Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AYT Matematik Ders İşleyiş Modülleri 3. Modül Üstel ve Logaritmik Fonksiyonlar

AYT Matematik Ders İşleyiş Modülleri 3. Modül Üstel ve Logaritmik Fonksiyonlar

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-24 01:30:11

Description: AYT Matematik Ders İşleyiş Modülleri 3. Modül Üstel ve Logaritmik Fonksiyonlar

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- %J[HJ–(SBGJL5BTBSŽN *4#//P  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ :BZŽODŽ4FSUJGJLB/P #BTŽN:FSJ   ÷MFUJöJN       &SUFN#BTŽN:BZŽO-UEõUJr   \":%*/:\":*/-\"3*   JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * www.aydinyayinlari.com.tr ·/÷7&34÷5&:&)\";*3-*, %¸O¾P.DSDáñ ÜNİVERSİTEYE HAZIRLIK 3. MODÜL MATEMATİK - 2 Alt bölümlerin Karma Testler ÜSTEL VE LOGARİTMİK EDĜOñNODUñQñL©HULU Üstel ve Logaritmik Fonksiyonlar KARMA TEST - 1 Modülün sonunda FONKSİYONLAR tüm alt bölümleri 1. loga16 = 4 5. f^xh = log2 9log3^3x - 2hC L©HUHQNDUPDWHVWOHU PMEVôVOBHÌSF G-1  LBÀUŽS \\HUDOñU  PMEVôVOBHÌSF MPH8BLBÀUŽS ³ Üstel Fonksiyon t 2 A) 2 3 C) 1 D) 1 E) 1 A) 35 83 67 D) 17 E) 11 B) 3 2 B) C) 3 24 3 3 ³ Logaritma Fonksiyonu t 4 ³ Logaritmanın Özellikleri t 9 ³ Taban Değiştirme Kuralı t 15 ³ Logaritma Fonksiyonunun Grafiği t 17 6. log 16 . log 125 . log 49 = log 4 x ^8xh 2. log2x = 0,68 57 8 6ñQñIð©LðĜOH\\LĜ  PMEVôVOBHÌSF  17 x50 JGBEFTJOJOFöJUJLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS %XE¸O¾PGHNL¸UQHN A) 2 B) 4 C) 6 D) 8 E) 16 ³ Üstel Denklemler t 23 VRUXODUñQ©¸]¾POHULQH A) 2 B) 3 C) 4 D) 5 E) 8 ·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ³ Logaritmalı Denklemler t 24 ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3* ³ Üstel ve Logar·iTtUmFMa'PlıOLETşJZiPtOsizlikler t 31 ÖRNEK 3  G3Z3+ G Y = - -a2 + a + Y TANIM GPOLTJZPOVÐTUFMCJSGPOLTJZPOEVS ³ Üstel ve Logaritm BikTBFZŽoTŽnkEFsOiGyBoSLMnŽQlPa[rJUJlGaSFFMTBZŽPMTVO BOŽOBMBCJMFDFôJFOHFOJöEFôFSBSBMŽôŽOFEJS İlgili Gerçek Hayat Problemleri t 33 G 3 Z 3+  G Y  = aY  õFLMJOEF UBOŽNMBOBO 3. f_ x i = log2_ x + 3 i 7. log2 = x, log3 = y, log7 = z <HQL1HVLO6RUXODU GPOLTJZPOMBSBÑTUFMGPOLTJZPOEFOJS  LVSBMŽ JMF WFSJMFO G GPOLTJZPOVOVO FO HFOJö UB- PMEVôVOBHÌSF MPHOJOY Z [UÑSÑOEFOFöJUJ 0RG¾O¾QJHQHOLQGH\\RUXP  BTBZŽTŽOBÐTUFMGPOLTJZPOVOUBCBOŽ YEFóJõLF- OŽNLÑNFTJBöBôŽEBLJMFSEFOIBOHJTJEJS BöBôŽEBLJMFSEFOIBOHJTJEJS \\DSPDDQDOL]HWPHYE OJOFüsEFOJS EHFHULOHUL¸O©HQNXUJXOX <(1m1(6m/6258/$5B) (-2, R) VRUXODUD\\HUYHULOPLĜWLU ³ Karma Testler t 39 A) ( -3, -2 ) C) ( -R, -3 ) A) x + y + z B) 3x - y + z C) 2xÜ+ste2lyv+e zLogaritmik Fonksiyonlar $\\UñFDPRG¾OVRQXQGD WDPDPñ\\HQLQHVLOVRUXODUGDQ D) ( -3, -2 ] E) [ -2, R) D) 2x - 2y + z E) x - 3y + 5z ROXĜDQWHVWOHUEXOXQXU ³ Yeni NeÖsRilNESKor1ular t 47 DNñOOñWDKWDX\\JXODPDVñQGDQ 1. Kayakla atlama yapan bir sporcunun rampadan ay- 3. 1MBKEB CVMVOBO LVN UBOFDJLMFSJOJO NN DJOTJOEFO \"öBôŽEBLJ GPOLTJZPOMBSŽO IBOHJMFSJOJO ÑTUFM GPOLTJ- XODĜDELOLUVLQL] ZPOPMEVôVOVCFMJSMFZJOJ[ SŽMEŽLUBOTPOSBZBUBZEPóSVMUVEBBMEŽóŽIFSYNNF- WFSJMFOPSUBMBNB¿BQŽE FóJNJNPMNBLÐ[FSF TBGFEF[FNJOFEFóEJóJOPLUBZBEÐõFZEPóSVMUVEBLJ a) G Y = 2Y ÖRNEK 4 V[BLMŽóŽG Y PMNBLÐ[FSF m = MPHE+   G Y =2 -Y + 2 œ ÑTUFMGPOLTJZPOEVS GPOLTJZPOVOBHÌSF G  EFôFSJLBÀUŽS b) f (x) = ^ 2 hx œ 1   G Y = log2 -Y  CBóŽOUŽTŽWBSEŽS ÑTUFMGPOLTJZPOEVS x 4. f_ x i = 23x + 1  PMBSBLNPEFMMFONJõUJS p c) f(x) = f 1 œ ÑTUFMGPOLTJZPOEVS y8. 1 + 1  1MBKEBOBMŽOBOLVNUBOFDJLMFSJOJO¿BQMBSŽOŽOPSUBMB- œ ÑTUFMGPOLTJZPOEFôJMEJS 1 NBTŽ NNPMBSBLIFTBQMBONŽõUŽS 2  PMEVôVOBHÌSF G-1 Y BöBôŽEBLJMFSEFOIBOHJTJ- 1- 1 1 - EJS logab logba E  G Y = -2 Y e) G Y = -2Y A) log2x + 1 B) log3x + 1 C) log3x - 1  JöMFNJOJOTPOVDVBöBôŽEBLJ#MFVSOEBFOHÌISBFO HCJVTJEQJMSBKŽOFôJNJLBÀUŽS 2 2 2 œ ÑTUFMGPOLTJZPOEVS A) loga b - logba B) l(ologga(0a,0b6) , -1,2) f) G Y = -2-Y œ ÑTUFMGPOLTJZPOEVS ÖRNEK 5 D) log2x + 1 E) log2x - 1 C) logzaefmiban p x D) \"a   #   $   G Y = B- Y -ÐTUFMGPOLTJZPOVWFSJMJZPS 3 3 E) 1 &   H  G Y =Y  G  = $OW%¸O¾P7HVWOHUL O b FöJUMJôJOFHÌSF f ( - EFôFSJLBÀUŽS œ ÑTUFMGPOLTJZPOEFôJMEJS  %   I  G Y =Y2 TEST - 1œ ÑTUFMGPOLTJZPOEFôJMEJS Üstel Fonksiyon Buna göre, 39 5. B 6. A 7. C 8. E 1. D 2. B 3. E 4. E * :BUBZEPóSVMUVEBNFUSFZPMBMBOTQPSDVEÐ- 1. f : R Z R+UBOŽNMBOBO –x + 1 5. 1 p õFZEPóSVMUVEBNZPMBMNŽõUŽS f(x) = f I. f ( x ) = 2–x 4 ÖRNEK 2 ** ;FNJOEFONFUSFZÐLTFLMJLUFZLFOZBUBZEPó-  G3Z3+ G Y = - B-II. Y f ( x ) =Õx  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ SVMUVEBNFUSFZPMBMNŽõUŽS III. f ( x ) = 1x PMBCJMJS GPOLTJZPOVÑTUFMGPOLTJZPOPMEVôVOBHÌSF BOŽOFO A) y B) y C) y Her alt bölümün *** 3BNQBEBO BZSŽMEŽóŽ BOEBO [FNJOF UFNBTŽOB VRQXQGDRE¸O¾POHLOJLOL LBEBSEÐõFZEPóSVMUVEBNFUSFZPMBMNŽõUŽS HFOJö EFôFSBSBMŽôŽOFEJS  GPOLTJZPOMBSŽOEBO IBOHJMFSJ ÑTUFM GPOLTJZPO- EVS ÖRNEK 6 x  JGBEFMFSJOEFOIBOHJMFSJEPôSVEVS \" :BMOŽ[* # :BMOŽ[**G3Z$3 +* WF*G* Y = 3Y- + x x E) y D) y \" :BMOŽ[* # :BMOŽ[** $ :BMOŽ[*** GP%O L*T*JWZFPO**V* OB HÌSF f ( 2x +   GPOLTJZPOVOVO G Y   % *WF***  % *WF** & **WF*** UÑSÑOEFOFöJUJOFEJS 4. #JSCËMHFEFCVMVOBOJOTBOTBZŽTŽÐTTFMZËOUFNJMF xx IFTBQMBOŽSLFO P JML OÐGVT  S ZŽMMŽL PSUBMBNB OÐGVT BSUŽõ IŽ[Ž  U JML OÐGVT IFTBCŽOEBO TPOSB HF¿FO [B- 2. f : R Z R+ , f ( x ) = ( 3n - 6 )x-1 WHVWOHU\\HUDOñU 2. #JS¿FLJSHFOJOCJSJODJTŽ¿SBZŽõŽOEBMPHNFUSF  NBO UZŽMTPOSBQMBOMBOBOOÐGVTQPMNBLÐ[FSF JLJODJ TŽ¿SBZŽõŽOEB MPH NFUSF  пÐODÐ TŽ¿SBZŽ-  GPOLTJZPOV ÑTUFM GPOLTJZPO PMEVôVOB HÌSF  O 6. f ( x ) = 4 . 73x - 1 õŽOEBMPHNFUSFPMBDBLõFLJMEFOTŽ¿SBZŽõŽO- P = PFSU OJOFOHFOJöEFôFSBSBMŽôŽBöBôŽEBLJMFSEFOIBO- EBBMEŽóŽZPMG O PMNBLÐ[FSF   CJ¿JNJOEFNPEFMMFOJS HJTJEJS  PMEVôVOBHÌSF G -1  LBÀUŽS G O = log O+   \"OLBSBhOŽO  ZŽMŽOEBLJ OÐGVTV  PMVQ 1. a, b, c, e, f 2. ^ 3\",3 3h \\ ( 7 2 # 3= *2 7 43. ( –1,$2 ) \\-( Þ1 -2 5 1+ 5 2 4. 11 15 6. 9.f2 ( x )–18 f ( x )+10  PMBSBLNPEFMMFONJõUJS PSUBMBNBOÐGVTBSUŽõIŽ[ŽZÐ[EF PMBSBLIFTBQ- 2 3 2 5. - MBONŽõUŽS , 4\"  4 #  $  D) 2 E) 1 D) _ 2, 3 i \\ * 7 4 &   Þ 3 7. y  #VOB HÌSF  \"OLBSBhOŽO  ZŽMŽOEB CFLMFOFO g( x ) = bx OÑGVTVZBLMBöŽLPMBSBLLBÀUŽS (e0,36 = 1,4) h( x ) = cx  #V ÀFLJSHF  LF[ TŽÀSBEŽLUBO TPOSB CBöMBEŽôŽ OPLUBEBOen fazlaLBÀNFUSFV[BLMBöNŽöUŽS 3. f (x) = 2x + 2x + 2 2x + 2 - 2x + 1 f( x ) = ax \"  #  $  x \"  #  $  %  &   %  &   :VLBSŽEBWFSJMFOG Y H Y WFI Y GPOLTJZPO-  PMEVôVOBHÌSF G  EFôFSJLBÀUŽS MBSŽOBHÌSF B CWFDTBZŽMBSŽOŽOTŽSBMBNBTŽBöB- ôŽEBLJMFSEFOIBOHJTJEJS A) 5  #  5 $  %  4 E) 3 1. E 2. D 48 3. D 4. A 2 4 3 2 A) a < b <D # B< c <C $ C< a < c 4. f^ x h = 1 D) b < c < a E) c < b < a 10x 8. y  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ f( x ) = ( a + 1 )x + b PMBCJMJS A) y B) y C) y 1 1 4 x x 2 D) y E) y 1x x O1  :VLBSŽEB HSBGJôJ WFSJMFO G Y  = ( a + 1 )Y + b 1x x GPOLTJZPOVOBHÌSF f ( a +C EFôFSJLBÀUŽS A) 6 #  $  %  &  1. C 2. D 3. A 4. A 6 5. B 6. E 7. C 8. E

www.aydinyayinlari.com.tr ·/÷7&34÷5&:&)\";*3-*, ÜNİVERSİTEYE HAZIRLIK 3. MODÜL MATEMATİK - 2 ÜSTEL VE LOGARİTMİK FONKSİYONLAR ³ Üstel Fonksiyon t 2 ³ Logaritma Fonksiyonu t 4 ³ Logaritmanın Özellikleri t 9 ³ Taban Değiştirme Kuralı t 15 ³ Logaritma Fonksiyonunun Grafiği t 17 ³ Üstel Denklemler t 23 ³ Logaritmalı Denklemler t 24 ³ Üstel ve Logaritmalı Eşitsizlikler t 31 ³ Üstel ve Logaritmik Fonksiyonlarla İlgili Gerçek Hayat Problemleri t 33 ³ Karma Testler t 39 ³ Yeni Nesil Sorular t 47 1

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3* ·TUFM'POLTJZPO ÖRNEK 3 TANIM  G3Z3+ G Y = - -a2 + a + Y GPOLTJZPOVÐTUFMCJSGPOLTJZPOEVS  BTBZŽTŽEFOGBSLMŽQP[JUJGSFFMTBZŽPMTVO BOŽOBMBCJMFDFôJFOHFOJöEFôFSBSBMŽôŽOFEJS  G 3 Z 3+  G Y  = aY  õFLMJOEF UBOŽNMBOBO -a2 + a +â WF -a2 + a + 2 > 0 GPOLTJZPOMBSBÑTUFMGPOLTJZPOEFOJS a2 - a -â WF -a + 2) (a + 1) > 0  BTBZŽTŽOBÐTUFMGPOLTJZPOVOUBCBOŽ YEFóJõLF- WF D = 1 + 4 = –1 2 OJOFüsEFOJS a≠ 1± 5  WF – +– 1,2 2 ÖRNEK 1 ^ - 1, 2 h \\ * 1 - 5 1+ 54 , 22 \"öBôŽEBLJ GPOLTJZPOMBSŽO IBOHJMFSJOJO ÑTUFM GPOLTJ- ZPOPMEVôVOVCFMJSMFZJOJ[ a) G Y = 2Y œ ÑTUFMGPOLTJZPOEVS ÖRNEK 4 b) f (x) = ^ 2 hx œ ÑTUFMGPOLTJZPOEVS  G Y =2 -Y + 2 œ ÑTUFMGPOLTJZPOEVS x œ ÑTUFMGPOLTJZPOEFôJMEJS GPOLTJZPOVOBHÌSF G  EFôFSJLBÀUŽS c) f(x) = f 1 p 2 E  G Y = -2 Y f(4) = 3 . 22 - 4 + 2 = 3 · 1 + 2 = 11 44 e) G Y = -2Y œ ÑTUFMGPOLTJZPOEVS f) G Y = -2-Y œ ÑTUFMGPOLTJZPOEVS ÖRNEK 5 H  G Y =Y œ ÑTUFMGPOLTJZPOEFôJMEJS G Y = B- Y -ÐTUFMGPOLTJZPOVWFSJMJZPS  G  = I  G Y =Y2 œ ÑTUFMGPOLTJZPOEFôJMEJS FöJUMJôJOFHÌSF f ( - EFôFSJLBÀUŽS f ( 2 ) =JTF B- 2)2 - 4 = 12 ( a - 2 )2 = 16 ÖRNEK 2 a - 2 =WFZBB- 2 = -4  G3Z3+ G Y = - B- Y ·TUFMGPOLTJZPOPMEVôVOEBOUBCBOOFHBUJGPMBNB[ GPOLTJZPOVÑTUFMGPOLTJZPOPMEVôVOBHÌSF BOŽOFO f ( x ) = 4x - 4 j f (-1) = 1 15 HFOJö EFôFSBSBMŽôŽOFEJS -4 =- 44 2a -â WF B- 6 > 0 ÖRNEK 6 Bâ WF B> 6 WF B> 3 G3Z3+ G Y = 3Y- + 7 (3, Þ) \\ ( 7 2 a≠ GPOLTJZPOVOB HÌSF f ( 2x +   GPOLTJZPOVOVO G Y  2 UÑSÑOEFOFöJUJOFEJS 2 3 x f (x) = 3 + 1 & x = 3^ f (x) - 1 h 3 f (2x + 1) = 2x + 1a x = 3. (f (x) - 1 k yaz›l›r. 3 3 = 7 3.^ f (x) - 1 hA 2 + 1 = 2 (x) - 18 f (x) + 10 9f 1. a, b, c, e, f 2. ^ 3, 3 h \\ ( 7 2 2 3. ( –1, 2 ) \\ ( 1 - 5 1+ 5 2 4. 11 15 6. 9.f2 ( x )–18 f ( x )+10 2 , 5. - 22 44

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 7 ÖRNEK 10  G Y = 3Y- 2  G3Z3+ G Y =Y + GPOLTJZPOVOVO HÌSÑOUÑTÑOÑO f 1 , 19 p BSBMŽôŽ GPOLTJZPOVOVOHSBGJôJOJÀJ[JOJ[ 91 x = - JÀJO f^ - 2 h = 11 JÀJOEFCVMVOBOLBÀUBOFUBNTBZŽEFôFSJWBSEŽS 9 1 < x – 2 < 19 y x = - JÀJO f^ - 1 h = 5 7 3 91 3 3 x = JÀJOG  = 3 x - 2 j {-4, -3, -2, -1, 0, 1, 2} 5/3 x x = JÀJOG  = x j { -2, -1, 0, 1, 2, 3, 4 }UBOF 11/9 1 –2 –1 O 1 ÖRNEK 8 ÖRNEK 11 G Y = 36Y H Y = 3Y+  G3Z3+ G Y =-Y GPOLTJZPOMBSŽOEBG Y =H Y FöJUMJôJOFHÌSF 4xJGB- EFTJOJOEFôFSJLBÀUŽS GPOLTJZPOVOVOHSBGJôJOJÀJ[JOJ[ 36x = 32x . 3 y x = -JÀJOG -2 ) = 12 9x . 22x = 32x . 3 12 x = -JÀJOf ( -1 ) = 6 4x = 3 6 x = JÀJOG  = 3 24x = ( 4x )2 = 32 = 9 3 3/2 3 –2 –1 O 1 x = JÀJOG  = 2 x ÖRNEK 9 SONUÇ  G3Z3+ G Y = 3Y G Y = aYÐTUFMGPOLTJZPOVOEBB`3+ - {} J¿JO GPOLTJZPOVOVOHSBGJôJOJÀJ[JOJ[ J  BJTFGBSUBO JJ  BJTFGB[BMBOEŽS x = -JÀJO f^ - 2 h = 1 ±SOFóJO y 9 y x = -JÀJO f^ - 1 h = 1 y 3 2 2 1 1 3 x = JÀJOG  = 1 1 x –1 x 1 x x = JÀJOG  = 3 1/3 y = 2x 1 x 1/9 (Artan) 2 y= –2 –1 O 1 (Azalan) 8. 9 3

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 12 -PHBSJUNB'POLTJZPOV \"öBôŽEBLJ fonksiyonlardan hangileri artan fonksiyondur? 7$1,0%m/*m a) G Y = 3Y- 9 œBSUBOEŽS G3Z3+WFB`3+ \\ {}J¿JO 3 –x + 1 œB[BMBOEŽS  G Y  = aY  ÐTUFM GPOLTJZPOV CJSF CJS WF ËSUFO œBSUBOEŽS b) f (x) = f p GPOLTJZPOEVS 2  G3+ Z3WFB`3+ \\ {}WFY>J¿JO  G- Y =MPHaYGPOLTJZPOVOBBUBCBOŽOBHÌSF c) f (x) = ^ 2 hx MPHBSJUNBGPOLTJZPOVEFOJS E  G Y = Õ -Y œB[BMBOEŽS y = aY lY=MPHay œ B[BMBOEŽS e) f(x) = f 1 x œ BSUBOEŽS 3 p -2 f) G Y =   -Y - 2 ÖRNEK 13 %m/*m y  G Y = aYJMFG- Y =MPHaY  CJSCJSJOFHËSFUFSTGPOLTJZPOPMEVóVJ¿JOZ=Y EPóSVTVOBHËSFTJNFUSJLUJS 5 a > 1 ise 0 < a < 1 ise f( x ) = 2ax + b 2 y f( x ) = ax y O2 f( x ) = ax x xx ,PPSEJOBUEÑ[MFNEFLJG Y = 2ax +CPMEVôVOBHÌSF  y=x f–1( x ) = logax y=x f–1( x ) = log x a +CUPQMBNŽLBÀUŽS a f ( 0 ) = 2 j 20 + b = 2 j b = 1 ÖRNEK 15 f ( 2 ) = 5 j 22a + 1 = 5 j a = 1 j a + b = 2  G3Z3+ G Y = 3Y+ - 2 ÖRNEK 14 PMEVôVOBHÌSF G–1 Y OFEJS y Z = 3x + 1 - 2 Z+ 2 = 3x + 1 6 x + 1 =MPH3 Z+ 2) j x =MPH3 Z+ 2) - 1 f-1(x) =MPH3(x + 2) - 1 3 y = ( a – 2 )–x + b ÖRNEK 16 –2 O x  G3+ Z3 G Y = 2 -MPH3 Y+ ,PPSEJOBUEÑ[MFNEFLJG Y = ( a - 2 )-x +CGPOLTJZP- PMEVôVOBHÌSF f-1 Y OFEJS OVOBHÌSF G  LBÀUŽS Z= 2 -MPH3(x + 1) jMPH3(x + 1) = 2 -Z f ( 0 ) = JÀJO B- 2 )0 + b = 3 j b = 2 j x + 1 = 32 -Z j x = 32-Z - 1 j f-1(x) = 32-x - 1 f ( -2 ) =JÀJO B- 2 )2 + 2 = 6 ( a - 2 )2 = 4 j |a - 2| = 2 a - 2 >PMBDBôŽOEBOB- 2 =EJS f(x) = d 1 x f^ 2 h = 9 n +2j 22 12. a, c, f 9 4 15. MPH3(x + 2) – 1 16. 32–x – 1 13. 2 14. 2

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 17 ÖRNEK 21 G3Z3+ , G Y =Y+ f ^xh = log^1– x2h^x2 + 3x + 7h PMEVôVOBHÌSF G-1  LBÀUŽS GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJOJCVMVOV[ 2 . 52x + 1 = 250 1 - x2 >WF-x2âWFY2 + 3x +> 0 52x + 1 = 125 2x + 1 = 3 j x = 1 x = -WFY= 1 x2â 3 ÖRNEK 18 –1 1 Yâ f : (1, Þ) Z3UBOŽNMŽ  – +–  G Y = 3 +MPH2 Y-  GPOLTJZPOVOBHÌSF G-1  LBÀUŽS ( -1, 1 ) \\ { 0 } Z= 3 +MPH2( x - 1 ) jZ- 3 =MPH2(x - 1) ÖRNEK 22 j x - 1 = 2Z-3 j x = 2Z-3 +1 j f-1( x ) = 2x-3 + 1 j f-1( 6 ) = 9  G Y =MPH2 Y2 - L- Y+  GPOLTJZPOV IFS Y SFFM EFôFSJ JÀJO UBOŽNMŽ CJS GPOLTJ- %m/*m ZPOJTFLOJOEFôFSBSBMŽôŽOŽCVMVOV[  G Y =MPHN Y O Y GPOLTJZPOVOVOUBOŽNMŽPMB- x2 - L- 2 ) x + 1 > 0 –2 2 CJMNFTJJ¿JON Y > WFN Y áWFO Y > 0 D = L-2 )2 - 4 < 0 + –+ PMNBMŽEŽS L2 -L+ 4 - 4 < 0 ÖRNEK 19 (-2, 2 )  G Y =MPH Y-  -Y GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJOJCVMVOV[ x -1 >WFY-âWF- x > 0 ÖRNEK 23 x >WFYâWFY< 5 ( 1, 5 ) \\ { 2 }  G Y =MO Y2 - L- Y+L- ÖRNEK 20 GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJ3={ a }PMEV- f (x) = log c 7-x m ôVOBHÌSF B+LLBÀUŽS ^x – 2h x + 5 x2 - L- 1 ) x +L- 2 =UBNLBSFPMNBMŽEŽS Ô= 0 ) GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJOFEJS Ô= L- 1 )2 - L- 2 ) = 0 L2 -L+ 9 = 0 x - 2 >WFY-âWF 7-x >0 L- 3 )2 = 0 L= 3 x+5 x2 - 2x + 1 = 0 j ( x - 1 )2 = 0 j x = 1 = a    L+ a = 4 x >WFYâWF –5 7 – +–    ={3} 1 18. 9 19. (1, 5) \\ {2} 20.   =\\^ 5 21. (–1, 1) \\ {0} 22. (–2, 2) 23. 4

TEST - 1 ·TUFM'POLTJZPO 1. f : R Z R+UBOŽNMBOBO 5. f(x) = f 1 –x + 1 * G Y = 2mY 4 p ** G Y =ÕY *** G Y =Y  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ PMBCJMJS A) y B) y C) y  GPOLTJZPOMBSŽOEBO IBOHJMFSJ ÑTUFM GPOLTJZPO- EVS x x x D) y E) y \" :BMOŽ[* # :BMOŽ[** $ *WF**  % *WF*** % **WF*** xx 2. G3Z3+ G Y = O- Y-  GPOLTJZPOV ÑTUFM GPOLTJZPO PMEVôVOB HÌSF  O 6. G Y =Y- OJOFOHFOJöEFôFSBSBMŽôŽBöBôŽEBLJMFSEFOIBO-  PMEVôVOBHÌSF G -1  LBÀUŽS HJTJEJS \" 3 # 3=* 7 4 $  -Þ  \"  #  $  %  &  3  % _ 2, 3 i \\ * 7 4 &   Þ 3  y g( x ) = bx h( x ) = cx 3. f (x) = 2x + 2x + 2 f( x ) = ax x 2x + 2 - 2x + 1  PMEVôVOBHÌSF G  EFôFSJLBÀUŽS \"  5  #  5 $  %  4  &  3  :VLBSŽEBWFSJMFOG Y H Y WFI Y GPOLTJZPO- 2 4 3 2 MBSŽOBHÌSF B CWFDTBZŽMBSŽOŽOTŽSBMBNBTŽBöB- ôŽEBLJMFSEFOIBOHJTJEJS \" B<C<D # B< c <C $ C< a < c 4. f^ x h = 1  % C< c <B & D<C< a 10x 8. y  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ f( x ) = ( a + 1 )x + b PMBCJMJS A) y B) y C) y 1 1 4 x x 2 D) y E) y 1x x O1  :VLBSŽEB HSBGJôJ WFSJMFO G Y  = ( a + 1 )x + b 1x x GPOLTJZPOVOBHÌSF f ( a +C EFôFSJLBÀUŽS \"  #  $  %  &  1. C 2. D 3. A 4. A 6 5. B 6. E C 8. E

·TUFM'POLTJZPO-PHBSJUNB'POLTJZPOV TEST - 2 1. ,PPSEJOBUEÐ[MFNEFLJG Y =B C+ -Y +DGPOL- 5.  MPH3 Y+ = 4 TJZPOVOVOHSBGJóJWFSJMNJõUJS  FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS y \"  #  $  %  &  3 x 2 1 O1  #VOBHÌSF G - LBÀUŽS \"  #  $  %  &  2.  G Y = 2Y+ + 4 6.  MPH2 Y2 -Y+ = 3  FöJUMJôJOJ TBôMBZBO Y EFôFSMFSJOJO ÀBSQŽNŽ LBÀ- UŽS  GPOLTJZPOV JÀJO  # f ( x ) <  FöJUTJ[MJôJOJ \" -6 # - $ - %  &  TBôMBZBOLBÀGBSLMŽYUBNTBZŽEFôFSJWBSEŽS \"  #  $  %  &  3. G3Z3+UBOŽNMBOBOÐTUFMGPOLTJZPOMBSWFSJMNJõUJS  #VOBHÌSF * f (x) = f 5 x 13 p   MPH Y+ = 2 ** f(x) = c π x  FöJUMJôJOJ TBôMBZBO Y EFôFSMFSJOJO ÀBSQŽNŽ LBÀ- UŽS 4 m *** G Y =   -Y \" - # - $  %  &   GPOLTJZPOMBSŽOEBO IBOHJMFSJ BSUBO GPOLTJZPO- EVS \" :BMOŽ[* # :BMOŽ[** $ :BMOŽ[***  % *WF** & *WF*** 4. G3Z3+ G Y =Y- + 8.  MPH2 MPH3 Y-  = 2  PMEVôVOBHÌSF G-1  LBÀUŽS  FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  1. B 2. B 3. A 4. C  5. E 6. A C 8. B

TEST - 3 -PHBSJUNB'POLTJZPOV 1.  MPH Y+  Y+ = 2 5. f^ x h = log f x + 2 p  FöJUMJôJOJTBôMBZBOYEFôFSMFSJOJOUPQMBNŽLBÀ- 3-x UŽS GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- \" - # - $  %  &  LJMFSEFOIBOHJTJEJS \"  -Þ -  #  -Þ   $  - Þ  %  -Þ - b  Þ   &  -  2. f :f - 1 , 3 p \" R, 1 - 1 WF ÌSUFO GPOLTJZPO PM- 6. G Y =MPH Y-  Y2 +Y  4 NBLÑ[FSF G Y =MPH Y+  GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- PMEVôVOBHÌSF G -1  LBÀUŽS LJMFSEFOIBOHJTJEJS \"   Þ - { 2 } #   Þ  \"  #  $  %  &  $  -   %   Þ - { 2 } &    3. G Y = 2Y+ 3 H Y =MPH3 Y+   f^ x h = 1 - log^ x - 2 h PMEVôVOBHÌSF  GPH-1) ( 2 ) LBÀUŽS  GPOLTJZPOVOVOFOHFOJöUBO ŽNLÑNFTJOEFLBÀ UBNTBZŽEFôFSJWBSEŽS \"  #  $  \"  #  $  %  &   %  &  8. f ^xh = log –1 ^x + 1h 5 4. G Y =MPH2YWFH Y =MPHY GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- LJMFSEFOIBOHJTJEJS PMEVôVOB HÌSF  GPH    JGBEFTJO JO EFôFSJ \"  -Þ -  #  - > $  -4, - LBÀUŽS \"  #  $  %  &   %  -3, -  & Š 1. E 2. B 3. D 4. B 8 5. E 6. D B 8. B

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3** 0OMVLWF%PôBM-PHBSJUNB'POLTJZPOV q=(//m.a TANIM a `3+ / { } C > O N`3WFNáPMTVO 5BCBOŽ  PMBO MPHBSJUNB GPOLTJZPOVOB POMVL  MPHaCO =OpMPHaC MPHBSJUNBGPOLTJZPOVWFZBCBZBôŽMPHBSJUNB GPOLTJZPOVEFOJS 1  MPHaNC= m pMPHaC  G3+ A3 G Y =MPHYWFZBG Y =MPH Y CJ¿JNJOEFHËTUFSJMJS  MPHaNCO = n m pMPHaC F= PMNBLÐ[FSFUBCBOŽFPMBO ÖRNEK 3 MPHBSJUNBGPOLTJZPOVOBEPôBMMPHBSJUNBGPOL- TJZPOVEFOJS log 3 clog 4 4 8 mJöMFNJOJOTPOVDVLBÀUŽS  G3+ A3 G Y =MPHFYWFZBG Y =*O Y CJ¿JNJOEFHËTUFSJMJS = log d log a 3/2 k n ÖRNEK 1 1/2 1/2 2 3 2 MPH +MOY = b l b l FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS 3/2 +*OY= 10 = 2 pMPH3 d 1/2 log 2 n  *OY= 3 2 x = e3 =pMPH3 3 = 2 -PHBSJUNB'POLTJZPOVOVO²[FMMJLMFSJ q=(//m.a ÖRNEK 4 a !3+ / { }  MPHa=WF*O= 0 log 1000 + log 2  MPHaa =WF*OF= 8 JGBEFTJOJOFöJUJLBÀUŽS ÖRNEK 2 ln c 1 m + log 9 e 27 log 7 + 5 ln e 3 = 1 10 7 log 10 + logb 23 l2 3+ 3 = = 20 3 log 1 + log 10 3 2 -1/2 a 2 k 12 1 Ine + log –+ JGBEFTJOJOFöJUJLBÀUŽS 3 3 23 6 b l 1+ 5 3 =6 ÖRNEK 5 0 +1 log 5 3 25 4 125 JGBEFTJOJOFöJUJLBÀUŽS 5 log 2·3·4 a 5 3 k4 · a 2 k4 · 5 3 5 5 24 12 8 3 log 5 · 5 · 5 5 24 12 8 3 log 5 · 5 · 5 5 24 23 log 5 5 23/24 23 23 log 5 = · log 5 = 5 24 5 24 1. e3 2. 6 9 23 3. 2 4. 20 5. 24

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr q=(//m.a ÖRNEK 9 a !3+ / { } C>WFD>PMTVO 1 · log 36 - 1 · log 27 - 1 · log 16 234  MPHa CpD =MPHaC+MPHac JGBEFTJOJOFöJUJLBÀUŽS  MPHa c b m =MPHaC-MPHac log^ 36 h1/2 - log^ 27 h1/3 - log^ 16 h1/4 c =MPH-MPH-MPH =MPHd 6 n =MPH= 0 ÖRNEK 6 3·2  MPH2Y= a, MPH2y =C MPH2[= c ÖRNEK 10 FöJUMJLMFSJOF HÌSF  log f x2 · y3 p JGBEFTJOJO B  C  D z  +MPH23 +pMPH2 2 JGBEFTJOJOFöJUJLBÀUŽS UÑSÑOEFOFöJUJOFEJS MPH22 +MPH23 +MPH2125 MPH2(2 · 3 · 125) 23 MPH2 log f x ·y p =MPH2x2 +MPH2Z3 -MPH2[ 2z =MPH2x +MPH2Z-MPH2[ = 2a + 3b - c ÖRNEK 7 ÖRNEK 11 *OY *OZWF*O[  MPH224 +MPH2-MPH2-MPH24 PMEVôVOBHÌSF *OJOY Z [UÑSÑOEFOEFôFSJOFEJS JöMFNJOJOTPOVDVLBÀUŽS x =*O=*O3 · 32 · 5 =*O3 +*O2 +*O MPH2d 24·48 n =MPH22 = 1 x =*O+*O+*O 144·4 x =Z+[+*O *O= x -Z-[ ÖRNEK 12 log x = 1, 3 _ bb log y = 0, 5 ` ÖRNEK 8 bb log z = 3, 2 a *O+*O-*OJGBEFTJOJOFöJUJLBÀUŽS PMEVôVOBHÌSF YZ[EFôFSJLBÀUŽS *O3 +*O-*O2 In 8 · 5 = Ind 40 n MPHY+MPHZ+MPH[= 1,3 + 0,5 + 3,2 99  MPH YpZp[ = 5  YpZp[= 105 6. 2a + 3b – c YmZm[ 8. lnd 40 n 10 9. 0 10. MPH2 11. 1 12. 105 9

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 13 ÖRNEK 17 log5 e 6 o + log5 c 7 m + log5 c 8 m+ . . . + log5 c n+1 m= 2  MPH TJOY TJOY +MPH TJOY DPTY 5 6 7 n JöMFNJOJOTPOVDVLBÀUŽS PMEVôVOBHÌSF OEFôFSJLBÀUŽS MPH TJOY TJOYpDPTY =MPH TJOY TJOY = 1 log d 6 · 7 · 8 ·...· n+1 n=2 5 6 7 n  log d n + 1 n = 2 & n + 1 = 25 5 5  O+ 1 = 125 jO= 124 ÖRNEK 14 ÖRNEK 18  MPH=  MPH=  MPH d 18 + log 1 3 n JGBEFTJOJOFöJUJLBÀUŽS PMEVôVOBHÌSF MPHLBÀUŽS 3 MPH p =MPH+MPH2 10 log 1 3 = log 1 3 =-2 =MPHf p +pMPH – 2 32 =MPH-MPH+pMPH = 1 - 0,301 +p = 1,653 3 MPH8( 18 - 2 ) MPH23 24 = log 3 ^ 24 h = 4 2 3 b l ÖRNEK 19 log x + log 1 y + 2 log z = log z2 - log y 22 2 2 2 ÖRNEK 15 FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS  MPH= a log x - log y + 2 log z = log 2 - log y PMEVôVOB HÌSF  MPH49! JGBEFTJOJO B UÑSÑOEFO FöJ- 22 22 2 UJOFEJS z MPH49! =MPH( 49 · 48! ) 22 =MPH49 +MPH48! log f x.z p = log f z p =MPH2 +MPH48! = 2 + a 2y 2y 22 x.z z y = y &x=1 ÖRNEK 20 ÖRNEK 16 log ^7x + 2yh - 1 = log ^x + yh 55 FöJUMJôJOFHÌSF  x PSBOŽLBÀUŽS y 2 · log ^2 7– 3 3h ^2 7 + 3 3h + log ^6 + 35h ^6 - 35h log ^ 7x + 2y h - log ^ x + y h = 1 55 JöMFNJOJOTPOVDVLBÀUŽS log f 7x + 2y p=1 5 x+y 2· log 1 ^ 2 7 + 3 3 h + log 1 ^ 6– 35 h 7x + 2y fp fp = 5 & 7x + 2y = 5x + 5y x+y 2 7+3 3 6– 35 2x = 3y - 2 - 1 = -3 x3 y=2 13. 124 14. 1,653 15. a + 2 16. –3 11 1 4 19. 1 3 18. 20. 3 2

TEST - 4 -PHBSJUNB'POLTJZPOVOVO²[FMMJLMFSJ 1. log 6 + 4 log 49 + 3 · Ine17 5. log c 2 m + log c 49 m - log c 7 m 57 58 54  JöMFNJOJOTPOVDVLBÀUŽS  JöMFNJOJOTPOVDVLBÀUŽS 1 1 3 &  \"  #  $  %  &  \"   #   $  %   4 2 2 6.  MPH+MPH-MPHf 1 p 7 2. log ^ln e25h + lnc 1 log ^9ehm  JöMFNJOJOTPOVDVLBÀUŽS 5 23  JöMFNJOJOTPOVDVLBÀUŽS \"  #  $  %  &  1 #  $  %  7 \"   &  2 2  log x = 1 22 log2y = 1 3 3.  MPHY=  1  PMEVôVOBHÌSF log 3 x 4 x JGBEFTJOJOFöJUJLBÀ- log2z = 6 UŽS  PMEVôVOBHÌSF YpZp[ÀBSQŽNŽLBÀUŽS \"   #   $  %   &   1 11 &  \"   #   $   %  4 32 4. log 3 clog4 4 8 m 8. MPH=B MPH=CPMNBLÐ[FSF log ^0, 25h  MPH JO B WF C UÑSÑOEFO FöJUJ BöBôŽEBLJMFSEFO IBOHJTJEJS 4 \" C+ a + # B+C+ $ B+C- JöMFNJOJOTPOVDVLBÀUŽS %  &   % C- a + & C- a + \" - # - $  1. B 2. D 3. D 4. A 12 5. A 6. B E 8. E

-PHBSJUNB'POLTJZPOVOVO²[FMMJLMFSJ TEST - 5 1. Y Z! R+PMNBLÑ[FSF 5. log f a .b2 p  * MPH YZ =MPHY+MPHZ c JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS  ** MPH Y+Z =MPHYMPHZ \" 2 log a + 1 log b + log c  *** logf x p = log x - log y 2 y # 1 log a + 2 log b + log c log x 2  *7 log^ x - y h = $ 1 log a + 2 log b - log c log y 2  7 log x = log x - log y % 2 log a + 1 log b - log c log y 2 & 1 log a + 1 log b - log c FöJUMJLMFSJOEFOLBÀUBOFTJEBJNBEPôSVEVS 22 \"  #  $  %  &  2. log 5 6. log 2 a log 625 k 25 5  JGBEFTJOJOFöJUJLBÀUŽS \"  1  #  1   JGBEFTJOJOTPOVDVLBÀUŽS 4 2 $  %  &  \"  #  2  $  % 2 2  &  3. log 3 a = 3  log 8523 4 2 2  PMEVôVOBHÌSF BLBÀUŽS  JGBEFTJOJOTPOVDVLBÀUŽS \"  #  $  \"  5  #  8  $  5  %  5  &  9 &  4 5 3 2 2  %  4. log 1 8 8. MPHY=PMEVôVOBHÌSF 32 log 3 x2 x x JGBEFTJOJOFöJUJLBÀUŽS  JGBEFTJOJOFöJUJLBÀUŽS  \"  #  $  %  &  \" - 3 # - 1 $  2  %  3  &  2 5 25 4 3 1. B 2. A 3. E 4. A 13 5. C 6. E C 8. C

TEST - 6 -PHBSJUNB'POLTJZPOVOVO²[FMMJLMFSJ 3 x2 . y .z _ log log c x m = 3a bb 1. xyz 5. y` JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS - log^x.yh = abba \" 2 log x + 1 log y + 1 log z PMEVôVOB HÌSF   Y  BöBôŽEBLJMFSEFO IBOHJTJOF 322 FöJUUJS \" -2a # -a $  # 11 log x - 1 log y - 1 log z  % a & 2 - a 3 32 $ - 1 log x + 1 log y - 1 log z 632 % 5 log x + 1 log y + 1 log z 662 & 1 log x - 1 log y + 1 log z 662 6. ln ax2. y3k = 74 ln ax. y2k = 4 2. log f x2. y p + log f z3 p - log f z2 p  PMEVôVOB HÌSF  Y BöBôŽEBLJMFSEFO IBOHJTJOF z x3. y x FöJUUJS JGBEFTJOJOFöJUJOFEJS \" F # F2 $ F3 % F4 & F \" log f z3 p # MPH YZ[  $ log c x m yz x2  %  &   MPH= WFMPH=   PMNBLÑ[FSF MPH  JGBE FTJOJOEFôFSJLBÀUŽS 3. MPH= PMNBLÐ[FSF  \"   #   $    MPHJGBEFTJLBÀUŽS  %   &   \"   #   $    %   &   8. MPH  =Y 4. MPH=BPMNBLÐ[FSF   PMEVôVOB HÌSF  MPH5    JGBEFTJOJO EFôFSJ BöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS  MPH JGBEFTJ BöBôŽEBLJMFSEFO IBOHJTJOF FöJU- UJS \" -B #  -B  $  -B \"  x + 1  # Y+ $ Y+ 2 2 & Y+ 2  % -B & B % Y 1. E 2. D 3. D 4. C 14 5. D 6. B A 8. C

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,÷4:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3*** 5BCBO%FôJöUJSNF,VSBMŽ ÖRNEK 4 q=(//m.a  MPH=BWFMPH=C PMEVôVOB HÌSF  MPH JGBEFTJOJO B WF C UÑSÑOEFO a, c `3+ / { } C>PMTVO FöJUJOFEJS MPHaC= logcb MPH=MPH pp logca =MPH+MPH2 +MPH = b + 2a + 1 ÖRNEK 1 ÖRNEK 5 log 27  MPH3 =BWFMPH2 =C 4 PMEVôVOB HÌSF  MPH12 JGBEFTJOJO B WF C UÑSÑOEFO FöJUJOFEJS log 3 4 JGBEFTJOJOFöJUJLBÀUŽS MPH3=MPH3 ( 33 ) =pMPH33 = 3 log 42 log ^ 3 · 2 · 7 h 77 log 42 = = 12 log 12 log a 22 · 3 k ÖRNEK 2 7 7 log 4 8 log 5 256 log 3 + log 2 + log 7 777 JGBEFTJOJOFöJUJLBÀUŽS = 2 log + log 3 2 77 a+b+1 = 2b + a log5 4 8 = log 2 3/4 = 3/4 log 2 256 8/5 8/5 2 2 15 ÖRNEK 6 =  MPH2=BWFMPH23 =C 32 PMEVôVOB HÌSF  MPH JGBEFTJOJO B WF C UÑSÑOEFO FöJUJOFEJS ÖRNEK 3 log 16 3  MPH9 + log 90 log a 5 · 2 · 2 k log 12 22 3 3 = JGBEFTJOJOFöJUJLBÀUŽS log 10 log ^ 5 · 2 h 22 2 log 5 + log 3 + log 2 22 2 = MPH129 +MPH1216 MPH12( 9·16 ) log 5 + log 2 MPH12( 144 ) = 2 22 a + 2b + 1 = a+1 1. 3 2. 15 3. 2 15 4. 2a + b + 1 a +b + 1 a + 2b + 1 5. 6. 32 a + 2b a+1

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr q=(//m.a q=(//m.a B C`3+ / { }PMNBLÐ[FSF B C D`3+ / { }WFE`3+ PMNBLÐ[FSF MPHaCpMPHCDpMPHcE=MPHaE MPHaC= 1 log a ÖRNEK 10 b  MPHplog 5 7pMPHpMPH49 10 ÖRNEK 7 JGBEFTJOJOFöJUJLBÀUŽS 1 +1 logb 3 a 2 k. logb 1/2 l7. log 4 logb 2 a 1/2 k log 216 log 216 2 5 7 l 5 2. l 10 24 9 =d 2 · log 5 n · a 2 · log 7 k · ^ 4 · log 2 h · d 1 · log 10 n JGBEFTJOJOFöJUJLBÀUŽS 3 4 2 5 7 MPH21624 +MPH2169 =MPH216( 24 · 9 ) =MPH216216 = 1 21 4 = d · 2 · 4 · n · log 5 · log 7 · log 2 · log 10 = 3 4 25 73 ÖRNEK 8 ÖRNEK 11 1 ,ËõFHFOV[VOMVLMBSŽlog 2 7DNWFMPHDNPMBOEJL- 1+ 1 EËSUHFOJOLËõFHFOMFSJCJSCJSJOFEJLUJS #VOBHÌSF EJLEÌSUHFOJOBMBOŽLBÀDN2EJS log 3 2 JGBEFTJOJOFöJUJOFEJS log 7 · log 16 log(21/2)7 · log7 ^ 24 h \"-\"/ = 27 = 1 11 22 = = = log 3 6 1+ log 2 log 3 + log 2 log 6 2 log 7 · 4 · log 2 3 33 3 27 = =4 2 ÖRNEK 12 A \"#$пHFO ÖRNEK 9 log 2 log95 [ AD ]B¿ŽPSUBZ 3  MPH2 =B MPH2 =C | |\"# =MPH32 PMEVôVOB HÌSF  MPH35 JGBEFTJOJO B WF C UÑSÑOEFO | |\"$ =MPH9 FöJUJOFEJS | |%$ =MPH2 B x D log 5 C 2 log 14 log ^ 2 · 7 h log 2 + log 7 22 22 | |:VLBSŽEBLJWFSJMFSFHÌSF  BD =YLBÀUŽS log 14 = = = 35 log 35 log ^ 5.7 h log 5 + log 7 22 22 log 2 log 5 3 = 9 & log 2. log 5 = x. log 5 1+ 1 b+1 x log 5 32 9 b b b+1 2 == = 1 ab + 1 ab + 1 a+ & log 2. log 5. log 9 = x bb 325 x=2 1 8. MPH63 b+1 16 4 11. 4 12. 2 9. 10. ab + 1 3

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, q=(//m.a ÖRNEK 17 a `3+ / { }WFC D`3 PMNBLÐ[FSF G Y =*OYGPOLTJZPOVOVOHSBGJôJOJÀJ[JOJ[ CMPHac = cMPHaC 1 JÀJOGd 1 y aMPHaC =C e e 2 x= n = -1 1 ÖRNEK 13 x =JÀJOG  = 0 1/e x –1 1 e2 F*O +MPH- 9MPH32 e x =FJÀJOG F = 1 JGBEFTJOJOFöJUJLBÀUŽS x = e2JÀJOG F2 ) = 2 5*OF +MPH3 - 2MPH39 5 + 3 - 22 = 4 ÖRNEK 14 ÖRNEK 18 1 G Y =MPHYGPOLTJZPOVOVOHSBGJôJOJÀJ[JOJ[ log 1000 4 8 + e log3e JGBEFTJOJOFöJUJLBÀUŽS 1 1 y JÀJOGd 1000MPH84 + e*O x= 22 n =1 log 3 b 2 2 l (2 ) 1000 + e ln 3 x =JÀJOG  = 0 1 2 x =JÀJOG F = -1 –1 1/2 1 2 4x 3· –2 10 3 + 3 = 103 x =JÀJOG  = -2 ÖRNEK 15 1 + log f – Inf 1 log 2 JGBEFTJOJOFöJUJLBÀUŽS %m/*m 2 pp 10 e + 9 4 G Y =MPHaYGPOLTJZPOVOVOHSBGJóJ 1 log b – ln –2 l log 2 a > 1 iken 0 < a < 1 iken e 4 y y 10 .10 + 9 1 10 · ( 2 ) + 9 f 20 + 3 = 23 1 1a x x -PHBSJUNB'POLTJZPOVO(SBGJôJ \"SUBOEŽS a1 f ÖRNEK 16 \"[BMBOEŽS G Y =MPH3YGPOLTJZPOVOVOHSBGJôJOJÀJ[JOJ[ G Y = aYGPOLTJZPOVOVOHSBGJóJ a > 1 iken 0 < a < 1 iken y y f 1 x= 1 JÀJOG d 1 n = -1 y af 3 3 2 a 1x 1 \"[BMBOEŽS x =JÀJOG  = 0 1 1/3 1 1 3 9x \"SUBOEŽS x x =JÀJOG  = 1 –1 x =JÀJOG  = 2 13. 4 14. 103 15. 23

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 19 y=logax ÖRNEK 22 y = f( x ) y y y=logcx y=logdx x 2 x y=logbx O 11 9 Yukarıda verilen grafikteki logaritma fonksiyonlarına õFLJMEFWFSJMFOG Y =MPHaYGPOLTJZPOVOVOHSBGJôJOF göre a, b, c, d sayılarını küçükten büyüğe doğru sı- HÌSF G–1( - LBÀUŽS ralayınız. 1 11 b < a < c <E ff p = 2 & log f p = 2 & a = 9 a9 3 f^ x h = log x & f–1 (x) = d 1 x & f–1 (- 1) = d 1 –1 (1/3) 3 n 3 n =3 ÖRNEK 20 y 1f –3 x ÖRNEK 23 –2 O MPHTBZŽTŽOŽOEFôFSBSBMŽôŽOFEJS õFLJMEFWFSJMFOf ( x ) =MPHa ( bx + c ) GPOLTJZPO VOVO 102 < 625 < 103 HSBGJôJOFHÌSF B+ b +DUPQMBNŽLBÀUŽS MPH2 <MPH<MPH3 2 <MPH< 3 j (2, 3) x = -JÀJO-3b + c = 0 x=-JÀJOMPHa (-2b + c ) = 0 j -2b + c = 1 b =WFD= 3 x =JÀJOMPHac = 1 j a = c = 3 j a + b + c = ÖRNEK 21 ÖRNEK 24 G3A3 G Y = 2 +MPH3 Y- a =MPH3 C=MPH2WFD=MPH GPOLTJZPOVOVOHSBGJôJOJÀJ[JOJ[ TBZŽMBSŽOŽOLÑÀÑLUFOCÑZÑôFTŽSBMBOŽöŽOŽCVMVOV[ x-1>0‰x>1 y 33 << 34 ‰MPH333 <MPH3<MPH334 ‰3 <MPH3< 4 4 24 < 19 < 25 ‰MPH224 <MPH219 <MPH225 ‰4 <MPH219 < 5 x =JÀJOG  = 2 3 52 < 122 < 53 ‰MPH552 <MPH5122 <MPH553 ‰2 <MPH5122 < 3 x =JÀJOG  = 3 2 c<a<b x =JÀJOG  = 4 12 4 x 10 19. CBDE 20.  18 22. 3 23. (2, 3) 24. c < a < b

-PHBSJUNB'POLTJZPOVOEB5BCBO%FôJöUJSNF,VSBMŽ TEST - 7 1. log 625 5. MPH2=YPMNBLÑ[FSF  log 1 MPH 24 125  JGBEFTJBöBôŽE BLJMFSEFOIBOHJTJOFFöJUUJS  JGBEFTJOJOFöJUJLBÀUŽS \" - 4  # - 2  $ - 1  2 4 A  x + 3 #  x + 9  $  2x + 1 %   &  2x + 1 2x + 3 x+3 3 3 33 3 %  2x + 1  &  x + 5 x+1 2x + 5 log 27 6. MPH=YWFMPH=ZPMNBLÑ[FSF  2. 4 + In8 + log log 25   MPH 20 log 3 In4 2 5 2  JöMFNJOJOFöJUJLBÀUŽS  JGBE FTJBöBôŽE BLJMFSEFOIBOHJTJOFFöJUUJS \"  #  $  %  &  y 2-y 2-y \"   #   $  3 - 2y 3 - 2x 2 + x - 2y x+y y-x+1 %   &  2y - x 2x - y + 2 3. *O=B *O=CWF*O= c  MPH= WFMPH= PMNBLÑ[FSF  PMEVôVOB HÌSF  MPH15  p F  OJO B  C  D UÑSÑO- MPH EFOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS \"  2a + b + 1  #  a + 2b + 1  $  a + b + 1 b+c a+b a+c %  2a + 2b + 2  &  2a + 2b + 1 \"   #   $   b+c b+c  %   &   4. A \"#$пHFO 8. MPH=B MPH=CPMNBLÐ[FSF  49 6 [ ED ] // [#$]  MPHOJOBWFCDJOTJOEFOEFôFSJOFEJS log 6 D | |E AD å=MPH6DN \" B+C # B+C $ B+C B | |x #%å=MPH6DN log6 7 | |C AE å=DN  % B+C & B+C | | :VLBSŽEBLJ WFSJMFOMFSF HÌSF  EC æ = Y LBÀ DN 9. loga x2.y k x3 = 3 4 EJS \"  #  $   PMEVôVOBHÌSF MPHxZEFôFSJLBÀUŽS   % MPH2 & MPH29 \"  #  $  %  &  1. A 2. D 3. E 4. C 19 5. B 6. C C 8. E 9. B

TEST - 8 -PHBSJUNB'POLTJZPOVOEB5BCBO%FôJöUJSNF,VSBMŽ 1. MPH=BPMNBLÐ[FSF MPH5   BöBôŽEBLJMFS- 5. 1 + 1 + . . . + 1 log 17! log 17! log 17! EFOIBOHJTJOFFöJUUJS 23 17 \"  a - 1  #  1 - a  $  a + 1 JöMFNJOJOTPOVDVLBÀUŽS a a a \"  #  $  %  &  &  2a + 1 %  2a - 1  a a 2. logx c a m= 2 6. 6 + 2 b 2 + log 6 1+ log 8 23 JöMFNJOJOTPOVDVLBÀUŽS logx c b m= 3 \"  #  $  %  &  c logx c c m= 4 d  PMEVôVOB HÌSF  MPHxa - MPHxE  JGBEFTJOJO FöJUJ LBÀUŽS \"  #  $  %  &   logxa = 1 , logya = 1 , logza = 1 4 3 2 PMEVôVOBHÌSF MPHa YZ[ EFôFSJLBÀUŽS \"  #  $  %  &  3. MPH2=YPMEVôVOBHÌSF, MPH2( 62! + 63! + 64! ) JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \" Y+ # Y+ $ Y+ & Y+  % Y+ 4. 1 + 1 + 1 8. 1+ 2 log 30 log 30 log 30 1+ 1 log 2 235 3 JöMFNJOJOTPOVDVLBÀUŽS  JöMFNJOJO FO TBEF CJÀJNJ BöBôŽEBLJMFSEFO IBO- HJTJEJS \" MPH4 # MPH4 $ MPH6 & MPH624 \"  #  $  %  &   % MPH6 1. A 2. B 3. C 4. A 20 5. A 6. B D 8. E

-PHBSJUNB'POLTJZPOVOEB5BCBO%FôJöUJSNF,VSBMŽ TEST - 9 1. f 1 log 25 6. log 25. log 3 2 . log 7 64 p8 27 35 JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JöMFNJOJOTPOVDVLBÀUŽS A  1 #  1  $  1  %  1  &  \"  #  4  $  8  %  &  5 625 3 3 2 125 25 5  ,FOBSV[VOMVLMBSŽMPH5DNWFMPH8DNPMBO EJLEÌSUH FOJOBMBOŽLBÀDN2EJS 2. f 1 log 481 \"  #  $  %  &  32 p JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  1  #  1  $  1 8. 33 93 33 3 B %  1  &  1 A \"#$пHFO  933 39 [\"#] m[\"$ ] [ AH ] m [#$] BH = log 3 9 2 3. a3 e2 k ln25 | |H C )$ =MPH364 | |AH =MOY JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  # 5 3 5  $ 5 3 25  :VLBSŽEBLJ WFSJMFSF HÌSF  Y BöBôŽE BLJMFSEFO IBOHJTJEJS  %    &  # F2 $ F3 % F & F6 \" F 9. y 4. log 7 y=logax y=logbx 36 6 JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  1  #  1  $    %  &  x 49 7 O y=logcx y=logdx 5. eln3 + log 25 + 4log24 õFLJMEF WFSJMFO HSBGJLMFSEFLJ MPHBSJUNB GPOLTJ- ZPOMBSŽOB HÌSF  BöBôŽEBLJ TŽSBMBNBMBSEBO IBO- 5 HJTJEPôSVEVS  JöMFNJOJOTPOVDVLBÀUŽS \" B<C < c <E # C< a < c <E \"  #  $  %  &  $ D<E< a <C % E< c < a <C  & D<E<C< a 1. A 2. E 3. B 4. D 5. B 21 6. D A 8. E 9. C

TEST - 10 -PHBSJUNB'POLTJZPOVOVO(SBGJôJ 1. f^ x h = log3^ x - 2 h 4. f^xh = log 1 ^x + 1h 5  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ  GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ PMBCJMJS PMBCJMJS A) y B) y A) y B) y 2 1 –2 –1 1 x x x x –2 1 –1 y C) y D) y –1 y D) C) 1 1 x 23 4 x –1 x –1 x 13 E) y E) y 1 –1 x 23 5 x 2. y 1 5. 5BOŽNMŽPMEVôVBSBMŽLMBSEB 4 x  * G Y = log 3 (2x + 1) 1 2 –1 2 x+ 4 m  ** G Y = c 5 :VLBSŽEBHSBGJôJWFSJMFOGPOLTJZPOBöBôŽEBLJMFS-  *** G Y =MPH2 Y- EFOIBOHJTJPMBCJMJS \" G Y =MPH2Y #  f^xh = log x  GPOLTJZPOMBSŽOEBOIBOHJMFSJB[BMBOEŽS 2 $ G Y =MPH4Y %  f^xh = log x \" :BMOŽ[* # :BMOŽ[** $ :BMOŽ[*** 22  % *WF** & **WF*** &  f^xh = log 1 x 2 6. 0 < a <PMNBLÑ[FSF 3.  Y=MPH Z=MPH4WF[=MPH3240 Y=MPHa Z=MPHac 29 m , [=MPHa6 5  FöJUMJLMFSJOFHÌSFY ZWF[OJOEPôSVTŽSBMBOŽöŽ BöBôŽEBLJMFSEFOIBOHJTJEJS  PMEVôVOBHÌSF Y Z [BSBTŽOEBLJEPôSVTŽSBla- NBBöBôŽEBLJMFSEFOIBOHJTJEJS \" Z<Y<[ # Z<[<Y $ Y< y <[ \" Y< y <[ # Z<[<Y $ Z<Y<[   % Y<[<Z & [< y <Y  % [< y <Y & [<Y< y 1. E 2. C 3. A 22 4. D 5. B 6. D

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3*7 Üstel Denklemler ÖRNEK 5 ÖRNEK 1 4x - 5 . 2x - 6 = 0 53x – 4 = 1 125 denkMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ EFOLMFNJOJTBôMBZBOYEFôFSJLBÀUŽS 2Y =UPMTVOU2 - 5t - 6 = 0 j (t - 6) (t + 1) = 0 5Y–4 = 5–3 jY- 4 = -3 jY= 1 j x = 1 t - 6 =WFZBU+ 1= 0 3 2Y =WFZBY = -1   Y= log2WFZBq ÖRNEK 2 ÖRNEK 6 12x-1 = 3x + 2 e2x - 8ex + 5 = 0 EFOLMFNJOJTBôMBZBOYEFôFSJLBÀUŽS EFOLMFNJOJOLÌLMFSUPQMBNŽLBÀUŽS xx 12 x 12 = 3 .9 & = 9.12 12 x 3 jd 12 x = 108 & x = 108 & x = log 108 eY =UPMTVO n 4 34 t2 - 8t + 5 = 0 jLÌLMFSU1 ve t2PMTVOU1. t2 = 5 e x 1 x 2 = 5 & ex1 + x2 = 5 .e ÖRNEK 3 Y1 +Y2 = ln5 1 =7 4x – 2 EFOLMFNJOJTBôMBZBOYEFôFSJLBÀUŽS 4-Y+ 2= 7 j -Y+ 2 = log47 jY= 2 - log47 jY= log416 - log47 j x = log d 16 n 7 4 ÖRNEK 4 ÖRNEK 7 e2x - 5.ex + 6 = 0 f ( x ) = 3x-4 - 2 ve g ( x ) = 2x + 1 - 10 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ PMEVôVOBHÌSF  GPH  Y =EFOLMFNJOJTBôMBZBOY EFôFSJLBÀUŽS f^ g^ x h h = g (x) –4 - 2 = 7 3 eY =UPMTVOU2 - 5t + 6 = 0 j (t - 3) (t - 2) = 0 3 g (x) 4 = 9 & g (x) = 6 & g^ x h = 6 3 3 t - 3 =WFZBU-2 = 0 3 eY - 3=WFZBFY - 2 = 0 eY =WFZBFY = 2 H Y = 2Y+1 - 10 = 6 j 2Y.2 = 16 j 2Y = 8 jY= 3   Y=MOWFZBY= ln2 j {ln2, ln3} 1 2. log 108 3. log d 16 n 4. {ln2, ln3} 23 5. {log26} 6. ln5 7. 3 1. 47 4 3

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr -PHBSJUNBMŽ%FOLMFNMFS ÖRNEK 11 %m/*m  MPH2 Y+ +MPH2 Y+ = EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ a `3+ \\ {}WFC`3PMNBLÐ[FSF  MPHaG Y =CJTF MPH2(x2 + 5x + 6) = 1, x + 3 >WFY+ 2 > 0 x2 + 5x + 6 = 2 , x > -WFY> -2  G Y = aCWFG Y >EŽS x2 + 5x + 4 = 0  MPHaG Y =MPHaH Y JTF  G Y =H Y G Y >WFH Y >EŽS (x + 1) (x + 4) = 0  MPHH Y G Y =MPgH Y I Y JTF x = -WFZBY= -4  G Y =I Y G Y > I Y > H Y >WF x = -EFOLMFNJUBOŽNTŽ[ZBQBS H Y áEJS {-1} ÖRNEK 8 ÖRNEK 12  +MPH-MPH=MPHY log x + log 1 x + log x=4 PMEVôVOBHÌSF YLBÀUŽS 8 2 2 MPH+MPH-MPH=MPHYWFY>PMNBMŽ logd 10.5 n = log x j 25 = x EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 42 1 log x - log x + 2 log x = 4 WFY> 0 32 2 2 d 1 - 1 + 2 nlog x = 4 jMPH2x = 3 jx=8 j {8} 3 2 ÖRNEK 9 ÖRNEK 13  MPH MPH2 =MPHY log (2x) PMEVôVOBHÌSF YLBÀUŽS =2 MPH254 =MPH5YWFY>PMNBMŽ log x MPH52 =MPH5x j x = 2 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ ÖRNEK 10 MPHx2x = 2 , x >WFYâ  MPH2 MPH +MPH Y-   = x2 = 2x j x2- 2x = 0 j x(x - 2) = 0 PMEVôVOBHÌSF YLBÀUŽS j x =WFZBY= 2, x =EFOLMFNJUBOŽNTŽ[ZBQBS MPH(3 +MPH Y- 1) ) =WFY- 1 > 0 jx > 1 MPH3 (3 +MPH Y- 1 ) ) = 2 {2} MPH3 (3 +MPH Y- 1) ) = 1 3 +MPH Y- 1) = 3 jMPH Y- 1) = 0 j x - 1 = 1 j x = 2 ÖRNEK 14 log x ln x log 4 25 5 - e - 4 4 = 0 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ log 25 ln e log 4 x 5 -x -^ 4h 4 = 0 WFY> 0 x2 - x - 2 = 0 j (x - 2) (x + 1) = 0 j x = 2, x = -1 x = -EFOLMFNJUBOŽNTŽ[ZBQBS {2} 25 9. 2 10. 2 24 11. {–1} 12. {8} 13. {2} 14. {2} 8. 2

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 15 ÖRNEK 18  MPHY 2 -MPHY2 - 3 = 0 xlog2^x – 1h = ^x - 1hlog2x EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ EFOLMFNJOJOLÌLMFSÀBSQŽNŽLBÀUŽS ^1 4x 4-414hl4og424x2= ^4x4-414h4lo4g42x3 , x > 0 ve x - 1> 0 MPHY 2 -MPHY- 3 =WFY> 0 %FOLMFNJUÑNSFFMTBZŽMBSJÀJOTBôMBOŽSWFY> 1 MPHY=UPMTVO t2 - 2t - 3 = 0 j (t - 3) (t + 1) = 0 (1, Þ) t =WFZBU= -1 1 MPHY=WFZBMPHY= -1 j x =WFZB x = 1 10 1000· = 100 10 ÖRNEK 16 ÖRNEK 19  MPHY3 -MPH3Y= 2 ^ 3 + 2 hx + ^ 3 - 2 hx = 4 EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 8 EFOLMFNJOJOLÌLMFSUPQMBNŽLBÀUŽS - log x = 2 WFY> 0 log x 3 1 x 3 f 3- 2 hx = 4 p +^ MPH3x =UPMTVO 3- 2 8 - t = 2 j t2 + 2t - 8 = 0 j (t + 4) (t - 2) = 0 ^ 3 - 2 hY = t PMTVO t t = -WFZBU= 2 1 +t=4 j t2 - 4t + 1= ,ÌLMFSU1WFU2PMTVO t MPH3x = - MPH3x = 2 t1.t2 = 1 j ^ 3 - 2 hx1.^ 3 - 2 hx2 = 1 x = 1 WFZB x = 9 & ( 1 , 9 2 ^ 3- 2 h x1+x2 = 1j x1 + x2 = log 1 81 81 ^ 3– 2 h x + x = 0 1 2 ÖRNEK 17 ÖRNEK 20 xlog3x = 9x  MPH2 Y2 +MOZ= MPH2 Y +MOZ2 = EFOLMFNTJTUFNJOEFYZLBÀUŽS EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ -MPH2x +MOZ= 3 log x MPH2x +MOZ= MPH2 x = 1 j x = 2 log x 3 = log 9x MPH22 +MOZ= 3 jMOZ= 1 Z= e 33 YZ= 2e MPH3YMPH3x =MPH39 +MPH3x 25 18.  ß 19. 0 20. 2e MPH3x)2 = 2 +MPH3x MPH3x =UPMTVO t2- t - 2 = 0 j (t - 2) (t + 1) = 0 j t =WFZBU= -1 MPH3x = MPH3x = -1 1 j ( 1 ,92 x =WFZBY= 33 15. 100 16. ( 1 , 9 2  ( 1 , 9 2 81 3

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 21 ÖRNEK 24 3MPHY - 32 -MPHY =  MO Y- +MO Y+ =MO Y2 -  EFOLMFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ EFOLMFNJOJOÀÌ[ ÑNLÑNFTJOJCVMVOV[ 3 2 MO[(x - 4) (x + 4)] =MO Y2 - 16) log x - = 8 j 3MPHY=UPMTVO MO Y2 - 16) =MO Y2 - JÀJOÀÌ[ÑNSFFMTBZŽMBSEŽS x - 4 > 0 j x >WFY+ 4 > 0 jx > -4 3 log x PMNBMŽEŽS Ç =  ß 3 t - 9 - 8 = 0 j t2 - 8t - 9 = 0 j (t - 9) (t + 1) = 0 t 3MPHY =WFZBMPHY= -1 MPHY= 2 q x = 100 , Ç = {100} ÖRNEK 22 ÖRNEK 25  MO Y+ =+MOY  Y2 - MOB Y+MOB-= 0 JLJODJEFSFDFEFOEFOLMFNJOÀBLŽöŽLJLJLÌLÑPMEVôV- PMEVôVOBHÌSF YEFôFSJOFEJS OBHÌSF BLBÀUŽS 1 D = 0 j MOB 2 - MOB- 1) = 0 2x + 1 > 0 j x > - WFY>PMNBMŽ MOB 2 -MOB+ 4 = 0 MOB- 2)2 = 0 2 MOB- 2 = 0 jMOB= 2 j a = e2 MO Y+ 1) =MOF+MOY MO Y+ 1) =MO YF j 2x + 1 = xe j xe - 2x = 1 1 x(e - 2) = 1 j x = e-2 ÖRNEK 26 log m = 3 + log 1 n ÖRNEK 23 2 2 log clog ^3x - 11hm = 2 FöJUMJôJOFHÌSF  log 1 ^m.nhJGBEFTJOJOEFôFSJLBÀ- 22 2 PMEVôVOBHÌSF YEFôFSJOFEJS UŽS MPH2(3x - 11) = 4 j 3x - 11 = 16 MPH2N= 3 -MPH2OjMPH2N+MPH2O= 3 3x =j x = 3 MPH2 NO = 3 jNO= 23 log 1 ^ m.n h = - 2 log ^ m.n h = - 2. log 3 = - 6 22 2 2 21. {100} 1 26 24. (4, Þ) 25. e2 26. –6 22. 23. 3 e-2

·TUFMWF-PHBSJUNBMŽ%FOLMFNMFS TEST - 11 1. 42x – 1 = 1 5.  FY -FY + 2 = 0 128  EFOLMFNJOJOÀÌ[ÑNLÑNFTJ{MOB MOC}PMEVôV- OBHÌSF B +CLBÀUŽS PMEVôVOBHÌSF YEFôFSJLBÀUŽS \"  7 #  $  5  %  &  9 \"  #  $  %  &  4 2 4 2. 3Y- = 4 6. ex + 2 = 3  PMEVôVOBHÌSF YEFôFSJLBÀUŽS ex EFOLMFNJOJO LÌLMFSJOJO UPQMBNŽ BöBôŽEBLJMFS- EFOIBOHJTJEJS \" MPH4 # MPH4 $  \"  #  $ MO & MPH9  % MPH3  % MOF & MOF 3.  Y+ +Y -= 0  MPHY=MPH9y  EFOLMFNJOJ TBôMBZBO Y EFôFSMFSJOJO UPQMBNŽ  PMEVôVOBHÌSF YJMFZBSBTŽOEBLJCBôŽOUŽBöBôŽ- LBÀUŽS EBLJMFSEFOIBOHJTJEJS \" - # - $  %  &  $ Z=Y2 \"  y = x  # Z=Y  % Y= y3 & Y2 = y3 4. 9Y -Y+ += 0  EFOLMFNJOJ TBôMBZBO Y EFôFSMFSJOJO ÀBSQŽNŽ 8. MPH2 = a LBÀUŽS  PMEVôVOBHÌSF aLBÀUŽS \"  1  #  $  %  &  \"  3 4 #  $ 2 2 3 & 2 3 4  % 2 3 2  1. E 2. E 3. B 4. C  5. D 6. C A 8. A

TEST - 12 ·TUFMWF-PHBSJUNBMŽ%FOLMFNMFS 1. MPHY+MPH Y- =MPH 5. MPH2Y+MPH2y =WFlog c x + y m = 1 3 2  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO PMEVôVOB HÌSF log f x2 + y2 p  JGBEFTJOJO EF- IBOHJTJEJS 25 \" \\-^ # \\^ $ \\- ^ ôFSJLBÀUŽS  % \\ ^ & q \"  #  $  %  &  2.  MPH3 +MPH2Y = 2 6. MPH Y- -MPH Y+ = PMEVôVOBHÌSF YLBÀUŽS  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS \"  1  #  $  %  &  \" * - 4 4 # \\-^ $ \\^ 2 3 % * 9 4 & Š 2 3.  MPH4 Y+Z =MPH4Y+MPH4y +  PMEVôVOBHÌSF YJOZUÑSÑOEFOFöJUJBöBôŽEBLJ-  MPHY+MPH Y+ =MPH MFSEFOIBOHJTJEJS 3y 3y - 4 3y  FöJUMJôJOJTBôMBZBOYEFô FSJLBÀUŽS \"   #   $  \"  #  $  %  &  4y - 1 y+1 y-1 3y - 2 3y - 2 %   &  y+1 y-1 8. MPH2 Y- +MPH2Y=  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS log x - log 4 \" Š # \\^ $ * - 2 , 1 4 3 4. = ln 9 % * 1, - 1 4 & * 1 , - 2 4 log e 3 3 PMEVôVOBHÌSF YEFôFSJLBÀUŽS \"  #  $  %  &  1. B 2. E 3. A 4. E 28 5. B 6. E B 8. B

·TUFMWF-PHBSJUNBMŽ%FOLMFNMFS TEST - 13 1. MPH MPH2 MPH3Y  = 0 5. MPHY 2 +MPHY- 2 = 0  PMEVôVOBHÌSF YLBÀUŽS  EFOLMFNJOJOLÌLMFSÀBSQŽNŽLBÀUŽS \"  #  $  %  &  \"  #  $   %  1  &  1 10 100 2. log25 x + log625 x = 3 6. MPH2 Y 2 -MPH2Y4 + 3 = 0 2  EFOLMFNJOJOLÌLMFSUPQMBNŽLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS &  \"  #  $  %  \"  #  $  %  &  3. MPH4 Y- -=MPH4 Y-   EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO  MPH9 Y- MPHY3 = IBOHJTJEJS \" * 17 4 # * 23 4 $ * 19 4  EFOLMFNJOJTBôMBZBOYEFô FSJLBÀUŽS 3 3 2 \"  #  $  %  &  % * 39 4 & * 45 4 4 4 4. MPH Y+ +MPH Y+ =MPH+ 8. MPH2 Y - =+Y  EFOLMFNJOJOLÌLMFSUPQMBNŽLBÀUŽS EFOLMFNJOJOLÌLMFSUPQMBNŽLBÀUŽS \" - #  $  %  &  \" - # - $  %  &  1. C 2. A 3. A 4. D 29 5. D 6. C B 8. B

TEST - 14 ·TUFMWF-PHBSJUNBMŽ%FOLMFNMFS 1. 9 log 5 + 5 log 9 = 162 5. Y Z` 3+ WFlogf x p = a , log^ x.y h = b x x y  FöJUMJôJOJ TBôMBZBO Y EFôFSMFSJOJO ÀBSQŽNŽ LBÀ-  PMEVôVOBHÌSF MPHZBöBô ŽEBLJMFSEFOIBOHJTJOF UŽS FöJUUJS \" - # -   $  %    &  \"  a - b #  b - a  $ B-C 2 2  % C- a & C- 2a 2. Y Z` R+PMNBLÑ[FSF   MOY-MOZ+MPH=MO[+ e log 1 3 PMEVôVOBHÌSF YJOZWF[UÑSÑOEFOFöJUJBöBôŽ- 6. x log x = 81 EBLJMFSEFOIBOHJTJEJS 3  EFOLMFNJOJOLÌLMFSÀBSQŽNŽLBÀUŽS \"  y z #  3 y2.z  $  3 y2 \"  1  #  1 $  %  &  z 81 9 z - 2y z + 2y %   &  3 3 3. ln^ 9x2 - 4x h = 2   Y- MPH Y- = ^ x - 1 h2 ln^ 4 - 3x h 10  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS \"  1  #  3  $  4  %  5  &  8 \" \\^ # * 24 4 $ * 9 4 2 4 5 6 9 7 2 % * 24 , 11 4 & * 9 , 11 4 7 2 51– log 3x 1 8. log 3 x - log x = 6 5 4. = 12  FöJUMJôJOFHÌSF YEFôFSJLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS \"  # 24 $  \"  #  $  %  &   % 32 & 36 1. D 2. B 3. C 4. D 30 5. B 6. C A 8. E

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3*7 ·TUFMWF-PHBSJUNBMŽ&öJUTJ[MJLMFS ÖRNEK 3 %m/*m x2 - 7x - 18 $ 0 aG Y # aH Y ÐTUFMFõJUTJ[MJLUF 2x–3 - 8 a >JTFG Y #H Y FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 0 < a <JTFG Y $H Y LPõVMMBSŽTBóMBONB- x2 -Y- 18 = 0 2x - 3 - 8 = 0 MŽEŽS (x - 9) (x + 2) = 0 2x - 3 = 8 MPHaG Y #MPHaH Y MPHBSJUNBMŽFõJUTJ[MJLUFMPHB- x =WFZBY= -2 SJUNBUBOŽNŽOEBOG Y >WFH Y >TBóMBOŽS- x=6 LFO x mß –2 6 9 ß a >JTFG Y #H Y + x2mæYm + – – 0 < a <JTFG Y $H Y LPõVMMBSŽTBóMBONB- MŽEŽS 2x–3mæ – – + + x2mæYm – + – + 2x–3mæ [-2, 6) b [9, Þ) ÖRNEK 1 ÖRNEK 4 f 5 x–4 25 3x – 2  MPH9 Y+ < FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ p $f p 9 81 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 5 x– 4 5 6x – 4 5 x + 5 >WFMPH9(x + 5) <MPH99 0 < < 1PMEVôVOEBO d n $d n x > -5 9 >PMEVôVOEBO  99 9 x - 4 # 6x - 4 x+5<9jx<4 0 # 5x j x $ 0 (-5, 4) [ ß ÖRNEK 2 ÖRNEK 5  Y -Y+ +# 0 log c 2x - 4 m # 0 5 x+3 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 2x - 4 > 0 WFlog d 2x - 4 n # log 1 (5 > 1) x+3 5 x+3 5 2x - 4 #1 x+3 5x =\"PMTVO\"2- 15A + 50 # 0 x-7 #0 (A - 10) (A - 5) = 0 x=2 , x = -3, x+3 5x = 10 5x = 5 x = Y= -3 x mß –3 2  ß + x =MPH510 x=1 2x – 4 + –+ x+3 + 1 log510 + –– + –+ Ymæ x+3    ] 1. [0, Þ) 2.  MPH510) 31 3. [–2, 6) b [9, Þ) 4. (–5, 4) 5.  >

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 6 ÖRNEK 9 log 1 ^4x - 1h $ log 1 ^3x + 2h  MPHY+MPH Y+ > FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFT JOFEJS 33 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ x >WFY+ 4 >WFMPH5(x2 + 4x) >MPH5 5 (5 > 1) x2 + 4x > 5 4x - 1 >WFY+ 2 >WFlog 1 ^ 4x - 1 h $ log 1 ^ 3x + 2 h x2 + 4x - 5 > 0 33 1 ve x > - 2 WFd 0 < 1 < 1oldu€undan n x = -5 , x = 1 x> 43 3 4x - 1 # 3x + 2 j x # 3 –5 1 + –+ d 1 ,3G (1, Þ) 4 ÖRNEK 7 ÖRNEK 10 log 1 ^2x - 4h ≤ - 2  MPH2 MPH3 Y+  # FöJUTJ[MJôJOJTBôMBZBOYUBNTBZŽMBSŽLBÀUBOFEJS 3 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ 2x - 4 >WFlog 1 ^ 2x - 4 h # log 1 9 d0< 1 <1n x + 1 >WFMPH3(x + 1) >WFMPH2 MPH3(x + 1)) # 1 3 x > -WFMPH3(x + 1) >MPH3WFMPH2 MPH3(x + 1) #MPH22 33 (3 >PMEVôVOEBO   >PMEVôVOEBO 2x >WFY- 4 $ 9 x + 1 > MPH3(x + 1) # 2 13   MPH3(x + 1) #MPH39 x > WF x $ x>0 (3 >PMEVôVOEBO 2 13 x+1#9 = ,3n x#8 2 (0, 8] {       } ZUBOF ÖRNEK 8 ÖRNEK 11 3 #MPH2 Y- < 4 f^ x h = log^ x + 1 h FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJOJCVMVOV[ x - 2 >WFMPH28 #MPH2(x - 2) <MPH216 (2 > 1) x + 1 >WFMPH Y+ 1) $ 0 x >WF# x - 2 < 16 10 # x < 18 x > - MPH Y+ 1) $MPH >PMEVôVOEBO [10, 18) x+1$1 jx$0 [0, Þ) 6. d 1 , 3 G 13 8. [10, 18) 32 9. (1, Þ) 10. 8 11. [0, Þ) 4 = , 3 n 2

www.aydinyayinlari.com.tr ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 3. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 12 ÖRNEK 14 | | MPH4 Y- 3 +MPH42 # 2 MPH TBZŽTŽOŽOUBNLŽTNŽY  FöJUTJ[MJôJOJTBôMBZBOLBÀGBSLMŽUBNTBZŽEFôFSJWBS- \"TBZŽTŽOŽOUBNLŽTNŽOŽOCBTBNBLTBZŽTŽZPMNBLÐ[FSF  EŽS MPH\"€  UJS MPH4 ( 2.| x - 3 | ) #WF| x - 3 | > 0 2 | x - 3 | # WFYâ #VOBHÌSF Y+ZUPQMBNŽLBÀUŽS |x - 3| # 8 MPH €Y PMTVO -8 # x - 3 # 8 MPH2 <MPH <MPH3 -5 # x # 11 2 < x , ... < 3 [-5, 11] \\ {3} jUBOF x=2 \" TBZŽTŽOŽO UBN LŽTNŽOŽO CBTBNBL TBZŽTŽ MPH\" TBZŽTŽOŽO UBNLŽTNŽOEBOGB[MBPMBDBôŽOEBO Z= 13 x +Z= 15 ÖRNEK 13 ÖRNEK 15 log7^ x + 12 h # 2  MPH=  log7x PMEVôVOBHÌSF 25TBZŽTŽLBÀCBTBNBLMŽEŽS FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOJCVMVOV[ MPH25 =MPH= MPH+MPH = 25.(1 +MPH = 25.(1 + 0,90309) =  MPHx(x + 12) # 2 x >JTFY2 $ x + 12 j x2 - x - 12 $ 0 + 1=CBTBNBLMŽEŽS –3 4 (x - 4) (x + 3) = 0 Üstel ve Logaritmik Fonksiyonlarla İlgili Gerçek + –+ x = 4, x = -3 Hayat Problemleri ÖRNEK 16 x >PMEVôVOEBO[4, Þ) 3BEZPBLUJGCJSNBEEFOJOCJSJN[BNBOEBCP[VMNBPMBTŽ- 0 < x<JTFY2 # x + 12 j x2 - x - 12 # 0 MŽLTBCJUJmPMNBLÐ[FSF CVNBEEFOJOZBSŽMBONBTÐSFTJ t = ln 2 GPSNÐMÐJMFIFTBQMBOŽS –3 4 x = 4, x = -3 + –+ 0 < x <PMEVôVOEBO   m 3BEZPBLUJGCJSNBEEFOJOCJSJN[BNBOEBCP[VMNBPMBTŽ- Ç = (0, 1) b [4, Þ) MŽL TBCJUJ   PMEVóVOB HËSF  CV NBEEFOJO NFWDVU NJLUBSŽOŽO 1 TJLBEBSB[BMNBTŽJÀJOZBLMBöŽLLBÀZŽM %m/*m 7 O`;PMTVOMPHO =OMPH=O HFÀNFTJHFSFLJS  MO€    VO UBN TBZŽ LVWWFUJ õFLMJOEF ZB[ŽMBNBZBO t = ln 2 = 0, 693 = 77 ZŽM QP[JUJG CJS HFS¿FL TBZŽOŽO POMVL MPHBSJUNBTŽ BS- 0, 009 0, 009 EŽõŽLJLJUBNTBZŽBSBTŽOEBEŽS 11   EFO CÐZÐL CJS HFS¿FL TBZŽOŽO POMVL MPHBSJU- TJLBEBSB[BMNBTŽNJLUBSŽOŽO JPMNBTŽEFNFLUJS NBTŽQP[JUJGUJS 78  Y EFOCÐZÐLCJSHFS¿FLTBZŽPMTVOYTBZŽTŽ- #VEVSVNLFSFZBSŽMBONBTŽEFNFLUJS OŽOMPHBSJUNBTŽOŽOUBNLŽTNŽBJTFB+ YTB- =ZŽM ZŽTŽOŽOUBNLŽTNŽOŽOCBTBNBLTBZŽTŽOŽWFSJS 12. 16 13. (0, 1) b< ß  33 14. 15 15. 48 16. 231

·/÷7&34÷5&:&)\";*3-*, 3. MODÜL ·45&-7&-0(\"3÷5.÷,'0/,4÷:0/-\"3 www.aydinyayinlari.com.tr ÖRNEK 17 ÖRNEK 19 3JDIUFS ËM¿FóJ  TJTNPMPKJEF LVMMBOŽMBO EÐOZB HFOFMJOEF #JS CËMHFEF CBõMBOHŽ¿UBLJ JOTBO TBZŽTŽ J   U ZŽM TPOSBLJ NFZEBOBHFMFOEFQSFNMFSJOBMFUTFMCÐZÐLMÐLMFSJJMFTBS- JOTBOTBZŽTŽJ2 CËMHFEFLJJOTBOBSUŽõIŽ[ŽLPMNBLÐ[FSF TŽOUŽPSBOŽOŽCFMJSMFZFOWFTŽOŽGMBSBBZŽSBOVMVTMBSBSBTŽËM- CËMHFEFLJJOTBOTBZŽTŽ ¿ÐCJSJNJEJS.JLSPODJOTJOEFOËM¿ÐMFONBLTJNVNHFOMJL  J2 =J +L U2 -U EWFPMVõBOTBSTŽOUŽOŽO3JDIUFSËM¿FóJOFHËSFCÐZÐLMÐóÐ CJ¿JNJOEFNPEFMMFONJõUJS 3PMNBLÐ[FSF EFQSFNJOõJEEFUJ #JSNBIBMMFEFZŽMŽOEBZBQŽMBOTBZŽNEBLJ-  3=MPHE öJ   ZŽMŽOEB ZBQŽMBO TBZŽNEB  LJöJ PMEVôV- OBHÌSF JLJZŽMEBNBIBMMFEFLJBSUŽöIŽ[ŽZÑ[EFLBÀUŽS CJ¿JNJOEFIFTBQMBOŽS NN=3NJLSPOWFMPH€ PMNBLÐ[FSF NBLTJ- 12852 = 8925 . ( 1 +L 2 NVNHFOMJôJNNPMBSBLÌMÀÑMFOEFQSFNJO3JDI- 1,44 = ( 1 +L 2 UFSÌMÀFôJOFHÌSFCÑZÑLMÑôÑLBÀUŽS 12 NN= 490.103NJLSPO= 49.104NJLSPO =1+k R=MPH 4) 10 =MPH2 +MPH4 2 = 2.0,85 +MPH k = = 0, 2 = + 4 =  10 %20 ÖRNEK 18 ÖRNEK 20 ,BSCPO-JMFZBõUBZJOJ ZBLMBõŽLZŽMBLBEBSCJ- #JMFõJL GBJ[ CBOLBZB ZBUŽSŽMBO QBSBOŽO EËOFN TPOVOEB ZPMPKJL PSJKJOMJ BSLFPMPKJL OFTOFMFSJO ZBõŽOŽ CFMJSMFNFEF BOBQBSBWFGBJ[CJSMFõUJSJMFSFLFMEFFEJMFOUVUBSŽOÐ[FSJO- LVMMBOŽMBO CJS ZËOUFNEJS :Bõ UBZJOJ ZBQŽMBDBL OFTOFOJO ZBõŽYPMNBLÐ[FSF ZLBSCPO-NJLUBSŽOŽOUÐNLBSCPO EFOUFLSBSGBJ[BMŽOBSBLWFIFSEËOFNUFLSBSMBOBSBLFM- NJLUBSŽOBPSBOŽOŽHËTUFSJSLFO OFTOFOJOZBõŽ EFFEJMFOCJSGBJ[¿FõJUJEJS#BOLBZBCJMFõJLGBJ[JMFZBUŽSŽ- MBOQBSBEBOFMEFFEJMFOGBJ[UVUBSŽG ZBUŽSŽMBOQBSB\" GBJ[ log y ZÐ[EFTJO ZBUŽSŽMBOEËOFNTBZŽTŽUPMNBLÐ[FSF x = - 5730· f = A.c1 + n t log 2 EFOLMFNJJMFIFTBQMBOŽS 100 m -A \"SLFPMPKJLCJSLB[ŽEBCVMVOBOJTLFMFUUFOŽLBEBSLBS- EFOLMFNJJMFIFTBQMBOŽS CPO-J¿FSEJóJIFTBQMBONŽõUŽS #BOLBZBZŽMMŽLGBJ[JMFCJMFöJLGBJ[EFZBUŽSŽMBO #VOBHÌSF JTLFMFUJOZBLMBöŽLZBöŽLBÀUŽS MJSBOŽOZŽMTPOSBHFUJSFDFôJGBJ[LBÀMJSBEŽS MPH€  25 3 f = 768.d 1 + n - 768 100 40 f = 768. 125 - 768 log log 4 - log 10 64 100 j x = - 5730. x = - 5730· f = 1500 - 768 log 2 log 2 2 log 2 - 1 0, 6 - 1 f = 732 x = - 5730· log 2 j x = - 5730· 0, 3 0, 4 4 x = 5730· = 5730· = 0, 3 3   18.  34 19. %20 20.

-PHBSJUNBMŽ&öJUTJ[MJLMFS TEST - 15 1. MPH2 Y+ < 5. x `[š š PMNBLÑ[FSF  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJOEF LBÀ UBN TBZŽ MPH2 TJOY > - WBSEŽS  FöJUTJ[MJôJOJO ÀÌ[ÑN BSBMŽôŽ BöBôŽEBLJMFSEFO \"  #  $  %  &  IBOHJTJEJS \"  ™ ™  #  ™ ™  $  ™ ™  %  ™ ™    &  ™ ™ 2. MPH Y+ 2 >MPH 6. G Y =MPH MPH3 MPH2Y    FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- IBOHJTJEJS LJMFSEFOIBOHJTJEJS \"   Þ  #   Þ  $   Þ  %   Þ  &   Þ \"   Þ  #   Þ  $   Þ  %   Þ  &   Þ 3. log 1 ^x - 2h 2 log 1 ^7 - xh  f^ x h = e2x + x3 + log3^ x + 1 h 33 GPOLTJZPOVOVOFOHFOJöUBOŽNBSBMŽôŽBöBôŽEB- LJMFSEFOIBOHJTJEJS FöJUTJ[MJôJOJO ÀÌ[ÑN LÑN FTJOEF LBÀ UBN TBZŽ EFôFSJWBSEŽS \"  - Þ  #  - > $ <- > \"  #  $  %  &   %   Þ  & < Þ 4. MPH4 Y-å +MPH4 Y+ # 2 8. f ^xh = ln f log 1 ^x - 3hp FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJOEF LBÀ UBN TBZŽ 3 WBSEŽS  GPOLTJZPOVOVOFOHFOJöUBOŽNBSBMŽôŽBöBôŽEB- LJMFSEFOIBOHJTJEJS \"     #     $    \"  #  $  %  &   %     &    1. D 2. D 3. E 4. A 35 5. A 6. C E 8. B

TEST - 16 -PHBSJUNBMŽ&öJUTJ[MJLMFS 1.  MPH Y-  2 - 9 # 0 5.   MOY 2 -MOY2 # 0  FöJUTJ[MJôJOJTBôMBZBOLBÀGBSLMŽYUBNTBZŽEFôF-  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO SJWBSEŽS IBOHJTJEJS \"  #  $  \" f 1 , eH # > 1 , eH $ > 1 , 1H e e e  %  &   % < F> <&   F2> 2. log x 6. 3 log 5 + 5 log 3 $ 50 x x x 7 < 2401  FöJUTJ[MJôJOJTBôMBZBOFOCÑZÑLWFFOLÑÀÑLUBN  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO TBZŽMBSŽOUPQMBNŽLBÀUŽS IBOHJTJEJS \" 3+ # 3+=\\^ $    3 > \"  #  $  %  &  % ^ 0, 3 @ \\ \" 1 ,  & q 3. lnclog c x + 2 mm # 0  -3 # log 1 x < 43 2 FöJUTJ[MJôJOJTBôMBZBOLBÀYUBNTBZŽEFôFSJWBS-  FöJUTJ[MJLTJTUFNJOJTBôMBZBOLBÀGBSLMŽYUBNTB- EŽS ZŽEFôFSJWBSEŽS \"  #  $  %  &  \"  #  $  %  &  4. log 1 ^x2 - 8x + 13h $ 0 8.  MPH Y+ +MPH Y- #MPH Y+ 3  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS FöJUTJ[MJôJOJTBôMBZBOGBSLMŽYUBNTBZŽEFôFSMFSJ UPQMBNŽLBÀUŽS \" <- > #  -   $ <- > \"  #  $  %  &   %   > &  -  1. C 2. D 3. B 4. A 36 5. D 6. C E 8. D

-PHBSJUNBMŽ&öJUTJ[MJLMFS(FSÀFL)BZBU1SPCMFNMFSJ TEST - 17 1. 3 #MPH2 Y- < 4. MPH= WFMPH=   FöJUTJ[MJôJOJTBôMBZBOLBÀGBSLMŽUBNTBZŽEFôFSJ  PMEVôVOBHÌSF 50TBZŽTŽLBÀCBTBNBLMŽEŽS WBSEŽS \"  #  $  %  &  \"  #  $  %  &  5. ^ 5x - 2 h.^ 2x - 7 h.^ 4 - 25x h # 0 2. f^xh = 2 log 1 ^x - 4h + 3 PMNBLÑ[FSF  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS 3 \" 9log 2 , 3k # 9log 2 , log27C f ( x ) + 1 $öBSUŽOŽTBôMBZBOYUBNTBZŽEFôFS- MFSJOJOUPQMBNŽLBÀUŽS 5 5 \"  #  $  %  &  $ a- 3 , log52C % 9log52, 4k  & 9log27, 3 k , %log 2 / 5 3. YLJõJOJOCVMVOEVóVCJSÐMLFJ¿JOLOÐGVTBSUŽõPSBOŽ 6. #JS CBOLBZB ZBUŽSŽMBO QBSBOŽO CJMFõJL GBJ[ PSBOŽ O  PMNBLÐ[FSF UZŽMTPOSBLJOÐGVT  ZBUŽSŽMBOQBSB\"MJSBPMNBLÐ[FSF UZŽMTPOSBCJSJLFO y =YFLU QBSBNJLUBSŽ  CJ¿JNJOEFNPEFMMFONJõUJS y =\"FOU  :ŽMMŽLOÑGVTBSUŽöPSBOŽOŽOPMEVôVCJSÑMLF-  CJ¿JNJOEFNPEFMMFOJS OJOOÑGVTVZBLMBöŽLLBÀZŽMTPOSBEÌSULBUBSUBS  (ln5 € 1,60)  #BOLBZBZBUŽSŽMBOQBSBOŽO 7 LBUŽLBEBSBSUNB- 2 \"  #  $  %  &  TŽJÀJOCJMFöJLGBJ[JMFLBÀZŽMMŽôŽOBCBOLBZB ZBUŽSŽMNBMŽEŽS (ln3,5 € 1,5) \"  #  $  %  &  1. C 2. E 3. A  4. D 5. E 6. B

TEST - 18 -PHBSJUNBMŽ&öJUTJ[MJLMFS(FSÀFL)BZBU1SPCMFNMFSJ 1.  YMOY #F2Y 3.  Y -Y+ +# 0  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS IBOHJTJEJS \" > 1 , e2H # f - 3 , 1 H , \" e2 , \" 9log 10 , 3k # 9log52 , 3C e e 5 $ 9e2 , 3 k , * 1 4 % > 1 ,3p $ [ ß  % 91, log510C e e2  & 9log52 , log510C & > 1 , eH e2 2.  MJUSF ¿Ë[FMUJEF ¿Ë[ÐONÐõ NPM TBZŽTŽ NPMBSJUF PM- 4. ;FNJOEF PMVõBO TBSTŽOUŽOŽO CÐZÐLMÐóÐ 3 PMNBL NBLÐ[FSF ¿Ë[FMUJOJOQ)EFóFSJ Ð[FSF   Q)= -MPH[H+] R = logf I p I0  GPSNÐMÐJMFIFTBQMBOŽS GPSNÐMÐJMFIFTBQMBOŽS &óFS I TBSTŽOUŽõJEFUJ I0ËM¿ÐMFCJMFONJOJNVNTBSTŽOUŽõJE- EFUJEJS  r Q)=JTF¿Ë[FMUJOËUSBM  r Q)>JTF¿Ë[FMUJCB[JL  3JDIUFSÌMÀFôJOFHÌSF CÑZÑLMÑôÑ PMBSBLÌM- ÀÑMFO EFQSFN TBSTŽOUŽTŽOŽO JML BSUÀŽ TBSTŽOUŽTŽ  r Q)<JTF¿Ë[FMUJBTJEJLUJS EFQSFNJO 1  LBUŽ öJEEFUMJ PMEVôVOB HÌSF   #VOBHÌSF 1000 * [H+] EFSJõJNJ 10–11  NPMBSJUF JTF ¿Ë[FMUJ BTJ- BSUÀŽ öJEEFUJO CÑZÑLMÑôÑ LBÀ PMBSBL ÌMÀÑMNÑö- EJLUJS UÑS ** Q) EFóFSJ   PMBO ¿Ë[FMUJEF [H+] EFSJõJNJ \"   #   $   %   &   –78 10 25 NPMBSJUFEJS *** /ËUSBM¿Ë[FMUJEF[H+]EFSJõJNJ-3UÐS  JGBEFMFSJOEFOIBOHJMFSJEPôSVEVS \" :BMOŽ[* # :BMOŽ[** $ :BMOŽ[***  % *WF** & *WF*** 1. A 2. D 38 3. D 4. C

·TUFMWF-PHBSJUNJL'POLTJZPOMBS KARMA TEST - 1 1.  MPHa= 4 5. f^xh = log 9log3 ^3x - 2hC 2  PMEVôVOBHÌSF MPH8BLBÀUŽS PMEVôVOBHÌSF G-1  LBÀUŽS \"  #  3  $  1 %  1  &  1 \"  #  83  $  67  %  &  11 2 4 3 2 33 3 6. log 16 . log 125 . log 49 = log 4 x ^8xh 2.  MPH2Y=  57 8  PMEVôVOBHÌSF  17 x50 JGBEFTJOJOFöJUJLBÀUŽS PMEVôVOBHÌSF YLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  3. f_ x i = log2_ x + 3 i   MPH=Y MPH=Z MPH=[  LVSBMŽ JMF WFSJMFO G GPOLTJZPOVOVO FO HFOJö UB- PMEVôVOBHÌSF MPHOJOY Z [UÑSÑOEFOFöJUJ OŽNLÑNFTJBöBôŽEBLJMFSEFOIBOHJTJEJS BöBôŽEBLJMFSEFOIBOHJTJEJS \"  -3, -  #  -2, R  $  -R, - \" Y+ y +[ # Y- y +[ $ Y+ 2y +[  %  -3, -> & <-2, R  % Y- 2y +[ & Y- 3y +[ 4. f_ x i = 23x + 1 1 1 1 1  PMEVôVOBHÌSF G-1 Y BöBôŽEBLJMFSEFOIBOHJTJ- 8. + logab logba 1- 1- EJS \"  log2x + 1  #  log3x + 1  $  log3x - 1  JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS 2 22 \" MPHaC-MPHCB # MPHa BC %  a  %  log2x + 1  &  log2x - 1 $ MPHa f b p 33 a b  &  1. D 2. B 3. E 4. E 39 5. B 6. A C 8. E

KARMA TEST - 2 ·TUFMWF-PHBSJUNJL'POLTJZPOMBS 1. log 9log ^ ln e512 hC 5. 4 + 9 + log63 log 3 6 log3 2 6 32  JGBEFTJOJOFöJUJLBÀUŽS \"  #  $  %  &  JöMFNJOJOTPOVDVLBÀUŽS \"  #  $  %  &  2. f^ x h = log ^ 7x - x2 h ^x–3h  GPOLTJZPOVOV UBOŽNMŽ ZBQBO Y UBN TBZŽMBSŽOŽO 6. aY =Cy UPQMBNŽLBÀUŽS \"  #  $  %  &   PMEVôVOB HÌSF  logabb  JGBEFTJOJO FöJUJ BöBôŽ- EBLJMFSEFOIBOHJTJEJS x.y x-y x+y \"   #   $  x-y x+y xy 3. f: R Z3PMNBLÑ[FSF  xy &  x  %   x+y G Y =FY+F x+y  PMEVôVOB HÌSF   G-1 Y   JO LVSBMŽ BöBôŽEBLJMFS- EFOIBOHJTJEJS \" FYmF # FYm $ MO YmF  % MOYmF &  ln x   Y2 +Y-MPH4N= 0 e  EFOLMFNJOJOÀBLŽöŽLJLJHFSÀFMLÌLÑOÑOPMNBTŽ JÀJONOFPMNBMŽEŽS \"  1  #  1  $  %  3  &  2 4 2 4. A \"#$EJLпHFO log916 B I I#$ =MPH9CS % m ( ACB ) = 15° 15° C & 8.  MPH= a  :VLBSŽEBLJWFSJMFSFHÌSF  A^ ABC hLBÀCJSJNLB-  PMEVôVOBHÌSF MPHOJOBUÑSÑOEFOEFôFSJOF- SFEJS EJS \"  1 log 3 2  #  log 3 2  $  1 a log 2 2 2 2 k 3 \" -B # -B $ - 2a   % a log 2k2  & log34  % -B & -B 3 1. B 2. B 3. D 4. C 40 5. C 6. E A 8. D

·TUFMWF-PHBSJUNJL'POLTJZPOMBS KARMA TEST - 3 1. a > 0 5. log 1 ^x - 3h = x -9 2 ax + 6a–x - 5 = 0 3 EFOLMFNJOJOLËLMFSJYWFY2PMTVO  EFOLMFNJOJOÀÌ[ÑNLÑNFTJLBÀFMFNBOMŽEŽS x1 + x2 = 2 \"  #  $   PMEVôVOBHÌSF BLBÀUŽS  %  & TPOTV[ \"  6  #  $ 2 3  % 3 2  &  6. \"öBôŽEBLJ EFOLMFNMFSEFO IBOHJTJOJO HSBGJôJ ZBOMŽöUŽS A) y B) y y = log3x 1 y = log2(x–3) 3x O 1 3 45 x O1 2. f_ x i = 4 log_ x2 – 4 i + x - log x C) D) y y y = e–x  GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- 1 x 11 x LJMFSEFOIBOHJTJEJS O y O1 y=log 1x \" _ 0, 2 i , _ 5, 3 i  # 7 5, 3 i E) 2 2 $   R   % _ – 5, 0 i , _ 5, 3 i &   R 1 –2 –1 x 5 O – 3 y = log1(x + 2) 3 3.  G Y =MPH3Y  HPG  Y =Y+  _ log 2 i2 + log 4. log 5 + _ log 5 i2  PMEVôVOB HÌSF  H   BöBôŽEBLJMFSEFO IBOHJTJ- EJS \"  #  $  %  &   JGBEFTJOJOFöJUJLBÀUŽS \"  #  $  %  &  4.  MPH3  = a 8.  MPH=   PMEVôVOB HÌSF  MPH3    JGBEFTJOJO B DJOTJO- PMEVôVOBHÌSF 50TBZŽTŽLBÀCBTBNBLMŽEŽS EFOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  #  $  %  &  \" B- # B- $ B- 3  % B- & B- 1. A 2. B 3. E 4. D 41 5. B 6. C A 8. D

KARMA TEST - 4 ·TUFMWF-PHBSJUNJL'POLTJZPOMBS 1.  MPH3N=B MPH3O=CWFMPH9 NO = c 5.  Y2 +Y+MPH2 B- = 0  PMEVôVOBHÌSF B C DBSBTŽOEBLJCBôŽOUŽBöBôŽ-  EFOLMFNJOJOHFSÀFLTBZŽMBSEBLJÀÌ[ÑNLÑNFTJ EBLJMFSEFOIBOHJTJEJS CPö LÑNF PMEVôVOB HÌSF  B OŽO BMBDBôŽ FO LÑ- ÀÑLUBNTBZŽEFôFSJLBÀUŽS \" B-C- c =  # B+C+ c = 0 \"  #  $  %  &  $ B+C- 2c =  % B+C- c = 0 & a +C-= 0 2. 6ZHVOöBSUMBSEBUBOŽNMŽG Y WFH Y GPOLTJZPO- 6. 4Y+ - 2Y+ - 20 = 0 MBSŽJÀJO PMEVôVOBHÌSF YBöBôŽEBLJMFSEFOIBOHJTJEJS f^ x h = 2x ve g^ x h = log2^ x + 3 h ln 5 - 1 ln 2 - 1 ln 2 - ln 5  PMEVôVOBHÌSF a fog–1 k_ 3 iLBÀUŽS \"   #   $  \"  #  $  %  &  ln 2 ln 5 ln 5 1 + ln 5 ln 5 - ln 2  %   &  ln 2 ln 2 3. logf 1– 1 p + logf 1– 1 p +. . . + logf 1– 1 p 23 10000 JGBEFTJOJOEFôFSJBöBôŽEBLJMFSEFOIBOHJTJEJS  a log 2 x k2 - log x > 0 2 \" - # - $ - % - & -  FöJUTJ[MJôJOJOFOHFOJöÀÌ[ÑNBSBMŽôŽBöBôŽEBLJ- MFSEFOIBOHJTJEJS \" (0, 2) , (4, 3 )  # (1, 2) , (4, 3 ) $ (0,1) , (2, 3 )  %   R 4. y &    y = f(x) O 23 x G Y =MPHa CY+D GPOLTJZPOVOVOHSBGJóJõFLJMEFLJHJ- 8. logx 7 - 2 10 + logx_ 3 2 + 3 5 i = 2 CJEJS f-1 ( 2 ) =PMEVôVOBHÌSF BLBÀUŽS  FöJUMJôJOJTBôMBZBOYEFôFSJLBÀUŽS \"  #    $  % 1  &  1 2 5 \"  #  $  %  &  1. C 2. D 3. B 4. B 42 5. C 6. E C 8. A

·TUFMWF-PHBSJUNJL'POLTJZPOMBS KARMA TEST - 5 1. \"öBôŽEBLJMFSEFOIBOHJTJCJSSBTZPOFMTBZŽEŽS 5.  Y +–Y = \" F # MO $ ln e e  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS  % ln e 5  & ln3 e2 \" \\^ # \\MPH4^ $ \\MPH4 }  % % 0 , log45 / & % 0 , log54 / 2. \"öBôŽEBLJFöJUTJ[MJLMFSEFOIBOHJTJZBOMŽöUŽS \" MPH2> 0  # log 1 1 >0 $  log 1 < 0 6 3 4 16  % log c 1 m > 0 6. log x 32 49 7 = 12 - x & ln c 1 m < 0  PMEVôVOBHÌSF YLBÀUŽS 5 \" - #  $  %  &  3.  MPH=YWFMPH= y  PMEVôVOBHÌSF MPH4JOYWFZUÑSÑOEFOFöJ- UJBöBôŽEBLJMFSEFOIBOHJTJEJS 2x +y 2x +y 2x +y  1 <BãCJÀJO \"   #   $  2y–2x 2–2x 2 +xy &  2 - xy  %  2 + x  MPHaC+MPHCa 2x +y 2x +y  UPQMBNŽBöBôŽEBLJMFSEFOIBOHJTJPMBNB[ \"  7  #  $  5  %  &  3 2 2 2 y 4. O 2x –3 a –1 8. 2 + log5^ x + 1 h = 1 ôFLJMEFLJHSBGJL y = logb_ x + 3 iGPOLTJZPOVOBBJU- EFOLMFNJOJ TBôMBZBO Y EFôFSMFSJOEFO CJSJ IBO- UJS HJTJEJS  #VOBHÌSF BCLBÀUŽS \" - # - $ - 1 4 \" - # - $ - 4 5 % - 2   % - 1  & - 4 5 & - 1 5 5 5 1. E 2. D 3. B 4. D 43 5. E 6. D E 8. E

KARMA TEST - 6 ·TUFMWF-PHBSJUNJL'POLTJZPOMBS 1. \"öBôŽEBLJMFSEFOLBÀUBOFTJQP[JUJGUJS 5. e2x + 3ex - 10 = 0 * MPH3  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS ** log 5 3 1 2 \" \\MO^ # \\MO ^ $ \\MO^ *** log 1 2  % \\MO^ & \\^ 7 3 *7 MO 7 log 2 3 \"  #  $  %  &  6. f^xh = log f x3 + 1 p 5 1- x 2. a =MPH3 C=MPH D=MPH  PMEVôVOBHÌSF G Y <PMNBTŽJÀJOYSFFMTB-  PMEVôVOBHÌSF B C DBSBTŽOEBLJTŽSBMBNBBöB- ZŽMBSŽBöBôŽEBLJBSBMŽLMBSEBOIBOHJTJOEFPMNBMŽ- ôŽEBLJMFSEFOIBOHJTJE JS EŽS \" Y< # Y> $ -<Y< 0 \" B<C<D # C< a <D $ D<C< a  % -<Y< & Y<WFY>  % D< a <C & B< c <C 3.  MPH MOY +MPH MOY2 - = 0  3 - log ^2x - 4h # 2  EFOLMFNJOJOLÌLMFSÀBSQŽNŽLBÀUŽS 2 \"  F  #  $ F  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOEFLBÀUBOFYUBN TBZŽEFôFSJWBSEŽS A  #  $  %  &   %  F F  & Fm 4. 10.xlogx = x2 2 – log x 3 8. f^xh = -x2 - x + 2  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS  GPOLTJZPOVOVOFOHFOJöUBOŽNLÑNFTJBöBôŽEB- LJMFSEFOIBOHJTJEJS \" * 1 , 10 4 # \\^ $ \\ ^ \"     #   ] 10 $    - {} %   ] - {}  % * 1 , 100 4 & * 1 , 100 4  & [  - {} 10 100 1. D 2. C 3. C 4. B 44 5. D 6. C B 8. D

·TUFMWF-PHBSJUNJL'POLTJZPOMBS KARMA TEST - 7 1. MPH6 2 +MPH6MPH6+ MPH6 2 5. xlog25 - 25log2x = 0 JöMFNJOJOTPOVDVLBÀUŽS  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS \"  1  2 #  $  %  &  \" \\^ # \\^ $ \\^  % \\ ^ & \\ ^ 2. log ^a.bh = log 625 25 log c a m = log 49 2b 7  PMEVôVOBHÌSF BOŽOQP[JUJGEFôFSJLBÀUŽS 6. log f 1 _ x + y i p = 1 _ log x + log y i \"  #  $  %  &  32  PMEVôVOBHÌSF  x + y JGBEFTJOJOFöJUJLBÀUŽS yx \"  #  $  %  &  3. a >PMNBLÐ[FSF x = log 4 , y = log 9 , z = log 25  log 25 a log ^x - 3hk > –1 aaa 0, 2 PMEVôVOBHÌSF Y Z [BSBTŽOEBLJTŽSBMBNBBöB- ôŽEBLJMFSEFOIBOHJTJEJS  FöJUTJ[MJôJOJTBôMBZBOLBÀUBOFYUBNTBZŽTŽWBS- \" [>Y>Z # [> y >Y $ Y> y >[ EŽS  % Y>[>Z & Z>[>Y \"  #  $  %  &  4. BCâPMNBLÑ[FSF 8.  MPH=Y  MPHa.ba =OPMEVôVOBHÌSF   PMEVôVOBHÌSF MPH4JOYDJOTJOEFOFöJUJOF- 3a EJS loga.b b \"  x + 2  #  x $  x + 2  JGBEFTJBöBôŽEBLJMFSEFOIBOHJTJOFFöJUUJS 2x 2x + 2 2 \"  3n - 5  #  3 + 5n  $  2n - 3  %  2x + 1  &  x + 2 3 2 4 x 2x + 1  %  5n - 3  &  3n + 2 6 5 1. D 2. C 3. B 4. D 45 5. B 6. D D 8. A

KARMA TEST - 8 ·TUFMWF-PHBSJUNJL'POLTJZPOMBS 1. y =G Y =MPH3 Y- + 2 x  GPOLTJZPOVOVOUFSTGPOLTJZPOVOVOHSBGJôJBöB- 4. y = 5 ôŽEBLJMFSEFOIBOHJTJPMBCJMJS GPOLTJZPOVOVOHSBGJôJBöBôŽEBLJMFSEFOIBOHJTJ- EJS A) y B) y A) y B) y 3 2 1 1 2 xO x x O2 O O x 3 C) y D) y C) y D) y 4 3 O1 x 1 x 3 2 O x O2 O2 x E) y E) y 1 x O 2 O2 3x 5. log 1 ^16x - 20h < - x 4  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO 2.  MOY+-MOY = 6 IBOHJTJEJS  EFOLMFNJOJO LÌLMFS UPQMBNŽ BöBôŽEBLJMFSEFO \" alog45 , 3k  #   R  IBOHJTJEJS %   R  $ a log 20 , 3k  \" F # F+ $ F  4  &   R  % F+ & F 3.  MPH Y- +MPH Y+ =MPH Y+ 6.  MPH4= a  PMEVôVOBHÌSF MPH6BöBôŽEBLJMFSEFOIBOHJ- TJOFFöJUUJS  FöJUMJôJOJTBôMBZBOYEFôFSMFSJOJOUPQMBNŽLBÀ- \"  2 + 3a  #  3 - 2a $  5 + 2a UŽS 3 + 3a 4 + 2a 2 + 3a \"  #  $  %  & - %  6 + 2a  &  1 + 3a 3 + 2a 2a 1. A 2. B 3. A 46 4. E 5. A 6. D

Üstel ve Logaritmik Fonksiyonlar <(1m1(6m/6258/$5 1. 5SBGJLUF DF[B JõMFNJ ZBQŽMBO CJS TÐSÐDÐ  ËEFNFZJ 3. 6MVTMBSBSBTŽSFGFSBOTTFTõJEEFUJI0 =-XBUUN2 IFNFOZBQBSTBHFDJLNFGBJ[JBMŽONBNBLUBEŽS$F- EJS±M¿ÐMFOTFTõJEEFUJIXBUUN2PMNBLÐ[FSF TFT [BMŽ JõMFNJO $ MJSB PMEVóV CJS ÐDSFUJ U BZ HFDJLUJSFO TÐSÐDÐOÐOËEFZFDFóJGBJ[NJLUBSŽ'MJSBPMNBLÐ[F- EÐ[FZJ SF   '=$   U L =MPH I dB I0  JMFNPEFMMFONJõUJS JMFNPEFMMFONJõUJS ,FOEJTJOF CJMEJSJMFO DF[BZŽ  BZ HFDJLUJSFO TÐSÐDÐ GBJ[JJMFCJSMJLUFMJSBËEFNJõUJS #VOBHÌSe, * 4FT õJEEFUJ - waUUN2 PMBO Jõ NBLJOFTJOJO  4ÑSÑDÑ HFMFO DF[BZŽ HFDJLUJSNFEFO ÌEFTFZEJ LBÀMJSBÌEFSEJ TFTEÐ[FZJE#EJS ** 4FTõJEEFUJ6LBUBSUUŽSŽMEŽóŽOEBTFTEÐ[FZJ \"  #  $  %  &  BSUBS *** 4FTEÐ[FZJE#PMBOTFTJOõJEEFUJ -XBUUN2EJS  CJMHJMFSJOEFOIBOHJMFSJEPôSVEVS \" :BMOŽ[* # :BMOŽ[** $ :BMOŽ[***  % *WF*** & * **WF*** 2. 6ZHVOLPõVMMBSŽOWBSPMEVóVCJSPSUBNEBUTBOJZFEF 4. #JSNBóB[BOŽOZBQŽMBOYMJSBMŽLBMŽõWFSJõTPOVDVOEB LBCŽOJ¿JOEFCVMVOBOCBLUFSJOJOBóŽSMŽóŽYNJMJHSBN NBóB[BLBSUŽOBZÐLMFEJóJ1 Y MJSBPMBOQBSBQVBO PMNBLÐ[FSF 1 Y =MPH2Y t  JMFNPEFMMFONJõUJS Y= 2 4 .BóB[BOŽO  LºS JMF  MJSBZB TBUUŽóŽ HËNMFóJ BMBO&SPM ËODFLJMJSBMŽLBMŽõWFSJõMFSJOEFOFMEF  JMFNPEFMMFONJõUJS FUUJóJQBSBQVBOŽOŽËEFNFEFLVMMBONŽõUŽS  ¶SFZFOCBLUFSJMFSJOUFIMJLFMJTFWJZFZFVMBõNBTŽJ¿JO  .BôB[BOŽO HÌNMFL TBUŽöŽOEBO FMEF FUUJôJ L»S CBLUFSJTBZŽTŽOŽOEFOGB[MBPMNBTŽHFSFLNFL- LBÀMJSBEŽS UFEJS \"  #  $  %  &   #VOBHÌSF LBÀŽODŽTBOJZFEFCBLUFSJTBZŽTŽUFI- MJLFTFWJZFTJOJOTŽOŽSŽOBVMBöŽS \"  #  $  %  &  1. C 2. D  3. D 4. A

<(1m1(6m/6258/$5 Üstel ve Logaritmik Fonksiyonlar 1. ,BZBLMBBUMBNBZBQBOCJSTQPSDVOVOSBNQBEBOBZ- 3. 1MBKEB CVMVOBO LVN UBOFDJLMFSJOJO NN DJOTJOEFO SŽMEŽLUBOTPOSBZBUBZEPóSVMUVEBBMEŽóŽIFSYNNF- WFSJMFOPSUBMBNB¿BQŽE FóJNJNPMNBLÐ[FSF TBGFEF[FNJOFEFóEJóJOPLUBZBEÐõFZEPóSVMUVEBLJ V[BLMŽóŽG Y PMNBLÐ[FSF N= MPHE+    G Y =MPH2 -Y  CBóŽOUŽTŽWBSEŽS  PMBSBLNPEFMMFONJõUJS  1MBKEBOBMŽOBOLVNUBOFDJLMFSJOJO¿BQMBSŽOŽOPSUBMB- y NBTŽ NNPMBSBLIFTBQMBONŽõUŽS #VOBHÌSF CVQMBKŽOFôJNJLBÀUŽS (log0,06 , -1,2) x \"   #   $   O zemin  %   &    #VOBHÌSF * :BUBZEPóSVMUVEBNFUSFZPMBMBOTQPSDVEÐ- õFZEPóSVMUVEBNZPMBMNŽõUŽS ** ;FNJOEFONFUSFZÐLTFLMJLUFZLFOZBUBZEPó- SVMUVEBNFUSFZPMBMNŽõUŽS *** 3BNQBEBO BZSŽMEŽóŽ BOEBO [FNJOF UFNBTŽOB LBEBSEÐõFZEPóSVMUVEBNFUSFZPMBMNŽõUŽS  JGBEFMFSJOEFOIBOHJMFSJEPôSVEVS \" :BMOŽ[* # :BMOŽ[** $ :BMOŽ[***  % *WF** & **WF*** 2. #JS¿FLJSHFOJOCJSJODJTŽ¿SBZŽõŽOEBMPHNFUSF  4. #JSCËMHFEFCVMVOBOJOTBOTBZŽTŽÐTTFMZËOUFNJMF JLJODJ TŽ¿SBZŽõŽOEB MPH NFUSF  пÐODÐ TŽ¿SBZŽ- IFTBQMBOŽSLFO 10 JML OÐGVT  S ZŽMMŽL PSUBMBNB OÐGVT õŽOEBMPHNFUSFPMBDBLõFLJMEFOTŽ¿SBZŽõŽO- BSUŽõ IŽ[Ž  U JML OÐGVT IFTBCŽOEBO TPOSB HF¿FO [B- EBBMEŽóŽZPMG O PMNBLÐ[FSF  NBO UZŽMTPOSBQMBOMBOBOOÐGVT1PMNBLÐ[FSF G O =MPH O+ 4 1=10FSU  PMBSBLNPEFMMFONJõUJS  CJ¿JNJOEFNPEFMMFOJS  \"OLBSBhOŽO  ZŽMŽOEBLJ OÐGVTV  PMVQ PSUBMBNBOÐGVTBSUŽõIŽ[ŽZÐ[EF PMBSBLIFTBQ- MBONŽõUŽS  #V ÀFLJSHF  LF[ TŽÀSBEŽLUBO TPOSB CBöMBEŽôŽ  #VOB HÌSF  \"OLBSBhOŽO  ZŽMŽOEB CFLMFOFO OPLUBEBOFOGB[MBLBÀNFUSFV[BLMBöNŽöUŽS OÑGVTVZBLMBöŽLPMBSBLLBÀUŽS (e0,36 = 1,4) \"  #  $  \"  #  $  %  &   %  &  1. E 2. D 48 3. D 4. A


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook