Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AYT Matematik Ders İşleyiş Modülleri 2. Modül İkinci Dereceden Denklemler Parabol Eşitsizlikler

AYT Matematik Ders İşleyiş Modülleri 2. Modül İkinci Dereceden Denklemler Parabol Eşitsizlikler

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-24 01:27:04

Description: AYT Matematik Ders İşleyiş Modülleri 2. Modül İkinci Dereceden Denklemler Parabol Eşitsizlikler

Search

Read the Text Version

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 5 ÖRNEK 8  Z= 3x2 - N- 2 ) x - 4  Z= 2x2 - 5x -N+ 1 QBSBCPMÐJMFZ= x -EPóSVTVOVOLFTJNOPLUBMBSŽ\"WF #EJS QBSBCPMÑJMFZ= 3 -YEPôSVTVJLJOPLUBEBLFTJöUJôJ OFHÌSF NJOBMBCJMFDFôJFOLÑÀÑLUBNTBZŽEFôF [\"#]EPôSVQBSÀBTŽOŽOPSUBOPLUBTŽOŽOBQTJTJPMEV SJOJCVMVOV[ ôVOBHÌSF NLBÀUŽS 2x2 - 5x -N+ 1 = 3 - x 2x2 - 4x -N- 2 = 0 3x2 - N- 2 ) x -4 = x - 1 x2 - 2x -N- 1 = 0 3x2 - N- 1 ) x - 3 = 0 Ô>PMNBMŽ x +x 4 + N+ 1 ) > 0 N> -8 12 N> -2 jNNJO = -CVMVOVS = 2 olmal› ÖRNEK 9 2 m-1 Z=NY2 - 2x +N QBSBCPMÑJMFZ= -NY+EPôSVTVOVOLFTJöNFNFTJ =2 JÀJONIBOHJBSBMŽLUBEFôFSBMNBMŽEŽS 6 N- 1 = 12 NY2 - 2x +N= -NY+ 2 N=CVMVOVS NY2 + N- 2 )x +N- 2 = 0 ÖRNEK 6 Ô<PMNBMŽ N- 2 )2 -N N- 2 ) < 0  Z= x2 - 4x +N- 1 QBSBCPMÑZ= 2x +EPôSVTVOBUFôFUPMEVôVOBHÌ N- 2 ) ( -N- 2 ) < 0 SF NLBÀUŽS 2 2 ß f - 3, - 2 p , ^ 2, 3 h x2 - 4x +N- 1 = 2x +1 – 3 x2 - 6x +N- 2 = 0 mß 3 Ô=PMNBMŽ 36 - N- 2 ) = 0 –+ – 36 -N+ 8 = 0 ÖRNEK 10 ,PPSEJOBU EÑ[MF 11 NJOEFWFSJMFOQB N= 44 j m = y SBCPM WF EPôSV x HSBGJLMFSJOF HÌSF  3 –1 O 3 BLBÀUŽS 4 ÖRNEK 7 –4 y = ax + 2  Z= x2 - N- 1 ) x +N- 1 QBSBCPMÑOÑOYFLTFOJOFUFôFUPMBCJMNFTJJÀJONOJO 1BSBCPMÑOEFOLMFNJZ=N Y+ 1 ) ( x - 4 ) ve ( 0, - 4 ) BMBCJMFDFôJEFôFSMFSJCVMVOV[ EFOLMFNJTBôMBZBDBôŽOEBON=CVMVOVS Z= ( x + 1 ) ( x - QBSBCPMÑÑ[FSJOEFLJ  - EPôSV Ô=PMNBMŽ EFOLMFNJOJTBôMBS0IBMEF  N- 1 )2 - N-1 ) = 0 -4 = a. 3 + 2 j a = -CVMVOVS  N2 -N+ 2 ) = 0  N-  N- 1 ) = 0 N=WFN=CVMVOVS 5. 13 11 49 8. –1 9. f - 3, - 2 p , ^ 2, 3 h 10. –2 6. 7. 1 ve 2 3 3

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 11 :BOEBLJHSBGJôFHÌSF ÖRNEK 13 BDLBÀUŽS y y = ax2 – 4x + c  Z= x2 + 2x + 5 QBSBCPMÑÑ[FSJOEF Z= x +EPôSVTVOBFOZBLŽO OPLUBOŽOLPPSEJOBUMBSŽUPQMBNŽLBÀUŽS O2 4 x Z = x2 + 2x +   QBSBCPMÑOF  Z = x +  EPôSVTVOB QB –2 SBMFM PMBDBL öFLJMEF WF \"  Y0  Z0  OPLUBTŽOEBO HFÀFO %PôSVEFOLMFNJZ= x -EJS Z= x +DUFôFUJOJÀJ[FSTFL #VEPôSVJMFQBSBCPM  - WF   OPLUBMBSŽ y = x2 + 2x + 5 LFTJöUJôJOEFO y = x + c 2 5 y = x + A(x0, y0) c = -2 ve a = CVMVOVS 4 5 #VSBEBO a.c = - EJS 2 x2 + 2x + 5 = x + c x2 + x + 5 - c = 0 EFOLMFNJOEFÔ=PMNBMŽEŽS 1 - 4(5 - c) = 0 j c= 19 4 21 \" OPLUBTŽOŽO BQTJTJ x + x + = 0  EFOLMFNJOJO LÌLÑ 4 ÖRNEK 12 1 17 PMBO x = - EJS0SEJOBUŽJTF y = CVMVOVS  Z= x2 - 3x - QBSBCPMÑOÑOIBOHJOPLUBTŽOEBLJUFôFUJZ= 5x - 30 24 EPôSVTVOBQBSBMFMEJS 1 17 15 Af - , pOPLUBTŽOŽOLPPSEJOBUMBSŽUPQMBNŽ UÑS 24 4 Z= x2 - 3x -QBSBCPMÑOF Z= 5x-EPôSVTVOB ÖRNEK 14 QBSBMFMPMBDBLöFLJMEFWF\" Y0 Z0 OPLUBTŽOEBOHFÀFO Z= x2 - 2x - 2 Z= 5x +DUFôFUJOJÀJ[FSTFL QBSBCPMÑOÑO EFOLMFNJZ= 2x +PMBOLJSJöJOJOPSUB y = x2 –3x – 10 OPLUBTŽOŽOPSEJOBUŽLBÀUŽS yy==55xx++c– 30 y = x2 –2x – 2 A(x0, y0) A(x 0, y 0) y = 2x + 3 x2 - 3x - 10 = 5x + c ,JSJöJO PSUB OPLUBTŽ \" Y0  Z0  PMTVO \" OPLUBTŽOŽO BQTJTJ x2 - 8x - 10 - c = 0 PMBO Y0 BZOŽ [BNBOEB QBSBCPM JMF EPôSVOVO PSUBL ÀÌ[Ñ NÑOÑOY=SEFôFSJOFFöJUUJS EFOLMFNJOEFÔ=PMNBMŽEŽS x2 - 2x - 2 = 2x + 3 j x2 - 4x - 5 = 0 64 - 4 ( -10-c ) = 0 b EBOY0=EJS A(x0 Z0 OPLUBTŽBZOŽ[B 0IBMEFr = - 64 + 40 + 4c = 0 2a c = -CVMVOVS NBOEBZ= 2x + 3 dPôSVTVÑ[FSJOEFPMEVôVOEBO\"  Z0) \"OPLUBTŽOŽOBQTJTJY2 - 8x + 16 =EFOLMFNJOJOLÌ EFOLMFNJTBôMBSZ0= 4 + 3 jZ0 =CVMVOVS LÑPMBOY=UÑS 0SEJOBUŽJTFZ= -CVMVOVS 0IBMEF\"  - EŽS 5 12. (4, –6) 50 15 14. 7 11. - 13. 2 4

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÷LJ1BSBCPMÑO#JSCJSJOF(ÌSF%VSVNV d) Z= 2x2 - 2x - 5  Z= x2 - 4x - 7$1,0%m/*m 2x2 - 2x - 5 = x2 - 4x - 10  Z= ax2 + bx +DQBSBCPMÐJMFZ=LY2 +QY+S x2 + 2x + 5 = 0 QBSBCPMÐOÐOLFTJNOPLUBMBSŽCVMVOVSLFOCVJLJ EFOLMFNPSUBL¿Ë[ÐMÐS Ô= 4 - 20 = - 16 <PMEVôVOEBOSFFMLÌL ZPL0IBMEFJLJQBSBCPMLFTJöNF[ ÖRNEK 14 ÖRNEK 15 \"õBóŽEBLJQBSBCPMMFSJOCJSCJSJOFHËSFEVSVNMBSŽOŽJODFMF-  Z= x2 - 8x +JMFZ= -x2 + x + 1 ZJOJ[7BSTBLFTJNOPLUBMBSŽOŽCVMVOV[ QBSBCPMMFSJOJO LFTJN OPLUBMBSŽOŽO BQTJTMFSJ UPQMBNŽ LBÀUŽS a) Z= x2 - 5x + 2  Z= x2 - x - 6 x2 - 8x + 2 = -x2 + x + 1 2x2 - 9x + 1 = 0 j D = 73 > 0 x2 - 5x + 2 = x2 - x - 6 4x = 8 9 x=2 x +x = x = 2 jZ= -CVMVOVS 1 22 0IBMEFJLJQBSBCPM  - OPLUBTŽOEBLFTJöJS ÖRNEK 16 b) Z= x2 - 4x + 1  Z= -x2 + 2x - 3  Z= 2x2 - 4x +WFZ= x2 - x +L- 1 QBSBCPMMFSJOJO GBSLMŽ JLJ OPLUBEB LFTJöNFTJ JÀJO  L x2 - 4x + 1 = -x2 + 2x - 3 IBOHJBSBMŽLUBPMNBMŽEŽS 2x2 - 6x + 4 = 0 2x2 - 4x + 1 = x2 - x +L- 1 x2 - 3x + 2 = 0 x2 - 3x + 2 -L= 0 x = 2 ve x =EJS EFOLMFNJOEFÔ>PMNBMŽ 9 - 4 ( 2 -L > 0 x = 2 jZ= -3 x = 1 jZ= -2 9 - 8 +L> 0 0IBMEFJLJQBSBCPM  -3 ) ve ( 1, - OPLUBMBSŽOEBLF L> -1 TJöJS 1 c) Z= x2 - 2x + 3 k >-  Z= -x2 + 6x - 5 12 x2 - 2x + 3 = -x2 + 6x - 5 2x2 - 8x + 8 = 0 ÖRNEK 17 x2 - 4x + 4 = 0 ( x - 2 )2 = UBNLBSF  Z= -x2 + 3x -NWFZ= x2 - x +N-1 x = 2 jZ= 3 QBSBCPMMFSJOJOPSUBLOPLUBMBSŽOŽOCVMVONBNBTŽJÀJO  0IBMEFJLJQBSBCPM   OPLUBTŽOEBCJSCJSJOFUFôFUUJS NIBOHJBSBMŽLUBPMNBMŽEŽS -x2 + 3x -N= x2 - x +N- 1 2x2 - 4x +N- 1 = 0 EFOLMFNJOEFÔ<PMNBMŽEŽS 16 - N- 1 ) < 0 16 -N+ 8 < 0 N> 24 N>CVMVOVS 14. B   m C   m   m D    EFUFôFU 51 9 16. d - 1 , 3 n 17. ( 1, R ) E LFTJöNF[15. 2 12

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 18 y = x2 + kx + p UYARI y = x2 + mx + n y Z= ax2 + bx +DQBSBCPMÐOFPSJKJOEFO¿J[JMFOUFóFU- MFSCJSCJSJOFEJLJTFÓ= -EJS –2 O 5x :VLBSŽEBLJHSBGJôFHÌSF  m - k + n LBÀUŽS ÖRNEK 20 p Z= x2 -LY+ 2 1BSBCPMMFSJOLFTJöNFOPLUBTŽ Y1  PMTVO Z= x2+NY+OQBSBCPMÑOÑOLÌLMFSUPQMBNŽ QBSBCPMÑOFPSJKJOEFOÀJ[JMFOUFôFUMFSCJSCJSJOFEJLPM EVôVOBHÌSF QP[JUJGLHFSÀFLTBZŽTŽLBÀPMNBMŽEŽS -2 + x1 = -N Z= x2 +LY+QQBSBCPMÑOÑOLÌLMFSUPQMBNŽ Ô= -PMNBMŽEŽS L2 - 4.1.2 = -1 jL2 j 7 x1 + 5 = -LEŽS#VSBEBO k =\" 7 N-L=CVMVOVS LOJOQP[JUJGEFôFSJ 7 EJS #VJLJQBSBCPMÑOLÌLMFSÀBSQŽNŽ x1. (-2 ) =O x1 . 5 =QPMEVôVOEBO n2 n 33 p = - 5 CVMVOVS#VSBEBOm - k + p = 5 UJS UYARI Z= ax2 + bx +DQBSBCPMÐOFYFLTFOJOJLFTUJóJOPL- UBMBSEBO ¿J[JMFO UFóFUMFS EJL LFTJõJZPSTB Ó =  PM- NBMŽEŽS ÖRNEK 19 y y = 2x2 – 3x + n Ox ÖRNEK 21 y = –x2 + mx + 2  Z= x2 +NY+ 12 QBSBCPMÑOÑOYFLTFOJOJLFTUJôJOPLUBMBSEBOÀJ[JMFO :VLBSŽEBLJHSBGJôFHÌSF N+OLBÀUŽS UFôFUMFS EJL LFTJöJZPSMBSTB N OJO BMBCJMFDFôJ QP[JUJG EFôFSLBÀUŽS 1BSBCPMMFSJOYFLTFOJOJLFTUJôJOPLUBMBSPMBO Y1, 0 ) ve ( x2  OPLUBMBSŽQBSBCPMMFSJOLFTJöJNOPLUBMBSŽEŽS Ô=PMNBMŽEŽS 0 IBMEF JLJ QBSBCPMÑO LÌLMFS UPQMBNŽ JMF LÌLMFS ÀBSQŽ N2 - 4. 1.12 = 1 NŽCJSCJSJOFFöJUUJS N2 = 49 N= ± 7 3 NOJOQP[JUJGEFôFSJEJS x +x = =m 52 20. 7 21. 7 1 22 n x .x = = - 2 & n = - 4 12 2 35 #VSBEBOm + n = - 4 = - CVMVOVS 22 33 5 18. 19. - 5 2

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 22 ÖRNEK 25 Z=G Y = 3x2 + 5x +GPOLTJZPOVWFSJMJZPS YFLTFOJOFUFôFUWFY-Z+ 6 =EPôSVTVZMBFL TFOMFSÑ[FSJOEFLFTJöFOQBSBCPMÑOEFOLMFNJOFEJS f ( x +L GPOLTJZPOVOVOHSBGJôJZFLTFOJOFHÌSFTJ NFUSJLPMEVôVOBHÌSF LLBÀUŽS x = 0 jZ= 2 f ( x ) = 3x2 + 5x + 11 Z= 0 j x = -6 5 QBSBCPMYFLTFOJOF -  OPLUBTŽOEBUFôFUPMNBMŽ0IBM QBSBCPMÑOÑOUFQFOPLUBTŽOŽOBQTJTJ - EŽS de f ( x ) = a ( x + 6 )2 + 0 6 5   OPLUBTŽEFOLMFNJTBôMBS f ( x +L GPOLTJZPOVOVOUFQFOPLUBTŽ - - k = 0 PM 2 = 2 & a= 1 6 a.6 18 NBMŽEŽS 5 #VSBEBOk = - CVMVOVS 6 f^ x h = 1 ^ x + 6 h2 CVMVOVS 18 ÖRNEK 23  Z= 3x2 - x -WFZ= x2 - 4x + 8 QBSBCPMMFSJOJOLFTJNOPLUBMBSŽOEBOWFPSJKJOEFOHF ÀFOQBSBCPMÑOEFOLMFNJOJCVMVOV[ 0SJKJOEFOHFÀFOQBSBCPMMFSZ= ax2 +CYCJÀJNJOEFEJS 8/ 2 + 5/ y = 3x - x - 5 y = 2 - 4x + 8 x Z= 29x2 - 28x #VSBEBOZ- 29x2 + 28x =CVMVOVS ÖRNEK 26  Z= - (x -S 2 +LWFZ= 3x2 r2 PSBOŽLBÀUŽS QBSBCPMMFSJUFôFUPMEVôVOBHÌSF, k ÖRNEK 24 0SUBLÀÌ[ÑNZBQŽMŽSTB -x2 +SY-S2 +L= 3x2 G Y = 2x2 +GPOLTJZPOVWFSJMJZPS 4x2 -SY+S2 -L= 0 Z=G Y- 3 ) + 1 D =PMNBMŽ GPOLTJZPOVOVOBMBCJMFDFôJNJOJNVNEFôFSLBÀUŽS S2 - S2 -L = 0 S2 -S2 +L= 0 f( x ) = 2x2 +  QBSBCPMÑOÑO UFQF OPLUBTŽ 5     OPLUB S2 =L TŽEŽS Z= 2f ( x - 3 ) +GPOLTJZPOVOVOUFQFOPLUBTŽ 2 T ( 3, 2f ( 0 ) + PMEVôVOEBO5   CVMVOVS #VSBEBOGPOLTJZPOVOVOBMBCJMFDFôJFOLÑÀÑLEFôFSUÑS r4 = CVMVOVS k3 5 23. ZmY2 + 28x = 0 24. 3 53 25. y = 1 ^ x + 6 h2 4 22. - 26. 18 3 6

TEST - 19 1BSBCPM%PôSV 1BSBCPM1BSBCPM\"SBTŽOEBLJ÷MJöLJ 1.  Z= x2 - 2x + 2 4. Z= 2x2 - 3x +N-1 QBSBCPMÑJMFZ= 4 -YEPôSVTVOVOLFTJNOPL QBSBCPMÑZ= 2 -YEPôSVTVOBUFôFUPMEVôV OBHÌSF NLBÀUŽS | |UBMBSŽ\"WF#PMEVôVOBHÌSF \"# LBÀUŽS A) 3 2 B) 11 C) 10 25 5 C) - 9 D) 3 E) 2 2 A) B) 16 16 8 E) - 7 16 D) - 1 2 2. Z= 3x2 - x + 1  QBSBCPMÑJMFZ= 5x +EPôSVTVOVOLFTJNOPL 5. G Y = 3x2 - 2x -N- 1 UBMBSŽ\"WF#PMEVôVOBHÌSF [\"#]EPôSVQBSÀB QBSBCPMÑJMFZ= 2 -YEPôSVTVJLJOPLUBEBLF TJöUJôJOFHÌSF NOJOBMBCJMFDFôJFOLÑÀÑLUBN TŽOŽOPSUBOPLUBTŽBöBôŽEBLJMFSEFOIBOHJTJEJS TBZŽEFôFSJLBÀUŽS A) ( -3, -8 ) B) ( -2, -3 ) C) ( 1, 2 )  %     &    A) - #  $  %  &  6. Z= x2 - 2x +WFZ= -2x2 + x -L+ 1 3. Z= 2x2 - N- 2 ) x - 1  QBSBCPMMFSJOJOJLJOPLUBEBLFTJöNFTJJÀJOLOF PMNBMŽEŽS  QBSBCPMÑ JMF Z = NY + N  EPôSVTVOVO LFTJN OPLUBMBSŽOŽOBQTJTMFSJUPQMBNŽ-PMEVôVOBHÌ A)L< - 5   # L> 5 SF NLBÀUŽS 8 8 C) - 5 <L< 5 D) -2 <L< 2 88 \"  #  $  % -1 E) -2 & L< -2 1. A 2. & 3. D 54 4. A 5. $ 6. A

1BSBCPM%PôSV 1BSBCPM1BSBCPM\"SBTŽOEBLJ÷MJöLJ TEST - 20 1. y 4. ôFLJMEFZ= x2 - 4x -QBSBCPMÐWFSJMNJõUJS y –3 4x O x O y = –x2 + kx + p A B y = –x2 + mx + n  :VLBSŽEBLJ HSBGJôF HÌSF  (m - k) . n   PSBOŽ LBÀ UŽS p  \"#0YPMEVôVOBHÌSF \"WF#OPLUBMBSŽOŽOBQ TJTMFSJUPQMBNŽLBÀUŽS A) 21 B) 11 C) 6 25 13 4 2 D) E) A) 8 B) 7 C) 6 D) 5 E) 4 42 2. Z= 2x - 1 5. Z= x2 - 4  EPôSVTVOVO   G Y  = x2 - LY +   QBSBCPMÑOÑ  QBSBCPMÑOFEŽöŽOEBLJ\"  - OPLUBTŽOEBOÀJ \"   O   OPLUBTŽOB HÌSF TJNFUSJL JLJ OPLUBEB [JMFOUFôFUMFSJOFôJNMFSJÀBSQŽNŽLBÀUŽS LFTNFTJJÀJOLOFPMNBMŽEŽS \"  #  $  %  &  A) -4 B) -2 C) 2 D) 4 E) 6 3. y = x2 - 3 x + 2 6. G Y = x2 - 4x +L 2  QBSBCPMÑJMFZ= 2x +EPôSVTVOVOLFTJNOPL UBMBSŽOŽOPSEJOBUMBSŽUPQMBNŽLBÀUŽS QBSBCPMÑOÑOZ= -2x +EPôSVTVOBEJLUFôF \"  #  $  %  &  UJOJOEFOLMFNJOFEJS \" Z= x + # Z= x -$ Z= 1 x + 1 2 D) Z= 1 x - 1 E) Z= 1 x + 2 2 2 1. A 2. D 3. $ 55 4. & 5. D 6. D

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr &õ÷54÷;-÷,-&3* ÷LJODJ%FSFDFEFO#JS#JMJONFZFOMJ D y = x2 - 4x + 2 &öJUTJ[MJLMFSJO¦Ì[ÑN,ÑNFTJ TANIM D = (- 2 - 4.1.2 = 8 x 2– 2 2+ 2 x2 – 4x + 2 + –+ y = ax2 + bx + c üç terimlisinde x= 4-2 2 =2- 2 EVSVN 12 x= 4+2 2 =2+ 2 D > 0 ise 22 x –R x1 x2 +R BOŽO BOŽO BOŽO ZBY2 + bx + c JõBSFUJ JõBSFUJOJO JõBSFUJ JMFBZOŽ JMFBZOŽ UFSTJ (KökleriO BSBTŽ B OŽO JõBSFUJOJO UFSTJ  LÌLMFSJO E y = -x2 + 2x - 1 EŽõŽBOŽOJõBSFUJOJOBZOŽTŽEŽS EVSVN D = 0 ise -(x2 - 2x + = 0 x 1 -(x - 2 = 0 x2 + 4x + 2 –– x mÞ x1 Y2 Þ x1 = x2 = 1 ZBY2 + bx + c BOŽO BOŽO JõBSFUJ JõBSFUJ JMFBZOŽ JMFBZOŽ (x1 = x2OJOEŽõŽOEB IFSCÌMHFBOŽOJõBSFUJOJO BZOŽTŽEŽS  EVSVN D < 0 ise +R F y = x2 - x + 3 x –R ZBY2 + bx + c BOŽOJõBSFUJJMFBZOŽ D = (- 2 - 4.1.3 = -11 < 0 x –ß +ß 3FFMLÌLZPLUVS )FSZFSBOŽOJõBSFUJOJOBZOŽTŽEŽS x2 – x + 3 + + + + + + ÖRNEK 1 \"öBôŽEBLJÑÀUFSJNMJMFSJOJöBSFUMFSJOJJODFMFZJOJ[ B y = x2 - 4x + 3 x2 - 4x + 3 = 0 x 13 G y = -x2 + 2x - 10 (x -  Y- = 0 x2 – 3x + 3 + –+ x1 = 1, x2= 3 D = 22 - 4 ( -  -  x –ß +ß C y = -x2 + 5x - 6 = - 36 < 0 –x2 + 2x – 10 – – – – – – 3FFMLÌLZPLUVS -(x2 - 5x + = 0 x 23 -(x -  Y- = 0 –x2 – 4x + 6 – +– x1 = 2 , x2= 3 56

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 2 G x2 - 2x + 6 > 0 \"öBôŽEBLJ FöJUTJ[MJLMFSJO FO HFOJö ÀÌ[ÑN BSBMŽôŽOŽ D = (- 2 - 4.1.6 x –ß +ß CVMVOV[ = -20 < 0 x2 – 2x + 6 + + + + + + B x2 - x - 2 > 0 3FFMLÌLZPLUVS ¦,=3 x –1 2 (x -  Y+ > 0 x2 – x – 2 + –+ x1= -1, x2= 2 ¦,= (-ß - b  ß C -x2 - 3x # 0 H x2 - 3x + 12 < 0 D = (- 2 - 4.1.12 x –ß +ß = -39 x –3 0 -x(x + # 0 x2 – 3x + 12 + + + + + + –x2 – 3x – +– 3FFMLÌLZPLUVS x1= -3, x = 0 ¦,= q 2 ¦,= (-ß -3] b [ ß D x2 - x < 6 x –2 3 x2 - x - 6 < 0 ÖRNEK 3 x2 – x – 6 + –+ (x -  Y+ < 0 x1= -2, x2= 3 N O`3+PMNBLÑ[FSF x2 + ( m - n ) x - mn < 0 ¦,= (-  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ N -   O -   PMEV E x2 - 2x + 1 > 0 ôVOBHÌSF N+OUPQMBNŽLBÀUŽS? x + 1 (x - 2 > 0 x2 + N-O Y-NO< 0 x2 – 2x + 1 + x1= x2 = 1 (x +N  Y-O < 0 x –ß –m n +ß + ¦,=3- {1} x2 NmO YmæNO + – mN O  Nmæ Omæ F -x2 + 4x $ 4 -N=N- O=O- 6 N=   O= 6 -(x2 - 4x + $ 0 N+O=CVMVOVS -(x - 2 $ 0 x 2 –x2 + 4x – 4 –– x1 = x2 = 2 ¦,= {2} 2. B  mß m b  ß  C  mß m>b< ß D  m   57 G 3H q 3. 15 E 3m\\^ F \\^

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 4 ÖRNEK 7 BWFCCJSFSQP[JUJGUBNTBZŽPMNBLÑ[FSF x2 - 2x + a - 1 > 0 x2 - ( a + b ) x + a . b < 0 FöJUTJ[MJôJ UÑN Y HFSÀFL TBZŽMBSŽ JÀJO TBôMBOŽZPSTB B FöJUTJ[MJôJOJTBôMBZBOYUBNTBZŽMBSŽOŽOUPQMBNŽPM OŽOFOHFOJöEFôFSBSBMŽôŽOFEJS EVôVOB HÌSF  CV LPöVMV TBôMBZBO LBÀ GBSLMŽ N  O  JLJMJTJWBSEŽS D <PMNBMŽ 4 -B+ 4 < 0 ( x -B  Y-C < 0 8 <Bj 2 <B x =B Y= b BOŽOFOHFOJöEFôFSBSBMŽôŽ  ß CVMVOVS x ab + –+ x2 – (a + b)x + ab x ` B C PMEVôVOEBOYEFôFSMFSJOJOUPQMBNŽJTF ÖRNEK 8 10 + 11 =EFO   WF    6 + 7 + 8 =EFO   WF    x2 + ( a - 1 ) x + 9 $ 0 GBSLMŽTŽSBMŽJLJMJWBSEŽS FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ UÑN HFSÀFL TBZŽMBS PM ÖRNEK 5 EVôVOBHÌSF BOŽOFOHFOJöEFôFSBSBMŽôŽOFEJS x2 - ax + a - 1 > 0 D #PMNBMŽ B- 2 - 4.1.9 # 0 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJ3- {1}PMEVôVOBHÌSF  B- 2 - 36 # 0 B2 -B- 35 # 0 BLBÀUŽS B-  B+ # 0 D =PMNBMŽ B2 - B- = 0 x –5 7 B- 2 = 0 + –– B=CVMVOVS a2 – 2a – 35 0IBMEFBOŽOFOHFOJöEFôFSBSBMŽôŽ[-5, 7]CVMVOVS ÖRNEK 6 ÖRNEK 9 4x2 - mx + 1 > 0 -x2 + 6x + a + 3 > 0 FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ R - * m - 7 4  PMEVôV FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJCPöLÑNFPMEVôVOBHÌ 2 SF BOŽO FOHFOJöEFôFSBSBMŽôŽOFEJS OBHÌSF NLBÀUŽS D <PMNBMŽ D =PMNBMŽ 36 - 4 ( -  B+ < 0 N2- 4.4.1 = 0 36 +B+ 12< 0 N+  N- = 0 B< -48 N= - N= 4 B< -12 N= -JÀJOY2 + 4x + 1 > 0 j (2x + 2 > 0 (-ß - CVMVOVS Ç .K = R - ( - 1 2PMEVôVOEBOTBôMBNB[ 2 N=JÀJOY2 - 4x + 1 > 0 j (2x - 2 > 0 ¦,= R - ( 1 2TBôMBS 2 0IBMEFN =CVMVOVS 4. 4 5. 2 6. 4 58 7.  ß 8. <m > 9. mß m

÷LJODJ%FSFDFEFO#JS#JMJONFZFOMJ&öJUTJ[MJLMFSJO¦Ì[ÑN,ÑNFTJ TEST - 21 1. x2 - 3x - 10 # 0 5. x2 - 4x + 4 > 0  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS A) ( -2, 5 ) B) [ -2, 5 ] A) R B) R - { 2 } C) R - { -2 } C) R - [ -2, 5 ] D) R - [ -2, 5 ) D) q &   Þ ) E) R 2. x2 - x - 20 < 0 6. x2 + 14x + 49 < 0  FöUJTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS A) ( -4, 5 ) B) [ -4, 5 ] A) R B) R - { -7 } C) { -7 } C) R - ( -4, 5 ) D) q D) q E) ( -Þ -7 ) E) R 3. 2x2 # x2 + 3x - 2 7. 4x2 + 4x + 1 $ 0  FöJUTJ[MJôJOJ TBôMBZBO Y UBN TBZŽ EFôFSMFSJOJO  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS UPQMBNŽLBÀUŽS A) R B) R - * - 1 4 A) 1 B) 2 C) 3 D) 4 E) 5 C) * - 1 4 2 2 D) q E) ( -ß, -7 ) 4. B CWFDHFSÀFLTBZŽMBSWFB< 0 < b <DPMNBL Ñ[FSF ( ax + b ) ( bx + c ) $ 0  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS 8. -x2 - 2x - 1 < 0 A) >- b , - c H B) f - b , - c p  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS ab ab A) R B) { -1 } C) R - { -1 } C) >- c , - b p D) f - c , - b p D) q E) ( - Þ ba ba E) >- c , - b H ba 1. # 2. \" 3. $ 4. & 59 5. # 6. D 7. \" 8. $

TEST - 22 ÷LJODJ%FSFDFEFO#JS#JMJONFZFOMJ&öJUTJ[MJLMFSJO¦Ì[ÑN,ÑNFTJ 1. x2 - mx + m + 8 > 0 5. NQP[JUJGCJSHFSÀFLTBZŽPMNBLÑ[FSF  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJ3- { 4 }PMEVôVOB x2 - m < 0 HÌSF NLBÀUŽS FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJ B- 2, b + PMEV ôVOBHÌSF B+CUPQMBNŽLBÀUŽS A) 16 B) 12 C) 8 D) 6 E) 3 A) -5 B) -3 C) -1 D) 3 E) 5 2. x2 + x + 3 < 0 6. x2 -Yâ-2  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS  FöJUTJ[MJôJOJTBôMBZBOYUBNTBZŽMBSŽOŽOUPQMBNŽ LBÀUŽS A) ( 1, 3 ) B) ( -1, 3 ) C) R D) R - { 3 } E) q A) -1 B) 0 C) 1 D) 2 E) 3 3. x2 - 4x + m + 2 > 0 7. #JSTBZŽOŽOLBSFTJJMFLBUŽOŽOUPQMBNŽOŽOGB[  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ SFFM TBZŽMBS PMEV MBTŽQP[JUJGPMEVôVOBHÌSF CVTBZŽOŽOFOHFOJö ôVOBHÌSF NOJOEFôFSBSBMŽôŽOFEJS EFôFSBSBMŽôŽOFEJS A) ( -Þ   #  -Þ -2 ) C) R A) R B) ( -1, 4 ) C) ( 1, -4 )  %   Þ  & q D) q E) ( -Þ  4. x2 + (m + 1) x + 4 > 0 8. x2 # x + 3 FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ SFFM TBZŽMBS PMEV 2 ôVOBHÌSF NOJOEFôFSBSBMŽôŽOFEJS  FöJUTJ[MJôJOJ TBôMBZBO Y UBN TBZŽ EFôFSMFSJOJO UPQMBNŽLBÀUŽS A) ( -5, 3 ) B) ( -3, 5 ) C) ( -6, 6 ) A) -2 B) -1 C) 0 D) 1 E) 3 D) ( -3, 4 ) E) ( -Þ  1. $ 2. & 3. D 4. \" 60 5. # 6. & 7. \" 8. $

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, &õ÷54÷;-÷,-&3** ¦BSQŽN WF #ÌMÑN õFLMJOEFLJ &öJUTJ[MJLMFSJO ÖRNEK 3 ¦Ì[ÑN,ÑNFTJ ( 9 - x2 ) ( x - 2 ) ( x2 + 2 ) < 0 %m/*m FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS  #JSEFO ¿PL ¿BSQBOMŽ FõJUTJ[MJLMFSJO ¿Ë[ÐN LÐ- ( 3 -Y  +Y  Y-  Y2 + < 0 NFTJCVMVOVSLFO IFS¿BSQBOŽOLËLMFSJCVMVOVQ x = 3, x = -3, x = 2 UBCMPZB TŽSBTŽZMB ZFSMFõUJSJMJS ¥BSQŽN WFZB CË- MÐN EVSVNVOEB PMBO JGBEFMFSJO CBõ LBUTBZŽMB- x –ß –3 2 3 ß SŽ BMŽOBSBL ¿BSQŽMŽS ¥ŽLBO TPOVDVO JõBSFUJ  TBó mY2) (x – 2) (x2+ 2) + – + – CBõUBLJBSBMŽóŽOJõBSFUJEJS%JóFSBSBMŽLMBSEBJõB- SFUEFóJõUJSJMFSFLZB[ŽMŽS ¦,= (-  b (3, Þ  &óFS ¿BSQBOMBSEBO CJSJOJO ¿JGU LBU LËLÐ WBSTB  ZBOJBZOŽLËLWFZBOJOLBUŽLBEBSEFOLMF- NJTBóMŽZPSTB CVLËLÐOTBóŽOEBWFTPMVOEBLJ JõBSFUBZOŽPMVS ÖRNEK 1 ÖRNEK 4 ( x - 2 ) ( x2 - 2x - 3 ) < 0 ( x - 1 ) ( x2 - 4x + 4 ) ( x - 3 ) $ 0 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS (x -  Y-  Y+ < 0 (x -  Y- 2 (x - $ 0 x = 2, x = 3, x = -1 x = 1, x =WFY=ÀJGULBUMŽLÌL x –ß –1 2 3 ß (x–2)(x2–2x–3) – + – + x –ß 1 2 3 ß – + ¦,= (-Þ, - b   (x – 1) (x – 2)2 Ymæ + – ¦,= (-Þ, 1] b [3, Þ b {2} ÖRNEK 2 ÖRNEK 5 ( x2 + 2x - 15 ) ( 7 - x ) < 0 ( x - 3 ) ( x2 - 6x + 9 ) ( 25 - x2 ) < 0 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS (x +  Y-  -Y < 0 (x -  Y- 2 (5 -Y  +Y < 0 x = -5, x = 3, x = 7 3 7ß x = 3, x = -WFY= 5 x –ß –5 x –ß –5 3 5ß (x2+2x–15) (7–x) + – + – (x–3) (x2mæY   mY2) + – + – ¦,= (-  b (7, Þ ¦,= (-  b (5, Þ  1. mÞ m b   2. m  b (7, Þ 61 3. m  b (3, Þ 4. mÞ >b [3, Þ b\\^ 5. m  b (5, Þ

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 6 ÖRNEK 9 x-1 <0 x2 + 4 $ 0 x-4 3-x FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS x=1,x=4 x=3 x –ß 1 4ß x –ß 3 ß x2 + 4 + – x–1 + – + mæY x–4 ¦,=   ¦,= (-ß  ÖRNEK 7 ÖRNEK 10 1 $1 x2 - 4x + 4 > 0 x-1 x2 + 1 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS 1 2-x ^ x - 2 h2 -1$0& $0 > 0 JTFY=ÀJGULBUMŽLÌLUÑS x-1 x-1 x2 + 1 x = 2, x = 1 x –ß 2 ß x –ß 1 2ß (x – 2)2 + + x2æ  mæY – + – x–1 ¦,=3- {2} ¦,= (1, 2] ÖRNEK 8 ÖRNEK 11 x-3 #0 x3 - 3x2 + 2x < 0 4-x - 2x - 4 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS x = 3, x = 4 xa x2 - 3x + 2 k <0 j x^ x - 2 h^ x - 1 h <0 x –ß 3 4ß -2^ x + 2 h -2^ x + 2 h x–3 – + – x = 0, x = -2, x = 1, x = 2 mæY ¦,= (-Þ, 3] b (4, Þ x –ß –2 0 1 2ß =3- (3, 4] x3 – 3x2 + 2x – + – + – –2x – 4 ¦,= (-ß - b   b (2, Þ 6.   7.  > 8. 3m  > 62 9. mß  10. 3m\\^11. mß m b   b (2, Þ

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 12 ÖRNEK 15 ( –x + 1) 2 (x2 - 4) 3 ^ 2x - 8 h.^ x2 - 2x + 1 h3 ≥0 ≤0 x-3 x2 - x - 6 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS x =ÀJGULBUMŽLÌL ^ 2x - 8 h^ x - 1 h6 x = -2, x = 2, x = 3 #0 x –ß –2 1 2 3ß ^ x - 3 h^ x + 2 h x =WFY= 1ÀJGULBUMŽLÌL (–x+1)2 (x2–4)3 – + + – + x = -UFLLBUMŽLÌL x–3 x –ß –2 1 3ß ¦,= [-2, 2] b (3, Þ (2x–8)(x–1)6 –++ + (x–3) (x+2) ¦,= (-Þ, - b {1} ÖRNEK 13 ÖRNEK 16 3x - 3 ≤ 3 - x ^ 1 - x h ^ x2 - 2x - 15 h x2 - 1 $0 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS x2 - 1 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS 3x - 3 +x-3#0 & x^ x - 2 h^ x - 1 h #0 ^ 1 - x h^ x - 5 h^ x + 3 h $0 x2 - 1 ^ x - 1 h^ x + 1 h ^ x - 1 h^ x + 1 h x = 0, x = -1, x = 2, x =ÀJGULBUMŽLÌL x = -3, x = -1, x =WFY=ÀJGULBUMŽLÌL x –ß –1 0 1 2ß x –ß –3 –1 1 5 ß x(x–2) (x–1) – + – – + (1–x) (x2–2x–15) + –+ +– (x–1) (x+1) x2 – 1 ¦,= (-Þ, - b [0, 2] - {1} ¦,= (-Þ, -3] b (-1, 5]- {1} ÖRNEK 14 ÖRNEK 17 x+1 > x+2 - 6 # - 1 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS x-1 x-2 x2 + x FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS x+1 x+2 - 2x >0 2 - >0 & x-1 x-2 ^ x - 1 h^ x - 2 h x +x-6 #0 x = 0, x = 1, x = 2 2 x +x x = -1, x = 0, x = -3, x = 2 x –ß 0 1 2ß x –ß –3 –1 0 2 ß –2x + – +– (x–1) (x–2) x2 Ymæ + –+ –+ x2 + x ¦,= (-Þ  b   ¦,= [-3, - b (0, 2] 12. <m >b (3, Þ 13. mÞ m b< >m\\^ 63 15.  mÞ m b\\^ 16. mÞ m>b m >m\\^ 17. <m m b  > 14. mÞ  b

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr %m/*m ÖRNEK 21  .VUMBL EFóFSMJ JGBEFMFS J¿FSFO FõJUTJ[MJLMFSEF  3x – 1. x2 + 2x – 3 > 0 ^ 3 – x h2017 | |f ( x ) $  PMEVóVOEBO NVUMBL EFóFSJO LËLÐ FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS TJTUFNJOJõBSFUJOFFULJFUNFZFDFóJOEFO¿JGULBU- MŽLËLHJCJEÐõÐOÐMFCJMJS x = 3, x = -WFY=ÀJGULBUMŽLÌL ÖRNEK 18 x –ß –3 13 ß + – x-2 3x–1.|x2+ 2x – 3| + + # 0 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS (3–x)2017 3-x ¦,= (-ß  - {-3, 1} x = 3, x =ÀJGULBUMŽLÌL x –ß 23 ß + – |x – 2| + 3–x ¦,= (3, Þ b {2} ÖRNEK 22 ÖRNEK 19 ^ x2 – 16 h . x – 1 ≤0 x -2 $ 0 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS 1– x x+3 FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJOFEJS x = -4, x = 4, x =ÀJGULBUMŽWF- x > 0 j 1 >YPM NBMŽEŽS x –ß –4 1 4 ß x = -3, x = -2 , x = 2 (x2m ]Ymæ] + – – + x –ß –3 –2 2 ß mæY |x| – 2 – + – + x+3 ¦,= [-  ¦,= (-3, -2] b [ ß ÖRNEK 20 ÖRNEK 23 x–1 –3 x2 – 2x – 15 <0 >0 x2 – 4x + 4 x–2 –1 FöJUTJ[MJôJOJTBôMBZBOLBÀUBOFYUBNTBZŽTŽWBSEŽS FöJUTJ[MJôJOJ TBôMBZBO Y UBN TBZŽ EFôFSMFSJOJO UPQMB NŽLBÀUŽS x = 4, x = -2, x =ÀJGULBUMŽLÌL x2 - 2x - 15 > 0 j (x -  Y+ > 0 ß x –ß –3 5 x –ß –2 24 ß (x – 5) (x + 3) + – + – + |x–1|–3 + – x2–4x+4 |x - 2| - 1 > 0 j |x - 2| >JTFY>WFY< 1 ¦,= {-1, 0, 1, 3}PMEVôVOEBOUBNTBZŽWBSEŽS xUPQ = ... -7 -6 - 5 - 4 + 6 + 7 + 8 + ... xUPQ = -CVMVOVS 18. (3, Þ b\\^ 19. m m>b< ß 20. 4 64 21.  mß  m\\m ^ 22. <m  23. m

¦BSQŽNWF#ÌMÑNõFLMJOEFLJ&öJUTJ[MJLMFSJO¦Ì[ÑN,ÑNFTJ TEST - 23 1. 1 > 1 5. 2x.^ x2 + 1 h ≤ 0 x-2 -x2 - x - 1 FöJUTJ[MJôJOJOFOHFOJö ÀÌ[ÑNLÑNFTJ BöBôŽEB FöJUTJ[MJôJOJO ÀÌ[ÑN BSBMŽôŽ BöBôŽEBLJMFSEFO LJMFSEFOIBOHJTJEJS IBOHJTJEJS \"     #   Þ  $    B) R+ C) R- A) R D) ( 0, 1 ) E) ( 0, 2 ) D) R+ b { 0 } E) R- b { 0 } - 2x (x2 - 5x + 6) 6. a < 0 <CPMNBLÐ[FSF 2. > 0 (ax + 1) (bx + 2) $0 8 - 2x x2 - a FöJUTJ[MJôJOJOFOHFOJö ÀÌ[ÑNLÑNFTJ BöBôŽEB LJMFSEFOIBOHJTJEJS  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO A) ( -Þ  b ( 2, 3 ) IBOHJTJEJS B) ( -Þ  b  Þ C) ( 2, 3 ) b  Þ  A) f – 3, - 2 H , >- 1 , 3 p D) (-Þ  b ( 2, 3 ) b  Þ ba E) ( 0, 2 ) b ( 3, 4 ) b  Þ B) >- 2 , - 1 H ba C) >- 1 , - 2 H ab D) f - 1 , a p , f a , - 2 p ab E) ^ - 3, a h , f - 2 , 3 p b (2 - x) 2 (x2 - 1) 5 3. ≤ 0 x2 - x + 3 FöJUTJ[MJôJOJOFOHFOJöÀÌ[ÑNBSBMŽôŽBöBôŽEBLJ 7. ( x - 4 ) ( x2 - ax + b ) $ 0 MFSEFOIBOHJTJEJS  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ [  ß  PMEVôVOB A) [ –1, 1 ] #  mÞ m] b { 2 } HÌSF BCLBÀUŽS C) [ –1, 1 ] b { 2 } %  mÞ m] b [1 , 2 ] A) 12 B) 24 C) 36 D) 48 E) 96 E) [ 1, 2 ] b { –1 } 4. x2 - 15 . ^ 49 - x2 h $ 0 (x - 2) 2 (4x + a)  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJOEF LBÀ UBOF UBN 8. ≤ 0 TBZŽWBSEŽS 3x - b A) 4 B) 6 C) 8 D) 12 E) 16  FöJUTJ[MJôJOJOÀÌ[ÑNLÑNFTJ-3 < x #PMEVôV OBHÌSF B+CUPQMBNŽLBÀUŽS A) -12 B) -15 C) -29 D) 2 E) 27 1. \" 2. D 3. $ 4. $ 65 5. \" 6. # 7. D 8. $

TEST - 24 ¦BSQŽNWF#ÌMÑNõFLMJOEFLJ&öJUTJ[MJLMFSJO¦Ì[ÑN,ÑNFTJ 1. ( 3 - x ) . ( x2 -Y ã x - 1 ^ 2 - x h.5x  FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO 5. ≥ 0 IBOHJTJEJS x2 - 9 A) [ 0, 3 ] B) [ 3, R) C) [ 0, R )  FöJUTJ[MJôJOJOHFSÀFLTBZŽMBSEBLJÀÌ[ÑNLÑNFTJ BöBôŽEBLJMFSEFOIBOHJTJEJS D) ( -R, 3 ] E) ( -R, 0 ] b { 3 } A) ( – R, – 3 ) B) ( – R ,– 3 ) b { 1 } b [ 2, 3 ) C) [ 2, R ) – { 3 } D) ( – R, – 3 ) b ( 3, R ) E) R – [ 2, 3 ] 2. ( 2 - x ) 2012 . ( x + 1 ) 2013 > 0 6. B< 0 <CPMNBLÑ[FSF  FöJUTJ[MJôJOJOFOHFOJöÀÌ[ÑNBSBMŽôŽBöBôŽEBLJ ax + b > 0 MFSEFOIBOHJTJEJS x-a  FöJUTJ[MJôJOJO ÀÌ[ÑN BSBMŽôŽ BöBôŽEBLJMFSEFO A) R - [ - 1, 2 ] B) ( -R, 2 ) IBOHJTJEJS C) ( - 1, R ) D) ( -1, R ) - { 2 } E) ( -R, 2 ) - {- 2 } A) f a , - b p B) ( -R , a ) C) f - b , 3 p a a D) R - >a , - b H b a E) f , a p a | |3. x + 2 . ( x 2 + 1 ) . ( x 2 + 6x + 9 ) . ( 1 - x ) > 0  FöJUTJ[MJôJOJOFOHFOJöÀÌ[ÑNBSBMŽôŽBöBôŽEBLJ _ x + 4 i._ x + 5 i2 MFSEFOIBOHJTJEJS 7. # 0 A) ( -R, 1] B) [-3, R ) x C) [1, R ) b { -3 } D) (- R ,1] b { -3, -2 }  FöJUTJ[MJôJOJTBôMBZBOGBSLMŽUBNTBZŽMBSŽOUPQMB E) [1, R ) b { -3, -2 } NŽLBÀUŽS A) -15 B) -12 C) -10 D) -8 E) - 6 ^ 4 – x h.^ x + 1 h 8. 4 > 1 4. > 0 2-x  FöJUTJ[MJôJOJO HFSÀFL TBZŽMBSEBLJ FO HFOJö ÀÌ x-7  FöJUTJ[MJôJOJTBôMBZBOGBSLMŽEPôBMTBZŽMBSŽOUPQ [ÑNBSBMŽôŽBöBôŽEBLJMFSEFOIBOHJTJEJS MBNŽLBÀUŽS A) ( -R, 2 ) B) ( -2, 2 ) C) ( -2, R ) A) 4 B) 7 C) 9 D) 11 E) 15 D) ( 2, R ) E) R - [ -2, 2 ] 1. & 2. D 3. D 4. D 66 5. # 6. \" 7. \" 8. #

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, &õ÷54÷;-÷,-&3*** ÷LJODJ%FSDFEFO#JS#JMJONFZFOMJ&öJUTJ[MJL4JT ÖRNEK 4 UFNMFSJOJO¦Ì[ÑN,ÑNFTJ x2 - 1 ≤ 0 %m/*m x-4 x2 - 3x + 2 > 0  öLJWFZBEBIBGB[MBFõJUTJ[MJóJOCJSBSBEBCVMVO- EVóV FõJUTJ[MJL TJTUFNMFSJOEF  ¿Ë[ÐN LÐNFTJ FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOFEJS CVMVOVSLFO UÐNFõJUTJ[MJLMFSJOPSUBL¿Ë[ÐNLÐ- NFTJPMVõUVSVMVS ^ x - 1 h^ x + 1 h # 0 ,ÌLMFSY= -1, x =WFY= 4 ÖRNEK 1 x-4 2x - 6 > 0 (x -  Y- >,ÌLMFSY=WFY= 2 1-x<0 FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOFEJS x –ß –1 1 2 4ß (x–1) (x+1) – + – – + x–4 (x – 2) (x – 1) + + – + + 2x - 6 > 0 j x > 3 ¦,= (-Þ, -1] b   1 - x < 0 j x >PMEVôVOEBO ¦,= (3, Þ ÖRNEK 5 ÖRNEK 2 2 < x2 - x < 6 FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOFEJS x2 - x > 0 2x - 1 < 0 x2 - x - 2 > 0 j (x -  Y+ > 0 FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOFEJS x2 - x - 6 < 0 j (x -  Y+ < 0 x (x - > 0 1ß x –ß –2 –1 2 3 ß x mß 0 –+ (x – 2) (x + 1) + + – + + (x – 3) (x + 2) + – – – + x2 – x + ¦,= (-2, - b   1 2x - 1 < 0 j x < 2    ¦,= (-ß  ÖRNEK 3 ÖRNEK 6 x2 - x # 2 |x – 2| < 3 x2 + x > 6 1 >1 FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOFEJS x (x -  Y+ # 0 FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOFEJS x mß –1 2 ß |x - 2| < 3 j -3 < x - 2 < 3 j -1 < x < 5 (x–2)(x+1) + –+ 1 >1 & 1 -1>0& 1-x >0 x x x (x +  Y- > 0 x mß 0 1ß x –3 2 mæY – + – x (x+3)(x–2) + – + ¦,=   ¦,= q 1. (3, Þ 2. mß  3. q 67 4. mÞ m>b   5.  m m b   6.

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr ÖRNEK 7 JLJODJ%FSFDFEFO#JS#JMJONFZFOMJ%FOLMFNJO ,ÌLMFSJOJO÷öBSFUJ x2 + 4 > 0 x2 – 4 < 0 %m/*m 1 >1 ax2 + bx + c =EFOLMFNJOJOLËLMFSJOJCVMNB- x-2 EBO  LËLMFSJOJO JõBSFUJOJ BõBóŽEBLJ UBCMPMBSEBO ZBSBSMBOBSBLCVMBCJMJSJ[ FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOFEJS x2 + 4 >EBJNBTBôMBOŽS c x1 < 0 < x2 x1.x2 = a < 0 x2 - 4 < 0 j (x - 2  Y+ < 0 –b x1+ x2 = a 1 3-x D>0 c > 0 j 0 < x1< x2 a x-2 -1>0& x-2 >0 x1 < x2 x1.x2 = >0 x –ß –2 2 3ß x1+ x2 = –b < 0 j x1< x2 < 0 a (x – 2) (x + 2) + –+ + –b > 0 j 0 = x1< x2 x1 + x2 = a c 3–x – –+– x1.x2 = a = 0 –b x–2 a x1 + x2 = < 0 j x1 < x2 = 0 ¦,= q x1 . x2 = c =0 j x1 = x2 = 0 a D=0 x1 + x2 = –b > 0 j x1 = x2 > 0 a c x1 . x2 = a >0 x1 + x2 = –b < 0 j x1 = x2 < 0 a ÖRNEK 8 ÖRNEK 9 4x > 0 \"öBôŽEBLJEFOLMFNMFSJOLÌLMFSJOJCVMNBEBOLÌLMFSJ 2 >1 OJOWBSMŽôŽOŽWFJöBSFUJOJJODFMFZJOJ[ x2 - x B 3x2 - 4x - 5 = 0 x3 > 1 FöJUTJ[MJLTJTUFNJOJOÀÌ[ÑNLÑNFTJOFEJS 4x > 0 j x > 0 D = (- 2 - 4.3 (- = 16 + 60 = 76 >PMEVôVOEBOCJS 2 -^ x - 2 h^ x + 1 h -1>0& >0 x2 - x x^ x - 1 h CJSJOEFOGBSLMŽJLJLÌLWBSEŽS x mß –1 1 2 ß c5 – x1 . x2= a = - 3 < 0   PMEVôVOEBO LÌLMFS [ŽU JöBSFU –(x–2) (x+1) + –+ MJEJS Y Ymæ x +x =- b4 > 0 PMEVôVOEBO = 12 a 3 x3 > 1 j x > 1 | |x 1 < 0 < x2WFY2 > x1 EJS ¦,=   7. q 8.   68 9. B x1 < 0 < x2WFY2 > |x1|

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, C x2 - 4x + 1 = 0 ÖRNEK 10 D = (- 2 - 4.1.1 = 12 >PMEVôVOEBOCJSCJSJOEFOGBSL N>PMNBLÑ[FSF ( m + 1) x2 - 3 ( m + 3 ) x + m + 4 = 0 MŽJLJLÌLÑWBSEŽS EFOLMFNJOJOLÌLMFSJOJOJöBSFUJOJJODFMFZJOJ[ c x .x = = 1 > 0 PMEVôVOEBOLÌLMFSBZOŽJöBSFUMJEJS 12 a b x1 + x2 =- a = 4 > 0 PMEVôVOEBO 0 < x1 < x2 EJS D = N2 +N+ - N2 +N+  =N2 +N+ 65 >PMEVôVOEBOGBSLMŽJLJLÌLWBS EŽS x .x = m+4 > 0 PMEVôVOEBOLÌLMFSBZOŽJöBSFUMJEJS D -2x2 - x + 2 = 0 1 2 m+1 x +x = 3^ m + 3 h > 0 PMEVôVOEBO 12 m+1 D = (- 2 - 4.(- = 17 >PMEVôVOEBOCJSCJSJOEFO 0 < x1 < x2EJS GBSLMŽJLJLÌLÑWBSEŽS c x .x = = - 1 < 0 PMEVôVOEBOLÌLMFS[ŽUJöBSFUMJEJS 12 a -b 1 x +x = = - < 0 PMEVôVOEBO 12 a 2 | |x1 <0 < x2WF x1 > x2EJS E -x2 + x - 3 = 0 ÖRNEK 11 D = 12 - 4(-  - = -PMEVôVOEBOSFFMLÌLZPLUVS N<PMNBLÑ[FSF ÷öBSFUJODFMFOFNF[ ( m - 2 ) x2 - ( m - 1 ) x + 3 - m = 0 EFOLMFNJOJOLÌLMFSJOJOJöBSFUJOJJODFMFZJOJ[ F 4x2 - 2 x = 0 D = N2 -N+ - 4 (-N2 +N- =N2 -N+ 25 >PMEVôVOEBOGBSLMŽJLJLÌLWBS D = ^ - 2 h2 - 4.4.0 = 2 >PMEVôVOEBOGBSLMŽJLJLÌL EŽS WBSEŽS x .x = 3-m < 0 PMEVôVOEBOLÌLMFS[ŽUJöBSFUMJEJS 1 2 m-2 c x +x = m-1 > 0 PMEVôVOEBO x .x = a = 0 PMEVôVOEBOLÌLMFSEFOCJSJEŽS 1 2 m-2 12 x +x = 2 > 0 PMEVôVOEBO= x1 < x2EJS | |x1 < 0 < x2WF x1 < x2 EJS 12 4 C Y1 < x D Y1 <0 < x2WF]Y1| > x 69 10. 0 < x1 < x2 11. x1 < 0 < x2WF]Y1 | < x2 2 2 E ÷öBSFUJJODFMFOFNF[F 0 = x1 < x2

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr 7$1,0%m/*m ÖRNEK 12 ax2 + bx + c = 0 denkleminde, ( m - 3 ) x2 - ( 2 – m ) x + 6 - 3m = 0 r 5FSTJõBSFUMJJLJLËLWBSTB Y1 < 0 < x2 ise ) EFOLMFNJOEF x1 < 0 < x2  PMEVôVOB HÌSF  N IBOHJ BSBMŽLUBCVMVOVS x1 . x2 = c < 0EŽS a r 5FSTJõBSFUMJJLJLËLWBSWFNVUMBLEFóFSDF %FOLMFNJOUFSTJöBSFUMJJLJLÌLÑWBSPMEVôVOEBO CÐZÐLPMBOLËLQP[JUJGJTF Y1 < 0 < x2WF x .x <PMNBMŽEŽS 12 | |x1 < x2 ise ) 6 - 3m < 0 & m = 2 ve m = 3 c a m-3 x1 . x2 = <0 x mß 2 3ß 6 – 3m – + – m–3 b x1 + x2 = - a > 0EŽS N` (-Þ  b (3, Þ r 5FSTJõBSFUMJJLJLËLWBSWFNVUMBLEFóFSDF ÖRNEK 13 büyük PMBOLËLOFHBUJGJTF Y1 < 0 < x2WF ( m + 1 ) x2 - ( 3m + 1 ) x - m - 3 = 0 | |x1 > x2 ise) | | | |EFOLMFNJOEF Y1 < 0 < x2WF x1 < x2 PMEVôVOB x . x = c <0 a HÌSF NIBOHJBSBMŽLUBCVMVOVS 1 2 x +x =- b < 0EŽS a 12 x .x <WFY1 + x >PMNBMŽEŽS /05 :VLBSŽEBLJ EVSVNMBSEB  c < 0  JTF Ó   12 2 a -m - 3 < 0 ve 3m + 1 >0 PMBDBóŽOEBOÓOŽOJõBSFUJOFCBLNBZBHFSFLZPL- m+1 m+1 –ß –3 –1 ß –ß –1 – 1 ß 3 tur. –+ – +– + r \"ZOŽJõBSFUMJJLJLËLWBSTB Ó$ 0 N` (-Þ, - bd - 1 , 3 n 3 c x1 . x2 = a >0 r 1P[JUJGJLJLËLWBSTB ÖRNEK 14 Ó$ 0 mx2 + ( 2m + 1 ) x - m - 1 = 0 x .x = c >0 | | | |EFOLMFNJOEF x1 < 0 < x2WF x1 > x2 PMEVôVOB 12 a x +x = -b > 0 HÌSF NIBOHJBSBMŽLUBCVMVOVS 12 a r /FHBUJGJLJLËLWBSTBÓ$ 0 x1.x2 <WFY1 + x2 <PMNBMŽEŽS -m - 1 - 2m - 1 m < 0 ve m <0 x .x = c >0 12 a –ß –1 0 ß –ß – 1 0ß 2 – x + x = - b < 0 d›r. 12 a –+ – – + N` (-Þ, - b(0, Þ 70 12. N` mÞ  b(3,Þ 13. N` mÞ m bd - 1 , 3 n 3 14. N` mÞ m b(0, Þ

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 15 7$1,0%m/*m x2 - ( m + 2 ) x + m + 1 = 0 ax2 + bx + c >FõJUTJ[MJóJr x `3J¿JOTBó- MBOŽZPSTB EFOLMFNJOEFBZOŽJöBSFUMJGBSLMŽJLJLÌLWBSTBNIBO HJBSBMŽLUBCVMVOVS ÔWFBEŽS ax2 + bx + c <FõJUTJ[MJóJr x `3J¿JOTBó- %FOLMFNJOBZOŽJöBSFUMJGBSLMŽJLJLÌLPMEVôVOEBO MBOŽZPSTB WFY1.x2PMNBMŽEŽS ÔWFBEŽS N+ 2 - N+ >WFN+ 1 > 0 ÖRNEK 18 N2 >  WFN> -1 ( 3 - m ) x2 + 2 ( m - 2 ) x - m + 2 > 0 N` (- ß ={0} ÖRNEK 16 FöJUTJ[MJôJr x `3JÀJOTBôMBOŽZPSTBNIBOHJBSB MŽLUBCVMVOVS ( m - 1 ) x2 + 2mx + m - 3 = 0 DWFBPMNBMŽEŽS EFOLMFNJOEF0 < x1 < x2PMEVôVOBHÌSF NIBOHJ  N- 2 - 4 (3 -N  -N+ < 0 jN- 8 < 0 BSBMŽLUBCVMVOVS jN  3 -N> 0 jN< 3 %FOLMFNJOGBSLMŽQP[JUGJLJLÌLÑPMEVôVOEBO jN` (-Þ  D > 0, x1.x2WFY1 + x2PMNBMŽEŽS ÖRNEK 19 N 2 - N-  N- > 0 ( m - 2 ) x2 + 4x + m < 5 3 FöJUTJ[MJôJr x `3JÀJOTBôMBOŽZPSTBNIBOHJBSB N- 12 > 0 j m > MŽLUBCVMVOVS 4 m-3 - 2m > 0 >0 m-1 m-1 –ß 1 3 ß –ß 0 1ß +– + –+ – m !d 3 ,1 n DWFBPMNBMŽEŽS –ß 1 6ß 4 16 - N-  N- < 0 +– + N2 -N+ 6 > 0 ÖRNEK 17 N-  N- > 0 ( m + 1) x2 + ( 4 - 2m ) x + m + 3 = 0 WFN- 2 < 0 jN<PMEVôVOEBON` (-Þ  EFOLMFNJOEFY1 < x2 <PMEVôVOBHÌSF NIBOHJ BSBMŽLUBCVMVOVS %FOLMFNJOGBSLMŽOFHBUJGJLJLÌLÑPMEVôVOEBO ÖRNEK 20 D > 0, x1.x2WFY1 + x2PMNBMŽEŽS mx2 -åY+Nâ (4 -N 2 - N+  N+ > 0 FöJUTJ[MJôJr x `3JÀJOTBôMBOŽZPSTBNIBOHJBSB -N+ 4 > 0 j m < 1 MŽLUBCVMVOVS m+3 8 2m - 4 <0 m+1 >0 m+1 D #WFBPMNBMŽEŽS –ß –2 2ß –ß –3 –1 ß –ß –1 2 ß – 16 -N2 # 0 –+ +– + +– + 4 -N2 # 0 m ! d - 1, 1 n WFN<PMEVôVOEBON` (-Þ, -2] 8 15. N` m ß =\\^ 16. m ! d 3 , 1 n 17. m ! d - 1, 1 n 71 18. N` mÞ  19. N` mÞ  20. N` mÞ m> 48

TEST - 25 ÷LJODJ%FSFDFEFO#JS#JMJONFZFOMJ&öJUTJ[MJL4JTUFNMFSJOJO¦Ì[ÑN,ÑNFTJ 1. x +âY 2 < 4x 5. x2 - 4 ≥0 FöJUTJ[MJL TJTUFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJ x-3 MFSEFOIBOHJTJEJS x-1 ≤0 A) [ - 1, 4 ) x B) ( 0, 2 ] C) [ 2, 4 ) D) ( -1, 2 ] E) q  FöJUTJ[MJL TJTUFNJOJO FO HFOJö ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFOIBOHJTJEJS A) ( 0, 1 ] B) [-2, 0 ] C) [ 1, 2 ] D) ( 0, 2 ] E) [ 2, 3 ) 2. x 2 - 2x - 8 < 0 6. x_ x - 3 i ≤ 0 x2 - 4 > 0 x3 - x $ 0 x x+1 10 x2 - 9 FöJUTJ[MJL TJTUFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJ MFSEFOIBOHJTJEJS? A) ( -2, 4 ) B) ( -R, 0 )  FöJUTJ[MJL TJTUFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJ MFSEFOIBOHJTJEJS C) ( 0, 2 ) D) ( -2, 0 ) b ( 2, 4 ) E) ( -R, -2 ) b ( 2, 4 ) A) ( 0, 3 ) B) [ - > $ < Þ> D) ( -Þ -3 ) E) [ 1, 3 ) b { 0 } 3. 4 < x2 - 3x < 10 FöJUTJ[MJL TJTUFNJOJO FO HFOJö ÀÌ[ÑN LÑNFTJ 7. ( m - 4 ) x2 - mx - 2 + m = 0 OFEJS EFOLMFNJOEF   Y1 < 0 < x2  PMEVôVOB HÌSF   N A) ( -2, 5 ) B) ( -1, 4 ) C) ( -2, -1 ) JÀJOBöBôŽEBLJMFSEFOIBOHJTJEPôSVEVS A) 2 < m < 4 B) m > 2 C) m < 4 D) ( 4, 5 ) E) ( -2, -1) b ( 4, 5 ) D) m > 0 E) 0 < m < 4 4. x2 - 2x < 0 4 8. ( m - 1 ) x2 + ( 2m - 1 ) x - m = 0 x2 - 3x > 4 | |EFOLMFNJOEF x1 < 0 < x2WF x1 > x2 PMEVôV FöJUTJ[MJL TJTUFNJOJO FO HFOJö ÀÌ[ÑN LÑNFTJ OBHÌSF NOJOBMBCJMFDFôJEFôFSBSBMŽôŽOFEJS OFEJS 1 A) ( 0, 2 ) B) ( -1, 0 ) b ( 2, 4 ) A) f , 1 p B) R - [ 0, 1 ] 2 C) ( 2, 4 ) D) ( -Þ -1) b  Þ C) > 1 , 1H D) (0, 4 + 2 2] 2 E) Ø E) ( – 3 , 4 - 2 2] , [4 + 2 2 , 3 ) 1. $ 2. D 3. & 4. & 72 5. \" 6. & 7. \" 8. #

÷LJODJ%FSFDFEFO#JS#JMJONFZFOMJ&öJUTJ[MJL4JTUFNMFSJOJO¦Ì[ÑN,ÑNFTJ TEST - 26 1. x2 - mx + m - 1 = 0 4. mx2 + 4x + m - 3 < 0  EFOLMFNJOJO LÌLMFSJ BZOŽ JöBSFUMJ PMEVôVOB HÌ  FöJUTJ[MJôJrx ` 3JÀJOTBôMBOŽZPSTBNOFEJS SF NOFEJS A) m > 1 B) m > 0 C) m < 0 A) m ` ( -1, 4 ) B) m ` ( -Þ -1 ) D) m < -1 E) -1 < m < 1 C) m ` ( -Þ   D) m `( -4, -1 ) E) m ` ( -Þ -4 ) 2. mx2 + ( 2m + 2 ) x + m - 2 = 0 5. c >PMNBLÐ[FSF  EFOLMFNJOEF 0 < x1 < x2PMEVôVOBHÌSF NOJO –4x2 + x + 3c = 0 BMBCJMFDFôJEFôFSBSBMŽôŽOFEJS  EFOLMFNJOJOLËLMFSJY1WFY2 dir. A) ( -1, 0 ) B) ( 0, 1 ) C) ( 1, 2 ) E) f - 1 , 0 p #VOBHÌSF BöBôŽEBLJMFSEFOIBOHJTJEPôSVEVS D) f 0 , 1 p 4 A) x1 < x2 < 0 4 B) 0 < x1 < x2 | |C) x1 < 0 < x2WF x1 < x2 | |D) x1 < 0 < x2WF x2 < x1 | |E) x1 < 0 < x2WF x1 = x2 3. ( 2 - m ) x2 + 2 ( m - 1 ) x - m + 1 > 0 6. N>PMNBLÑ[FSF mx2 - 3 ( m + 2 ) x + m + 3 = 0 FöJUTJ[MJôJrx `3JÀJOTBôMBOŽZPSTBNOFEJS EFOLMFNJOJO LÌLMFSJ JÀJO  BöBôŽEBLJMFSEFO IBO HJTJEPôSVEVS A) m < 0 B) m < 1 C) 0 < m < 1 D) m > 1 E) 1 < m < 2 A) x1 < 0, x2 < 0 B) x1 < 0 < x2 C) x1 + x2 = 0 D) x1 = x2 > 0 E) x1 > 0, x2 > 0 1. \" 2. & 3. # 73 4. # 5. $ 6. &

·/÷7&34÷5&:&)\";*3-*, 2. MODÜL ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 www.aydinyayinlari.com.tr &õ÷54÷;-÷,-&3*7 ÷LJODJ%FSFDFEFO&öJUTJ[MJLMFSJO(SBüôJ C y # x2 TANIM y > ax2 + bx +DFõJUTJ[MJóJOJOHSBGJóJ y x y = ax2 + bx +DQBSBCPMÐOÐOÐTUCËMHFTJOEFLJ O OPLUBMBSEŽS y y y Ox y = ax2 + bx + c a>0 D y # -2x2 Ox x O y = ax2 + bx + c a<0 6:\"3*Z$ ax2 +CY+DFõJUTJ[MJôJOJOHSBGJôJO- EF  QBSBCPMÑO Ñ[FSJOEFLJ OPLUBMBS EB HSBGJôF EBIJMFEJMJS y < ax2 + bx +DFõJUTJ[MJóJOJOHSBGJóJ E y < -x2 + 2 y = ax2 + bx +DQBSBCPMÐOÐOBMUCËMHFTJOEFLJ OPLUBMBSEŽS y y = ax2 + bx + c y y a>0 2 x O Ox O x y = ax2 + bx + c F y $ x2 - 1 a<0 y 6:\"3*Z# ax2 +CY+DFõJUTJ[MJôJOJOHSBGJôJO- Ox EF  QBSBCPMÑO Ñ[FSJOEFLJ OPLUBMBSEB HSBGJôF –1 –1 EBIJMFEJMJS –1 ÖRNEK 1 G y # -x2 + 2x \"öBôŽEBLJFöJUTJ[MJLMFSJOHSBGJLMFSJOJÀJ[JOJ[ B y > x2 y y x O2 O 74

www.aydinyayinlari.com.tr ÷,÷/$÷%&3&$&%&/%&/,-&.-&31\"3\"#0-&õ÷54÷;-÷,-&3 2. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 2 F y < -x2 y>x-2 \"öBôŽEBLJFöJUTJ[MJLTJTUFNMFSJOJHFSÀFLMFZFOOPLUB x.y < 0 MBSLÑNFTJOJBOBMJUJLEÑ[MFNEFHÌTUFSJOJ[ B y # x y y=x–2 O2 x y > x2 –2 y = x2 y y = –x2 y=x x O G x2 - 2x < y # x2 + 4x y C y > -x O x y # -x2 –4 2 y ÖRNEK 3 Ox y :BOEBLJHSBGJôFHÌSF  y = –x y = –x2 r& r% \"  #  $  %  &  '  OPLUBMB SŽOEBOIBOHJTJ  3 r\" r# D y # x + 1 r$ x + 1 #Z# -x2 + 2x + 3 y $ x2 - 2 –1 3 x FöJUTJ[MJôJOJTBôMBS y=x+1 r' y Z= x +EPôSVTVOVOÑTUÑOEFZ= -x2 + 2x +QBSB CPMÑOÑOBMUŽOEBPMBO#OPLUBTŽTBôMBS –1 1 x –2 O 2 y = x2–1 –2 ÖRNEK 4 5BSBMŽ CÌMHFMFSJ FöJUTJ[ MJLMFS LVMMBOBSBL JGBEF y FEJOJ[ 16 E x . y < 0 –4 2 x y $ x2 - 1 –1 O 3 y –3 O x 1BSBCPMMFSJOEFOLMFNMFSJZB[ŽMEŽôŽOEBZ= -2x2 - 4x + 16 –1 1 WFZ= x2 - 2x -CVMVOVS0IBMEFFöJUTJ[MJLMFS –1 x2- 2x - 3 #Z# -2x2 - 4x +WFYZ$CVMVOVS 75 3. # 4. x2mYm#Z#mY2mY WFYZ$ 0

TEST - 27 ÷LJODJ%FSFDFEFO&öJUTJ[MJLMFSJO(SBGJLMFSJ 1. y # x2 - 2x 3. y $ x2 - 2x 4  FöJUTJ[MJôJOJO HSBGJôJ BöBôŽEBLJMFSEFO IBOHJTJ y<x EJS  FöJUTJ[MJL TJTUFNJOJO HSBGJôJ BöBôŽEBLJMFSEFO \" y # y IBOHJTJEJS \" y # y x x O 2 x O 2x –2 O O2 –2 –2 $ y % y $ y % y Ox O2 x –2 2 x O 2x –2 –2 O & y 2x & y 2x O O 2. y $ x2 - 1 4. y <- x2 + 1 4  FöJUTJ[MJôJOJO HSBGJôJ BöBôŽEBLJMFSEFO IBOHJTJ y+x $ 0 EJS  FöJUTJ[MJL TJTUFNJOJO HSBGJôJ BöBôŽEBLJMFSEFO IBOHJTJEJS \" y # y \" y # y Ox Ox O x O x –1 1 –1 1 –1 1 –1 –1 $ y % y $ y % y 1 1 O1 O 1 –1 1 x –1 1 O x –1 1 x –1 O x & y & 1 Ox 1 x –1 1 –1 O –1 1. D 2. & 76 3. D 4. &

÷LJODJ%FSFDFEFO&öJUTJ[MJLMFSJO(SBGJLMFSJ TEST - 28 1. y $ x2 - 1 3. y :BOEBLJ HSBGJôF HÌSF  y # -x2 + 1 # \"  #  $  %  & OPLUBMB $ SŽOEBOIBOHJTJ x2 - x - 2 #Z # 2x - 2  FöJUTJ[MJL TJTUFNJOJO HSBGJôJ BöBôŽEBLJMFSEFO O1 x FöJUTJ[MJLTJTUFNJOJ –1 \" 2 IBOHJTJEJS \" y # y % TBôMBS –1 & 1 1 x A) A B) B C) C D) D E) E O –1 O 1 x –1 1 –1 $ y % y 4. y :BOEBLJöFLJMEFUBSBMŽ 1 1 CÌMHFZJ JGBEF FEFO O –1 x –1 1x FöJUTJ[MJLTJTUFNJBöB O 1 ôŽEBLJMFSEFO IBOHJTJ EJS x O & y A) y $ x2 B) y > x2 C) y $ x2 y # x2 + 1 y < x2 + 1 y < x2 + 1 O x 1 x.y $ 0 x.y < 0 x.y $ 0 x2 _ D) y > x E) y $ x2 y # x2 y # x2 + 1 x<0 x.y # 0 2. y $ + 2x b ` x2 b y $ - 2x a  FöJUTJ[MJL TJTUFNJOJO HSBGJôJ BöBôŽEBLJMFSEFO IBOHJTJEJS 5. y õFLJMEFLJUBSBMŽCÌMHF \" y # y O1 ZJ JGBEF FEFO FöJUTJ[ –2 –1 3 –2 2x MJL TJTUFNJ BöBôŽEBLJ O –1 MFSEFOIBOHJTJEJS x O x 2 $ y % y x A) y $ x2 - 2x - 3 B) y $ x2 - 2x - 3 2 y<x-1 y#x-1 –2 O x –2 O 2 & y C) 3y $ x2 - 2x - 3 D) 3y $ x2 - 2x - 3 y<x-1 y$x-1 –2 2x E) 3y < x2 - 2x - 3 O y$x-1 1. \" 2. D 77 3. \" 4. & 5. $

KARMA TEST - 1 ÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM 1. x2 - 6x + 4 = 0 5. x2 + 2x + 12 = 7  EFOLMFNJOJO LÌLMFSJOEFO CJSJ BöBôŽEBLJMFSEFO x2 + 2x IBOHJTJEJS EFOLMFNJOJO LÌLMFSJOEFO CJSJ BöBôŽEBLJMFSEFO IBOHJTJEJS A) 2 - 5 B) 5 - 2 C) 3 - 5 A) -3 B) -2 C) 2 D) 3 E) 4 D) 5 - 3 E) 4 - 5 2. ( a2 + 2a )2 - 18 ( a2 + 2a ) + 45 = 0 6. x + 34 - x = 4  EFOLMFNJOJO FO CÑZÑL JMF FO LÑÀÑL LÌLÑOÑO EFOLMFNJOJO HFSÀFM TBZŽMBSEBLJ ÀÌ[ÑN LÑN FTJ UPQMBNŽLBÀUŽS BöBôŽEBLJMFSEFOIBOHJTJEJS A) -2 B) -1 C) 0 D) 1 E) 2 A) { -9 } B) { 2 } C) { –9, 2 } D) { 2, 9 } E) { 9 } 3. x + 4 x = 20 7. B`3PMNBLÑ[FSF EFOLMFNJOJO HFSÀFM TBZŽMBSEBLJ ÀÌ[ÑN LÑN FTJ a2 + 3a + a2 + 3a + 5 = 7 BöBôŽEBLJMFSEFOIBOHJTJEJS  PMEVôVOBHÌSF B2 +B+ UPQMBNŽOŽOEFôFSJ A) { -5, 4 } B) { 4 } C) { 256, 625 } LBÀUŽS D) { 256 } E) { 625 } A) 4 B) 8 C) 9 D) 10 E) 12 4. 3 x2 - 6 3 x + 8 = 0 8. f x+2 2 x+2 p+3 = 0 EFOLMFNJOJOHFSÀFMLÌLMFSJOJOUPQMBNŽLBÀUŽS x-1 p - 4f x-1 A) 6 B) 8 C) 24 D) 64 E) 72 EFOLMFNJOJTBôMBZBOYEFôFSJLBÀUŽS A) 35 E) 7 B) 2 C) D) 3 2 22 1. $ 2. \" 3. D 4. & 78 5. \" 6. # 7. & 8. $

÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM KARMA TEST - 2 1. x2 - 2x + 4 = 0 5.  [1 = 2a - b +CJWF[2 = 4 - ( 3a - 6 ) i  EFOLMFNJOJO LPNQMFLT TBZŽMBS LÑNFTJOEFLJ  TBZŽMBSŽJÀJO[1 =[2PMEVôVOBHÌSF B+CEFôF LÌLMFSJOEFOCJSJBöBôŽEBLJMFSEFOIBOHJTJEJS SJLBÀUŽS A) 1 - 3 i B) i – 3 C) 2 + 3 i A) 0 B) 1 C) 2 D) 3 E) 4 D) 1+ 2 3 i E) 2i + 3 2. ^ x2 + x h2 + 2x2 + 2x – 3 = 0 6.  [ - i ) + 3i - 4 = zi + 2i – 5  EFOLMFNJOJOSFFMPMNBZBOLÌLMFSJOJOÀÌ[ÑNLÑ NFTJBöBôŽEBLJMFSEFOIBOHJTJEJS A) * –1– 5i –1+ 5i 4  FöJUMJôJOJ TBôMBZBO [ TBZŽTŽ BöBôŽEBLJMFSEFO , IBOHJTJEJS 22 B) * 1– 5i 1+ 5i 4 A) 1 + 3i B) 3 - i C) -5 + i , 22 D) -1 - 3i E) -3 - i C) * –1– 11 i –1+ 11 i 4 , 22 D) * 1– 11 i 1+ 11 i 4 , 22 E) * –1– 5 i –1– 11 i 4 x - yi 74 , 22 7. f p y + xi TBZŽTŽOŽOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 3. ,ÌLMFSJ J -   WF J +   PMBO JLJODJ EFSFDFEFO A) -1 B) -i C) i EFOLMFNBöBôŽEBLJMFSEFOIBOHJTJEJS D) 1 E) 1 + i A) x2 - (2 - i) x + 3i - 1 = 0 B) x2 - ix + 3 = 0 C) x2 - (2 - i) x + i - 3 = 0 D) x2 - 3ix + i - 3 = 0 E) x2 - 2ix + 3i - 3 = 0 8.  J[2 -J[+ i - 2 = 0 4. ,ÌLMFSJOEFOCJSJJ-PMBOJLJODJEFSFDFEFOSF  EFOLMFNJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS FM LBUTBZŽMŽ EFOLMFN BöBôŽEBLJMFSEFO IBOHJTJ EJS A) { -i, 2 + i } B) { -i, 2 - i } A) x2 + 2x + 4 = 0 B) x2 + 2x - 8 = 0 C) { i, 2i - 1} D) {1 - i, 1 + i} C) x2 - 2x + 4 = 0 D) x2 - 2x + 8 = 0 E) {2 - i, 2 + i } E) x2 + 2x + 10 = 0 1. \" 2. $ 3. D 4. & 79 5. $ 6. D 7. \" 8. #

KARMA TEST - 3 ÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM 1. x2- 13x + 3m + 12 = 0 5. x2 - 3x - 5 = 0  EFOLMFNJOJOLËLMFSJY1WFY2 dir. EFOLMFNJOJOLËLMFSJY1WFY2 dir. x2 = 2x1 +PMEVôVOBHÌSF NLBÀUŽS A) 5 B) 6 C) 8 D) 9 E) 10 #VOBHÌSF  x13 + x 3 UPQMBNŽLBÀUŽS 2 A) 48 B) 64 C) 72 D) 84 E) 96 2. x2 + mx - 2x =EFOLMFNJOJOLËLMFSJY1WFY2 dir. 6. x2 - 4x - 3 =EFOLMFNJOJOLËLMFSJY1WFY2 dir.  #VOBHÌSF  x21 - x22 JGBEFTJOJOEFôFSJLBÀUŽS x2 =2 x 2 A) 4 5 B) 8 5 C) 4 7 1  PMEVôVOBHÌSF NLBÀUŽS D) 8 7 E) 12 7 A) -4 B) -3 C) -2 D) 2 E) 3 3. x2 + 10x + 3m - 2 = 0 denklemi bir tam kare 7. x2 + mx + n = 0 belirtmektedir. x2 + ( m - n + 1) x - 16 = 0 denk-  EFOLMFNJOJOÀÌ[ÑNLÑNFTJ{7, 11} PMEVôVOB MFNJOJOTJNFUSJLJLJLËLÐWBSEŽS HÌSF  Y+ 2 +N Y+ +O=EFOLMFNJ OJOÀÌ[ÑNLÑNFTJBöBôŽEBLJMFSEFOIBOHJTJEJS #VOBHÌSF N+OUPQMBNŽLBÀUŽS A) { 17, 25 } B) { 7, 11 } C) { 2, 4 } A) 13 B) 15 C) 16 D) 18 E) 19 D) { -2, -4 } E) { 6, 9 } 4. 3x2 - 4x + 1 = 0 8. ( a + b ) x2 - ( a - b ) x + a2 - b2 = 0  EFOLMFNJOJOLÌLMFSJY1WFY2PMEVôVOBHÌSF  EFOLMFNJOJOLÌLMFSUPQMBNŽ LÌLMFSÀBSQŽNŽ-4 JTFBCLBÀUŽS x 2 + x22 UPQMBNŽLBÀUŽS 1 A) 3 B) 2 C) -1 D) -2 E) -3 10 11 4 13 A) 1 B) C) D) E) 9 93 9 1. $ 2. \" 3. & 4. # 80 5. $ 6. D 7. $ 8. &

÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM KARMA TEST - 4 1. 3BTZPOFM LBUTBZŽMŽ JLJODJ EFSFDF EFOLMFNJOJO x+y=2 CJS LÌLÑ 3 + 2 PMEVôVOB HÌSF  CV EFOLMFN 5. (x - y) 2 - 2 (x - y) - 8 = 0 4 BöBôŽEBLJMFSEFOIBOH JTJEJS  EFOLMFNTJTUFNJOJTBôMBZBOZEFôFSMFSJOJOUPQ MBNŽLBÀUŽS? A) x2 + 4x + 1 = 0 B) x2 - 4x + 1 = 0 A) -1 B) 0 C) 1 D) 2 E) 3 C) x2 - 4x + 2 = 0 D) x2 + x - 4 = 0 E) x2 + x + 1 = 0 2. ,ÌLMFSJBSBTŽOEB 6. y ôFLJMEF f ( x ) = ax 2 + bx + c 3x1 (x2 - 1) - x2 (x1 + 3) = 13 O x fonksiyonVOVOHSBGJóJ WFSJMNJõUJS x1 (x2 + 2) + 2x2 (x1 + 1) = 13  CBôŽOUŽMBSŽCVMVOBOEFSFDFEFOEFOLMFNBöB ZG Y  ôŽEBLJMFSEFOIBOHJTJEJS A) x2 + x + 5 = 0 B) x2 + 2x - 5 = 0  #VOBHÌSF B C DOJOTŽSBTŽZMBJöBSFUMFSJBöBôŽ EBLJMFSEFOIBOHJTJEJS C) x2 - x - 3 = 0 D) x2 - 2x - 5 = 0 E) x2 - 2x - 3 = 0 A) -, -, - B) +, -, - C) -, -, + D) -, +, + E) -, +, - 3. 3x2 - 2x - 3 = 0 7. y G Y BY2 + bx + c  EFOLMFNJOJO LÌLMFSJ Y1 WF Y2 PMEVôVOB HÌSF  1x LÌLMFSJ 1 ve 1 PMBOJLJODJEFSFDF x1 - 1 x2 - 1 EFOEFOLMFNBöBôŽEBLJMFSEFOIBOHJTJEJS A) 2x2 - 4x - 3 = 0 B) x2 - 2x + 6 = 0 –2 T C) 4x2 - 3x + 1 = 0 D) x2 - 3x + 2 = 0 E) 2x2 - x - 3 = 0  õFLJMEFLJZ=G Y QBSBCPMÑOÑOUFQFOPLUBTŽ 5  - PMEVôVOBHÌSF G  EFôFSJLBÀUŽS A) 12 B) 14 C) 15 D) 16 E) 18 4. y = x2 - 6x + 4 4 y =-x+k TJTUFNJOJO ÀÌ[ÑN LÑNFTJ CJS FMFNBOMŽ PMEVôV 8. f (x ) = x 2 - 3x - 10 OBHÌSF LLBÀUŽS  QBSBCPMÑOÑO FLTFOMFSJ LFTUJôJ OPLUBMBSŽ LÌöF LBCVMFEFOÑÀHFOJOBMBOŽLBÀCJSJNLBSFEJS B) - 9 C) - 11 D) -3 E) - 15 A) -2 44 4 A) 24 B) 27 C) 32 D) 34 E) 35 1. # 2. \" 3. \" 4. # 81 5. $ 6. & 7. D 8. &

KARMA TEST - 5 ÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM 1. y = x2 - 2x 5. y = x2 + ( m + 2 ) x - 12  QBSBCPMÑJMFZ= x +NEPôSVTVGBSLMŽJLJOPLUB  QBSBCPMÑOÑOUFQFOPLUBTŽOŽOBQTJTJPMEVôVOB EBLFTJöUJôJOFHÌSF NOJOBMBCJMFDFôJFOLÑÀÑL HÌSF UFQFOPLUBTŽOŽOPSEJOBUŽLBÀUŽS UBNTBZŽEFôFSJLBÀUŽS A) -16 B) -12 C) -8 D) -4 E) 0 A) -5 B) -2 C) -1 D) 1 E) 3 2.   BÀŽLBSBMŽôŽOEBUBOŽNMŽ 6. y = x2 + _ m + 1 ix + 9 f ( x ) = x 2 + 2x + 5 QBSBCPMÑ Y FLTFOJOF OFHBUJG UBSBGUB UFôFU PMEV ôVOBHÌSF NLBÀUŽS  GPOLTJZPOVOVOBMBCJMFDFôJFOLÑÀÑL UBNTBZŽ EFôFSJLBÀUŽS A) -9 B) -7 C) -5 D) 5 E) 7 A) 4 B) 7 C) 11 D) 13 E) 14 3. y 7. % $ $   15 – 3x \" B  # C  x O \" # 3x – 9 ZG Y I I\"#$%EJLEËSUHFO  AB = 3x - 9 br I IAD = 15 - 3x br  ôFLJMEFWFSJMFOy = f ( x ) parabolünün denklemi y = -x2 + mx + n dir. :VLBSŽEBLJWFSJMFSFHÌSF \" \"#$% FOÀPLLBÀ CS2PMVS 3|AO| = |OB| A) 9 B) 49 81 PMEVôVOBHÌSF B+CUPQMBNŽLBÀUŽS C) 16 D) E) 25 44 A) 1 B) 2 C) 3 D) 4 E) 5 4. f ( x ) = x2 - 8x + 3m + 1 8. y = x2 + kx - 4x - 16  GPOLTJZPOVOVO BMBCJMFDFôJ FO LÑÀÑL EFôFS -3  QBSBCPMÑOÑOTJNFUSJFLTFOJY+ 3 =EPôSVTV PMEVôVOBHÌSF NLBÀUŽS PMEVôVOBHÌSF LLBÀUŽS A) 2 B) 3 C) 4 D) 5 E) 6 A) 8 B) 9 C) 10 D) 12 E) 15 1. # 2. & 3. # 4. $ 82 5. \" 6. D 7. \" 8. $

÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM KARMA TEST - 6 1. f ( x ) = x2 - 3x + 5 5. ôFLJMEFf ( x ) = x2 + 6x + p -QBSBCPMÐOÐOHSBGJ-  QBSBCPMÑ Ñ[FSJOEF LPPSEJOBUMBSŽ UPQMBNŽ FO B[ óJWFSJMNJõUJS PMBOOPLUBOŽOLPPSEJOBUMBSŽUPQMBNŽLBÀUŽS y A) 1 B) 2 C) 3 D) 4 E) 5 G Y Y2 + 6x + p – 3 Ox \"# 2. ôFLJMEFf ( x ) = ax2 + bx +DQBSBCPMÐOÐOHSBGJóJ AB = 5 PMEVôVOBHÌSF QLBÀUŽS WFSJMNJõUJS y BO 6 A) -19 B) -16 C) -13 D) 13 E) 16 –1 3x O G Y BY2 + bx + c 6. ôFLJMEFf ( x ) = ax2 + bx + c QBSBCPMÐOÐOHSBGJóJWF-  #VOBHÌSF G  +B+ b +DUPQMBNŽLBÀUŽS SJMNJõUJS A) -6 B) -2 C) 2 D) 6 E) 18 y kT 3. ôFLJMEFf ( x ) = x2 + bx +DGPOLTJZPOVOVOHSBGJóJ \" 4 #x O WFSJMNJõUJS G Y BY2 + bx + c y #VQBSBCPMÐOUFQFOPLUBTŽ5  L PMVQ QBSBCPMY G Y Y2+ bx + c FLTFOJOJ\"WF#OPLUBMBSŽOEBLFTNFLUFEJS O x  #VOBHÌSF \"WF#OPLUBMBSŽOŽOBQTJTMFSJUPQMB –3 7 NŽLBÀUŽS  #VOBHÌSF C-DGBSLŽLBÀUŽS A) -8 B) 0 C) 4 D) 8 E) 12 A) -29 B) -21 C) -8 D) 8 E) 13 4. ôFLJMEFf ( x ) = ax2 + bx +DQBSBCPMÐOÐOHSBGJóJ 7. y = x - 4 WFSJMNJõUJS #V QBSBCPMÐO UFQF OPLUBTŽ 5   -72 ) EPôSVTV Z= x2 - 7x +NQBSBCPMÑOFUFôFUPM dir. EVôVOBHÌSF NLBÀUŽS A) 3 B) 6 C) 9 D) 12 E) 15 y G Y BY2 + bx + c O4 x 8. y = x2 - 9 –2 –72  QBSBCPMÑOÑO HSBGJôJ ÌODF Y FLTFOJOJO OFHBUJG T ZÌOÑOEF  CJSJN  TPOSB Z FLTFOJOJO QP[JUJG ZÌ OÑOEFCJSJNLBZEŽSŽMŽSTBFMEFFEJMFOZFOJQBSB  #VOBHÌSF B+ 2b +DUPQMBNŽLBÀUŽS CPMÑOEFOLMFNJBöBôŽEBLJMFSEFOIBOHJTJPMVS A) -64 B)-56 C) -48 D) -40 E) -32 A) y = x2 + 6x + 4 B) y = x2 - 6x + 4 C) y = x2 + 6x – 5 D) y = x2 - 6x – 5 E) y = x2 + 6x - 9 1. D 2. # 3. & 4. \" 83 5. $ 6. D 7. D 8. \"

KARMA TEST - 7 ÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM 1. LCJSEFôJöLFOPMNBLÑ[FSF 5. x 2 - x < 6 y = x2 - 2kx + k2 - 4k - 8  FöJUTJ[MJôJOJTBôMBZBOLBÀGBSLMŽYUBNTBZŽTŽWBS EŽS  QBSBCPMMFSJOJOUFQFOPLUBMBSŽOŽOHFPNFUSJLZFSJ OJOEFOLMFNJBöBôŽEBLJMFSEFOIBOHJTJEJS A) 2 B) 3 C) 4 D) 5 E) 6 A) y = 2x - 4 B) y = 4x - 8 C) y = 2x - 8 D) y = 4x - 4 E) y = - 4x - 8 y 6. x # 2x + 8 2. G Y Y2  Nm YmNm x  FöJUTJ[MJôJOJTBôMBZBOGBSLMŽEPôBMTBZŽMBSŽOUPQ x \"# MBNŽLBÀUŽS A) 12 B) 10 C) 8 D) 7 E) 5 T :VLBSŽEB f_ x i = x2 + _ m - 4 ix - 3m - 13 parabo- MÐOÐO HSBGJóJ WFSJMNJõUJS 5 QBSBCPMÐO UFQF nokUBTŽ PMVQ 5OPLUBTŽZFLTFOJÐ[FSJOEFEJS1BSBCPMYFL- TFOJOJ\"WF#OPLUBMBSŽOEBLFTNFLUFEJS #VOBHÌSF \"MBO \"5# LBÀCJSJNLBSFEJS A) 75 B) 80 C) 90 D) 100 E) 125 7. &SLBO#FZ LBSFCJ¿JNJOEFLJCBI¿FTJOJOCJSLFOBSŽ- 3. f ( x ) = x2 + 6x - 40 OBFõJUBSBMŽLMBSMBBóB¿EJLJMFDFLUJS ÷LJ BôBÀ BSBTŽOEBLJ NFTBGF  UPQMBN BôBÀ TBZŽ  QBSBCPMÑOÑOZFLTFOJOFHÌSFTJNFUSJôJPMBOQB TŽOBFöJUWFCBöUBLJBôBÀJMFTPOEBLJBôBÀBSB SBCPMÑOEFOLMFNJBöBôŽEBLJMFSEFOIBOHJTJEJS TŽV[BLMŽLNPMEVôVOBHÌSF LBÀBôBÀEJLJM NJöUJS A) y = x2 + 6x + 40 B) y = x2 - 6x + 40 A) 9 B) 10 C) 11 D) 12 E) 13 C) y = x2 - 6x - 40 D) y = -x2 - 6x + 40 8. #JTJLMFUUVSVOB¿ŽLBOCJSTQPSDVJLJGBSLMŽQBSLVSLVMB- E) y = -x2 - 6x - 40 OBDBLUŽS 4. f ( x ) = x2 - 5x + 4 #JSJODJ QBSLVS  LN  JLJODJ QBSLVS JTF  LN V[VO- MVóVOEBEŽS #JTJLMFUMJOJO  QBSLVSV HF¿NF IŽ[Ž   QBSBCPMÐOÐOPSJKJOFHËSFTJNFUSJóJPMBOQBSBCPMFL- QBSLVSVHF¿NFIŽ[ŽOEBOLNTBEBIBGB[MBEŽS TFOMFSJ\" #WF$OPLUBMBSŽOEBLFTNFLUFEJS  #VQBSLVSMBSTBBUUFHFÀJMEJôJOFHÌSF QBS  #VOBHÌSF \" \"#$ LBÀCS2EJS LVSEBLJIŽ[ŽLBÀLNTBUJS A) 4 B) 6 C) 8 D) 9 E) 12 A) 4 B) 5 C) 6 D) 8 E) 10 1. & 2. & 3. $ 4. # 84 5. $ 6. # 7. D 8. $

÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM KARMA TEST - 8 1. - x 2 + 6x +NÑÀUFSJNMJTJrx `3JÀJOEBJNB 6. x 2 - 3mx + m - 3 = 0 EFOLÑÀÑLPMEVôVOBHÌSF NOJOBMBDBôŽFO  EFOLMFNJOJOLËLMFSJY 1WFY 2 dir. CÑZÑLUBNTBZŽEFôFSJLBÀUŽS 1 + 1 >4 A) -5 B) -6 C) -7 D) -8 E) -9 x1 x2 2. ( m - 1) x 2 + 6x + 2 = 0 PMEVôVOB HÌSF  N LBÀ GBSLMŽ UBN TBZŽ EFôFSJ BMŽS  EFOLMFNJOJO CJSCJSJOEFO GBSLMŽ  SFFM LÌLÑ WBS TBNOJOBMBCJMFDFôJLBÀQP[JUJGUBNTBZŽEFôF A) 5 B) 6 C) 8 D) 10 E) 11 SJWBSEŽS A) 4 B) 5 C) 6 D) 7 E) 8 x-3 7. ( m + 1) x 2 - ( m + 2 ) x + m + 3 = 0 3. # 0  EFOLMFNJOJOLËLMFSJY 1WFY2 dir. x2 - 11x + 28 | |x 1 < 0 < x 2WF x 1 < x 2 iseNOJOBMBCJMFDF  FöJUTJ[MJôJOJTBôMBZBOYUBNTBZŽMBSŽOŽOUPQMBNŽ ôJEFôFSBSBMŽôŽBöBôŽEBLJMFSEFOIBOHJTJEJS LBÀUŽS A) (-R, -3 ) B) ( -3, -2 ) C) ( -1, R) D) (-3 , -1 ) E) ( -2, -1 ) A) 11 B) 14 C) 18 D) 21 E) 25 3x.^ 2 - x h2000.^ x + 1 h2002 8. ôFLJMEFZ=G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 4. > 0 y x2 + 2x - 15 FöJUTJ[MJôJOJO ÀÌ[ÑN LÑNFTJ BöBôŽEBLJMFSEFO IBOHJTJEJS A) (-ß, -5) B) (-Þ -5) b  Þ x –2 1 $   Þ  %  -5, 3) ZG Y E) R - (-5, 3) _ x + 1 i. f_ x i ≤0 x-2 5. (1 - m ) x 2 + 4x + m 2 - 4 = 0 FöJUTJ[MJôJOJ TBôMBZBO BSBMŽL BöBôŽEBLJMFSEFO  EFOLMFNJOJOUFSTJöBSFUMJJLJLÌLÑWBSTBNOJO IBOHJTJEJS BMBCJMFDFôJFOLÑÀÑLUBNTBZŽEFôFSJLBÀUŽS A) ( -R, -2 ] B) ( -1, 2 ) A) -5 B) -3 C) - 2 D) -1 E) 1 C) [-1, 1] D) [-1, 1] b [ 2, R) E) [-1, 1] b {-2} b  Þ 1. D 2. \" 3. D 4. # 5. D 85 6. $ 7. # 8. &

KARMA TEST - 9 ÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM 1. ^ x2 - 2x - 8 h.^ x2 - 9x + 20 h # 0 32x. x + 5 . (x2 + x + 7) x2 - 3x - 4 5. # 0 FöJUTJ[MJôJOJTBôMBZBOLBÀUBOFUBNTBZŽWBSEŽS ^x-2h x+1 ^x+3h A) 9 B) 8 C) 7 D) 6 E) 5  FöJUTJ[MJôJOJTBôMBZBOUBNTBZŽMBSŽOUPQMBNŽLBÀ UŽS A) -6 B) -5 C) -3 D) -2 E) -1 2. ( 2x - 16 ) ( x2 + x - 6 ) # 0 6. ôFLJMEFy =G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS  FöJUTJ[MJôJOJO LBÀ UBOF QP[JUJG UBN TBZŽ EFôFSJ y ZG Y WBSEŽS –1 O 2 x A) 4 B) 3 C) 2 D) 1 E) 0 5 (x2 - 4) 3 - x #VOBHÌSF f(x) . f(x+ 3) < 0 3. < 0  FöJUTJ[MJôJOJTBôMBZBOYUBNTBZŽEFôFSMFSJUPQMB x2 + x + 1 NŽLBÀUŽS  EFOLMFNJOJTBôMBZBOLBÀUBOFYUBNTBZŽTŽWBS A) 3 B) 4 C) 5 D) 6 E) 7 EŽS A) 5 B) 4 C) 3 D) 2 E) 1 7. y õFLJMEF HÌTUFSJMFO UBSBMŽ BMBO BöBôŽ 23x. (x2 + x + 1) .^ 3 - x h EBLJ FöJUTJ[MJL TJT 4. $ 0 1 UFNMFSJOEFO IBO (x + 3) (x2 - 1) –1 O0 3 x HJTJOJO ÀÌ[ÑN LÑ FöJUTJ[MJôJOJ TBôMBZBO Y UBN TBZŽMBSŽ LBÀ UBOF EJS NFTJEJS A) 0 B) 1 C) 2 D) 3 E) 4 –3 A) y # x 2 - 2x - 3 B) y $ x2 - 2x - 3 y#x+1 y#x+1 C) y # x2 + 2x - 3 D) y $ x2 - 2x - 3 y#x+1 y#x-1 E) y $ x2 - 2x - 3 y$x-1 1. D 2. # 3. $ 4. D 86 5. \" 6. \" 7. #

<(1m1(6m/6258/$5÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM 1. \"INFU#FZõFLJMEFWFSJMFO BMBOŽN2 olan dik- 4. (ÐOFõ )BOŽNhŽO HJUNFTJ HFSFLFO ZPMVO CJS LŽTNŽ EËSUHFO CJ¿JNJOEFLJ CPõ BSTBZB CJS LFOBSŽ Y NFUSF BTGBMU CJSLŽTNŽUPQSBLUŽS\"TGBMUZPMLN UPQSBL PMBO LBSF CJ¿JNJOEF CJS FW ZBQUŽSNBL JTUJZPS :BQŽ- ZPMLNV[VOMVóVOEBEŽS\"TGBMUZPMEBLJIŽ[Ž UPQ- MBOFWJOпUBSBGŽOEBõFSNFUSFCJSUBSBGŽOEBN SBLZPMEBLJIŽ[ŽOEBOLNTBEBIBGB[MBEŽS CPõMVLCŽSBLŽMNŽõUŽS  :PMDVMVLUPQMBNTBBUTÑSEÑôÑOFHÌSF UPQSBL 20 m ZPMEBLJIŽ[TBBUUFLBÀLNEJS 20 m x m 20 m A) 30 B) 25 C) 40 D) 45 E) 50 xm 35 m  #VOBHÌSF FWJOCJSLFOBSV[VOMVôVLBÀNFUSF EJS  A) 12 B) 15 C) 18 D) 20 E) 21 2. #JS PLVMVO TBUSBO¿ UBLŽNŽOB TF¿JMFO LŽ[ WF FSLFL 5. #JS TPLBóŽO EPóSVTBM PMBO ZPMVOVO SFGÐKÐ Ð[FSJOF ËóSFODJMFSEFO PMVõUVSVMBO  LJõJMJL HSVQUBLJ LŽ[ FõJUBSBMŽLMBSMBBZEŽOMBUNBEJSFLMFSJEJLJMFDFLUJS ËóSFODJMFSJO TBZŽTŽ JMF FSLFL ËóSFODJMFSJO TBZŽTŽOŽO ¿BSQŽNŽEŽS  \"SU BSEB EJLJMFO JLJ EJSFL BSBTŽ NFTBGF  UPQMBN EJSFL TBZŽTŽOB FöJU WF CBöUBLJ EJSFL JMF TPOEBLJ  (SVQUBLJ FSLFL ÌôSFODJMFSJO TBZŽTŽ EBIB GB[MB EJSFLBSBTŽV[BLMŽLNFUSFPMEVôVOBHÌSF EJ PMEVôVOBHÌSF HSVQUBLBÀLŽ[ÌôSFODJWBSEŽS LJMFOEJSFLTBZŽTŽLBÀUŽS A) 5 B) 6 C) 7 D) 8 E) 9 A) 11 B) 12 C) 13 D) 14 E) 15 3. #JS\"#$пHFOJOEF\"LËõFTJOEFO#$LFOBSŽOB¿J[J- 6. BY2 + bx +D=JLJODJEFSFDFEFOEFOLMFNEF | |len yükseklik BC kenaSŽOEBOCSEBIBLŽTBEŽS I. DJTFEFOLMFNJOTBOBMJLJLËLÐWBSEŽS II. CJTFEFOLMFNJOHFS¿FLJLJLËLÐWBSEŽS | | \"#$ÑÀHFOJOJOBMBOŽCS2PMEVôVOBHÌSF  #$ III. B   WF D   JTF EFOLMFNJO HFS¿FL JLJ LËLÐ LFOBSŽOBBJUZÑLTFLMJLLBÀCSEJS WBSEŽS A) 3 B) 2 C) - 1 + 3  ZVLBSŽEBLJ JGBEFMFSEFO IBOHJMFSJ EBJNB EPôSV EVS D) 1 + 3 E) - 1 + 2 \" :BMOŽ[* # :BMOŽ[*** $ *WF**  % *WF*** & * **WF*** 1. # 2. $ 3. $ 87 4. \" 5. $ 6. D

<(1m1(6m/6258/$5 ÷LJODJ%FSFDFEFO%FOLMFNMFS&öJUTJ[MJL1BSBCPM 1. I. 32x - 1= 16x + 2EFOLMFNJOJOLËLÐY1 dir. 3. Yerden j0 IŽ[ŽZMB HZFS¿FLJNJWNFTJBMUŽOEBGŽSMB- II. ( 3x - 2 )3 = ( 2x + 1 )3EFOLMFNJOJOLËLÐY2 dir. UŽMBO CJS UPQVO Y TBOJZF TPOSB ZFSEFO ZÐLTFLMJóJOJ ***LWFNSFFMTBZŽMBSPMNBLÐ[FSF WFSFOJGBEF f_ x i = j0.x - 1 gx2 biçimindedir. x2- ( k - 9 ) x + m =EFOLMFNJOJOLËLMFSJY1WF 2 x2 dir.  :VLBSŽEBWFSJMFOCJMHJMFSFHÌSFL+NUPQMBNŽOŽO EFôFSJLBÀUŽS ///////////////////////////////// A) 25 B) 30 C) 39 D) 48 E) 64 j0 =NTWFH=NT2PMEVôVOBHÌSF UP QVOÀŽLBCJMFDFôJNBLTJNVNZÑLTFLMJLLBÀNFU SFEJS A) 30 B) 35 C) 40 D) 45 E) 50 2. ôFLJMEFNPMP[UBõWFLFTNFUBõMBSMBQBSBCPMJLPMB- 4. #JSCBLLBMY5-ZFBMEŽóŽCJSÐSÐOÐZ5-ZFTBUNBL- SBLJOõBBFEJMNJõCJSLËQSÐWFSJMNJõUJS#VLËQSÐOÐO UBEŽS UFQFOPLUBTŽOŽOZFSEFOZÐLTFLMJóJNFUSF BZBL- MBSŽOŽO J¿ LŽTŽNMBSŽ BSBTŽOEBLJ NFTBGF  NFUSF-  Y JMF Z BSBTŽOEB Z = -x2 + 11x -   CBôŽOUŽTŽ dir. PMEVôVOBHÌSF CBLLBMŽOTBUŽöUBOFMEFFEFDFôJ L»SFOGB[MBLBÀ5-EJS A) 19 B) 17 C) 15 D) 13 E) 11 #VOBHÌSF ZVLBSŽEBLJHJCJNPEFMMFOFOQBSBCP 5. ôFLJM*EF¿FNCFSCJ¿JNJOEFWFSJMFOWF¿FWSFTJ MÑO EFOLMFNJ TJNFUSJ FLTFOJ Z PMBDBL öFLJMEF  BöBôŽEBLJMFSEFOIBOHJTJEJS DNPMBOJQLVMMBOŽMBSBLôFLJM**EFLJHJCJEJLEËSU- HFOCJ¿JNJOFEËOÐõUÐSÐMNFLJTUFOJZPS A) y = 9 _ x2 - 400 i 50 ôFLJM* ôFLJM** B) y = 3 _ x2 - 100 i  &MEFFEJMFOEJLEÌSUHFOTFMCÌMHFOJOBMBOŽFOÀPL 10 LBÀDN2EJS C) y = - 9 _ x2 - 50 i 50 D) y = - 9 _ x2 - 100 i 50 E) y = - 9 _ x2 - 400 i 50 A) 400 B) 300 C) 250 D) 200 E) 150 1. & 2. D 88 3. D 4. D 5. \"

CEVAP ANAHTARI (m.m1&m'(5(&('(1'(1./(03$5$%2/(6m76m=/m./(5 r Sayfa 30, Örnek 11 a r Sayfa 30, Örnek 11 b r Sayfa 74, Örnek 1 a r Sayfa 74, Örnek 1 b y y y y y = x2 Ox x x x O O O y = –2x2 r Sayfa 30, Örnek 11 c r Sayfa 30, Örnek 11 d r Sayfa 74, Örnek 1 c r Sayfa 74, Örnek 1 d y y = x2 –1 y y = 2x2 + 4 y y O 4 Ox 2 –1 1 x x x –1 O O r Sayfa 30, Örnek 11 e r Sayfa 30, Örnek 11 f r Sayfa 74, Örnek 1 e r Sayfa 74, Örnek 1 f y y = 2(x–1)2 + 4 y y y 3 –1 O –1 x O 2x –1 6 O x 4 –3 –2 –1 O1 x y = –3(x+2)2 + 3 r Sayfa 30, Örnek 11 g r Sayfa 30, Örnek 11 h r Sayfa 75, Örnek 2 a r Sayfa 75, Örnek 2 b y y = 2(x–2)2 y y = x2 – 3x + 2 y y = x2 y=x y 8 Ox O2 x 2 x x O1 2 O y = –x y = –x2 r 4BZGB ²SOFLŽ r Sayfa 30, Örnek 31 i y y x O 4x r Sayfa 75, Örnek 2 c r Sayfa 75, Örnek 2 d y = 4x – x2 y=x+1 y y O1 3 –1 1 O –6 –2 O –1 1 y = –2x2 + 8x – 6 x –1 x 2 r Sayfa 56, Örnek 1 y = x2–1 –2 a) (-Þ  b  Þ BSBMŽóŽOEBQP[JUJG    BSBMŽóŽOEB r Sayfa 75, Örnek 2 e r Sayfa 75, Örnek 2 f OFHBUJG y y b) (-Þ  b  Þ BSBMŽóŽOEBOFHBUJG    BSBMŽóŽO- O2 y=x–2 EBQP[JUJG x c) (-Þ   -  b  +  Þ BSBMŽóŽOEBQP[JUJG  –2 O 2 x _ 2 - 2, 2 + 2 iBSBMŽóŽOEBOFHBUJG –4 d) 3-{}BSBMŽóŽOEBOFHBUJG y = –x2 e) (-Þ Þ BSBMŽóŽOEBQP[JUJG f) (-Þ Þ BSBMŽóŽOEBOFHBUJG


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook