBMFMLFOBSŽ õFLMJOEFLJ LVNBõQBS¿BTŽ[BD] boyunca kesiliyor. 2. \"õBóŽEB WFSJMFO EJLEËSUHFOMFS õFLJMEFLJ HJCJ LFTJM- A BA B NJõUJS * * DC DB ôFLJM* ** ** DC  %BIBTPOSB*QBS¿B\"OPLUBTŽ$OPLUBTŽOB%OPL- UBTŽ#OPLUBTŽOBLBSõŽMŽLHFMFDFLõFLJMEFEJLJMJQ *** &#%$EËSUHFOJôFLJM**EFLJHJCJFMEFFEJMJZPS B  :VLBSŽEBLJ WFSJMFSF HÌSF  DJTJNMFSJO ÀFWSFMFSJ DC OBTŽMEFôJöJS I II III ôFLJM** E A) \"[BMŽS Artar Artar B) \"[BMŽS %FóJõNF[ Artar | | | |% C) Artar %FóJõNF[ Artar D) Artar Artar \"[BMŽS m ( DCA ) = 120°, DC = 10 br, BC = 6 br E) Artar Artar Artar | | :VLBSŽEBLJWFSJMFSFHÌSF  BD kaç birimdir? A) 12 B) 14 C) 15 D) 16 E) 18 1. D 2. D 95 3. A 4. B

<(1m1(6m/6258/$5 Çokgenler ve Dörtgenler 1. A B 3. ôFLJM * EF WFSJMFO Ë[EFõ \"#$% WF ,-./ LBSFTJ E õFLMJOEFLJUBCMPMBSõFLJM**EFLJHJCJ$WF.LËõFMFSJ G ÐTUÐTUFHFMFDFLõFLJMEFEVWBSBNPOUFFEJMEJóJOEF JLJUBCMPCJSCJSJOJUBNBNMBZBSBLZFOJCJSUBCMPPMVõV- ZPS A D FC BD \"#$%LBSFTJõFLMJOEFLJLBSUPOEB  C K | | | |[ AF ] a [ DE ] = { G }  DF = FC & & & LN A^ AGD h = 2 br2 ve A^ AGE h + A^ DGF h = 17 br2 M EJS ôFLJM*  :VLBSŽEBLJ WFSJMFSF HÌSF  \" \"#$%  LBÀ CJSJN- LBSFEJS? A) 28 B) 30 C) 32 D) 34 E) 36 2. ôFLJMEF\"#$%EJLEËSUHFOJOJO%$LFOBSŽZBZŽOHF- A FK SJMNFEFOËODFLJJQJEJS%$ZBZŽOŽOV[VOMVóV DNEJS L B AD D F DN E N C M ôFLJM** B DN C | | | |õFLJM**EF LF = '% =CSWFm(L%FD) = 120° PMEVôVOB HÌSF  # JMF / LÌöFMFSJ BSBTŽ V[BLMŽL LBÀCSEJS A) 50 B) 50 3 C) 60  :BZPLJMFõFLJMEFHËTUFSJMEJóJHJCJHFSJMEJóJOEF  D) 60 3 E) 120 | | | | | |AF =DN  EF =DN  BC =DNPMV- ZPS  :VLBSŽEBLJWFSJMFSFHÌSF PLJMFHFSJMNJöIBMEFLJ JQJOV[VOMVôV JMLV[VOMVôVOVOLBÀLBUŽEŽS A) 1 B) 3 C) 1 D) 3 E) 2 2 42 1. A 2. E 96 3. C




Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook