Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore TYT AYT Geometri Ders İşleyiş Modülleri 2. Modül Üçgenler

TYT AYT Geometri Ders İşleyiş Modülleri 2. Modül Üçgenler

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-21 02:06:05

Description: TYT AYT Geometri Ders İşleyiş Modülleri 2. Modül Üçgenler

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- :BZŽO&EJUÌSÑ #JMJNTFM÷ODFMFNF  ÷MIBO#&:\";5\"õ %J[HJ–(SBGJL5BTBSŽN *4#//P  .VTUBGB:·$& :BZŽODŽ4FSUJGJLB/P #BTŽN:FSJ  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ ÷MFUJöJN          &SUFN#BTŽN:BZŽO-UEõUJr   \":%*/:\":*/-\"3*  JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * www.aydinyayinlari.com.tr ·/÷7&34÷5&:&)\";*3-*, %¸O¾P.DSDáñ ÜNİVERSİTEYE HAZIRLIK 2. MODÜL GEOMETRİ Alt bölümlerin Karma Testler ÜÇGENLER EDĜOñNODUñQñL©HULU KARMA TEST - 1 Üçgenler Modülün sonunda A tüm alt bölümleri ³ Açı ve Açı Türleri t 2 1. A ABC üçgen 4. L©HUHQNDUPDWHVWOHU | |AB =DN zy ³ Üçgende Açı t 11 | |AC =DN ³ Dik Üçgen t 30 | |18 12 BC =DN ³ İkizkenar Üçgen t 50 Bx C ³ Eşkenar Üçgen t 58 B 15 C \"#$ÀFöJULFOBSCJSÑÀHFOIx < hZ, n# < nCPM 5BSBMŽ CÌMHFOJO ÀFWSFTJ  DN PMEVôVOB HÌSF  EVôVOBHÌSF XA XB XC BÀŽMBSŽOŽOTŽSBMBOŽöŽBöBôŽ UBSBMŽPMNBZBOCÌMHFOJOÀFWSFTJLBÀDNEJS EBLJMFSEFOIBOHJTJEJS \"  #  $  %  &  ³ Açıortay t 67 6ñQñIð©LðĜOH\\LĜ \"  WB > WA > XC  #  WA > WB > XC  $  WA > XC > WB ³ Kenarortay t 76 %XE¸O¾PGHNL¸UQHN  %  XC > WA > WB  &  XC > WB > WA ³ Üçgenlerde·/E÷7ş&3l4i÷k5&:-&)B\";e*3n-*,ze2r.lMikODtÜL 85ÜÇGENLER www.aydinyayinlari.com.tr \"¦*7&\"¦*5·3-&3÷ 2. Peynir \\HUDOñU ÖRNEK 1 ³ Üçgende Merkezler t 104 TANIM ³ Üçgende Alan t 111 #BõMBOHŽ¿OPLUBMBSŽPSUBLPMBOJLJŽõŽOŽOCJSMFõJN 3aCJSEBSBÀŽÌMÀÑTÑ iCJSHFOJöBÀŽÌMÀÑTÑJTF 45° 30° 5. A ABC bir üçgen LÐNFTJOFBÀŽEFOJS [AC] m [BC] ³ Karma Testler t 132 B i - a OŽO EFSFDF DJOTJOEFO en küçük ve FO CÑZÑL Beyaz Siyah UBNTBZŽEFôFSMFSJUPQMBNŽLBÀUŽS Fare Fare  õFLJMEFLJ TJZBI GBSFOJO QFZOJSF VMBöNBL JÀJO 18 |BF| = |FD| ³ Yeni Nesil Sorular t 140 0° < 3a < 90° j 0° < a < 30° j 90° < 2i < 180° VRUXODUñQ©¸]¾POHULQH BMBDBôŽ ZPMVO  CFZB[ GBSFOJO QFZOJSF VMBöNBL | |D AB =DN <HQL1HVLO6RUXODU j 45°< i < 90°dir. j 15° < i - a <šPMVS DNñOOñWDKWDX\\JXODPDVñQGDQ | |BF =DN A (i - a)min = 16° (i - a)max = 89° j 16° + 89° = 105° dir. XODĜDELOLUVLQL] JÀJOBMBDBôŽZPMBPSBOŽLBÀUŽS F2E | |FE =DN 0RG¾O¾QJHQHOLQGH\\RUXP \\DSPDDQDOL]HWPHYE C ÖRNEK 2 3 $< (21 m% 1 3( 6&m / 6258/$54 x EHFHULOHUL¸O©HQNXUJXOX 5ÑNMFSJLJBÀŽEBOCJSJOJOÌMÀÑTÑ EJôFSJOJOÑÀLBUŽO- #   B VRUXODUD\\HUYHULOPLĜWLU EBO š FLTJL PMEVôVOB HÌSF  CV JLJ BÀŽOŽO ÌMÀÑMFSJ \"  Üçgenler $\\UñFDPRG¾OVRQXQGD GBSLŽLBÀEFSFDFEJS 2 D WDPDPñ\\HQLQHVLOVRUXODUGDQ  #\"$ B¿ŽTŽ [\"# WF [\"$ ŽõŽOMBSŽOŽO CJSMFõJN LÐ- C ROXĜDQWHVWOHUEXOXQXU % ²MÀÑMFSJUPQMBNŽšPMBOBÀŽMBSBUÑNMFSBÀŽMBSEJZPSV[ %% E \"ÀŽMBSEBOCJSJOJOÌMÀÑTÑaJTFEJôFSJOJOÌMÀÑTÑš- a m ( BAC ) = m ( CAD ) G NFTJEJS#\"$B¿ŽTŽOŽOËM¿ÐTÐm ( BAC )õFLMJO- dir. 90° - a = 3a - 30° | |1. 5BOHSBNUBõ QMBTUJL UBIUB LºóŽUHJCJOFTOFMFSLVM- a =šPMVS#VBÀŽOŽOUÑNMFSJJTFšEJS#VJLJBÀŽOŽO 2. A EFHËTUFSJMJS ÌMÀÑMFSJGBSLŽš- 30° = 30° dir. MBOŽMBSBLHFPNFUSJLQBS¿BпHFO :VLBSFŽE BWQFBS-JMFOMFSFHÌSF  '$ =YLBÀDNEJS  ±M¿ÐTЙJMF™BSBTŽOEBPMBOB¿ŽMBSBEBSBÀŽ SBMFMLFOBSŽCJSBSBZBHFUJSFSFL¿FõJUMJHFPNFUSJLõF- EFOJS LJMMFSPSUBZB¿ŽLBSBOCJS[FLBPZVOVEV\"S  #  $  %  &   ±M¿ÐTЙPMBOB¿ŽZB1EJLBÀŽEFOJS 3. A ABC üçgen C  ±M¿ÐTЙJMF™BSBTŽOEBPMBOB¿ŽMBSBge- B % DN OJöBÀŽEFOJS (CAB) m = 120° 180° E |BD| = |AC| F BD |AE| = |EB| ve BA C 6. #JSEJLпHFOEFEJLLFOBSMBSŽOV[VOMVLMBSŽDNWF CDN DNEDJNS [ED] m [AB]  ±M¿ÐTЙPMBOB¿ŽZBEPôSVBÀŽEFOJS % %JLMJLNFSLF[JWFÀFWSFMÀFNCFSJONFSLF[JBSB  PMEVôVOBHÌSF  m (EDB) LBÀEFSFDFEJS ôFLJM* TŽOEBLJV[BLMŽLLBÀDNEJS 360° B ÖRNEK 3 $OW%¸O¾P7HVWOHUL \"  #  $  %  &  \"  17  #  17  $  1&H27FOOFESKFJ%OÐ SFPUMNVõFBLO&J¿ JZOFMUEBFTóBJSSMNBOFBOOJO ÐJ¿T FBõóMBFNõLMBFõOUBŽSSN ÐB¿L- 1. D DN 5 3 TEST - 36#ÑUÑOMFSJLJBÀŽOŽOÌMÀÑMFSJGBSLŽšPMEVôVOBHÌSF  Her alt bölümün AC VRQXQGDRE¸O¾POHLOJLOL J¿JO\"# %&WF'(LFOBSMBSŽOBCJSCJSMFSJZMFLFTJõF- LÑÀÑLBÀŽOŽOUÑNMFSJLBÀEFSFDFEJS WHVWOHU\\HUDOñU ,FOBSPSUBZ  \"LJG ±óSFUNFO TŽOŽGŽOEBLJ1 Ë3ó2SFODJMFSJ JMF UBOHSBN DFLõFLJMEFEPóSVTBM¿ŽUBMBS¿BLBSBLZFMEFóJSNFOJ-  ±M¿ÐTЙPMBOB¿ŽZBUBNBÀŽEFOJS 2. C 3. D 4. # 5. C 6O.JCTBóMBNMBõUŽSŽZPSWFôFLJM**PMVõUVSVMVZPS FULJOMJóJ ZBQNBL J¿JO ËóSFODJMFSJOF LºóŽU  DFUWFM   ±M¿ÐMFSJUPQMBNŽ1.™PMBOB¿ŽMBSBUÑNMFSBÀŽMBS A (180° - a) - a = 30° j4a. = 75° dir. A NBLBTWFB¿ŽËM¿FSEBóŽUŽQBõBóŽEBLJUBOHSBNõBC- K EFOJS 90°- 75°= 15° MPOVOEBOHFPNFUSJLõFLMJLFTNFTJOJJTUFNJõUJS 15°  ±M¿ÐMFSJ UPQMBNŽ ™ PMBO B¿ŽMBSB bütünler BÀŽMBSEFOJS 12 16 AD N B DÖRNEKC 4 B AB ] m [ AD ] m % C C E \"#$пHFOJOEF [ (#DÑCUÑAO) M=FS1J5L°JBÀŽEBOCÑZÑôÑOÑOÌBMÀÑTÑOÑOZBSŽTŽLÑ-D B | | | |BD = 2 DAC PMEVôVOBHÌSF mÀ(ÑA%ôCÑBOÑ) O= UaÑNkaMFçSJOJO JLJ LBUŽOB FöJU PMEVôVOB HÌSF   %BIBTPOSB\"LJG±óSFUNFOËóSFODJMFSJOEFOJLJLÐ- CÑZÑLBÀŽOŽOÌMÀÑTÑLBÀEF\"SF#D$FEÐJ¿SHFOJOEF [ AB ] m [ AC ] [ AD ]LFOBSPSUBZ ¿ÐLWFPSUBCPZпHFOJBMBSBLCVпHFOMFËODFEJL EFSFDFEJS CJSпHFOEBIBTPOSBJTFZJOFппHFOMFCJSLBSF- LF EFOGBSLMŽEJLEËSUHFOZBQNBMBSŽOŽJTUJZPS AC | | | |[ BN ]B¿ŽPSUBZ  AB =DN  AC =DNPMEV- GM \"  #  $  %  &  | |ôVOBHÌSF ND LBÀDNEJS #ÑZÑLBÀŽOŽOÌMÀÑTÑa CÑUÑOMFSJš- aPMTVO  :BQŽMBO FULJOMJL TPOSBTŽOEB ÌôSFODJMFSJOJO PMVöUVSEVôVEJLÑÀHFOWFEJLEÌSUHFOJOÀFWSF  #JS B¿ŽZŽ ËM¿ÐMFSJ FõJU JLJ B¿ŽZB BZŽSBO ŽõŽOB a = 2^ 90° - ^ 180° - a h h A) 35 43 45 50 MFSJOJOGBSLMBSŽOŽONVUMBLEFôFSJLBÀDNEJS 2 3a 8 B) C) D) E) 5 BÀŽPSUBZEFOJS a 10 11 11 % % = m ( DAC ) = - 180° + 2a j 180° = j 120° = a ô LJM ** m ( BAD ) 22  õFLJM**EFPMVöBO,-.ÑÀHFOJOJOBMBOŽOŽOõFLJM 2. \"#$CJSпHFO,WF.LFOBSPSUBOPLUBMBSŽ(BóŽS- \" 4 - 2 2  # 8 - 4 2  $ 4 2 * EFLJ ÑÀHFOMFSJO BMBOMBSŽ UPQMBNŽOB PSBOŽ LBÀ MŽLNFSLF[JEJS UŽS A 5.  % 6 - 4 2  & 2 2 - 8 A 2 1. 105 2. 30° 3. 15° 4. 120° x \"  #  $  %  &  D K G G 10 B 16 L C BM C \"#$пHFOJOEF (BóŽSMŽLNFSLF[J [ AG ]B¿ŽPSUBZ | | | | | |KL = LM [ AG ] m [ BG ]WF AB =DNPMEV- | | | | | | | |AD = DC  BG =DN  BC =DN | | | |ôVOBHÌSF  GL + LM UPQMBNŽLBÀDNEJS | | :VLBSŽEBLJWFSJMFSFHÌSF  AG =YLBÀDNEJS \"  #  $  %  &  \"  #  $  %  &  1. # 144 2. \" 3. A 6. A 7 9 G G 8 BC B KD C \"#$CJSпHFO (BóŽSMŽLNFSLF[JE JS \"#$CJSпHFO (BóŽSMŽLNFSLF[JEJS | | | | | |AG =DN  GC =DNWF BG =DN | | | |% | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# LBÀDNEJS m ( BGK ) \"  #  $  %  &  = m ( % )  AG = 3 BG KGD | | | |BC =DNPMEVôVOBHÌSF ,% LBÀDNEJS A) 3 B) 4 C) 3 2  %   &  1. C 2. A 3. E 83 4. D 5. D 6. A

ÜNwİwVwE.ayRdinSyaİyTinlaEri.YcoEm.trHAZIRLIK ·/÷7&34÷5&:&)\";*3-*, GEOMETRİ 2. MODÜL ÜÇGENLER ³ Açı ve Açı Türleri t 2 ³ Üçgende Açı t 11 ³ Dik Üçgen t 30 ³ İkizkenar Üçgen t 50 ³ Eşkenar Üçgen t 58 ³ Açıortay t 67 ³ Kenarortay t 76 ³ Üçgenlerde Eşlik - Benzerlik t 85 ³ Üçgende Merkezler t 104 ³ Üçgende Alan t 111 ³ Karma Testler t 132 ³ Yeni Nesil Sorular t 140 1

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr \"¦*7&\"¦*5·3-&3÷ TANIM ÖRNEK 1  #BõMBOHŽ¿OPLUBMBSŽPSUBLPMBOJLJŽõŽOŽOCJSMFõJN 3aCJSEBSBÀŽÌMÀÑTÑ iCJSHFOJöBÀŽÌMÀÑTÑJTF LÐNFTJOFBÀŽEFOJS i - a OŽO EFSFDF DJOTJOEFO en küçük ve FO CÑZÑL B UBNTBZŽEFôFSMFSJUPQMBNŽLBÀUŽS AC 0° < 3a < 90° j 0° < a < 30° j 90° < 2i < 180° j 45°< i < 90°dir. j 15° < i - a <šPMVS (i - a)min = 16° (i - a)max = 89° j 16° + 89° = 105° dir.  #\"$ B¿ŽTŽ [\"# WF [\"$ ŽõŽOMBSŽOŽO CJSMFõJN LÐ- ÖRNEK 2 % 5ÑNMFSJLJBÀŽEBOCJSJOJOÌMÀÑTÑ EJôFSJOJOÑÀLBUŽO- NFTJEJS#\"$B¿ŽTŽOŽOËM¿ÐTÐm ( BAC )õFLMJO- EBO š FLTJL PMEVôVOB HÌSF  CV JLJ BÀŽOŽO ÌMÀÑMFSJ GBSLŽLBÀEFSFDFEJS EFHËTUFSJMJS ²MÀÑMFSJUPQMBNŽšPMBOBÀŽMBSBUÑNMFSBÀŽMBSEJZPSV[  ±M¿ÐTЙJMF™BSBTŽOEBPMBOB¿ŽMBSBEBSBÀŽ \"ÀŽMBSEBOCJSJOJOÌMÀÑTÑaJTFEJôFSJOJOÌMÀÑTÑš- a EFOJS dir. 90° - a = 3a - 30° a =šPMVS#VBÀŽOŽOUÑNMFSJJTFšEJS#VJLJBÀŽOŽO  ±M¿ÐTЙPMBOB¿ŽZBEJLBÀŽEFOJS ÌMÀÑMFSJGBSLŽš- 30° = 30° dir.  ±M¿ÐTЙJMF™BSBTŽOEBPMBOB¿ŽMBSBge- ÖRNEK 3 OJöBÀŽEFOJS #ÑUÑOMFSJLJBÀŽOŽOÌMÀÑMFSJGBSLŽšPMEVôVOBHÌSF  180° LÑÀÑLBÀŽOŽOUÑNMFSJLBÀEFSFDFEJS BA C (180° - a) - a = 30° j a = 75° dir. 90°- 75°= 15°  ±M¿ÐTЙPMBOB¿ŽZBEPôSVBÀŽEFOJS 360° B A C  ±M¿ÐTЙPMBOB¿ŽZBUBNBÀŽEFOJS ÖRNEK 4  ±M¿ÐMFSJUPQMBNŽ™PMBOB¿ŽMBSBUÑNMFSBÀŽMBS EFOJS #ÑUÑOMFSJLJBÀŽEBOCÑZÑôÑOÑOÌMÀÑTÑOÑOZBSŽTŽLÑ-  ±M¿ÐMFSJ UPQMBNŽ ™ PMBO B¿ŽMBSB bütünler ÀÑôÑOÑO UÑNMFSJOJO JLJ LBUŽOB FöJU PMEVôVOB HÌSF  BÀŽMBSEFOJS CÑZÑLBÀŽOŽOÌMÀÑTÑLBÀEFSFDFEJS B D AC #ÑZÑLBÀŽOŽOÌMÀÑTÑa CÑUÑOMFSJš- aPMTVO  #JS B¿ŽZŽ ËM¿ÐMFSJ FõJU JLJ B¿ŽZB BZŽSBO ŽõŽOB a = 2^ 90° - ^ 180° - a h h BÀŽPSUBZEFOJS 2 a 3a % % = - 180° + 2a j 180° = j 120° = a m ( BAD ) = m ( DAC ) 22 2 1. 105 2. 30° 3. 15° 4. 120°

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, TANIM ÖRNEK 5 B ,ËõFMFSJWFCJSFS B E D [ AB // [ CE ] LPMMBSŽPSUBLPMBO 45° [ AE ] // [ CD D JLJB¿ŽZBLPNöV 45° 45° m ( B%AE ) = 45° BÀŽMBSEFOJS AC AC B%AD ve % :VLBSŽEBLJWFSJMFSFHÌSF m ( % = a LBÀEFSFDFEJS  DAC LPNõVB¿ŽMBSEŽS ECD ) ,FTJõFO JLJ EPóSV- [\"#[$&PMEVôVOEBO B%AE % OVO PMVõUVSEVóV ile AEC JÀUFSTBÀŽMBSEŽS B¿ŽMBSEBOLPNõVPM- x NBZBO B¿ŽMBSB UFST m ( B%AE ) = % = 45° [\"&[%$PMEVôVOEBO % yy BÀŽMBSEFOJS m ( AEC ) AEC x ile % iç terTBÀŽMBSEŽS. % = % = a = 45° ECD m ( AEC ) m ( ECD )  5FSTB¿ŽMBSŽOËM¿ÐMFSJFõJUUJS ÖRNEK 6 d3 d // d2PMNBL Ð[FSF  ba d1 A B [ AB // [ FG cd D F 20° b' a' d2 C d1 % c' d' 20° a E m ( BAC ) = 20° 40° 40° d2 m ( C%DE ) = 80°  BJMFBhZËOEFõ B=Bh 80° d3 % = 30°  EJMFChJ¿UFST Ch= d 40° m ( EFG )  BJMFDhEŽõUFST B=Dh  BhJMFELBSõŽEVSVNMVB¿ŽMBSEŽS 40° %  Bh+ d =™ 70° m ( DEF ) 30° 30° G = 70° % :VLBSŽEBLJWFSJMFSFHÌSF  m ( ACD ) = aLBÀEFSFDFEJS  [\"#E1E2E3['( **ZPM 20° + 80°+ 30°= a + 70° a = 20° + 40°= 60° a = 60° UYARI d1 d // d2JTF ÖRNEK 7 a a +C+D=™ EJS A B [ AB // [ CD b c d2 50° % m ( BAE ) a d1 d // d2JTF = 50° b a +C+D+ d =™ c EJS DC % = 150° m ( DCE ) d d2 d1 d // d2JTF d 150° a a 30° x a +C+D= x +Z b EJS E y c d2 :VLBSŽEBLJ WFSJMFSF HÌSF  m( % = a kaç dereDF- AEC ) dir  [\"#[%$Ej a + 30° = 50° j a = 20° 3 5. 45° 6. 60° 7. 20°

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 8 ÖRNEK 11 [ AB // [ CD BA [ AB // [ EF A B DC x + 54° m ( D%CE ) = 2x 140° 40° C d1 % 90° m ( BAC ) = 140° 2x x m ( C%EA ) = x % = 120° m ( CDE ) d 180°–2x° 126°–x° 12900°° 30° E % = x + 54° 150° D d2 % m ( EAB ) m ( DEF ) = 150° :VLBSŽEBLJWFSJMFSFHÌSF YLBÀEFSFDFEJS FE :VLBSŽEBLJWFSJMFSFHÌSF m % = a kaç dereDFEJS  ( ACD ) E[%$[\"# [\"#E1E2[EF x + 180°- 2x + 126°– x = 180° j x = 63° dir. a = 40° + 90° = 130° dir. ÖRNEK 9 ÖRNEK 12 A B [ AB // [ DE 30° A B [ AB // [ FG ] // [ CD d 30°a C 30° 70° m ( B%AC ) = 30° [ FE ] // [ CG ] 110° % 30° E % = 140° m ( CDE ) 40° d m ( DCG ) = 110° F 40° ED G 40° % 140° ACD ) :VLBSŽEBLJWFSJMFSFHÌSF  m( = a LBÀEFSFDFEJS  DC :VLBSŽEBLJWFSJMFSFHÌSF m ( A%EF ) = a LBÀEFSFDFEJS [\"#[DE ['([CD j m ( F%GC ) = 40° a = 30° + 70° = 100° dir. [FE][CG] j % = 40° m ( EFG ) [\"#['(EPMEVôVOEBOj a = 40°+ 30° = 70° dir. ÖRNEK 10 ÖRNEK 13 A B [ AB // [ DE BD [ AB // [ CD 110° % ) = 110° d m % = 40° C a 70° m ( CAB ( BAE ) 40° d % = 140° C F% 140° m ( CDE ) 70° 70° 40° m ( CEA ) = 70° 40° A EK DE :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) = a kaç dereDFEJS DCE :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) = a LBÀEFSFDFEJS  \" & ,EPôSVTBM [\"#[$%E ACD B%AK ile F%EK BÀŽMBSŽZÌOEFö m ( B%AK ) = m ( F%EK ) = 40° E[\"#[DE] j a = 70° + 40°= 110° dir. \"  &  , EPôSVTBM  % = 70°  % ile %   BÀŽMBSŽ m ( CEF ) DCE CEF LBSöŽEVSVNMVPMEVôVOEBO m ( % ) = 110° dir. DCE 8. 63° 9. 100° 10. 110° 4 11. 130° 12. 70° 13. 110°

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 14 ÖRNEK 16 d [ AB // [ FG K F B G % m ( BAC ) = 100° 100° A B x+10° A 80° E % = 120° C 80° 20° m ( CDE ) x + 1100°2° E 60° 120° m ( D%EF ) = 80° d 2x – 40° D M % m ( EFG ) = 20° F D 2x – 40° C :VLBSŽEBLJWFSJMFSFHÌSF  m( % = a LBÀEFSFDFEJS  ACD ) G E[\"#['(PMTVO [ AB // [$% m ( % ) = 102° m ( F%AB ) = x + 10° %% % FEG KCA ile CAB LBSöŽEVSVNMVm ( KCB ) = 80° dir. m ( D%CG ) = 2x - 40° % + m ( D%EF ) = % + % m ( MCD ) m ( CDE ) m ( EFG ) :VLBSŽEBLJWFSJMFSFHÌSF YLBÀEFSFDFEJS m ( % ) + 80° = 120° + 20° MCD [\"#[CD]EPMTVO % = 60° m ( MCD ) x + 10° + 2x - 40° = 102° j x = 44° dir. , $ .EPôSVTBM a + 80° + 60° = 180° j a = 40° dir. ÖRNEK 17 ÖRNEK 15 B K [ CA // [ DG ] // d 74° C D A 74° G [ DB // [ FK E 42° A D x % = 74° 74° 42° m ( ACB ) 59° dM FN 59° % = 42° m ( EGF ) 121° 118° % :VLBSŽEBLJWFSJMFSFHÌSF m ( EFG ) = x kaç dFSFDFEJS EB CF % % % [$\"[DG]EPMEVôVOEBO DAB BAC ACF [ AD // EF m ( ) = m ( ) m ( ) = 118° % % % ACB, DEK MFK :VLBSŽEBLJWFSJMFSFHÌSF m ( A%BE ) = a kaç dereDFEJS ve BÀŽMBSŽZÌOEFö  m ( A%CB ) = m ( D%EK ) = m ( M%FK ) = 74° [%\"[CF j % = % = 118° [DG]EPMEVôVOEBO % BÀŽTŽJMF % BÀŽTŽJÀUFST m ( DAC ) m ( ACF ) EGF GFN m ( D%AB ) = m ( B%AC ) = 59° %% D%AB BÀŽTŽJMF A%BE BÀŽTŽLBSöŽEVSVNMV m ( EGF ) = m ( GFN ) = 42° . ' /OPLUBMBSŽEPôSVTBM š+ x + 42° = 180° j x = 64°dir. a = 180°- 59° = 121° dir. 14. 44° 15. 121° 5 16. 40° 17. 64°

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 18 A d1 ÖRNEK 20 d3 d // d2 E3 // d4 // d5 mk D d4 E d2 m( % = 40° m d2 d1 A 30° ABC ) F 40° C 140° 40° d5 m( % = 30° B B K ACB ) . n M nt C d// % = %% = m ( B%CD ) :VLBSŽEBLJWFSJMFSFHÌSF a + b + i UPQMBNŽLBÀEF- d2 m ( EAB ) m ( BAD ) m ( BCF ) SFDFEJS % = 140° d1E2 ve d3E4PMEVôVOEBOa ile i ve b ile iJÀUFST m ( ADC ) BÀŽMBSPMVQÌMÀÑMFSJFöJUUJS :VLBSŽEBLJWFSJMFSFHÌSF  m( % = a kaç dereDFEJS  m (Wa) = m (Vi) = m (Vb) ABC ) d3E4E5PMEVôVOEBO d1E2 m ( A%BC ) = m ( B%CK ) = 40° ÷ÀUFST k + t = 140° 2m + 2n = 220° % = % = i  ÷ÀUFST m ( BAC ) m ( ACM ) m + n = a j a = 110° dir. , $ .EPôSVTBMPMEVôVOEBOš+ 30° + i = 180° j i = 110° dir. aš b = 110° a + b + i = 330° ÖRNEK 21 ÖRNEK 19 [AK // [$. [AB] // [$5 [$/  % B¿ŽTŽOŽOB¿ŽPSUBZŽ BCM [ AB // [$% m ( % ) = m ( % )  m ( % ) = m ( % ) m ( B%AK ) = 140° m % ) = 24° BAD CAD ACE ECD ( NCT A B A PK 140° 140° m m 90° E Ba N 90° T 24° D n 64° n 52° 40° C CM % :VLBSŽEBLJWFSJMFSFHÌSF m ( C%ED ) = aLBÀEFSFDFEJS 7FSJMFOMFSFHÌSF m ( ABC ) = aLBÀEFSFDFEJS [\",[CM  [\"#][CT]PMEVôVOEBO [\"#[CD % = % = 140° j % % m ( BAK ) m ( CPK ) CPK ile PCM 2m + 2n = 180° j m + n = 90° dir. LBSöŽEVSVNMVBÀŽMBSEŽSm ( % ) = 40° dir. [$/  % PCM BCM % = m + n = 90° dir. BÀŽTŽOŽOBÀŽPSUBZŽPMEVôVOEBO m ( % ) = 64° m ( AEC ) BCN \" & %EPôSVTBM j = 90°dir. j a = 40° + 52°= 92° dir. 18. 110° 19. 90° 6 20. 330 21. 92

\"ÀŽWF\"ÀŽ5ÑSMFSJ TEST - 1 1. aWFi UÐNMFSJLJB¿ŽEŽS 5. [ AC ]å[ KL ] [ DB ]å[ FK ] a=1 m ( D%BK ) = 2m ( A%BD ) = 3m ( K%BE ) = 6m ( E%BC ) i4  PMEVôVOBHÌSF i - aGBSLŽLBÀEFSFDFEJS F L \"  #  $  %  &  x K D E AB C 2. a WFb CÐUÐOMFSJLJB¿ŽEŽS  :VLBSŽEBLJWFSJMFSFHÌSF  m ( F%KL ) = x kaç de- SFDFEJS 3a - 2b =™ PMEVôVOB HÌSF  LÑÀÑL BÀŽOŽO UÑNMFSJ LBÀ EFSF \"  #  $  %  &  DFE JS \"  #  $  %  &  3. C ôFLJMEF   6. A [ BC // [ DE B % 140° % ( BAC ) B m ( ABC ) = 140° m = 72° C m ( A%DE ) = 70° 70° 72° m % ) = 40°EJS ED 40° ( CAD A D  :VLBSŽEBLJWFSJMFSFHÌSF #\"%BÀŽTŽOŽOBÀŽPSUBZŽ :VLBSŽEBLJ WFSJMFSF HÌSF m( % = a kaç de- JMF$\"%BÀŽTŽOŽOBÀŽP SUBZŽBSBTŽOEBLJBÀŽOŽOÌM- BAD ) ÀÑTÑLBÀEFSFDFEJS SFDFEJS \"  #  $  %  &  \"  #  $  %  &  4. B A [ AB // [ DE 7. A B [ AB // [ EF C % = a m ( A%CD ) = 155° m ( BAC ) % C 155° % = m ( ACD ) = i m ( CDE ) 125° a + i ™ 125° % = D 140° m ( DEF ) 140° DE EF :VLBSŽEBLJ WFSJMFSF HÌSF  % = b kaç de- :VLBSŽEBLJWFSJMFSFHÌSF  % = a kaç de- m ( CDE ) m ( BAC ) SFDFEJS SFDFEJS \"  #  $  %  &  \"  #  $  %  &  1. D 2. # 3. D 4. # 7 5. # 6. A 7. C

TEST - 2 \"ÀŽWF\"ÀŽ5ÑSMFSJ 1. B [ AB // [ CD ] 4. A B [ AB // [ LK ] C 80° % = m % ) 40° [ DE ] // [ FG ] m ( BAC ) ( CAD 45° C A % = 80° D 20° % = 40° m ( ACD ) m ( BAC ) E % F m ( ACD ) = 45° L G K % = 20° m ( CDE ) a % :VLBSŽEBLJWFSJMFSFHÌSF  m ( FGK ) = a kaç de- reDFEJS D % \"  #  $  %  &  ADC :VLBSŽEBLJ WFSJMFSF HÌSF m ( ) = a kaç de- SFDFEJS \"  #  $  %  &  5. B A 2. B A [ AB // [ CD EF m ( B%EA ) = 70° DC 70° % [ AB // [$% m ( % ) = m ( % ) m ( BAC ) = a BAE EAF E % m ( BDC ) = i a - i =™ % = m ( % ) m ( % ) + m % = 165° CD m ( FCE ) ECD AEC ( AFC ) :VLBSŽEBLJWFSJMFSFHÌSF iLBÀEFSFDFEJS :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- \"  #  $  %  &  AEC EJS \"  #  $  %  &  3. B A 6. B A [AB // [CD 65° [CL // [EF 105° C F L m ( B%AE ) = 65° DE F 70° K m ( A%EF ) = 70° [ BA // [%&  4m ( A%BF ) = 3m ( % ) E FBC % = 3m ( % ) m ( % ) = 105° DC 4m ( FDE ) FDC BCD :VLBSŽEBLJWFSJMFSFHÌSF m ( B%FD ) = a kaç de-  :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) = a kaç dere- SFDFEJS DCL DFEJS \"  #  $  %  &  \"  #  $  %  &  1. A 2. E 3. D 8 4. D 5. C 6. #

\"ÀŽWF\"ÀŽ5ÑSMFSJ AF TEST - 3 d1 1. E 4. 140° 30° 40° D C d2 40° B :VLBSŽEBLJöFLJMEFWFSJMFOMFSFHÌSFa + i + b UPQMBNŽLBÀEFSFDFEJS % %% % \"  #  $  %  &  d // d m ( EAB ) = m ( BAD ) m ( DAC ) = m ( CAF ) % = 40° m ( ABC ) :VLBSŽEBLJ WFSJMFSF HÌSF m ( A%CB ) = a kaç de- reDFEJS \"  #  $  %  &  5. B A 2. K [ AB // [ CD E [ LK ] // [ AC ] Ea G Fi 70° L A B % = 70° 100° m ( LEM ) % = 100° m ( CAB ) DC C [ AB // [$% m ( B%AE ) = m ( % ) = m ( % ) D EAG GAF M % = % = m( % m ( DCE ) m ( ECG ) GCF ) % :VLBSŽEBLJ WFSJMFSF HÌSF  m ( DCM ) = a kaç de- 15° < a <šJTFiOŽOBMBCJMFDFôJFOCÑZÑL ve reDFEJS en küçükUBNTBZŽEFôFSMFSJOJOUPQMBNŽLBÀEF SFD FEJS \"  #  $  %  &  \"  #  $  %  &  3. A [ CD // [ FE % x m ( ABC ) = 10° % = 30° 6. H [ DE // [ BC m ( BCD ) A m ( H%DE ) = 130° m ( E%FK ) = 50° 60° N E C F % = 25° 130° m ( H%NB ) = 60° 10° 30° 50° 25° m ( FKA ) D C B K D E a B  :VLBSŽEBLJWFSJMFSFHÌSF m ( B%AK ) = x kaç dere-  7FSJMFOMFSFHÌSF  m ( % ) = a LBÀEFSFDFEJS DFEJS NBC \"  #  $  %  &  \"  #  $  %  &  1. C 2. # 3. D 9 4. A 5. E 6. A

TEST - 4 \"ÀŽWF\"ÀŽ5ÑSMFSJ 1. A B 4. A D DE B 140° M 64° H N C a C E F K [BA // [&) m ( % ) = m ( % )  [AD // [$& m ( B%AK ) = m ( K%AD ) ABC CBF m ( C%EF ) = m ( F%EH ) m ( C%DF ) = 64° % = m ( % ) m ( % ) = 140° m ( BCM ) MCE ABC :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) + m ( % )  :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) = a kaç de- BCE BFE AKM UPQMBNŽLBÀEFSFDFEJS SFDFEJS \"  #  $  %  &  \"  #  $  %  &  2. A B a C 5. C [BA // [FH 2a A 170° % H ABC ) Mi 140° m( = 140° 120° D B % F m ( CDE ) = 160° 2b 100° 120° D 160° E b m ( E%FH ) = 120° HF [BA // [') m ( M%BC ) = 2m ( M%BA ) E m ( M%FE ) = 2m ( H%FM ) m ( % ) = 170°  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) + m ( % ) BCD BCD DEF % 120° m ( F%ED ) UPQMBNŽLBÀUŽS m ( CDE ) = = 100° :VLBSŽEBLJWFSJMFSFHÌSF m ( B%MF ) = i kaç dere- \"  #  $  %  &  DFEJS \"  #  $  %  &  3. [DE // [BC A % ) = 80° m ( BAF A 6. 40° F m ( A%BC ) = 10° a 80° DE m ( A%BF ) = % % m ( FBC ) m ( BCD ) = 60° % = % C E % m ( ADF ) m ( FDE ) m ( CDE ) 10° % = 40° 60° 10° = 20° m ( BAD ) F % B 20° m ( EFA ) = 10° BC D  :VLBSŽEBLJ WFSJMFSF HÌSF  % ) = a kaç de-  :VLBSŽEBLJWFSJMFSFHÌSF m ( D%EF ) = a kaç dere- m ( BFD DFEJS SFDFEJS \"  #  $  %  &  \"  #  $  %  &  1. A 2. # 3. C 10 4. D 5. # 6. A

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, %m/*m ÜÇGENDE AÇI ÖRNEK 3 x' A A [CA m[ CG ] x C 20° D B 70° 85° 95° [ CF m [ DG ] m ( A%BE ) = 95° z z' 75° 105° m ( B%EF ) = 105° C EF By y' 20°  \"#$пHFOJOEFY Z [J¿B¿ŽMBSŽOYh Zh [hEŽõ G B¿ŽMBSŽOËM¿ÐMFSJEJS :VLBSŽEBLJWFSJMFSFHÌSF % =a LBÀEFSFDFEJS   #JSпHFOJOJ¿B¿ŽËM¿ÐMFSJUPQMBNŽ m ( CGD ) x +Z+[=™EJS & ÑÀHFOJOJOJLJEŽöBÀŽTŽšWFšJTFJLJJÀBÀŽTŽ  #JSпHFOJOEŽõB¿ŽËM¿ÐMFSJUPQMBNŽ CBE %  Yh+Zh+[h=™EJS BCE 85°vešPMVS0IBMEF m ( ) = 20° PMVS  #JS пHFOJO CJS EŽõ B¿ŽTŽOŽO ËM¿ÐTÐ  LFOEJTJOF LPNõVPMNBZBOJLJJ¿B¿ŽOŽOËM¿ÐMFSJUPQMBNŽOB % = 70° a = 20° FõJUUJS m ( DCG ) ÖRNEK 1 ÖRNEK 4 #JS ÑÀHFOJO JÀ BÀŽMBSŽ TŽSBTŽZMB    WF  TBZŽMBSŽ JMF A \"#$пHFO PSBOUŽMŽJTFFOLÑÀÑLEŽöBÀŽTŽLBÀEFSFDFEJS % = 20° ·ÀHFOJOJÀBÀŽMBSŽOŽOÌMÀÑTÑY Z [PMTVO m ( ABF ) xyz % ) = 45° = = = k JÀJO Y=L Z=L [= 4k dir. m ( ADF 234 x +Z+[=š L=š L= 20°dir. 20° 45° #JSÑÀHFOEFFOLÑÀÑLEŽöBÀŽJMFFOCÑZÑLJÀBÀŽCJSCJSJOJO CÑUÑOMFSJEJS&OCÑZÑLJÀBÀŽ[= 4k =šPMEVôVOEBOFO B D E CF LÑÀÑLEŽöBÀŽšEJS m ( B%AD ) = m ( D%AE ) = % PMEVôVOBHÌSF  m ( EAC ) % + m ( % ) UPQMBNŽLBÀEFSFDFEJS m ( AEF ) ACF m ( B%AD ) = m ( D%AE ) = % = a m ( EAC ) m ( A%BD ) + m ( B%AD ) = a + 20° = 45° j a =šPMVS m ( A%EC ) = 25° + 45° = 70° m ( A%CF ) = 70° + 25° = 95° & m ( A%EF ) + m ( A%CF ) = 165° ÖRNEK 2 . A 180°–3a \"#$пHFO ÖRNEK 5 \"#$пHFOJOEF 3a <\"%>B¿ŽPSUBZWF m ( D%AC ) = 3a A m (WB ) - m (XC ) = 28° m ( A%CE ) = 4a m ( D%BE ) = 5a mm B 180°–4a 4a % n+28° a= 104° n D 5a CE m ( ACB ) = i B DC :VLBSŽEBLJWFSJMFSFHÌSF  % ) = i LBÀEFSFDFEJS oMEVôVOBHÌSF  m ( % ) =a LBÀEFSFDFEJS m ( ACB ADC #JSÑÀHFOJOEŽöBÀŽÌMÀÑMFSJUPQMBNŽšEJS % = n, m ( B%AD ) = % = m PMTVO 180° - 3a + 4a + 5a = 360° j a = 30° m ( BCA ) m ( DAC ) i = 180°- 4a = 180° - 120° = 60° dir. 2n +28° + 2m = 180° j m + n =šPMVS m + n + a =šPMEVôVOEBOa = 104° dir. 1. 100° 2. 60° 11 3. 20° 4. 165° 5. 104°

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 6 \"#$пHFO %m/*m A \"#$% J¿ CÐLFZ a EËSUHFOJOEF A m( % ) = % b i x = a + b + iEŽS ABF m ( CEF ) B C D D x 95° E m ( B%DF ) = 95° n n a–n B a F C :VLBSŽEBLJWFSJMFSFHÌSF m ( % = a kaç EFSFDFEJS A #JS пHFOEF JLJ J¿ ACB ) B¿ŽPSUBZŽOPMVõUVSEV- óVHFOJõB¿ŽOŽOËM¿Ð- m ( A%BF ) = % = n olsun. m( CEF ) I TÐ m ( % ) = a - n PMVS BC BFD m (WA) %#'ÑÀHFOJOEFJÀBÀŽÌMÀÑMFSJUPQMBNŽšPMEVôVOEBO a = 90° + n + 95° + a - n = 180° j a = 85° dir. 2 ÖRNEK 7 \"#$пHFO A #JS пHFOEF JLJ EŽõ A % = % B¿ŽPSUBZŽOPMVõUVSEV- m ( BAD ) m ( ACB ) óVEBSB¿ŽOŽOËM¿ÐTÐ mn n B C m (WA) m ( D%AE ) = % a = 90° - m ( EAC ) 2 % = 80° m ( ABC ) 80° a=n+ma m B DE C :VLBSŽEBLJWFSJMFSFHÌSF m ( A%EB ) = aLBÀEFSFDFEJS  m ( B%AD ) = m ( A%CB ) = m m ( D%AE ) = m ( E%AC ) = n I PMTVON+ 2n = 100° j a = m + n = 50°dir. A #JS пHFOEF CJS ÖRNEK 8 2a J¿B¿ŽPSUBZJMFCJS EŽõ B¿ŽPSUBZŽO A \"#$пHFO I PMVõUVSEVóV EBS a nn % = m( % B¿ŽOŽO ËM¿ÐTÐ m ( BAD ) DAC ) BC E m ( A%BE ) = m ( E%BC ) m (WA) 96° a = EJS % = 84° a m ( ADC ) 2 DC 84° m % = 96° #JS пHFOEF JLJ EŽõ m m ( BEC ) I B¿ŽPSUBZJMFCVB¿ŽMB- B A SB LPNõV PMNBZBO B :VLBSŽEBLJWFSJMFSFHÌSF % =a LBÀEFSFDFEJS  CJS J¿ B¿ŽPSUBZ BZOŽ m ( ACB ) OPLUBEBLFTJõJS % % % % C m ( BAD ) m ( DAC ) ABE m ( EBC ) = = n  m ( ) = = m 2n + m =š N+ n =š N+ 3n =š N+ n =PMVS a + 2m + 2n =šPMEVôVOEBOa = 60°dir. 6. 85° 7. 50° 8. 60° 12

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 9 ÖRNEK 11 A \"#$пHFO E <#%>WF<$%>J¿ A 64° B¿ŽPSUBZ 3x+5° a % = 64° m ( BAC ) D B C b i a b i b i x+10° b i B C :VLBSŽEBLJ WFSJMFSF HÌSF   % ) = a kaç deSFDF- D m ( BDC EJS \"#$пHFOJOEF[ BD ]WF[ CD ]EŽõB¿ŽPSUBZ # \" &dPó- I. Yol: 2b + 2i + 64° = 180° j b + i = 58° %% SVTBM m ( EAC ) = 3x + 5° m ( BDC ) = x + 10°EJS a + b + i = 180°j a = 122° dir. :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) =a  LBÀ EFSFDF- BAC % EJS % m ( BAC ) 64 II. Yol: m ( BDC ) = 90° + = 90° + = 122° dir. 22 % % m ( BAC ) a m ( BDC ) = - Y+ 10° = 90° - 90° 22 a x = 80° - dir. a + 3x + 5° =šPMEVôVOEBO 23a a + 240° - + 5° = 180° & a = 130° 2 ÖRNEK 10 A ÖRNEK 12 A ii 2x–10° D BC Ba C E \"#$пHFOJOEF [ AD ]WF[ CD ]J¿B¿ŽPSUBZ  28° % m ( ADC ) = 2x - 10°EJS :VLBSŽEBLJ WFSJMFSF HÌSF  Y JO BMBCJMFDFôJ FO CÑZÑL D WFFOLÑÀÑLUBNTBZŽEFôFSMFSJOJOUPQMBNŽLBÀEFSF- \"#$пHFOJOEF [ BD]WF[ CD]EŽõB¿ŽPSUBZ DFEJS % m ( ADC ) % = 28° % m ( ABC ) m ( ADC ) = a = + % 90° 2 dir. :VLBSŽEBLi verilere gÌSF m ( ABC ) = a kaç dereDFEJS 0IBMEFš< a < 180° j 90° < 2x - 10° < 180° j 100° < 2x < 100° j 50° < x <š YJOEFSFDFDJOTJOEFO #JS ÑÀHFOEF JLJ EŽö BÀŽPSUBZ JMF CV BÀŽMBSŽO LPNöV PMNB- BMBCJMFDFôJFOLÑÀÑLUBNTBZŽEFôFSJš FOCÑZÑLUBN ZBOCJSJÀBÀŽPSUBZBZOŽOPLUBEBLFTJöJS TBZŽEFôFSJšEJSš+ 94°= 145° dir. m ( B%AD ) = m ( D%AC ) m ( A%DC ) = m ( A%BC ) dir. a 2 28° = 2 j a = 56°dir. 9. 122° 10. 145° 13 11. 130° 12. 56°

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 13 ÖRNEK 14 A A \"#$пHFO D 50° [ AB] m [ DF] a F % m ( BAC ) = 50° a E B 40° |EC|å= |CD| 3a c ib b E c i 40° 40° B C CD \"#$ пHFOJOEF  [ BD ] WF [ CE ] J¿ B¿ŽPSUBZ  [ CD ] EŽõ :VLBSŽEBLJWFSJMFSFHÌSF m ( % ) = a kaç dereDFEJS  ABD B¿ŽPSUBZWFm ( % ) = 3.m ( % )EJS m ( A%EF ) = 40° &$%JLJ[LFOBSÑÀHFO  BEC BDC %% :VLBSŽEBLJWFSJMFSFHÌSF  % kaç dereDFEJS m ( CED ) = m ( CDE ) = 40° m ( BAC ) % = % = 3a PMTVOi + 2b = 180° %'#ÑÀHFOJOEF a = 50° dir. m ( BEC ) 3.m ( BDC ) i + b = 90° j 3a = 90° + a j a = 45°dir. c + i = 45° j 2c + 2i =šPMEVôVOEBO m ( % ) = 90° EŽS BAC :BEBEJôFSCJSZPMMB m ( % ) = % = 2a = 90° dir. BAC 2.m ( BDC ) ÷LJ[LFOBSWF&öLFOBS·ÀHFO %m/*m  öLJLFOBSV[VOMVóVFõJUPMBOпHFOFJLJ[LFOBS ÖRNEK 15 üçgen EFOJS 6[VOMVLMBSŽ FõJU PMBO JLJ LFOBSŽO CJSMFõUJóJ LËõFOJO B¿ŽTŽOB UFQF B¿ŽTŽ  UFQF B¿Ž- (FPNFUSJ EFSTJOEF ZBQŽMBO CJS FULJOMJL J¿JO BõBóŽEBLJ TŽOŽOLBSõŽTŽOEBLJLFOBSBUBCBOLFOBSŽ UBCBO BEŽNMBSJ[MFONJõUJS LFOBSŽJMFFõJUV[VOMVLUBLJLFOBSMBSŽOPMVõUVSEV- óVB¿ŽMBSBUBCBOBÀŽMBSŽEFOJS A 5BCBOB¿ŽMBSŽËM¿Ð- MFSJCJSCJSJOFFõJUUJS | | | | | |r \"#$пHFOJJ¿JOEF AD = DC = BC PMBDBLõF- % UFQFB¿ŽTŽ LJMEFCJS%OPLUBTŽJõBSFUMFOJZPS BAC |AB| = |AC| r 4F¿JMFO%OPLUBTŽJ¿JOm ( D%AB ) = 15°  % ) = 60°EJS m ( DCB BC #VBEŽNMBSJ[MFOFSFLZBQŽMBOÀJ[JNJÀJOm ( A%DC ) kaç EFSFDFEJS % ve % UBCBOB¿ŽMBSŽm ( % ) = % A ABC ACB ABC m ( ACB ) A ¶¿ LFOBS V[VOMV- 15° óV EB CJSCJSJOF 15° D 60° FõJU PMBO пHFOF 60° 60° FöLFOBS ÑÀHFO C B EFOJS &õLFOBS % = 150° пHFOJO J¿ B¿ŽMBSŽ m ( ADC ) 60° 60° ™EJS BC 13. 90° 14 14. 50° 15. 150°

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 16 ÖRNEK 18 A \"#$пHFO A \"#$EJLпHFO 70° | AB | = | AC | D [AB] m [ AC] 60° D |BE| = |EC| bE |BD| = |BF| Ea i |FC| = |CE| m ( % ) = 70° 180°–2b b a i 180°–2i BAC B FC 50° a/2 a/2 m ( % ) = 60° :VLBSŽEBLJ WFSJMFSF HÌSF % = a LBÀ EFSFDF- ADB m ( DFE ) B C EJS  :VLBSŽEBLJWFSJMFSFHÌSF % =a LBÀEFSFDFEJS m ( B%DF ) = m ( D%FB ) = b  m ( % ) = % = i m ( DEC ) CEF m ( EFC ) %% a % % % = 180° - 2b  m ( % ) = 180° - 2i m ( EBC ) = m ( ECB ) = ABC m ( ACB ) m ( ABC ) BCE 2  m ( ) = = 55° b + i = 135° j a + b + i = 180° j a = 45° dir. a 50° + = 55° & a = 10° dir. 2 ÖRNEK 17 ÖRNEK 19 A \"#$пHFOJOEFm (WB) = 105°, m (XC) = 60° a D; [ AB]Ð[FSJOEF &[ AC]Ð[FSJOEFTF¿JMFOOPLUBMBS 24° | | | | | |DE = EC = BC PMEVóVOBHËSF m(A%DE)BÀŽTŽLBÀ EFSFDFEJS a–24 a a–24 A [&#]ÀJ[JMJSTF &%$FöLFOBS B D C 15° ÑÀHFOPMVS % 135° BAD D |DE| = |#&| | | | | | |\"#$пHFO  AB= = m ) = 24° 45° AC DC ( m ( D%BE ) = m ( E%DB ) = 45° E m ( A%DE ) = 135° dir. 60° :VLBSŽEBLJWFSJMFSFHÌSF  m ( D%AC ) = a kaç dereDF- EJS  45° 60° % = % = a  m ( % ) = % = a - 24° 60° m ( DAC ) m ( ADC ) ABC m ( ACB ) B C 3a - 24° = 180° j 3a = 204° j a = 68°dir. 16. 10° 17. 68° 15 18. 45° 19. 135°

TEST - 5 ·ÀHFOEF\"ÀŽ 1. B 4. A 50° 5x 2x C 80° F 3x 4x D x 3x EK ôFLJMEF m ( % ) = 50° m ( % ) = 80° :VLBSŽEBLJZŽMEŽ[MŽöFLJMEFWFSJMFOBÀŽÌMÀÑMFSJOF ABE CDF HÌSF aLBÀEFSFDFE JS % = % = m ( D%AE )EJS \"  #  $  %  &  m ( BAC ) m ( CAD ) A 5.  :VLBSŽEBLJWFSJMFSFHÌSF  m ( D%EK ) = x kaç de- SFDFEJS  \"  #  $  %  &  92° B E 48° C 2. A [ AE ] m [ DC ] D B [ DF ]WF[ AF ] D 50° B¿ŽPSUBZMBS E 40° % = 40° [ AB ] // [$% m ( % ) = m ( % ) m ( % ) = 92° m ( ACD ) BAE EAC AEC C % = 50° m ( B%CD ) = 48° m ( AED ) F % :VLBSŽEBLJ WFSJMFSF HÌSF  m ( ACB ) = a kaç de- % SFDFEJS AFD :VLBSŽEBLJWFSJMFSFHÌSF m ( ) = a kaç dere- \"  #  $  %  &  DFEJS \"  #  $  %  &  6. A 68° 3. B [ AB ] m [ KE ] FK F E A [ CD ] m [ FH ] E 2x–20° m ( B%FH ) = 2x - 20° D m ( E%KD ) = x + 50° x BC G \"#$пHFOJOEF [ FC ] m [ AB ] [ BK ]åm [ AC ]å x+50° % = 68° m ( E%BD ) = % m ( BAC ) m ( DBC ) C HK D % = % m ( ECD ) m ( DCB )  :VLBSŽEBLJ WFSJMFSF HÌSF  % = a kaç de- :VLBSŽEBLJWFSJMFSFHÌSF % = x kaç dere- m ( EGH ) m ( BDC ) SFDFEJS DFEJS  \"  #  $  %  &  \"  #  $  %  &  1. A 2. # 3. C 16 4. # 5. A 6. E

·ÀHFOEF\"ÀŽ TEST - 6 1. A % ) = % 4. A m ( DBE m ( FBE ) 50° % = % m ( DCE ) m ( ECG ) D B 120° % ) = 50° m ( FAG C % m ( BDC ) = 120° 70° 2a D HC F G a E B % \"#$пHFOJOEF [ AD ]J¿B¿ŽPSUBZ [ AH ] m [ BC ] :VLBSŽEBLJ WFSJMFSF HÌSF  m ( BEC ) = a kaç de- SFDFEJS %% m ( ADC ) = 70° m ( ACB ) = 2a \"  #  $  %  &  :VLBSŽEBLJ WFSJMFSF HÌSF  m ( A%BC ) = a kaç de- SFDFEJS  \"  #  $  %  &  2. A 120° D [ AE ] m[ AB ] E 70° [ ED ] m[ DC ] B m ( A%ED ) = 120° 5. K \"#$пHFOJOEF AD % = 70° B <#%>J¿B¿ŽPSUBZ m ( ABC ) 38° C CM [ CD ]EŽõB¿ŽPSUBZEŽS % % = 38° DCB m ( BDC )  :VLBSŽEBLJWFSJMFSFHÌSF  m ( ) = a kaç de- SFDFEJS  \"  #  $  %  &  :VLBSŽEBLJWFSJMFSFHÌSF  m ( K%AD ) = a kaç de- SFDFEJS 3. %\"#$пHFOJOJOEŽõB¿ŽPSUBZMBSŽOŽOLFTJNOPLUBTŽ \"  #  $  %  &  & #%$ пHFOJOJO J¿ B¿ŽPSUBZMBSŽOŽO LFTJN OPLUBTŽ WFm ( % ) = 20°EJS 6. F BAC A a+70° A 20° BC E a Da E BC D \"#$пHFOJOEF [#&WF[ CD ]J¿B¿ŽPSUBZ % %% m ( BEC ) m ( FAC ) = a + 70° WF m ( CDE ) = aEŽS :VLBSŽEBLJ WFSJMFSF HÌSF  = a kaç de- % BDC SFDFEJS :VLBSŽEBLJWFSJMFSFHÌSF m ( ) LBÀEFSFDFEJS \"  #  $  %  &  \"  #  $  %  &  1. E 2. # 3. A 17 4. E 5. # 6. C

TEST - 7 ·ÀHFOEF\"ÀŽ 1. A \"#$пHFO 4. A |AB| = |AD| = |DC| m ( B%AC ) = 72° B DC 40° d BD C :VLBSŽEBLJ WFSJMFSF HÌSF  m ( D%AC ) = a kaç de- SFDFEJS | | | |[ AB ]E [ AC ] mE  AD = % \"  #  $  %  &  AC m ( ABC ) = 40° :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) LBÀ EFSFDF- BAD EJS \"  #  $  %  &  2. A D 81° 5. A \"#$пHFO 100° EB C B |AB| = |AD| E \"#$пHFOJOEF & # $EPóSVTBM  m ( % ) = 81° |BE| = |ED| ABE |AB| = |BD| = |DC| EJS D % = 100° m ( BAC ) 130° :VLBSŽEBLJ WFSJMFSF HÌSF  m ( % ) kaç EFSFDF- x % = 130° ADB C m ( EDC ) EJS   :VLBSŽEBLJWFSJMFSFHÌSF Y LBÀEFSFDFEJS \"  #  $  %  &  \"  #  $  %  &  3. A DE 6. A \"#$пHFO D |AD| = |DE| E 70° a % = 35° B C m ( DFB ) m ( A%CB ) = 80° | | | | | |\"#$пHFO [ DE ] // [ BC ]  AD = AE = DC 80° 35° B CF % = 70°EJS m ( ABC ) :VLBSŽEBLJWFSJMFSFHÌSF m ( A%BF ) = a kaç dere- DFEJS % :VLBSŽEBLJ WFSJMFSF HÌSF  m ( DCB ) = a kaç de- SFDFEJS \"  #  $  %  &  \"  #  $  %  &  1. D 2. C 3. C 18 4. # 5. C 6. D

·ÀHFOEF\"ÀŽ \"#$пHFO TEST - 8 1. A |AE| = |DE| 4. ö[DJMJLLBNQŽOEBJ[DJMFSFQVTVMBZŽOBTŽMLVMMBOBDBL- |EF| = |EC| D MBSŽ ËóSFUJMNFLUFEJS ¶¿ GBSLMŽ OPLUBZB LVSVMBDBL E LBNQMBSEBOCJSCJSMFSJOFHJEFSLFOQVTVMBMBSŽOŽOBTŽM LVMMBONBMBSŽHFSFLUJóJËóSFUJMJSLFOCJSLºóŽEBLBNQ- x F C MBSŽO ZBQŽMBDBóŽ ZFSMFS \"  #  $ JMF JTJNMFOEJSJMJQ \"# B LFOBSŽ#$LFOBSŽOBFõJUPMBOCJS\"#$пHFOJOLËõF OPLUBMBSŽPMBSBLõFLJMEFLJHJCJJõBSFUMFOJZPS  :VLBSŽEBLJWFSJMFSFHÌSF aOŽOYUÑSÑOEFOFöJ- UJBöBôŽEBLJMFSEFOIBOHJTJEJS B \" +Y # -Y $ + x A C  % -Y & + 2x 2. (FPNFUSJ EFSTJOEF &SFO ±óSFUNFO ZBQUŽóŽ FULJO-  \"EBO#ZFHJEFSLFOWF#EFO$ZFHJEFSMFSLFOQV- TVMBOŽO LV[FZJ HËTUFSFO JCSFTJ JMF J[MFEJóJ ZPM BSB- MJLUF BõBóŽEBLJ BEŽNMBSŽ J[MFZFSFL HFPNFUSJL ¿J[JN TŽOEBLJB¿ŽZŽCJSLºóŽEBBõBóŽEBLJHJCJ¿J[NJõMFSEJS ZBQUŽSŽZPS r m ( B%AC ) = 120°PMBDBLõFLJMEF\"#$пHFOJ¿J- [JQCVпHFOJOJ¿B¿ŽPSUBZMBSŽOŽ¿J[JOJ[ B 80° r m ( % )B¿ŽTŽOŽOB¿ŽPSUBZŽ#$ZJ%OPLUBTŽOEB Kuzey C BAC 130° A LFTJZPS Kuzey B % r m ( ABC )B¿ŽTŽOŽOB¿ŽPSUBZŽ\"$ZJ&OPLUBTŽOEB LFTJZPS r m ( % )B¿ŽTŽOŽOB¿ŽPSUBZŽ\"#ZJ'OPLUBTŽOEB ACB LFTJZPS  #VOBHÌSF m ( F%DE )BÀŽTŽLBÀEFSFDFEJS \"  #  $  %  &   &óJUJN BMBO J[DJMFSEFO JTF $ EFO \" ZB HJUNFL J¿JO QVTVMBMBSŽOŽOHËTUFSFDFóJEVSVNVLºóŽEB¿J[NFMF- SJOJJTUFNJõMFSEJS 3. 4FMJN  B¿ŽËM¿FS LVMMBOBSBL õFLJMEFLJ пHFOJO JLJ J¿ #VOBHÌSF QVTVMBOŽOEPôSVHÌTUFSJNJBöBôŽEB- LJMFSEFOIBOHJTJEJS B¿ŽTŽOŽOËM¿ÐTÐOÐIBUBTŽ[PMBSBLËM¿ÐZPS A) A 5°K B) A 10°K C) A 25° K CCC D) A 30° E) A 50° K K  #VOBHÌSF CVÑÀHFOJOEJôFSJÀBÀŽTŽLBÀEFSF- CC DFEJS \"  #  $  %  &  1. D 2. C 3. E 19 4. C

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr \"¦*,&/\"3#\"ó*/5*-\"3* \"#$пHFO m (WA ) = 95°WF %m/*m ÖRNEK 3 |AC| > |AB|  #JS пHFOEF CÐZÐL B¿ŽOŽO LBSõŽTŽOEBLJ LFOBS A V[VOMVóV EJóFS LFOBS V[VOMVLMBSŽOEBO CÐZÐL- UÐS%PMBZŽTŽZMBCÐZÐLLFOBSŽOLBSõŽTŽOEBLJB¿Ž- 95° OŽOËM¿ÐTÐEFEJóFSMFSJOEFOCÐZÐLUÐS ÖRNEK 1 BC A :VLBSŽEBLJ WFSJMFSF HÌSF  $ BÀŽTŽOŽO FO CÑZÑL tam TBZŽEFôFSJLBÀEFSFDFEJS 40° 10° d a 90° D % % e c m ( ABC ) m ( ACB ) |AC| > |\"#| j > dir. 65° 80° m % + % = 85° B 75° ( ABC ) m ( ACB ) bC m ( A%CB )   OJO EFSFDF DJOTJOEFO BMBCJMFDFôJ FO CÑZÑL :VLBSŽEBLJ ÑÀHFOMFS BÀŽMBSB VZHVO PMBSBL ÀJ[JMTFZEJ UBNTBZŽEFôFSJšEJS FOV[VOLFOBSIBOHJLFOBSPMVSEV  \"$% ÑÀHFOJOEF FO V[VO LFOBS \"$ LFOBSŽ  \"#$ ÑÀHF- OJOEFFOV[VOLFOBS\"#LFOBSŽEŽS D< d <F C< e < a ÖRNEK 4 A ÖRNEK 2 3 a D \"#$пHFOJOEFWFSJMFOJ¿B¿ŽMBSBWFLFOBSMBSBHËSF A d 13 3a 86 cb be c B 4E 8C 4a a 2a | | | |\"#$WF#%&пHFOMFSJOEF  AD =DN BD =DN  B C | | | | | | | |AC =DN  BE =DN  DE =DN  EC =DN | | | | | |C-D + D- a + a -C ifBEFTJOJOFöJUJOJCVMVOV[ :VLBSŽEBWFSJMFOMFSFHÌSF \"#$WF#%&ÑÀHFOMFSJOJO JÀBÀŽMBSŽOEBOFOCÑZÑLPMBOŽIBOHJTJEJS 4a > 3a > 2a j b > a >D \"#$ÑÀHFOJOEF C> a >D |b -D| + |D- a| + |a - b| = b -D-D+ a - a + b #%&ÑÀHFOJOEFF> b >EPMEVôVOEBO m ( D%EB ) PMVS = 2b -D 1. \"#2. CmD 20 3. 42° 4. m ( D%EB )

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ·ÀHFO&öJUTJ[MJôJ ÖRNEK 7 D Y Z`;PMNBLÑ[FSF %m/*m A6 x + Z  UPQMBNŽOŽO FO #JSпHFOEFIFSIBOHJCJSLFOBSŽOV[VOMVóVEJóFS 10 y küçük ve FO CÑZÑL JLJLFOBSŽOV[VOMVLMBSŽUPQMBNŽOEBOLпÐLUÐS x UBN TBZŽ EFôFSMFSJ  #JS пHFOEF IFSIBOHJ JLJ LFOBSŽO V[VOMVLMBSŽ LBÀUŽS  GBSLŽOŽONVUMBLEFóFSJпÐODÐLFOBSŽOV[VOMV- óVOEBOLпÐLUÐS B8 C #JSпHFOJOLFOBSV[VOMVLMBSŽB C DPMNBLÐ[F- SF | |a -C <D< a +CEJS ÖRNEK 5 3x – 2 \"#$пHFO 10 - 6 < x < 10 + 6 j 4 < x < 16 YJOFOLÑÀÑLUBNTBZŽEFôFSJ A | |AB =DN YJOFOCÑZÑLUBNTBZŽEFôFSJ | |BC =DN 10 - 8 <Z< 10 + 8 j 2 <Z< 18 7 | |AC = 3x -DN ZOJOFOLÑÀÑLUBNTBZŽEFôFSJ ZOJOFOCÑZÑLUBNTBZŽEFôFSJEJS x +ZOJOFOLÑÀÑLEFôFSJ FOCÑZÑLEFôFSJEJS B 6C :VLBSŽEBLJ WFSJMFSF HÌSF x in alabilFDFôJ UBN TBZŽ EFôFSMFSJOJOUPQMBNŽLBÀUŽS  1 < 3x - 2 < 13 ÖRNEK 8 3 < 3x < 15 1<x<5 D 5 YJOBMBCJMFDFôJEFôFSMFSUPQMBNŽEVS 2 AC ÖRNEK 6 37 A B y | | | |õFLJMEFWFSJMFOMFSFHÌSF  AC + #% UPQMBNŽOŽOBMB- 7 9D CJMFDFôJFOCÑZÑLWFFOLÑÀÑLUBNTBZŽEFôFSMFSJOJO 5 GBSLŽLBÀUŽS Bx C | |\"#%ÑÀHFOJOEF- 2 < %# < 3 + 2 | |%#$ÑÀHFOJOEF- 5 < %# < 5 + 7 õFLJMEFWFSJMFOMFSFHÌSF Y+ZUPQMBNŽOŽOBMBCJMFDF- | |0IBMEF< %# < 5 ôJFOCÑZÑLWFFOLÑÀÑLUBNTBZŽEFôFSMFSJLBÀUŽS  | |\"#$ÑÀHFOJOEF- 3 < AC < 7 + 3 | |ADC üçgeninde 5 - 2 < AC < 5 + 2 9 - 7 < x < 9 + < x < 16 | |0IBMEF< AC < 7 9 - 5 <Z< 9 + <Z< 14 6 < |AC| + |%#| < 12 6 < x +Z< 30 x +ZOJOFOLÑÀÑLUBNTBZŽEFôFSJ 11 - 7 = 4 tür. x +ZOJOFOCÑZÑLUBNTBZŽEFôFSJEVS 5. 9 6. \\ ^ 21 7. \\ ^ 8. 4

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 9 ÖRNEK 11 D \"#$%CJSEËSUHFO A \"#$пHFO 11 a3 | |DC =CS % % C | |BC =CS m( BAC ) = m ( DBC ) 9 | |AB =CS a+b D | |AB =DN 6 | |AD =DN a | |BD =YDN B b A7 B C | |:VLBSŽEBLJ WFSJMFSF HÌSF  AD  UBN TBZŽ PMBSBL :VLBSŽEBLJ WFSJMFSF HÌSF  Y JO BMBCJMFDFôJ UBN TBZŽ EFôFSMFSJUPQMBNŽLBÀUŽS en çokLBÀCJSJNPMBCJMJS ·ÀHFOFöJUTJ[MJôJOEFO | |11 - 9 < #% < 11 + 9 6-3<x<6+3 2 < |#%| < 20 3 < x <PMVS |AD| < |\"#| + |%#| \"ZSŽDB\"#%ÑÀHFOJOEFa + b > a PMEVôVOEBOY<EŽS |AD| < 27 0IBMEF< x <EŽS | |AD OŽOFOCÑZÑLUBNTBZŽEFôFSJEŽS x ` { } + 5 =EVS ÖRNEK 10 ÖRNEK 12 \"#$пHFO ±OZÐ[ÐTBSŽ BSLBZÐ[ÐNBWJSFOLMJPMBOпHFOCJ¿JNJO- A | |AC =DN EFLJ\"#$LºóŽEŽõFLJMEFHËTUFSJMNJõUJS#VLºóŽU#LË- | |AB = ( 2x + DN õFTJ \"LËõFTJOJOÐ[FSJOFHFMFDFLCJ¿JNEFõFLJMEFLJHJ- 2x+1 | |BC = ( 3x + DN CJLBUMBONŽõUŽS AA 75° 6 E 40° 65° B D C B 3x+2 C B C ôFLJM | |:VLBSŽEBLJWFSJMFSFHÌSF \"# OJOBMBCJMFDFôJFOCÑ- ôFLJM ZÑLWFFOLÑÀÑLUBNTBZŽEFôFSMFSJOJOUPQMBNŽLBÀ- | | | | | |#VOB HÌSF  AC  AE ve #%  V[VOMVLMBSŽOŽO EPôSV UŽS TŽSBMBOŽöŽOŽCVMVOV[ ·ÀHFOFöJUTJ[MJôJOEFO A (3x + 2) - (2x + 1) < 6 < (3x + 2) + (2x + 1) 40° 35° x + 1 < 6 < 5x + 3 E 3 40° 50° 65° <x<5 B 80° C 5 11 D < 2x + 1 < 11 |#%| = |DA| |ED|< |AE| < |AD| < |AC| 5 |AE| < |AD| < |AC| j |AE| < |#%|< |AC| 3 + 10 =PMVS 9. 26 10. ]\"&]]#%]]\"$] 22 11. 9 12. 13

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 13 ÖRNEK 15 \"#$WF\"%&пHFO [DE] // [BC] IOPLUBTŽ\"%$пHF- A | |OJOJOJ¿B¿ŽPSUBZMBSŽOŽOLFTJNOPLUBTŽ  BC =DNEJS 2x – 5 x –1 A B 9C ac :VLBSŽEB\"#$пHFOJWFLFOBSV[VOMVLMBSŽWFSJMNJõUJS D b Id E \"#$JLJ[LFOBSCJSÑÀHFOPMEVôVOBHÌSF YJOBMBCJ- bd MFDFôJEFôFSMFSUPQMBNŽLBÀUŽS B 11 C | | | | | | | |·ÀHFOJLJ[LFOBSJTF \"# = AC ZBEB AC = #$ ZBEB :VLBSŽEBLJWFSJMFSFHÌSF \"%&ÑÀHFOJOJOÀFWSFTJUBN |\"#| = |#$| olabilir. TBZŽPMBSBLFOÀPLLBÀDNEJS \"ODBLCVFöJUMJLMFSÑÀHFOFöJUTJ[MJôJOJTBôMBNBMŽEŽS | | | |\"#$ÑÀHFOJOEF [#$]< \"# + AC | | | |\"# = AC j 2x - 5 = x - 1 j x =PMVS 11 < a + b +D+ d | | | | | |\"ODBLY= 4 için \"# + AC < #$ PMEVôVOEBOCVEF- \"%&ÑÀHFOJOJOÀFWSFTJB+ b +D+EPMEVôVOBHÌSF  \"%&ÑÀHFOJOJOÀFWSFTJFOB[DNEJS ôFSBMŽOBNB[ | | | |\"# = #$ j 2x - 5 = 9 j x =PMVS | | | |·ÀHFOFöJUTJ[MJôJOJTBôMBS #$ = AC j x - 1 = 9 x =PMVS·ÀHFOFöJUTJ[MJôJOJTBôMBS0IBMEFYJOBMB- CJMFDFôJEFôFSMFSUPQMBNŽ+ 7 = 17 dir. ÖRNEK 14 %m/*m b B C DUBNTBZŽPMNBLÐ[FSF  #JS\"#$пHFOJOEF \"#$пHFOJOJOLFOBSV[VOMVLMBSŽBDN CDNWFDDNEJS A a2 - b2 =PMEVôVOBHÌSF \"#$ÑÀHFOJOJOÀFWSFTJ FOÀPLLBÀDNPMBCJMJS c a2 - b2 = 13 B aC (a - b) (a + b) = 13 tür. a + b = 13 m (WA) = 90°JLFOa = b2 + c2 ·ÀHFOFöJUTJ[MJôJOEFOD< a + b  1JTBHPSUFPSFNJ D< 13 tür. ¦FWSF \"#$ OJOFOCÑZÑLEFôFSJ | |m (WA) < 90°JTF C- D < a < b2 + c2 13 + 12 =DNEJS m (WA) > 90°JTF b2 + c2 < a < b + c EJS 13. 17 14. 25 23 15. 12

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 16 %m/*m A A \"#$пHFO 6 | |8 AB =DN cb B ha nA Va | |AC =DNWF m (WA ) 2 90° C B HN D C | |:VLBSŽEBLJ WFSJMFSF HÌSF #$  OJO BMBCJMFDFôJ LBÀ a GBSLMŽUBNTBZŽEFôFSJWBSEŽS  ¥FõJULFOBSCJS\"#$пHFOJOEFIa BLFOBSŽ- OBBJUZÐLTFLMJLOA \"B¿ŽTŽOBBJUB¿ŽPSUBZ 7a  | |#$ =YDNPMTVO BLFOBSŽOBBJULFOBSPSUBZPMNBLÐ[FSF m (XA) > 90°PMEVôVOEBO  Ia < nA < Va Ib < n# < Vb 2 + 2 < x < 8 + 6 ID < nC < VD EJS 8 6  #JS\"#$пHFOJOEFBCDJTF 10 < x < 14 IaIbID nA > n# > nC x ` {  ^ Va > Vb > VD EJS | |#$ OJOBMBCJMFDFôJGBSLMŽEFôFSWBSEŽS ÖRNEK 17 ÖRNEK 18 x A A \"#$пHFO 10 5 | AD | = | AC | =DN B HN DC | |BD =DN 5 ba a | | | |\"#$¿FõJULFOBSпHFO <\")>m <#$>  BD = DC C B3 D % NAC | |% = )  = m ( BAN ) m ( AN | |:VLBSŽEBLJWFSJMFSFHÌSF \"# =YJOBMBCJMFDFôJUBN | | | |AH = ( x + DN  AD = ( 3x - DN TBZŽEFôFSMFSJOJOUPQMBNŽLBÀUŽS :VLBSŽEB WFSJMFOMFSF HÌSF  Y JO BMBCJMFDFôJ UBN TBZŽ EFôFSMFSJUPQMBNŽLBÀUŽS a <š b > 90° \"#$ÑÀHFOJOEF#$LFOBSŽOBBJUZÑLTFLMJL BÀŽPSUBZWFLF- 34 < x < 8 OBSPSUBZBSBTŽOEBIa< n < VaTŽSBMBNBTŽWBSEŽS x ` { ^ A YJOBMBCJMFDFôJUBNTBZŽEFôFSMFSJUPQMBNŽ Ia < nA jY  Y 16 nA< Va j 10 < 3x - 3 < x PMVS OIBMEFYJOCVMVOEVôVFOLÑÀÑLUBNTBZŽBSBMŽôŽ 16 < x < 8 inBMBCJMFDFôJUBNTBZŽEFôFSMFSUPQMBNŽUÑS 3 16. 3 17. 13 24 18. 13

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 19 ÖRNEK 20 \"#$пHFO V\"[#V$OMV¿FóõVJ UL\"F$OBLSFOÐB¿HSŽFOOBJOBEJUFZ Ð#LT$FLLMFJóOJBOSVŽO[BVOBMJVUóLVFOWBFSPA%SCUBBZ A | |AB =DN B¿ŽTŽOŽOJ¿B¿ŽPSUBZV[VOMVóVCJSCJSMFSJOFFõJUUJS #VOB HÌSF  ÑÀHFOJO JÀ BÀŽMBSŽ BSBTŽOEBLJ TŽSBMBOŽöŽ- 4 x | |BC =DNWF OŽCVMVOV[ m ( % ) 1 60° ABC B6 C \"#$ÑÀHFOJOEF7a=Ib = nC dir. | |:VLBSŽEBLJWFSJMFSFHÌSF  AC =YJOBMBCJMFDFôJLBÀ ¦FöJULFOBSÑÀHFOJOEF GBSLMŽUBNTBZŽEFôFSJWBSEŽS Ia < na < Va Ib < nb < Vb ·ÀHFOFöJUTJ[MJôJOEFO ID < nD < VDTŽSBMBNBTŽWBSEŽS 6-4<x<6+4 0IBMEF 2 < x < 10 (I) \"ZSŽDBLPTJOÑTUFPSFNJOEFOm (XB) < 60°PMEVôVOEBO Va=Ibj Va < Vb j a > b x2< 42 + 62 -DPTš Va= nDj Va < VD j a >D x2< 16 + 36 - 24 Ib = nDj nD < nb jD> b x2< 28 j x < 2 7 PMVS ** a >D>CPMVS 0IBMEF*WF**FöJUTJ[MJLMFSEF< x < 2 7 EŽS x ` {  }YJOBMBCJMFDFôJEFôFSWBSEŽS 6[VOLFOBSŽLBSöŽTŽOEBCÑZÑLBÀŽPMBDBôŽOEBO % > m % > m ( % ) PMVS m ( BAC ) ( ACB ) ABC ÖRNEK 21 \"#$пHFO A | |AB =DN | |AC =DN 6 % 16 E m ( BAC ) > 90° x |BD| = |DC| 86 B DC | |:VLBSŽEBLJWFSJMFSFHÌSF  AD =YJOBMBCJMFDFôJLBÀ GBSLMŽUBNTBZŽEFôFSJWBSEŽS ,PTJOÑT5FPSFNJ [DE][\"#]ÀJ[FMJN %m/*m AB  ,FOBSV[VOMVLMBSŽB C DPMBOCJS\"#$пHFOJO- |DE| = 2 |AE| = |EC| EF  a2 =C2 +D2 -CDDPT\" m ( A%ED ) < 90°  C2 = a2+D2 -BDDPT# 2 < x < 14 (I)  D2 = a2 +C2 -BCDPT$ 2<x< 6 2 + 2 (II) 8 2 < x <PMVS *WF**FöJUMJLUFOYJOBMBCJMFDFôJEFôFSJWBSEŽS %%% 25 20. 3 21. 7 19. m ( BAC ) > m ( ACB ) > m ( ABC )

TEST - 9 \"ÀŽ,FOBS#BôŽOUŽMBSŽ 1. A \"#$пHFO 4. #JS\"#$ÑÀHFOJOJOÑÀLFOBSV[VOMVLMBSŽDN  % DNWF Y+ DNPMEVôVOBHÌSF YJOBMBCJ- m ( ABC ) = 50° MFDFôJLBÀUBNTBZŽEFôFSJWBSEŽS c b % = 60° m ( ACB ) | |BC =BDN \"  #  $  %  &  | |AC =CDN 50° a 60° | |AB =DDN B C :VLBSŽEBLJWFSJMFSFHÌSF  | a |-C + | |C-D + | C+D- a | 5. A  UPQMBNŽOŽOEFôFSJBöBôŽEakilerden IBOHJTJEJS 24° 18° zy A) a +C # C $ D-C  % D-C & B-C+D 66° BD x E C 2. A | |AB =DN \"#$пHFOJOEF m ( % ) = 62° m ( % ) = 66° BAC ABC 4 3 % = 24° m ( % ) = 18°EJS B6 | |D BC =DN m ( BEC ) EAC | |CD =DN  :VLBSŽEBLJWFSJMFSFHÌSF Y Z [V[VOMVLMBSŽJÀJO | |2 AD =DN BöBôŽEBLJMFSEFOIBOHJTJEPôSVEVS C A) x >Z>[ # Y>[>Z $ Z> x >[  % Z>[>Y & [> x >Z :VLBSŽEBLJWFSJMFSFHÌSF \"#$ÑÀHFOJOJOÀFWSF- TJOJOFOCÑZÑLUBNTBZŽEFôFSJLBÀUŽS \"  #  $  %  &  3. A 6. A 5 13 B z y D 12 y x–5 x+4 50° 65° C B D xC \"#$пHFOJOEF m ( % ) = 50° m ( % ) = 65° | |\"#$%EËSUHFO YUBNTBZŽ  AB =DN  ABC ACB | | | | | |AD =DN  AC =DN  DC = ( x + DN  | |CB = ( x - DN | | | | | | | |AD = AC =ZDN  AB =[DN  DC =YDN  :VLBSŽEBLJ WFSJMFSF HÌSF  \"#$% EÌSUHFOJOJO :VLBSŽEBLJ WFSJMFSF HÌSF  Y  Z  [ BSBTŽOEBLJ TŽ ÀFWSFTJFOÀPLLBÀDNEJS SBMBNBBöBôŽEBLJMFSEFOIBOH JTJEJS \"  #  $  %  &  A) x <Z<[ # Y<[<Z $ Z< x <[   % [< x <Z & [<Z< x 1. D 2. C 3. A 26 4. C 5. D 6. #

\"ÀŽ,FOBS#BôŽOUŽMBSŽ TEST - 10 1. #JS\"#$пHFOJOEF m ( % ) > m( % )  4. ,FOBS V[VOMVLMBSŽ      WF Y DN PMBO CJS BAC ABC EÌSUHFOEFYJOBMBCJMFDFôJFOCÑZÑL ve en kü- | | | |AB =DN  AC = ( 4x + DNWF çükUBNTBZŽEFôFSMFSJUPQMBNŽLBÀUŽS | |BC = ( 5x - DNEJS \"  #  $  %  &  :VLBSŽEBLJ WFSJMFSF HÌSF  Y JO BMBCJMFDFôJ LBÀ UBNTBZŽEFôFSJWBSEŽS \"  #  $  %  &  5. A 2. A \"#$пHFO x 7 [AN]B¿ŽPSUBZ | |AN =DN B3 D C 8 % % ABC DAC | |NC =DN | |\"#$пHFO m ( = ( )  =DN ) m AD | |B N 5 C AC =YDN | | | |BD =DN  AB =YDN  :VLBSŽEBLJ WFSJMFSF HÌSF  Y JO BMBCJMFDFôJ UBN TBZŽEFôFSMFSJUPQMBNŽLBÀUŽS  :VLBSŽEBLJWFSJMFSFHÌSF YJOEFôFSJBöBôŽEBLJ- MFSEFOIBOHJTJPMBCJMJS \"  #  $  %  &  \"  #  $  %  &  3. A 4 6. \"õBóŽEBLJBEŽNMBSJ[MFOFSFLCJSпHFO¿J[JNJZBQŽMŽ- 6 ZPS D5 r ,ºóŽEŽOÐ[FSJOEFCJS\"OPLUBTŽJõBSFUMFOJZPS B aC r \"OPLUBTŽJMFBSBTŽOEBLJV[BLMŽóŽDNPMBOCJS %  \"#$ пHFOJ J¿JOEF IFSIBOHJ CJS OPLUB PMNBL #OPLUBTŽJõBSFUMFOJZPS | | | | | |Ð[FSF  AB = 6 DN  AD =DN  DC =DNEJS | |:VLBSŽEBLJ WFSJMFSF HÌSF #$ = B OŽO BMBCJ r m % = 92°PMBDBLõFLJMEF$OPLUBTŽCFMJSMF- ( BAC ) MFDFôJFOLÑÀÑLUBNTBZŽEFô FSJLBÀDNEJS A) 2 B) 3 C) 4 D) 5 E) 6 | |OJZPS AC =DN  \" #WF$OPLUBMBSŽJMFÑÀHFOPMVöUVSVMBCJMEJôJ- | |OFHÌSF  #$ V[VOMVôVOVOBMBCJMFDFôJLBÀEF- ôFSWBSEŽS \"  #  $  %  &  1. # 2. # 3. C 27 4. # 5. D 6. A

TEST - 11 \"ÀŽ,FOBS#BôŽOUŽMBSŽ 1. \"öBôŽEBLJTFÀFOFLMFSEFOIBOHJTJZBEBIBOHJ 4. MFSJOEFLJÌMÀÑMFSWFSJMEJôJOEFCJS\"#$ÑÀHFOJÀJ- A [JMFCJMJS x * a =DN  C=DN  D=DN D 6 3 ** a =DN  C=DN  Ia =DN *** a =DN  m^ XC h= 30° B 11 C *7 C=DN  D=DN  m^ WB h = 45°  c = 4 2 cm | |\"#$пHFOJOEF m ( B%AC ) > 90°  AC =DN | | | |BC =DN  BD =DN \" :BMOŽ[* # :BMOŽ[*7 $ *WF** | |:VLBSŽEBLJWFSJMFSFHÌSF  AD = YJOBMBCJMFDFôJ  % **WF*** & *WF*7 LBÀGBSLMŽUBNTBZŽEFô FSJWBSEŽS \"  #  $  %  &  2. A 5.  Ahmet A i B6 C Ceren Eren | | | |\"#$пHFOJOEF  BC =DN AB = 3 2 DNWF m % = i EŽS BC (ACB)  0LVM CBI¿FTJOF ¿J[JMNJõ EBS B¿ŽMŽ \"#$ пHFOJOEF \"#$ÑÀHFOJOJOÀJ[JNJOJZBQBOCJSÌôSFODJ\"$# \"INFU \" LËõFTJOEF  $FSFO  $ LËõFTJOEF  &SFO # BÀŽTŽOŽOÌMÀÑTÑOÑFOGB[MBLBÀEFSFDFÀJ[FCJMJS LËõFTJOEFEVSNBLUBEŽS\"INFU $FSFOWF&SFOFO LŽTBZPMEBOLBSõŽMBSŽOEBEVSBOLFOBSBEPóSVLPõB- \"  #  $  %  &  DBLMBSEŽS&õJUIŽ[MB\"INFUEL $FSFOELEBBMB- DBóŽNFTBGFZJLPõNBLUBEŽS 3. A #VOB HÌSF  &SFOhJO LPöNBTŽ HFSFLFO NFTBGFZJ 8 BMEŽôŽTÑSFOJOLBÀGBSLMŽUBNTBZŽEFôFSJWBSEŽS \"  #  $  %  &  B HND C 6. A \"#$пHFO \"#$CJS¿FõJULFOBSпHFO [ AH ] m[ BC ] 60° < m (WA) < 90° WF % % 55 BAN NAC ) | | | | | |BD=  m ( ) = m( =DN  | AB | = | AC | =DN DC AN EJS | | | |AH = ( x + DNWF AD = ( 3x - DNEJS Ba C :VLBSŽEBLJ WFSJMFSF HÌSF  Y JO BMBCJMFDFôJ UBN | |:VLBSŽEBLJ WFSJMFSF HÌSF  #$ = B OŽO BMBCJMF TBZŽEFôFSMFSJUPQMBNŽLBÀUŽS DFôJGBSLMŽUBNTBZŽEFôFSMFS JOJOUPQMBNŽLBÀUŽS \"  #  $  %  &  \"  #  $  %  &  1. # 2. C 3. C 28 4. # 5. C 6. #

\"ÀŽ,FOBS#BôŽOUŽMBSŽ TEST - 12 1. A \"#$CJSпHFO 4. A | AE | å| EC | 8 10 duba 12 E % x m ( ABC ) > 120° \"ZõF Cem B C D | |AD =CS 2 16 | |DB =CS | |C B BC =CS | |:VLBSŽEBLJWFSJMFSFHÌSF DE = x JOBMBCJMFDF- 0UFMJO EBJSFTFM CJ¿JNEFLJ IBWV[VO \" OPLUBTŽOEB CVMVOBOJ¿FDFLTUBOEŽOB#OPLUBTŽOEBLJ\"ZõFhOJO ôJUBNTBZŽEFôFSMFSJOJOUPQMBNŽLBÀCSEJS | |V[BLMŽóŽ AB =N $OPLUBTŽOEBCVMVOBO$FNhJO \"  #  $  %  &  | |V[BLMŽóŽ AC =  N JMF HËTUFSJMNJõUJS )BWV[VO NFSLF[JOEFJTFCJSEVCBCVMVONBLUBEŽS \"  # WF $ OPLUBMBSŽ CJSMFöUJSJMNFTJZMF CJS ÑÀHFO PMVöUVSVMEVôVOBHÌSF \"ZöFJMF$FNBSBTŽOEBLJ V[BLMŽLLBÀGBSLMŽUBNTBZŽEFôFSJBMBCJMJS 2. \"#$WF\"$%CJSFSпHFO[ AD ]WF[ CD ]EŽõB¿ŽPS- \"  #  $  %  &  K | | | | | |UBZ  AC =DN  CD =DNWF AD =YDNEJS 5. A C x A D #BOLB 7 4 \"$ZPMVÐ[FSJOEFCVMVOBO#BOLBCVZPMJMF™B¿Ž BC ZBQBO [\", ZPMV Ð[FSJOEF CBOLBZB FõJU V[BLMŽLUB :VLBSŽEBLJ WFSJMFSF HÌSF  Y  JO BMBCJMFDFôJ UBN TBZŽEFôFSMFSJOJOUPQMBNŽLBÀUŽS PMBO WF CBOLBZMB V[BLMŽóŽ UBN TBZŽ PMBDBL õFLJMEF \"  #  $  %  &  JLJUBOFBUNLVSNBLJ¿JOBSBõUŽSNBZBQŽZPS 3. A | |AC =NFUSFPMEVôVOBHÌSF CBOLBOŽOZBQ- 20 20 UŽôŽBSBöUŽSNBEBCBOLBZBFöJUV[BLMŽLUBPMBOCV JLJOPLUBZŽLBÀGBSLMŽöFLJMEFTFÀFCJMJS \"  #  $  %  &  6. A \"#$пHFO BP C | |AB = 5 2 DN 24 \"#$  JLJ[LFOBS пHFO  # JMF $ BSBTŽOEB EFóJõLFO 52 | |x BC =DN CJS1OPLUBTŽBMŽOŽZPS B % < 45° m ( ABC ) | | | | | |AB = AC =DN  BC =DN 13 C | |:VLBSŽEBLJ WFSJMFSF HÌSF  AP  OJO BMBCJMFDFôJ | | :VLBSŽEBWFSJMFOMFSFHÌSF  AC =YLBÀDNPMB- UBNTBZŽEFôFSMFSJOJOUPQMBNŽLBÀDNEJS CJMJS \"  #  $  %  &  \"  #  $  %  &  1. D 2. D 3. A 29 4. # 5. C 6. A

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr %÷,·¦(&/* 1JTBHPS#BôŽOUŽTŽ ÖRNEK 3 %m/*m A \"#$пHFO  #JS EJL пHFOEF IJQPUFOÐT ™ OJO LBSõŽTŽO- x a [AB] m [AC] EBLJLFOBS V[VOMVóVOVOLBSFTJ EJLLFOBSMBSŽO 63 V[VOMVLMBSŽOŽOLBSFMFSJOJOUPQMBNŽOBFõJUUJS(Pi- D |AD| = |DC| TBHPSUFPSFNJ a A a2 =C2 +D2 BD = 6 3 DN EJS | |B 18 C BC =DN c | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# =YLBÀDNEJS b B aC \"#%ÑÀHFOJOEF 2 = ^ 6 3 h2 - a2 x \"#$ÑÀHFOJOEFY2 = 182 - (2a)2 182 - (2a)2 = ^ 6 3 h2 - a2 ÖRNEK 1 a = 6 2 cm Y=DNEJS A \"#$%&CFõHFO 2 [ ED]åm [ CD] B 2 [ EC] m [ BC]å x C [ EB] m [ AB]å 2 | AB | = | BC | = | CD | =DN | |E 4 D DE =DN | |:VLBSŽEBLJWFSJMFSFHÌSF AE å=YLBÀDNEJS  | | | | | |EC 2 = ED 2 + DC 2 = 16 + 4 = 20 ÖRNEK 4 | | | | | |&# 2 = EC 2 + #$ 2 = 20 + 4 = 24 | | | | | |AE 2 = &# 2 + AD 2 = 24 + 4 = 28 D 14 \"#$%EËSUHFO x | |AE = 2 7 DN [AD] m [ DC ] ÖRNEK 2 [AB] m [ BC ] A A 16 C \"#$пHFO | |AB =DN | |2 [ AD] m [ BC] BC =DN | |B DC =DN | |AD =YDN | |5 | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# =YLBÀDNEJS h 35 AB =DN mæY AC = 3 5 cm | | | | | |AC 2 = \"# 2 + #$ 2= 162+ 22 = 260 | | | | | |AC 2 = DC 2 + AD 2 = 142 + x2 | |B D x C BC =DN 9 x2+ 142 = 260 | |:VLBSŽEBLJWFSJMFSFHÌSF DC =YLBÀDNEJS  x2 = Y=DNEJS I2= 52- (9 - x)2 jI2 = ^ 3 5 h2 - 2 x 52 - (9 - x)2 = ^ 3 5 h2 - x2 j 101 x = cm 18 1. 2 7 101 30 3. 6 4. 8 2. 18

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 5 ÖRNEK 7 A \"#$%EËSUHFO A \"#$пHFO 7 x [AC] m [BD] a #%$пHFO a 13 D [AE] m [ BC ] Bb d | |D AB =DN 2b 10 2 | |BC =DN 5 x | |AB =DN c 24 | |CD =DN Bc E | |BD = 5 2 DN 15 | |AD =YDN d | |C AC = 10 2 DN | |DC =YDN C | |:VLBSŽEBLJWFSJMFSFHÌSF  AD =YLBÀDNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  DC =YLBÀDNEJS a2 + b2 = 72 (a + b)2 +D2 = 169 b2 +D2 = 152 b2 +D2 = 50 D2 + d2 = 242 (a + b)2 + d2 = 200 a2+ d2 = x2 b2+ d2 = x2 x2 + 152 = 72 + 242 j x =DNEJS 169 + x2 = 200 + 50 x2 = 81 j x =DN ÖRNEK 6 ÖRNEK 8 D \"#$%EËSUHFO A \" $ &OPLUBMBSŽ [AB] m [BC] EPóSVTBMEŽS [AD] m [DC] A6 20 [ AB ] m [ BD] a |AE| = |DC| E | DE | = | EC | =DN D [ DE ] m [ BD ] a6 BC | |AB =DN 4 DE =DN | |4 Bx C K 18 | |E BD =DN | |:VLBSŽEBLJWFSJMFSFHÌSF  #$ =YLBÀDNEJS | |:VLBSŽEBWFSJMFOMFSFHÌSF  AE =YLBÀDNEJS | |ADE üçgeninde AD 2 = a2- 36 |AE|2= |\",|2 + |,&|2 | | | | | |ADC üçgeninde AC 2 = AD 2 + DC 2 = a2 - 36 + 122 | |AE 2 = 242+ 182 | |\"#$ÑÀHFOJOEF AC 2 = a2+ x2 | |AE =DNEJS a2 + x2 = a2 - 36 + 122 j x = 6 3 DNEJS 5. 20 6. 6 3 31 7. 9 8. 30

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 9 # $ %EPóSVTBM ÖRNEK 11 A [ AB ] m [ BD ] :VTVG ±óSFUNFO ËóSFODJMFSJOEFO BõBóŽEBLJ BEŽNMBSŽ J[- MFZFSFL EFGUFSMFSJOF HFPNFUSJL ¿J[JN ZBQŽQ TPSVZV DF- 6 E WBQNBMBSŽOŽJTUJZPS BC [ ED ] m [ BD ] r [BA] m [AC]PMBDBLõFLJMEF\"#$EJLпHFOJOJO¿J[J- 3 K 40 . | |3 AB =DN OJ[ | |D ED =DN r [AB]Ð[FSJOEF\"WF#EFOGBSLMŽCJS,OPLUBTŽ[AC] 3 Ð[FSJOEF\"WF$EFOGBSLMŽCJS-OPLUBTŽJõBSFUMFZJ- | |BD =DN OJ[ E' r [KC] [BL]WF[KL]ZJ¿J[JOJ[ | | | |:VLBSŽEBWFSJMFOMFSFHÌSF  AC + CE UPQMBNŽFOB[ :BQŽMBO¿J[JNEF LBÀDNEJS | | | | | |KC =DN  BL =DN  BC =DN | |PMEVôVOBHÌSF  ,- LBÀDNEJS &OPLUBTŽOŽO 0OPLUBTŽOBHÌSFTJNFUSJôJ&hPMTVO a A |\"&h| = |AC| + |CE| K b |\"&h|2 = |\",|2 + |,&h|2 L | |\"&h 2= 92+ 402 | |\"&h =DNEJS 12 10 B 15 C ÖRNEK 10 | |a2 + AC 2 = 102 | |+ b2 + \"# 2 = 122 D' 2 B+BbB2C + AC 2 + AB 2 = 244 A B B B2B2B5 B BB C aAB A 8 D a2 + b2 = 19 x K C' 4 ,-= 19 DNPMVS B' C B \"#$%EJLEËSUHFO \"OPLUBTŽTBCJULBMNBLõBSUŽJMFQP[J- UJG ZËOEF a EFSFDF EËOEÐSÐMFSFL \" #h $h %h EJLEËSUHFOJ | | | | | |FMEFFEJMNJõUJS AD =DN  AB =DN  DK =DN | |:VLBSŽEBLJWFSJMFSFHÌSF  #h, LBÀDNEJS | |\", 2 = 82 + 12 | |\", 2 = 42 + x2 65 = 16 + x2 j x =DNEJS 9. 41 10. 7 32 11. 19

1JTBHPS#BôŽOUŽTŽ TEST - 13 1. A 4. A \"#$%EËSUHFO x+8 32 m (WA) = m (XC) = 90° x–9 B I BC I = 4 3 cm 43 6 I IAB = 3 2 DN B x+9 C I IAD =DN I I\"#$CJSEJLпHFO  AB = ( x - CS CD I I I IAC = ( x + CS  BC = ( x + CSEJS I I:VLBSŽEBLJWFSJMFSFHÌSF  \"# kaç biSJNEJS I I :VLBSŽEBLJWFSJMFSFHÌSF  CD LBÀDNEJS A) 6 B) 2 3 C) 4 D) 3 3 E) 6 \"  #  $  %  &  2. A \"#$пHFO 5. A \"#$пHFO H [ BH ] m [ AC ] 13 15 | |AB =DN | |AC =DN 10 | |AB =DN | |BC =DN 8 | |BC =DN | |BH =DN C B 14 C B 17 | | :VLBSŽEBLJWFSJMFSFHÌSF AC LBÀDNEJS :VLBSŽEBLJ WFSJMFSF HÌSF  \" OPLUBTŽOŽO [#$] ZF \"  #  $  %  &  V[BLMŽôŽLBÀDNEJS \"  #  $  %  &  3. A \"#$пHFO 6. A \"#$пHFO 13 [ AH ] m[ BC ] [AD] m [BC] I IAC =DN x 7 I IAC =DN I IHC =DN 5 I IEC =DN I IBH =DN E 2 C BD I IC BE =DN B4 H 12 I I:VLBSŽEBLJWFSJMFSFHÌSF \"# =YLBÀDNEJS I I:VLBSŽEBLJWFSJMFSFHÌSF  \"# LBÀDNEJS A) 2 6 B) 5 C) 2 7 A) 3 B) 2 5 C) 6 D) 4 2 E) 6 D) 41 E) 4 15 1. D 2. # 3. D 33 4. A 5. E 6. C

TEST - 14 1JTBHPS#BôŽOUŽTŽ 1. A \"#$пHFO 4. A \"#$EJLпHFO D |AB| = |AC| D IADI = ICDI x 5 I IBC =DN [ BD ] m [ AC ] I IBD =DN 2 | |DC =DN | |BC =DN B3 C B 12 C | | :VLBSŽEBLJWFSJMFSFHÌSF  \"# =YLBÀDNEJS I I :VLBSŽEBLJWFSJMFSFHÌSF  AC LBÀDNEJS 9 B) 11 C) 6 D) 13  &  \"  # 2 13 C) 6 13 A) 2 2 4 D) 13 6 E) 12 6 2. A \"#$пHFO 5. A \"#$%EËSUHFO [AC] m [BC] 4 [AC] m [BD] B 24 x | |12 AB =DN | |AB =DN | |D | |AC =DN H | |C BC = 5 DN B 83 D BD = 8 3 DN 5 5 | |CD =DN C | |AD =YDN I I:VLBSŽEBLJWFSJMFSFHÌSF DC LBÀDNEJS A) 2 3 B) 3 3 C) 6 D) 4 3  &  | | :VLBSŽEBLJWFSJMFSFHÌSF  AC =YLBÀDNEJS A) 3 3 B) 6 C) 3 5 D) 4 2 E) 4 5 3. A \"#$EJLпHFO 6. A BH [AB] m [AC] 4 [AH] m [BC] D x AB = 1 C AC 2 4 4 B E 2C BH | |\"#$пHFO [ ED ] m [ AB ]  EC =DN | AD| = | DB | = | DE | =DNEJS :VLBSŽEBLJWFSJMFSFHÌSF  PSBOŽLBÀUŽS | | :VLBSŽEBLJWFSJMFSFHÌSF  AC =YLBÀDNEJS HC A) 1 B) 1 C) 1 D) 1 E) 1 \"  #  $  %  &  5 2 2 3 4 1. A 2. D 3. E 34 4. C 5. # 6. #

1JTBHPS#BôŽOUŽTŽ TEST - 15 1. A 6B 4. D \"#$%EËSUHFO 46 1 x+1 D A [AB] m [BC] C [AD] m [DC] 5 E |AD| = |AE| I I[AB] m [BC] [BC] m [CD] [CD] m [DE]  AB =CS B2 E x C | |DC = 4 6 DN I I I I I IBC =CS  CD = (x + CS  DE =CS | |BE =DN \" JMF & OPLUBMBSŽ BSBTŽOEBLJ V[BLMŽL  CS PMEV- | |:VLBSŽEBLJWFSJMFSFHÌSF  EC =YLBÀDNEJS ôVOBHÌSF YLBÀUŽS A) 3 6 B) 4 3 C) 4 6 \"  #  $  %  &   %  & 6 2 2. A \"#$  %&' WF ,-/ CJSFS EJL п- 5. A [ AC ] m d HFO D9 E [ BD ] m d 24 [BC] // [DE] B 6 I IAB =DN | |AC =DN 12 I IDC =DN I IKF =DN 3 B CK | |2 BD =DN 2F | |d 12 C E D CD =DN IL 5 N I DE =DN 5 | | | |E `{ d }PMNBLÐ[FSF AE + &# UPQMBNŽOŽO I I I I I IEF = KL =DN WF LN =DNPMEVóVOBHË- en küçükEFôFSJLBÀDNEJS I ISF  NA kaç DNEJS A) 2 3 B) 3 2 C) 5 \"  #  $  %  &  D) 5 2 E) 5 3 3. B G 6. A Duvar [ AB ] m [ BC ] D 5 [ DC ] m [ BC ] AF C | AB | =N | |BC =DN  ôFLJMEFLJ ( OPLUBTŽ BóŽSMŽL NFSLF[J PMBO \"7. OJO D | |DC =DN [FNJOLBUŽOŽOÐTUUFOHËSÐOÐNÐWFSJMNJõUJS\"7.OJO E J¿JOFZBQŽMBDBLPZVOBMBOŽJ¿JO[AB]EVWBSŽOBQBSB- 5 MFM[GF]WF[AC]EVWBSŽOBQBSBMFM[DG]CBSJZFSMFSJJMF B 7 C zemin///////////////////////////////////////////// LBQBMŽCJSCËMHFPMVõUVSVMVZPS :VLBSŽEBLJ WFSJMFSF HÌSF  [FNJOF EJL EVSVNEB | | | |GF =NFUSF  GD =NFUSFPMEVôVOBHÌSF  PMBO CJS EVWBSŽO \" LÌöFTJOEFLJ LBSŽODB EVWBS | |#C = x kaÀNFUSFEJS WF[FNJOÑ[FSJOEFJMFSMFZFSFL%OPLUBTŽOBFOB[ LBÀNFUSFZÑSÑZFSFLVMBöŽS \"  #  $  %  &  \"  #  $  %  &  1. A 2. A 3. # 35 4. D 5. D 6. #

TEST - 16 1JTBHPS#BôŽOUŽTŽ 1. #JS\"#$пHFOJOEF #WF$B¿ŽMBSŽOBBJUJ¿B¿ŽPSUBZ- 4. #JSEVWBSBZFSEFOZÐLTFLMJLMFSJFõJUPMBDBLõFLJMEF MBSŽO LFTJNOPLUBTŽI EŽõB¿ŽPSUBZMBSŽOLFTJNOPL-  DN BSBZMB п ¿JWJ ZFSMFõUJSJMNJõUJS \"S[V  CJS UBC- UBTŽ.EJS MPZVV[VOLFOBSŽDNPMBOWFV[VOLFOBSŽOŽOV¿ OPLUBMBSŽOŽ CJSMFõUJSFO CJS JQMF JLJ GBSLMŽ õFLJMEF BTB- | | | | | |#I =DN  CI =DN  #. =DNPMEVôVOB SBLUBCMPOVOOBTŽMEVSBDBóŽOBCBLŽZPS | |HÌSF  CM V[VOMVôVLBÀDNEJS DN A) 2 17 B) 2 11 C) 3 2 D) 3 5 E) 5 7 DN DN 2. \"WF#OPLUBMBSŽOEBEVWBSBNPOUFFEJMNJõEJLEËSU- DN HFOõFLMJOEFLJSFTJN¿FS¿FWFTJ #OPLUBTŽOEBLJ¿JWJ #VEVSVNEBUBCMPOVOZFSEFOZÐLTFLMJLMFSJOJWF ZFSJOEFO ¿ŽLBSBL  $ LËõFTJ [FNJOF EFóFDFL õFLJM- DNPMBSBLËM¿ÐZPS | | | |EFEVSNVõUVS \"#h =N  CB = N   #VOB HÌSF  UBCMPOVO JQJOJO V[VOMVôV LBÀ DN | |#h& = N EJS A B \"  #  $  %  &  A 2 5. B' 1,6 A D K Dx D EC C zemin BE N C | | :VLBSŽEBLJ WFSJMFSF HÌSF  DE = x kaç metre- ôFLJM* EJS \"   #   $  %   &   A 3. D [AB] m [BC] K 4 [BC] m [CD] D 9 B 15 A 3 E [DE] m [DC] E TN [AF] m [FK] ôFLJM** 10 C [FK] m [KL] [ KL ] m [ LE ]  ôFLJM\"#$EJLпHFOJõFLMJOEFLBUMBOBCJMJSCJSNB- K 45 TBOŽO ÐTUUFO HËSÐOÐNÐEÐS [DE] WF [KN] EPóSVMB- FL SŽCPZVODBNFOUFõFMFSZFSMFõUJSJMNJõUJS#%&пHF- OJ LBUMBOEŽóŽOEB # OPLUBTŽ 5 OPLUBTŽ JMF ¿BLŽõŽZPS | | | | | |AB =DN  BC =DN  DC =DN  ,/$ пHFOJ LBUMBOEŽóŽOEB $ OPLUBTŽ 5 JMF ¿BLŽõB- SBLõFLJM**PMVõVZPS | | | | | | | |DE =DN  AF =DN  FK =DN  KL =DN | | | | | |AD = AK =CS  BC =CSPMEVôVOBHÌSF  | |:VLBSŽEBLJWFSJMFSFHÌSF  EL =YLBÀDNEJS NBTBOŽOÀFWSFTJLBÀCJSJNEJS \"  #  $  %  &  \"  #  $  %  &  1. # 2. E 3. # 36 4. A 5. #

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, %÷,·¦(&/** ²LMJU#BôŽOUŽMBSŽ ÖRNEK 2 %m/*m A \"#$пHFO 2 H [ AB] m [ BC]  \"#$EJLпHFOJOEFm (WA) = 90° a [ BH] m [ AC] 45 [AH] m [BC] x | |AH =DN B | |C BC = 4 5 cm A | AB | =D cb | AC | =C | |:VLBSŽEBLJWFSJMFSFHÌSF #) = x kaÀDNEJS h | BH | =Q |HC| = q | |#$ 2 = a. (a + 2) (Öklit teoremi) B p HqC 80 = a (a + 2) j a =DN x2= 2.a (Öklit teoremi) | |AH =IPMNBLÐ[FSF x2 = 16 j x =DNEJS i) CD=I Q+ q ) ii) I2 =QR iii) D2 =Q Q+ q )   C2 =R Q+ q ) iv) 1 = 1 + 1 EJS h2 b2 c2 #VFõJUMJLMFSFÌLMJECBôŽOUŽMBSŽEFOJS ÖRNEK 3 ÖRNEK 1 \"#$пHFO A \"#$EJLпHFO A [BA] m [AC] [BA] m [AC] [AH] m [BC] 45 h 4 [AB] m [BD] |BC| = 5 |BH| [AD] m [BC] | |q C AB = 4 5 DN Bp H B pH q | |C AH =DN 1 | |HD =DN D | | | |:VLBSŽEBLJ WFSJMFSF HÌSF  #$ + AH  UPQMBNŽ LBÀ | |:VLBSŽEBWFSJMFOMFSFHÌSF  AC LBÀDNEJS DNEJS q =Q B&AD EFÌLMJEUFPSFNJ Q2 = 1.4 jQ= 2 | |\"# 2 =Q Q+ q) =QQ= 16.5 | |Q= R=  #$ =Q+ q =DNEJS | |AH 2 =QR= 2.q = 16 j q = 8 | |AC 2 = 42 + 82 I2 =QR= 4.16 = 64 jI=DNEJS | |AC = 4 5 DN | | | |#$ + AH = 8 + 20 =DNEJS 1. 28 37 2. 4 3. 4 5

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 4 ÖRNEK 6 D 23 E 83 C \"#$%EJLEËSUHFO A \"#$WF%&$EJL 63 пHFO x [FE] m [DC] x F [AF] m [FB] D [ BA ] m [ AC ] [ DE ] m [ DC ] y | |DE = 2 3 DN 10 [ AH ] m [ BC ] A 23 83 B | EC | = 8 3 DN B a+b E a H b C | |EF =YDN | BE | = | EC | | DC | |=DN  AC | =YDN | |:VLBSŽEBLJWFSJMFSFHÌSF  EF =YLBÀDNEJS | |:VLBSŽEBWFSJMFOMFSFHÌSF  AC =YLBÀDNEJS Z2 = 2 3 .8 3 = 48 j y = 4 3 | | | | | |EH =BDN  HC =CDN  #& = a +CDN x +Z= 6 3 x = 2 3 cm dir. DEC üçgeninde 102 = b (b + a) Öklid teoremi \"#$ÑÀHFOJOEFY2 = b (2a + 2b) (Öklid teoremi) x2 = 200 j x = 10 2 DNEJS ÖRNEK 5 ÖRNEK 7 #JSLºóŽEB[BA] m [AC]PMBDBLõFLJMEFCJSEJLпHFO¿J[J- A [BA] m [AC] MJZPS%` [BC]PMBDBLõFLJMEFCJS%OPLUBTŽCFMJSMFOJZPS \"#%пHFOJ [AD]CPZVODBLBUMBOEŽóŽOEB#OPLUBTŽ [BD] m [DC] #h` [#$PMBDBLõFLJMEF#hJMF¿BLŽõŽZPS [AH] m [BC] | | | | | |#% =  DN  $#h =  DN PMEVôVOB HÌSF  \"# B9 H 11 T 5 C [DT] m [BC] V[VOMVôVLBÀDNEJS | |BH =DN A | |TC =DN 20 12 | |D TH =DN B 16 D 9 C 7 B' | | | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# + TD UPQMBNŽLBÀDN 16 EJS # OPLUBTŽ [AD] CPZVODB LBUMBOEŽôŽOEB [AD] m [##h] |\"#|2 = |#)| . |#$|= 9.25 = 225 | |PMVS \"# 2 = |#%|.|#$| |\"#| = 15 | | | |\"# 2 = 16 . 25 j \"# =DN |TD|2 = |5#| . |TC| = 20.5 = 100 |TD| = 10 |\"#| + |TD| = 25 4. 2 3 5. 25 38 6. 10 2 7. 20

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 8 ÖRNEK 10 \"#$EJLпHFOJOEF[ AB] m [ AC]WF[ BC]OJOZÐLTFLMJóJ A \"#$пHFO [ AE] #JMF&OPLUBMBSŽBSBTŽOEBTF¿JMFO%OPLUBTŽPMNBL 8 15 [ AB] m [ AC] | |Ð[FSFm ( B%AD) = m ( D%AE)  AC =DNWF B DC | | | |DE =DNPMEVóVOBHËSF #%LBÀDNEJS |BD| = |DC| | |AB =DN A m ( A%DC ) = m ( D%AC ) | |AC =DN = 90°- a | |:VLBSŽEBLJWFSJMFSFHÌSF AD LBÀDNEJS a 90°–2a 17 \"%$JLJ[LFOBS  a |AC| = |DC| |EC| =DN 8 | | | | | |\"#$EJLÑÀHFOJOEF AD = #% = DC 90°–a \"&$EJLÑÀHFO | |#$ 2 = 82 + 152 = 172 Bx D 2 E 15 | |C AE =DN  |DC| = 17 j |AD| = 17 2 2 |AE|2 = |#&| . |EC] (Öklid) 34 64 = (x + 2) . 15 j x = DN 15 ÖRNEK 11 UYARI A \"#$пHFO  \"#$ EJL пHFOJOEF IJQPUFOÐTF BJU LFOBSPSUBZ a [ AC] m [ AD] V[VOMVóV  IJQPUFOÐTÐO V[VOMVóVOVO ZBSŽTŽOB FõJUUJS a 15° a |DC| = 2|AB| A 2a 2a % = 15° BD aN m ( BAD ) a aC :VLBSŽEBLJWFSJMFSFHÌSF m % = a LBÀEFSFDFEJS  ( ACB ) | |\"#$ÑÀHFOJOEF AN LFOBSPSUBZÀJ[JMJSTF % % BD C | | | | | |AN= =   m NAC ) = m ( NCA ) = a DN NC ( | AD | = | BD | = | DC |EJS % = % = 2a m ( AND ) m ( ABC ) 2a + 90° + 15 + a = 180° 3a = 75° j a= 25° dir. ÖRNEK 9 A \"#$пHFO ÖRNEK 12 5 [ AC] m [ BC] A D 4 | DE | = | BE | = | EC | =DN 36° D | |x BD =DN 20 3 20 72° x C 36° K 20 72° 20 18° 18° B B 3 E3 C \"#$пHFO [DB] m [ BC ] m ( % ) = 2 m ( % ) = 36° BAC BCA | |:VLBSŽEBLJWFSJMFSFHÌSF  AC =YLBÀDNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  DC =YLBÀDNEJS |#$|2 = |#%| . | |DA  = 4.|#\"| [#,]LFOBSPSUBZŽOŽÀJ[FMJN | | | |9 = #\" j AD =DNEJS | |AC 2 = x2= 5.9 j x = 3 5 DNEJS |#,| = |%,| = |,$| =DN | | | |x = %, + ,$ =DNEJS 34 39 17 8. 9. 3 5 10. 11. 25 12. 40 2 15

TEST - 17 ²LMJE#BôŽOUŽMBSŽ 1.  6óVS±óSFUNFOHFPNFUSJEFSTJOEFBõBóŽEBLJBEŽN- 4. A \"#$пHFO MBSŽJ[MFZFSFLHFPNFUSJLCJS¿J[JNZBQUŽSŽZPS [BA] m [AC] r % = 90°PMBOCJSEJLпHFO¿J[JOJ[ m ( BAC ) r ¶¿HFO J¿JOEF CJS % OPLUBTŽ BMŽQ % = a F [EF] m [FC] m ( ABD ) 8 [AH] m [BC] PMBDBLõFLJMEFCJS\"#%пHFOJOJ¿J[JOJ[ B E H C |BE| = 2 |EH| | |FH =DN r %BIB TPOSB [AC] Ð[FSJOEFO CJS 5 OPLUBTŽ BMŽQ | |:VLBSŽEBLJWFSJMFSFHÌSF  AF =YLBÀDNEJS [AD]JMFLFTJõNFZFOm ( % ) = a PMBDBLõFLJM- TBC EF[BT]ZJ¿J[JOJ[ r m ( A%DB ) + m ( A%TB ) = 180° r [AD]ZJV[BUŽQ[BC]JMFLFTJõUJóJOPLUBZB)EJZF- \"  # 8^ 3 - 1 h C) 4 MJN D) 8^ 2 - 1 h E) 4^ 3 - 1 h | | | |#) =CJSJN  HC =CJSJNPMEVôVOBHÌSF  | |AC LBÀCJSJNEJS A) 4 B) 6 C) 4 3 D) 2 13  &  5. B 2. A %JLпHFO  õFLMJOEFLJ CJS * ** CBI¿FOJO FUSB- GŽOEB ZÐSÐZÐõ ZBQBDBL PMBO 5BNFS WF :V- A x D4 C TVG FõJU IŽ[MBS- \"#$пHFOJOEF[AB] m [AC] [ AH ] m [ BC ] B E x C MB \" OPLUBTŽO- EBO * WF ** OVNBSBMŽ ZPMMBSMB ZÐSÐNFZF CBõMŽZPSMBS WF&OPLUBTŽOEBELTPOSBLBSõŽMBõŽZPSMBS | | | |HC =DN  AB = 4 6 DNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  #) =YLBÀDNEJS | | 5BNFS BC ZPMVOVELEBZÐSÐZFCJMJZPS | | | | | |AC > \"#PMEVôVOBHÌSF 5BNFS  EC ZPMV- A) 6 B) 4 3 C) 3 6 OVLBÀELEBZÑSÑZFCJMJS  %  &  \"  #  $  %  &  3. A \"#$пHFO 6. A x D \"#$WF\"%$пHFO [BA] m [AC] [BA] m [AC] [AD] m [DC] [AD] m [BC] 15 20 B8 | |BD =DN [AD] // [BC] | |D 2 C | |B C HC =DN AB =DN | | | |:VLBSŽEBLJ WFSJMFSF HÌSF  \"# + AC  UPQMBNŽ | |AC =DN | |:VLBSŽEBLJWFSJMFSFHÌSF  AD =YLBÀDNEJS LBÀUŽS A) 6 3 B) 6 5 C) 8 2 D) 8 3 E) 8 5 \"  #  $  %  &  1. # 2. C 3. # 40 4. # 5. D 6. D

²LMJE#BôŽOUŽMBSŽ TEST - 18 1. A 4. A \"#$пHFO E B |AE| = |EB| | |AC =DN x E 13 | |AD =DN 12 | |DC =DN | |BD =DN x B DC 16 D 5 C | |\"#$пHFO [BA] m [AC]  AB = 20 3 DN | | :VLBSŽEBLJWFSJMFSFHÌSF  ED =YLBÀDNEJS |BD| = 3 |DC| |AE| = |EC| = |DE| | | :VLBSŽEBLJWFSJMFSFHÌSF  DE =YLBÀDNEJS \"  #  $  %  &  \"  #  $  %  &  2. A \"#$пHFO 5. A B [ AB ] m [ BC ] E8 D [ BD ] m [ AC ] x E |AE| = |EB| 40° 6 |BF| = |FC| DC BF | |C DF =DN \"#$WF#%$CJSFSпHFO [AB] // [DC] I I I I[AB] m [BD]  AE WFm % = 40°EJS =2 BC ( ACB ) | | | |DE =DNPMEVóVOBHËSF  AC LBÀDNEJS :VLBSŽEBLJWFSJMFSFHÌSF  m ( A%EB ) = x kaç de- \"  #  $  %  &  SFDFEJS \"  #  $  %  &  3. A 17 E 6. A \"#$пHFO 5 [ AB ] m [ AC ] E 11 | |CE =DN 35 DE = 3 5 cm Bx D6 C | | | |\"#$пHFO  AB =DN  DC =DN B 10 D 10 C | AE | = | EC | = | ED | =DN | | | | | | | |BD = DC =DNPMEVóVOBHËSF \"# + AE | |:VLBSŽEBLJWFSJMFSFHÌSF  #% =YLBÀDNEJS UPQMBNŽLBÀDNEJS \"  #  $  %  &  \"  #  $  %  &  1. D 2. D 3. E 41 4. D 5. E 6. C

TEST - 19 ²LMJE#BôŽOUŽMBSŽ 1. D C \"#$%EJLEËSUHFO 4. A \"#$пHFO [DE] m [EC] 4 [AH] m [BC] xD [HD] m [AC] [EH] m [AB] xE 15 B 129 H | |AC =DN A5 H | |AD = 8 3 DN | |C AD =DN B | |BH = 129 DN | |AH =DN | |HB =DN | |:VLBSŽEBLJWFSJMFSFHÌSF  EH =YLBÀDNEJS | |:VLBSŽEBWFSJMFOMFSFHÌSF  \"# =YLBÀDNEJS A) 3 B) 2 3 C) 3 3 \"  #  $  %  &  D) 4 3 E) 5 3 5. A \"#$WF\"#% пHFO 2. A \"#$пHFO [BA] m [AC] [BA] m [AC] x | |BD =DN [AB] m [BD] 43 | |DC =DN C [ AD ] m [BC] | |C B H 9 x 3 | |HC =DN B6 D 8 AD = 4 3 DN | HD | = 3 DN D | |:VLBSŽEBLJWFSJMFSFHÌSF  AC =YLBÀDNEJS | | :VLBSŽEBLJWFSJMFSFHÌSF  #% =YLBÀDNEJS A) 4 5 B) 4 6 C) 4 7 D) 8 2 E) 8 3 A) 3 B) 2 3 C) 3 3 D) 3 6 E) 4 3 3. F 6. A A x B EC D 6 B xH C \"#%пHFO [AC] m [BD] m ( % ) = m ( % ) BAE EAC 3 D | |m(C%AD) = m (F%AD )  EC = 3 2 DN  \"#$WF\"%$пHFO [BA] m [AC] [AD] m [BC] | |CD = 6 2 DN | | | |% m ( ABC ) = m ( % )  HC =2 HD =DN BCD | |:VLBSŽEBLJWFSJMFSFHÌSF  AE =YLBÀDNEJS | | :VLBSŽEBWFSJMFOMFSFHÌSF  #) =YLBÀDNEJS A) 3 6 B) 4 6 C) 6 A) 24 B) 18 3  $  D) 6 2 E) 6 3 D) 12 3  &  1. C 2. C 3. A 42 4. # 5. # 6. A

²LMJE#BôŽOUŽMBSŽ TEST - 20 1. A \"#$WF#%$ 4. A BA x B H K [BA] m [AC] EF E 4 [BD] m [DC] C [AH] m [BC] 6 [DK] m [BC] C D ôFLJM* B FC ôFLJM** 5 | BH | = 4 | HK | | KC | |=DN  DK | =DN ôFLJM*EFLJCJOBZB#&'SFLMBNCSBOEBTŽBTŽMNŽõUŽS | |:VLBSŽEBWFSJMFOMFSFHÌSF  AH =YLBÀDNEJS #VCSBOEBOŽO&OPLUBTŽ[AC]LËõFHFOJÐ[FSJOEFEJS A) 4 B) 6 C) 4 2 ôFLJM**EFCSBOEBOŽOEÐ[MFNTFMõFLMJ\"#$EJLп-  %  & 8 2 HFOJCJ¿JNJOEFNPEFMMFONJõUJS 2. E | | | | | | | |[BE] m [EF]  EF = FC  AE =CS  EC =CS A | |PMEVôVOB HÌSF  CJOBOŽO \"#  V[VOMVôV LBÀ CJ- SJNEJS 6 A) 3 2 B) 2 5 C) 2 6 D) 4 2 E) 4 3 BH C 4D \"#$WF&#%пHFO [BA] m [AC] [BE] m [ED] | | | |[AH] m [BD] [EC] m [BD]  HC = BH  | | | |CD =DN  EC =DN 5. A [AB] m [BC] [BE] m [ED] | | :VLBSŽEBWFSJMFOMFSFHÌSF  AC LBÀDNEJS E A) 8 3 B) 8 2 C) 4 6 D) 6 3 E) 6 2 3. A \"#$ WF #%& п- B DC HFO xD \" % )EPóSVTBM  \"INFU%BZŽEJLпHFOTFMCËMHFõFLMJOEFLJQBODBS 16 UBSMBTŽOŽTVMBNBLJ¿JO#WF%OPLUBMBSŽOEBO&OPL- [BA] m [AC] UBTŽOEBLJ¿FõNFZFTVMBNBCPSVMBSŽZFSMFõUJSNJõUJS B HE C [BD] m [DE]  ¥FõNF \" WF $ LËõFMFSJOF FõJU V[BLMŽLUB CVMVO- NBLUBEŽS4VMBNBOŽOZFUFSTJ[PMEVóVOVHËSFO\"I- | | | | | |[AH] m [BC]  BE = EC  BD =DN NFU %BZŽ % OPLUBTŽOEBO $ OPLUBTŽOB  NFUSFMJL  | |AB =YDN #OPLUBTŽOEBO\"OPLUBTŽOBEBNFUSFMJLZFOJTV CPSVMBSŽ¿FLFSFLUBSMBZŽTVMVZPS | |:VLBSŽEBLJ WFSJMFOMFSF HÌSF  \"# = Y LBÀ DN \"INFU %BZŽhOŽO # WF % OPLUBMBSŽ BSBTŽOB EB TV CPSVTVÀFLNFLJTUFSTFLBÀNFUSFEBIBTVCPSV- EJS TVOBJIUJZBDŽWBSEŽS A) 16 2  #  $  \"  # 20 5  $  D) 20 2 E) 32 D) 20 13 E) 30 13 1. # 2. E 3. A 43 4. C 5. D

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr %÷,·¦(&/*** Açılarına Göre Özel Dik Üçgenler ÖRNEK 3 %m/*m A \"#$пHFO 30° - 60° - 90° Üçgeni 4x [ BA] m [ AC]  ™-™-™ пHFOJOEF ™ MJL B¿ŽOŽO LBSõŽ- D 2 3x [DH] m [BC] TŽOEBLJ LFOBS V[VOMVóV  IJQPUFOÐTÐO V[VOMV- óVOVOZBSŽTŽOB ™MJLB¿ŽOŽOLBSõŽTŽOEBLJLF- 2x 60° % = 60° OBSV[VOMVóVJTF™MJLB¿ŽOŽOLBSõŽTŽOEBLJLF- C m ( ACB ) OBSŽOV[VOMVóVOVO 3 LBUŽOBFõJUUJS 30° A B x3 H 63 2 | AB | = 3 | DA | | HC | = 6 3 DN | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# =YLBÀDNEJS a a3 & EFšOJOLBSöŽTŽ 2 3 x JTFšOJOLBSöŽTŽ4 3x ABC 60° 30° B 2a C 4 3x = x 3+6 3 3 3x = 6 3 | |x =  \"# = 12 ÖRNEK 1 ÖRNEK 4 A \"#$пHFO A \"#$пHFO 30° [BA] m [AC] [ BA] m [ AC] 3 [AH] m [BC] x [AH] m [ BC ] 23 D % m ( ABC 30° 60° 1 [HD] m [AC] ) = 60° B 30° 60° 6 H2C 60° 30° B | |DC =DN H | | | |3x C HC - BH =DN % 2 m ( ABC ) = 30° | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# =YLBÀDNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  #$ LBÀDNEJS & ^ ABH hÑÀHFOJOEFšOJOLBSöŽTŽYJTFšOJOLBSöŽTŽ % = 60° , m ( % = 30° x 3x x m ( ACB ) DHC ) dir. - = 8 jYDN | | | |DC =JTF HC = 2 2 22 m ( D%AH ) = 30°, m ( A%DH ) = 60° & AHC | | | |a k de HC = 2 JTF AC =4 ÖRNEK 5 |AC| = 4 iTF|#$| = 8 ÖRNEK 2 A \"#$пHFO A \"#$пHFO 6 60° 5 [ BE] m [ AC] DE [CD] m [ AB ] x [ AB] m [ AC] x 30° 7 | |AD =DN 30° | |AE =DN 30° 1 m (WB ) 1 60° | |EC =DN | |BC =DN BC B 12 C | |:VLBSŽEBLJWFSJMFSFHÌSF  #% =YLBÀDNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  \"# = x in alabileDFôJLBÀ GBSLMŽUBNTBZŽEFôFSJWBSEŽS | | | |\"#$ÑÀHFOJOEF AC = 2 AD PMEVôVOEBO | |30°< m(XB) <š < \"# < 6 3 % = 60°  m ( % ) = 30° dir. | |\"# = x ` {   } YJOBMBCJMFDFôJUBNTBZŽEF- m ( BAC ) DCA ôFSJWBSEŽS 0IBMEF m ( A%BE ) = 30°EJS\"#&ÑÀHFOJOEFY+ 6 = 2.5 x =DNEJS 1. 8 2. 4 44 3. 12 4. 8 5. 4

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 6 ÖRNEK 8 A A \"#$пHFO 60° 60° 45° % = 30° 2 m ( ABC ) . 22 4 6 x % 3 32 m ( ACB ) = 45° 30° 45° | |AB =DN 30° B 33 H 3 C H2 B x C | |:VLBSŽEBLJWFSJMFSFHÌSF AC =YLBÀDNEJS %% | | |\"#)ÑÀHFOJOEF \"# =JTF[AH = 3 \"#$пHFO m ( ACB ) = 30° m ( ABC ) 2 90° | | |AHC üçgeninde [AH = 3 ve AC = 3 2 | |AC =DNWF AB = 2 2 cmEJS | |:VLBSŽEBLJWFSJMFSFHÌSF #$ =YLBÀDNEJS | | | |AHC üçgeninde HC = 3 AH ÖRNEK 9 x+2= 2 3 % ABC x = 2 3 - 2 DNEJS | |#JS\"#$пHFOJOEFm =DN = 135°  ( ) AB | |BC = 8 2 DNEJS ÖRNEK 7 :VLBSŽEBLJWFSJMFSFHÌSF \"#$ÑÀHFOJOEF\"$LFOBSŽ- OŽOV[VOMVôVLBÀDNEJS \"#$EJLпHFOJOEF[ AB] m [ BC]WFпHFOJ¿JOEFCJS% A OPLUBTŽTF¿JMJZPS 45° | | | |m(B%AD) = 30°  AD =DN  DC =DNWF | | | |BC =DNPMEVôVOBHÌSF  #% kaç DNEJS 82 16 D A | |#% 2 = 42 + 82 = 80 45° 135° 82 C | |#% = 4 5 DNEJS 82 B 8 K4 D30° C | |AC 2 = ^ 8 2 h2 + ^ 16 2 h2 | |AC = 8 10 DNEJS 8 17 B 4 H 15 ÖRNEK 10 A \"#$пHFO %m/*m 4 [BA] m [AC] 45° - 90° - 45° Üçgeni 22 % = 45°  ™-™-™пHFOJOEF IJQPUFOÐTÐOV[VOMV- 2 xH m ( ADC ) óV EJLLFOBSV[VOMVóVOVO 2 LBUŽEŽS 45° B | |C AD =DN A D2 | BD | = 2 DN | |:VLBSŽEBLJWFSJMFSFHÌSF  #$ =YLBÀDNEJS a a | | | |\"#$ÑÀHFOJOEF [AH] m [DC] [AH]2 = #) . HC (Ök- 45° a2 45° lit) B C 8 = 2 . | HC | | | | |4 2 = HC  #$ = 5 2 DNEJS 6. 2 3 - 2 7. 4 5 45 8. 3 2 9. 8 10 10. 5 2

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 11 %m/*m .FSU ËM¿ÐTЙPMBOCJS\"#$B¿ŽTŽ¿J[JZPS%BIBTPOSB 15° - 75° - 90° Üçgeni \"OPLUBTŽOEBO[#$ŽõŽOŽOBCJSEJLNFJOEJSJZPSWF)OPL- A (2 + A UBTŽPMBSBLJTJNMFOEJSJZPS4POPMBSBL)OPLUBTŽOEBO[ BA a 3)a h ŽõŽOŽOBCJSEJLNFJOEJSJZPSWFEJLNFOJOBZBóŽOŽ%OPLUBTŽ 75° 15° 75° 15° C | | | |PMBSBLJTJNMFOEJSJZPS HD =DNPMEVóVOBHËSF  AC OJOBMBCJMFDFôJFOLÑÀÑLUBNTBZŽEFôFSJOFPMBCJMJS B ( 2+ 6)a C 4h B A |AC| > |AH|  š- š- 90° Üçgeni |AC| > 5 2 5 | |AC OJOFOLÑÀÑLDNDJO- A A 45° a TJOEFOUBNTBZŽEFôFSJ D 8 dir. 52 C (1 + 5 45° 2)a 45° 45° BH 67,5° 22,5° h 22,5° 67,5° B 4+2 2a C B 2 2h C %m/*m 30° - 120° - 30° Üçgeni  ™-™-™пHFOJOEF ™MJLB¿ŽOŽOLBS- õŽTŽOEBLJLFOBSV[VOMVóVFõJULFOBSV[VOMVLMB- SŽOŽO 3 LBUŽEŽS A 120° a a 30° 30° ÖRNEK 13 \"#$пHFO B C a3 A % = 30° 135° m ( ABC ) x % m ( BAC ) = 135° 30° 10 | |C BC =DN B ÖRNEK 12 | |:VLBSŽEBLJWFSJMFSFHÌSF AC =YLBÀDNEJS A \"#$пHFO 10x [BA] m [AC] | |$OPLUBTŽOEBO \"# OBEŽöBSEBOEJLJOEJSJMJSTF1JTBHPS D teoreminden 63 m( % = 120° EDC ) 60° B 43 8 120° 8 | |AB = 6 3 DN 5 |AC| = 5 2 30° 30° E 83 C | |BE = 4 3 DN 5 | |:VLBSŽEBLJWFSJMFSFHÌSF  AD =YLBÀDNEJS A 45° 135° 5 2 | | | |\"#$ÑÀHFOJOEF \"# = 6 3 JTF #$ = 12 3   30° 45° |EC| = 8 3 B 15° | | | | | |DEC üçgeninde DC =  AC =  AD =EVS 10 C 11. 8 12. 10 46 13. 3 2

www.aydinyayinlari.com.tr ÜÇGENLER 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 14 ÖRNEK 17 A \"#$пHFO A \"#$пHFO 30° 6 [ BH ] m [ AC] m ( B%AC ) = 60° x+6 H % = 75° 60° 24 % = 15° x m ( ACB ) m ( ACB ) 23 75° |AB|å= |AC| 12 | |AB =DN 60° 30° K | |AH å=DN 12 3 12 3 BC 15° 15° B C | |:VLBSŽEBLJWFSJMFSFHÌSF HC =YLBÀDNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  AC LBÀDNEJS |\"#| = |AC| = 6 + x | |% #, \"#)ÑÀHFOJOEFY+ 6 = 2 . 2 3 m ( ABK ) = 90° PMBDBLöFLJMEF çekelim. x = 4 3 - 6 DN | | | |mm \"#, ÑÀHFOJOEFO \", =  #, = 12 3 |#,|= |,$|= 12 | |3  AC = 24 + 12 3 ÖRNEK 15 ÖRNEK 18 A \"#$пHFO \"#$ \"%$пHFO x % = A 60° 2 m ( ABC ) H2 + 2 3 75° [AD] m [AC] x x3 m ( A%CB ) = 45° 308° 83 % x3 2 60° 30° xK m ( ABC ) = 45° 30° 44 15° 16 754°5° 2 16 B 45° AC = 2 + 2 3 cm 45° 15° % = 15° m ( ACB ) C B 42 D C | BD| = 4 2 | |:VLBSŽEBLJWFSJMFSFHÌSF \"# =YLBÀDNEJS | |:VLBSŽEBLJWFSJMFSFHÌSF  AC =YLBÀDNEJS || || x D den \"#)ÑÀHFOJOEF \"# =Y  AH = | | | |genleri 2 \"el#de ZeFd EeJlLim J.OEAJSDJQ= m mm( K%DWCF)=m15°m PMBDÑBÀL- | | | |x 3 x 3 #) =   HC =  Y=DN | |öFLJMEF %, ÀJ[FMJN\"%,mmveriliZPS 22 | | | | | | | | | |AD =  \", = 8 3  %, = ,$ =  AC = 8 3 + 16 x x3 = 2 + 2 3 jYDN AC = + 22 ÖRNEK 16 ÖRNEK 19 A \"#$пHFO A \"#$пHFO 4 m ( % ) = 67, 5° ABC 2k | AB | = | AD | 4 45° Hx m ( % ) = 22, 5° k |BD| = |AC| 42 42 ACB 45° 45° a [AB] m [AD] 627,25,°5° | |AB =DN kD C B Bk H 22,5° % C :VLBSŽEBLJWFSJMFSFHÌSF m ( ACB ) = aLBÀEFSFDFEJS | | | |\"# = AD m( A%DB ) = 45°PMEVôVOEBO | |:VLBSŽEBLJWFSJMFSFHÌSF AC å=YLBÀDNEJS  |AH| = |HD|= |#)| = k |#%|= |AC| = 2k | |& | | | |AH =L  AC =LPMEVôVOEBOa = 30° AC = 4 + 4 2  ^ CBH h = šPMBDBLöFLJMEF #) | | | |ÀJ[FMJN\"#)mm  \"# = AH =  |#)| = |HC| = 4 2 14. 4 3 - 6 15. 4 16. 30 47 17. 24 + 12 3 18. 8 3 + 16 19. 4 + 4 2

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÜÇGENLER www.aydinyayinlari.com.tr ÖRNEK 20 ÖRNEK 22 A \"#$JLJ[LFOBSEJLпHFO 4FSIBU LFOEJTJOF /FXUPO EFOHF UPQVOV ËSOFL BMBSBL ZFOJCJSEFOHFUPQVZBQNBLJTUJZPS 45° |AB| = |BC| &õJUV[VOMVLUBLJJQMFSVDVOBFõUPQMBSŽTBCJUMFZFSFLJQMFSJ 12 K ,OPLUBTŽOBTBCJUMJZPSôFLJM*EFLJEÐ[FOFóJPMVõUVSVZPS [AB] m [BC] 62 [BH] m [DC] K DH x 30° % B 15° m ( DCA ) = 30° C | |AD =DN | |:VLBSŽEBLJWFSJMFSFHÌSF #) =YLBÀDNEJS A BC | | | |[%,] m [AC]  %, = 6 2  DC = 12 2 ôFLJM* %#$ÑÀHFOJOEF š š šÑÀHFOJ | |&óFS\"UPQVOVm ( A%'KB ) = 30°WF \"h# =DNPMBDBL |DC| = 4 |#)| õFLJMEF ¿FLJQ CŽSBLŽSTB $ UPQV m ( A%'KC' ) = 90° PMBDBL | |#) = 3 2 DNEJS õFLJMEF IBSFLFU FUNFLUF \" UPQVOVO ¿FLJMEJóJ LPOVN \"h  $UPQVOVOTPOLPOVNV$h ôFLJM**EFLJHJCJPMNBLUBEŽS ÖRNEK 21 K ôFLJMEFWFSJMFOCJSCJOBOŽOIFSLBUBSBMŽóŽFõJUNFTBGFEF WFFSNFUSFEJSLBU¿J[HJTJ[FNJOEFONFUSFZVLBSŽ- A' C' EBEŽS#JOBEB¿ŽLBOCJSZBOHŽOTPOVDVHFMFOJUGBJZFBSB- B CBTŽOŽONFSEJWFOJOJOCBõMBOHŽ¿OPLUBTŽNZVLBSŽEBWF \"OPLUBTŽOEBEVSBSBLLBUUBLJLJõJMFSJLVSUBSNŽõUŽS ôFLJM** 9 | |#VOB HÌSF  4FSIBUhŽO ZBQUŽôŽ EFOHF UPQVOEBLJ \", 8 7 LBÀDNEJS  öQMFSHFSHJOEVSVNEBIBSFLFUFEFDFLUJS 6 5 K 4 5 6 30° 3 2 52 5 2+5 6 1 52 45° N 60° C' 45° 45° N A' 30° 10 75° A BC 10 75° N B | | | |AC =N  BC =N \"ZOŽNFSEJWFOV[VOMVôVZMBJUGBJZFBSBDŽOŽONFSEJWF- OJOJO CBöMBOHŽÀ OPLUBTŽ # OPLUBTŽOB HFMEJôJOEF LB- ÀŽODŽLBUUBLJMFSJLVSUBSBCJMJS 3 3 25 m 15 m 3 25 24 1.kat 7 20 m 6 1m 1m 1m 1m 20 m )FSLBUBSBTŽNFUSFPMEVôVOEBOZFSEFOJUJCBSFOLBU NFUSFNFTBGFEFEJS 20. 3 2 21. 25 48 22. 5 6 + 5 2


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook