Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AYT Matematik Ders İşleyiş Modülleri 7. Modül İntegral

AYT Matematik Ders İşleyiş Modülleri 7. Modül İntegral

Published by Nesibe Aydın Eğitim Kurumları, 2019-08-28 01:08:01

Description: AYT Matematik Ders İşleyiş Modülleri 7. Modül İntegral

Search

Read the Text Version

#VLJUBCŽOIFSIBLLŽTBLMŽEŽSWF\":%*/:\":*/-\"3*OBBJUUJSTBZŽMŽZBTBOŽOIÐLÐNMFSJOF HËSFLJUBCŽOEÐ[FOJ NFUOJ TPSVWFõFLJMMFSJLŽTNFOEFPMTBIJ¿CJSõFLJMEFBMŽOŽQZBZŽNMBOB- NB[ GPUPLPQJZBEBCBõLBCJSUFLOJLMF¿PóBMUŽMBNB[ :BZŽO4PSVNMVTV  $BO5&,÷/&- %J[HJ–(SBGJL5BTBSŽN *4#//P  \"ZEŽO:BZŽOMBSŽ%J[HJ#JSJNJ :BZŽODŽ4FSUJGJLB/P #BTŽN:FSJ   ÷MFUJöJN       &SUFN#BTŽN:BZŽO-UEõUJr   \":%*/:\":*/-\"3*   JOGP!BZEJOZBZJOMBSJDPNUS  5FMr  'BLT 0533 051 86 17  aydinyayinlari aydinyayinlari * ÜNwİwVwE.ayRdinSyaİyTinlaEri.YcoEm.trHAZIRLIK ·/÷7&34÷5&:&)\";*3-*, %¸O¾P.DSDáñ MATEMATİK - 2 7. MODÜL Alt bölümlerin Karma Testler İNTEGRAL EDĜOñNODUñQñL©HULU KARMA TEST - 2 ÷OUFHSBM Modülün sonunda tüm alt bölümleri ³ Belirsiz İntegral t 2 1. y r y= 3x 3. 6 sin x x2 + y2 = 16 # dx x r x4 + x2 + 1 ³ İntegral Alma Kuralları t 8 – O 6 :VLBSŽEBLJõFLJMEFY2 + y2 =¿FNCFSJWF y = 3 x EPóSVTVWFSJMNJõUJS JOUFHSBMJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJOF ³ Değişken Değiştirme Yöntemi t 17  5BSBMŽCÌMHFOJOBMBOŽOŽWFSFOJOUFHSBMBöBôŽEBLJ- FöJUUJS MFSEFOIBOHJTJEJS ³ Belirli İntegral - I t 24 1 4r2 3r - 1 5r A) # a 3 x - 16 - x2 k dx A) B) C) 0 2 5 2 6 B) # a 3 x - 16 - x2 k dx 0 D) 1 E) 0 1 ³ Belirli İntegral - II t 32 C) # a 16 - x2 - 3 x k dx 0 ³ Riemann Toplamı t 40 6ñQñIð©LðĜOH\\LĜ 2 4. #JSIBSFLFUMJJMLIŽ[ŽOEBOCBõMBZŽQEPóSVTBMCJSõF- L©HUHQNDUPDWHVWOHU ³ Belirli İntegral ile Alan Hesabı t 44 D) # a 16 - x2 - 3 x k dx LJMEFIŽ[MBOBSBLTOEFNTIŽ[BVMBõNŽõEBIB \\HUDOñU www.aydinyayinlari.com.tr 0 TPOSBIŽ[ŽOŽEPóSVTBMCJSõFLJMEFB[BMUBSBLTOEF ·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- π NTIŽ[BEÐõÐSNÐõEBIBTPOSBTBCJUIŽ[MBTO 3 HJUNJõWFEBIBTPOSBEPóSVTBMCJSõFLJMEFZBWBõMB- ³ İki Fonksiyonun Grafiği Arasında Kalan #&-÷34÷;÷/5&(3\"- E) # a 16 - x2 - 3 x k dx ZBSBLTOEFEVSNVõUVS 0 TANIM ÖRNEK 2 %XE¸O¾PGHNL¸UQHN  #VIBSFLFUMJOJO[0, 15]TBOJZFMFSBSBTŽOEBBMEŽ- Bölgenin Alanı t 48F ( x ) fonksiyonunun türevi f ( x ) olsun. f ( x ) # (f (x) + x2 - 4) dx = x.f (x) VRUXODUñQ©¸]¾POHULQH ÷OUFHSBM ôŽUPQMBNZPMLBÀNFUSFEJS DNñOOñWDKWDX\\JXODPDVñQGDQ GPOLTJZPOVOVO UÐSFWJ BMŽONBEBO ËODFLJ Iº- PMEVôVOBHÌSF  f ( x ) fonksiyonunun x =OPLUBTŽO- XODĜDELOLUVLQL] ³ Doğrusal Hareket Pli roolanbFle(xm) folenkrsiiytonun5a 4f(x) fonksiyonunun EBLJUFôFUJOJOFôJNJLBÀUŽS \"  #  $  %  &  ters türevi EFOJS#JSGPOLTJZPOVOUFSTUÐSFWJOJ <HQL1HVLO6RUXODU<(1m1(6m/6258/$5 CVMNBJõMFNJOFJOUFHSBMBMNBJöMFNJEFOJS ³ Karma Testler t 55 ' Y  GPOLTJZPOVOVO UÐSFWJ G Y  PMNBL Ð[FSF  F( x ) fonksiyonuna f ( x ) fonksiyonunun integra- 2. y 1. ôFLJMEFLJUBSBMŽCËM- ôFLJM5.  E:FB UFBõZLFEOÑB[SMFNEFI3B.SFL#FJUSFNEÐFIOFCOEJSJTDJCTJNSZJOÐ[JNWNFFI-BWV[VUBTBSMBZŽQCVOMBSŽ ³ Yeni Nesil SoMJErFuOJlSa r t 63  ±SOFóJO UÐSFWJGh Y =PMBOG Y GPOLTJZPOV  HFOJOBMBOŽ пHFOCJ¿J[NBJNOEBFOLJECFJSOLMFNJB U F=(xU)-=-YWF+U=YWFBHO ŽOY- = 4x -YGPOLTJZPO- 5x + Y- Y õFLMJOEFCJSGPOLTJZPO- k ln f b p  JMF CVMB- IBWV[VO ECBJSILŽ[FŽOBSŽNT BMEŽôŽMZBPSŽMOŽOBNSBTPŽOMEEVBôLJVTOŽBOŽSHMŽÌCSËFM H FEFPMBDBLõFLJMEFLP- a EVS#VEVSVNEBG Y = 5x +D  DTBCJU PMBSBL y= k  NFUSFECJSV D#JVTNIJBO- ZPM – [BNBPOSEEJOFBOULTMFJTNUFJN BJöOBEôFŽEBCLJJSMJNFSJ-NFUSFPMBDBLõFLJMEF x CJMEJóJOFHËSF, JGBEFFEJMFCJMJS WV[VO UBCEBFOOŽOIŽOBOUHBJ-TJEJS NPEFMMJZPS 0RG¾O¾QJHQHOLQGH\\RUXP NFUSF \\DSPDDQDOL]HWPHYE O ab x \"ôCFÌLJMMH FTJOJOBMB- NBNŽOŽO GBZBOTMBSMB EHFHULOHUL¸O©HQNXUJXOX OŽLBÀCJSJNLBSF- VRUXODUD\\HUYHULOPLĜWLU  #JS G Y  GPOLTJZPOV1OVO CFMJSTJ[ JOUFHSBMJ ÖRNEK 3 EJS LBQMBNBTŽA )S(t) =MJSBt3 + t2 – 8t F(x) $\\UñFDPRG¾OVRQXQGD # f (x) dx   CJ¿JNJOEF JGBEF FEJMJS #V JOUFHSBMJO # x.f (x) dx = x4 - x3 - 2x2 CVMVONBTŽ J¿JO CJS 'h Y  = G Y  PMBDBL õFLJMEF y $ MO F UVUNBLUBEŽS 2 CJS' Y GPOLTJZPOVBSBõUŽSŽMŽSWFJOUFHSBMTBCJ- PMEVôVOBHÌSF  f ( x ) fonksiyonunun yerel minimum O & MO F UJPMBODCV' Y GPOLTJZPOVOBFLMFOJS#VEV- OPLUBTŽOŽOBQTJTJLBÀUŽS y = 2x #OŽV 3JIFBNWBVO[BOV)OSUP(QtU)BMBC=NB-Žt23 – t2 + 8t + 20 :Ð[NF SVNEB ôFLJM LNJBHOJCUŽJóHŽFZMOBJCõõM)JFóLSJJM(t)NE=FFUt--3 - t2 + 8t + 3 IBWV[V # f (x) = F (x) + c olur. y= 2 x g(x) A SF PMBO BMU BSBMŽLMBSB x BZSŽMBSBL PDM)VõSUV(tS)V=MBOt3 + t2 - 8t + 3 2  #VSBEB G Y FJOUFHSBOU JOUFHSBMJBMŽOBOGPOL- $OW%¸O¾P7HVWOHUL \" MO # MO EJLEËSUHFOMFS ZBSEŽ- TJZPO EYFJOUFHSBMEFóJõLFOJ DZFJTFinteg- ral sabitiEFOJS  % MO F  NŽZMBLBQMEBO) BSDB(tL)U=ŽSt4 – 3t 2  4t :Ñ[NFIBWV[VOVOEFSJOMJôJ NFUSFPMBDBôŽOB #JS'POLTJZPOVO(SBGJôJJMFY&LTFOJ\"SBTŽOEB,BMBO#ÌMHFOJO\"MBOŽ - +H2Ì0SF UBTBSMBEŽôŽZÑ[NFIBWV[VLBÀN3TVBMŽS TEST - 21 \"  #  $  %  &  3. E 4. C 5. B 1. D  2. D#VOB HÌSF  öFLJM  EFLJ HJC5J6 CJS LBQMBNB JÀJO 1. ôFLJMEF41 42 43CVMVOEVLMBSŽCËMHFMFSJOBMBOMBSŽ- 4. ôFLJMEF G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS ÌEFOFDFLUVUBSLBÀMJSBPMNBMŽEŽS EŽS y \"  #  $  %  &  y ÖRNEK 4 ÖRNEK 1 S3 # f (x) dx = - x2 - 4x - 2 S1 y = f(x) Her alt bölümün # f (x) dx = x4 - 3x2 + 5x + 6 –1 S1 xx 2 x VRQXQGDRE¸O¾POHLOJLOL 4 WHVWOHU\\HUDOñU S2 7 10PMEVôVOB HÌSF f ( x ) fonksiyonunu–3n yerel maks2i- S2 4 PMEVôVOBHÌSF  f ( x ) fonksiyonunu bulunuz. Nf(Vx)NEFôFSJLBÀUŽS WDPDPñ\\HQLQHVLOVRUXODUGDQ  41 =CS2 42 =CS2WF 41  WF  42  J¿JOEF CVMVOEVóV CËMHFMFSJO BMBOMBSŽOŽ 2. 4 m ôFLJMEFLJ QBSL ¿JNMFOEJSJ- 4. ôFLJMEF LPPSEJOBU TJTUFNJOEF NPEFMMFONJõ  BMU WF ROXĜDQWHVWOHUEXOXQXU HËTUFSN FLÐ[FSF ÐTU TŽOŽSMBSŽ QBSBCPM õFLMJOEF PMBO CJS UÐOFM HËSÐM- 10 MFDFLUJS)FSCJSLŽTŽNBSB- NFLUFEJS,PPSEJOBUTJTUFNJOEFCJSJN  NFUSF # f(x) dx = 16 4 8 m TŽOEBLJV[BLMŽLMBSCJSCJSJOF LBCVMFEJMJQËM¿FLMFOEJSJMNJõUJS –1 # f (x) dx = 6 ve S1 = 9 br2 -3 y PMEVô VOBHÌSF S3BMBOŽLBÀbr2EJS  PMEVôVOBHÌSF 42 kBÀCS2EJS 36 32 A ) 11 B ) 15 C ) 16 D ) 17 E ) 18 12 m FõJU WF 2 3  NFUSFEJS ¥JNMFOEJSNF JõMFNJ 3JF- A ) 21 B ) 18 C ) 12 D ) 6 E ) 3 16 m NBOO ÐTU UPQMBN NBOUŽ- 1. 4x23.– 6xô+FL5JMEFZ=G Y JOHSBGJóJWFS2JMNJõUJS 3 12 m óŽZMBZBQŽMŽSTB9NFUSFLB- y 3. SF  3JFNBOO BMU UPQMBN 2. –3 4. 4 x 8 46 8 m NBOUŽóŽZMB ZBQŽMŽSTB : –6 –4 O NFUSFLBSFLŽTŽN¿JNMFOEJ- y = f(x) A 12 C x SJMNJõPMVZPS  5ÑOFMJOZBOZÑ[FZMFSJOJONFUSFLBSFGJZBUŽ5- –3 B 57 6 4m PMBO LBQMBNB NBM[FNFTJ JMF LBQMBONBTŽ EVSV- y NVOEBLBQMBNBNBMJZFUJLBÀ5-PMVS 5. S2 5 x  #VOBHÌSF 9-:BöBôŽEBLJMFSEFOIBOHJTJEJS  YFLT FOJOJO \"#ZBZŽJMFTŽOŽSMBEŽóŽCËMH FOJOBMBOŽ –6 S1 1 y = f(x) A) 8 3  # 12 3  $ 16 3 \"  #  $  CS2 #$ZBZŽJMFTŽOŽSMBE ŽóŽCËMHFOJOBMBOŽCS2  % 18 3  & 24 3  %  &  6 ôFLJMEF 41 =CS2 42 =CS2JTF 1. D 2. E 63 3. A 4. D PMEVôVOBHÌSF  # f (x) dx LBÀUŽS 5 –3 # af^xh + f^xh kdx A ) 60 B ) 30 C ) 17 D ) 10 E ) 7 -6 JOUFHSBMJOJOEFôFSJLBÀUŽS A ) -12 B ) -6 C ) 6 D ) 12 E ) 18 3. y ôFLJMEF  \"1, A2 CVMVOEVLMBSŽ CËM- –3 –2 A1 O 4x HFOJO BMBOŽOŽ HËTUFSNFLUFEJS A2 A1 =CS2, A2 =CS2WF 6. Z= x2 –2 4 # f(x) dx = - 5 ise # f_ x i dx  QBSBCPMÑJMFZ= Y=WFY=EPôSVMBSŽBSB- TŽOEBLBMBOBMBOLBÀCS2EJS –3 –3 A ) 18 B ) 20 C ) 21 D ) 24 E ) 27  JOUFHSBMJOJOEFôFSJLBÀUŽS E ) 16 A ) -10 B ) -8 C ) -5 D ) 8 1. \" 2. & 3. \" 47 4. & 5. D 6. C

ÜNwİwVwE.ayRdinSyaİyTinlaEri.YcoEm.trHAZIRLIK ·/÷7&34÷5&:&)\";*3-*, MATEMATİK - 2 7. MODÜL İNTEGRAL ³ Belirsiz İntegral t 2 ³ İntegral Alma Kuralları t 8 ³ Değişken Değiştirme Yöntemi t 17 ³ Belirli İntegral - I t 24 ³ Belirli İntegral - II t 32 ³ Riemann Toplamı t 40 ³ Belirli İntegral ile Alan Hesabı t 44 ³ İki Fonksiyonun Grafiği Arasında Kalan Bölgenin Alanı t 48 ³ Doğrusal Hareket Problemleri t 54 ³ Karma Testler t 55 ³ Yeni Nesil Sorular t 63 1

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr #&-÷34÷;÷/5&(3\"- TANIM ÖRNEK 2 F ( x ) fonksiyonunun türevi f ( x ) olsun. f ( x ) # (f (x) + x2 - 4) dx = x.f (x) GPOLTJZPOVOVO UÐSFWJ BMŽONBEBO ËODFLJ Iº- li olan F ( x ) fonksiyonuna f ( x ) fonksiyonunun PMEVôVOBHÌSF  f ( x ) fonksiyonunun x =OPLUBTŽO- ters türevi EFOJS#JSGPOLTJZPOVOUFSTUÐSFWJOJ EBLJUFôFUJOJOFôJNJLBÀUŽS CVMNBJõMFNJOFJOUFHSBMBMNBJöMFNJEFOJS fh( 1 ) bize soruluyor.  ' Y  GPOLTJZPOVOVO UÐSFWJ G Y  PMNBL Ð[FSF  ( x.f ( x ) )h = f ( x ) + x2 - 4 F( x ) fonksiyonuna f ( x ) fonksiyonunun integra- 1.f ( x ) + x.fh( x ) = f ( x ) + x2- 4 MJEFOJS x.fh( x ) = x2 - 4 j x = 1 koyarsak 1.fh( 1 ) = 1 - 4 = -3 j fh( 1 ) = -3  ±SOFóJO UÐSFWJGh Y =PMBOG Y GPOLTJZPOV  5x + Y- Y õFLMJOEFCJSGPOLTJZPO- ÖRNEK 3 EVS#VEVSVNEBG Y = 5x +D  DTBCJU PMBSBL JGBEFFEJMFCJMJS # x.f (x) dx = x4 - x3 - 2x2  #JS G Y  GPOLTJZPOVOVO CFMJSTJ[ JOUFHSBMJ PMEVôVOBHÌSF  f ( x ) fonksiyonunun yerel minimum OPLUBTŽOŽOBQTJTJLBÀUŽS # f (x) dx   CJ¿JNJOEF JGBEF FEJMJS #V JOUFHSBMJO ( x4 - x3 - 2x2 ) h = x.f ( x ) CVMVONBTŽ J¿JO CJS 'h Y  = G Y  PMBDBL õFLJMEF 4x3 - 3x2 - 4x = x.f ( x ) j f ( x ) = 4x2 - 3x - 4 CJS' Y GPOLTJZPOVBSBõUŽSŽMŽSWFJOUFHSBMTBCJ- UJPMBODCV' Y GPOLTJZPOVOBFLMFOJS#VEV- 3 SVNEB fh( x ) = 8x - 3 = 0 j x = # f (x) = F (x) + c olur. 8  #VSBEB G Y FJOUFHSBOU JOUFHSBMJBMŽOBOGPOL- TJZPO EYFJOUFHSBMEFóJõLFOJ DZFJTFinteg- ral sabitiEFOJS ÖRNEK 1 ÖRNEK 4 # f (x) dx = x4 - 3x2 + 5x + 6 # f (x) dx = - x2 - 4x - 2 PMEVôVOBHÌSF  f ( x ) fonksiyonunu bulunuz. x2 PMEVôVOB HÌSF f ( x ) fonksiyonunun yerel maksi- f ( x ) fonksiyonunun integrali x4 - 3x2 + 5x + 6 oldu- ôVOEBOY4- 3x2 + 5x + 6 ifadesinin türevi f ( x ) olur. NVNEFôFSJLBÀUŽS ( x4 - 3x2 + 5x + 6 )h =f ( x ) = 4x3 - 6x + 5 f- 2 l f(x) x - 4x - 2 p = x 2 -x - 4 = f(x) j -x2 - 4x = f ( x ) x fh( x ) = -2x - 4 = Y= -2 j f ( -2 ) = -4 + 8 = 4 1. 4x3 – 6x + 5 2 2. –3 3. 3 4. 4 8

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 5 ÖRNEK 8 # ^ x + f (2x) h dx = 4x3 + x2 + 6 N= 4x + 5 PMEVôVOBHÌSF EYJGBEFTJOJOFöJUJOJCVMVOV[ 2 PMEVôVOBHÌSF G  LBÀUŽS dm dm = 4dx j dx = 2l f 4x3 + x + 6 p = x + f (2x) 4 2 ÖRNEK 9 12x2 + x = x + f ( 2x ) f ( 4 ) = 12.22 = 48 f(x) = x2 + 2 x - 1 x %JGFSBOTJZFM,BWSBNŽ PMEVôVOBHÌSF EG Y JGBEFTJOJOFöJUJOJCVMVOV[ TANIM df ( x) = d x2 + 2 x- 1 l Türevlenebilir bir f ( x ) fonksiyonu için x n dx d ^ f (x) h =Gh Y JGBEFTJG Y GPOLTJZPOVOVO dx df ( x) = f 2x + 2· 11 2 + p dx UÐSFWJPMNBLÐ[FSF  d^ f (x) h = f' (x) dx JGBEFTJ- 2 ne f ( x ) fonksiyonunun diferansiyeli EFOJS x x  4POV¿PMBSBLCJSG Y GPOLTJZPOVOVOEJGFSBOTJ- ZFMJPMBOE G Y  JGBEFTJ GPOLTJZPOVOUÐSFWJJMF = f 2x + 11 EYJO¿BSQŽNŽOBFõJUUJS + p dx 2 x x ÖRNEK 6 #FMJSTJ[÷OUFHSBMJO²[FMMJLMFSJ f ( x ) = x3 - x2 - 4x + 6 %m/*m fonksiyonunun diferansiyelini bulunuz. # f' (x) dx = f (x) + c df ( ( x ) ) = f' ( x ) dx = ( 3x2 - 2x - 4 ) dx # d^ f(x) h = f(x) + c ÖRNEK 7 # c.f(x) dx = c # f(x) dx , ^ c ! R h y = u4 - 2 d # f (x) dx = f (x) u dx PMEVôVOBHÌSF EZOJOFöJUJOJCVMVOV[ d # f (x) dx = f (x) dx # f d f (x) p dx = f (x) + c dx # ^ f(x) ± g(x) h dx = # f(x) dx ± # g(x) dx dy = d 4 - 2 l & dy = f 3 + 2 u u n du 4u 2 p du u 3 dm 9. f 2x + 11 8. + p dx 6. (3x2 – 2x – 4)dx 32 2 5. 48 4 x x 7. f 4u + 2 pdu u

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÖRNEK 10 ÖRNEK 14 d # (x2 + 5x - 1) dx # > d ^ x3 - 4x hdxH dx dx JGBEFTJOJOFöJUJOJCVMVOV[ JGBEFTJOJOFöJUJOJCVMVOV[ #d a x 2 + 5x - 1 k dx = 2 + 5x - 1 x dx #= d ^ 3 h Gdx 3 - 4x = - 4x + c dx x x ÖRNEK 11 ÖRNEK 15 # d^ x h # d f x2 + 4x p JGBEFTJOJOFöJUJOJCVMVOV[ x+2 JGBEFTJOJOFöJUJOJCVMVOV[ # d^ x h = x + c ÖRNEK 12 #df x2 + 4x p= 2 + 4x +c d # d ^x3 + x2h x dx x+2 x+2 JGBEFTJOJOFöJUJOJCVMVOV[ #d d^ 3 + 2 h = ( 3x2 + 2x ) x x dx ÖRNEK 13 ÖRNEK 16 d # (3x2 - 2x + 1) dx d # a d # ^ x2 - 4x h dx k JGBEFTJOJOFöJUJOJCVMVOV[ JGBEFTJOJOFöJUJOJCVMVOV[ # # #ddd^ 2 - 4x hdx n = d ^ x2 - 4x hdx x #d 2 - 2x + 1) dx = 2 - 2x + 1) dx = ^ 2 - 4x hdx (3x (3x x 10. x2 + 5x – 1 11. x + c 12. 3x2 + 2x 13. (3x2 – 2x + 1)dx 4 14. x3–4x+c 2 16. (x2 – 4x) dx x + 4x 15. + c x+2

#FMJSTJ[÷OUFHSBM TEST - 1 1. # f (x) dx = x2 - 3x + 1 5. # f (x) dx = 2x2 + 8x - 3  PMEVôVOBHÌSF G Y GPOLTJZPOVOVOFöJUJBöBôŽ- x EBLJMFSEFOIBOHJTJEJS PMEVôVOBHÌSF G Y GPOLTJZPOVOVOZFSFMNJOJ- A) x3 - 3x2 + x + c   # Y2 - 3x + 1 NVNEFôFSJLBÀUŽS 32 A) - # - $  %  &  C) ( 2x - EY  % Y- 3 E) x3 - 3x2 6. # x.f(x) dx = 2x + 1 + c x+1 4 PMEVôVOBHÌSF f-1 Y BöBôŽEBLJMFSEFOIBOHJTJ- EJS 2. # x.f (x) dx = x3 - 3x2 + x + 1 A) 1  #  2 C) - 2 1 - 2x 2x + 1 2x + 2  PMEVôVOBHÌSF G  LBÀUŽS A) - # -2 C) - %  &  %  1 E) 1 2x - 1 2x + 2 3. f (x) = # ^ x3 + x2 + 4 h dx 7. # x3.f' (x) dx = x5 - 4x4 + c  PMEVôVOBHÌSF G Y GPOLTJZPOVOBY=BQTJTMJ 5 OPLUBTŽOEBOÀJ[JMFOUFôFUJOFôJNJLBÀUŽS  PMEVôVOBHÌSF Gh - LBÀUŽS \"  #  $  %  &  A) - # -21 C) - % -18 E) -17 4. # x.f (x) dx = x3 - 6x2 8. G Y EPóSVTBMGPOLTJZPOPMNBLÐ[FSF  PMEVôVOBHÌSF G  +Gh  LBÀUŽS g(x) = d # f(x) dx + # d f (x) \"  #  $  %  &  dx f ( 1 ) = f ( 2 ) = 5 ve g ( 3 ) = -4 PMEVôVOBHÌSF H-1  LBÀUŽS \"  #  $  %  &  1. D 2. B 3. C 4. \" 5 5. \" 6. D 7. & 8. D

TEST - 2 #FMJSTJ[÷OUFHSBM 1. # f(x) - 1 x-3 + x +c 5. # x2.f (x) dx = x4 - 15x3 + c dx = x+2 ^ x - 1 h2 2  PMEVôVOBHÌSF f ( - LBÀUŽS A) - # -11 C) - % -45 E) -89  FöJUMJôJOJTBôMBZBOG Y GPOLTJZPOVJÀJO f ( 5 ) de- ôFSJLBÀUŽS A) - 25  # - 7 C) 45  %  38 9 E) 18 12 16 11 2 2. f(x) = # mx - 1 dx PMNBLÐ[FSF 6. f(x) = d # d 9 # (x3 - 4x) dxC x3 + 4x2 - x + 5 dx PMEVôVOBHÌSF Gh  LBÀUŽS f ( x ) fonksiyonunuO HSBGJôJOJO Y = - BQTJTMJ OPLUBTŽOEBLJOPSNBMJZ= 3x -EPôSVTVPMEV- \"  #  $  %  &  ôVOBHÌSF NLBÀUŽS A) - 13  # - 7 C) 14  %  23 48 E) 2 10 9 5 7 3. :FSFMFLTUSFNVNOPLUBMBSŽOEBOCJSJOJOBQTJTJ 7. # x.f(x) dx = d # (2x3 + x)dx PMBOG Y GPOLTJZPOVJÀJO dx PMEVôVOBHÌSF G  LBÀUŽS f (x) = # (4x2 - m) dx \"  #  $  %  &   PMEVôVOBHÌSF NLBÀUŽS \"  #  $  %  &  4. f (x) = # d (3x2 + 6x) PMNBLÐ[FSF 8. d # d (x2 + 6x) f ( 1 ) =   PMEVôVOB HÌSF  G Y  GPOLTJZPOVOVO  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS BMBCJMFDFôJFOLÑÀÑLEFôFSLBÀUŽS A) x2 +Y # Y+ 6 A) - # -6 C) - % -8 E) -9 C) ^ x2 + 6x hdx  %  Y+ EY E) x2 + 6x +D 1. & 2. C 3. D 4. C 6 5. & 6. B 7. C 8. D

%JGFSBOTJZFM,BWSBNŽ TEST - 3 1. # ^ x + 2 h f (x) dx = x4 + 2x3 - 8x2 - 24x + 5 5. # d^ x3 + x h + d # ^ x3 + x hdx PMEVôVOBHÌSF G Y GPOLTJZPOVOBY= -BQTJT- dx MJOPLUBTŽOEBOÀJ[JMFOUFôFUJOFôJNJLBÀUŽS  JöMFNJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS A) - # -10 C) - % -6 E) -4 A) x4 + x3 + x2 + x + c 42 2. # ^ x + 1 h.f' (x) dx = x3 - 4x2 - 11x + 10 # 2x3 + 2x  PMEVôVOBHÌSF G Y GPOLTJZPOVOVOFLTUSFNVN C) 2x3 + 2x +D OPLUBTŽOŽOBQTJTJLBÀUŽS % 6x + 2 E) 6x2 + 2 A) 8  #  $  10  %  11 E) 4 3 33 6. d # ^ x2 + 5x hdx = # f(x) dx dx  PMEVôVOBHÌSF G  LBÀUŽS \"  #  $  %  &  3. # 2.f' (x) dx = 4f (x) - 6x2 + 10 PMEVóVOBHËSF G Y GPOLTJZPOVBöBôŽEBLJMFSEFO 7. # f d (x3 + x) pdx = # f'(x) dx IBOHJTJPMBCJMJS dx A) x2 -Y # Y2 + 4x C) 3x2 - 2x PMEVôVOBHÌSF f ( x ) fonksiyonunun artan oldu- ôVFOHFOJöBSBMŽLBöBôŽEBLJMFSEFOIBOHJTJEJS  % Y2 + 4 E) 2x2 + 4 \"  mÞ > # < Þ  $  -Þ Þ  % <- Þ  &  -Þ -4 ) 4. f ( x ) = x2 -YPMEVôVOBHÌSF  8. d # 9d # x2 dxC f' (x)  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS d ^ f(x) h  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) x3 + c  C) x2 3  E) x2EY #) 2x \"  # Y- $ EY  %  1 E) x2 - 6x  % Y2 +D dx 1. B 2. D 3. D 4. D 7 5. C 6. D 7. C 8. &

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÷/5&(3\"-\"-.\",63\"--\"3* ÷OUFHSBM\"MNB,VSBMMBSŽ ÖRNEK 4 %m/*m D`3PMNBLÐ[FSF # x2. 3 x dx # dx = x + c JOUFHSBMJOJOFöJUJOJCVMVOV[ # a.dx = ax + c 2 2 1/3 7/3 Oá-1 ve n `2PMNBLÐ[FSF  . x .x x dx # xn dx = xn + 1 + c # # #x 3 x dx = dx = n+1 a `3PMNBLÐ[FSF  x 10/3 + c = 3 ·x10/3 + c = # a.xn dx = a # xn dx 10 10 # ^ f(x) ± g(x) h dx = # f(x) dx ± # g(x) dx 3 ÖRNEK 1 ÖRNEK 5 # 3 dx JOUFHSBMJOJOFöJUJOJCVMVOV[ # 4 dx # 3 dx = 3x + c 5 x2 JOUFHSBMJOJOFöJUJOJCVMVOV[ # #4 -2/5 4.x 3/5 dx = 4.x dx = 3 +c 52 x 5 = 20 3/5 + c 3 x ÖRNEK 2 ÖRNEK 6 # x2 dx # 3 x2 dx JOUFHSBMJOJOFöJUJOJCVMVOV[ 4 x3 3 JOUFHSBMJOJOFöJUJOJCVMVOV[ #2 x x dx = + c 3 ÖRNEK 3 32 # #x # ^ 4x3 + 2x - 6 h dx dx = 2/3 –3/4 JOUFHSBMJOJOFöJUJOJCVMVOV[ x .x dx 43 x 2/3–3/4 –1/12 x dx x dx # #= = 42 11/12 3 4x 2x x + c = 12 ·x11/12 + c #a + 2x - 6 kdx = + - 6x + c = 4x 42 11 11 = x4 + x2 - 6x + c 12 3 8 4. 3 x10/3 + c 5. 20 x3/5 + c 6. 12 11/12 + c 1. 3x + c x 3. x4 + x2 – 6x + c 10 3 11 x 2. + c 3

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 7 ÖRNEK 10 # ^ 2x - 1 h ^ x + 3 h dx # x2 y dx + # x2 y dy JOUFHSBMJOJOFöJUJOJCVMVOV[ JOUFHSBMJOJOFöJUJOJCVMVOV[ # #^ 2x - 1 h ^ x + 3 h dx = a 2x2 + 5x - 3 kdx # #2 2 3 22 x xy +c x y dx + x y dy = y + 32 3 2 2x 5x = + - 3x + c 32 ÖRNEK 8 ÖRNEK 11 # 2x3 - 4x2 + 3x dx # m3 - m2 + 2 dm x m2 JOUFHSBMJOJOFöJUJOJCVMVOV[ integralinJOFöJUJOJCVMVOV[ # #2x3 - 4x2 + 3x a 2 - 4x + 3 kdx x dx = 2x = 2 x3 - 2x2 + 3x + c 32 3 # #m - m + 2 dm = ^ m - 1 + –2 h dm 2 2m m 2 –1 2 m 2m m 2 = -m+ +c= -m- +c 2 -1 2 m UYARI öOUFHSBMBMNBJõMFNJGBSLMŽEFóJõLFOMFSFHËSFEF uygulanabilir. ÖRNEK 9 ÖRNEK 12 # u2 du + # u2 dm # x - 4 dx JOUFHSBMJOJOFöJUJOJCVMVOV[ x+2 integralinJOFöJUJOJCVMVOV[ 3 # #x - 4 dx = ^ x - 2 h^ x + 2 h # #2 2 u 2 dx u du + u dm = + u .m + c 3 x+2 ^ x+2h 3/2 #= a x1/2 - 2 k dx = x - 2x + c 3 2 2 3/2 = x - 2x + c 3 2x3 5x2 2 u3 +u2.m+ c 9 3 22 2 + - 3x + c m2 2 3/2 7. 8. x3–2x2+3x + c 9. xy xy +c 11. - m - + c 12. x - 2x + c 10. + 32 3 3 32 2m 3

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÖRNEK 13 ÖRNEK 16 # ^ x6 - 1 h dx  Gh Y = 3x2 + 6x + 5 ve f ( 1 ) = 3 PMEVôVOBHÌSF G  LBÀUŽS ^x4 - x3 + x - 1h integralinJOFöJUJOJCVMVOV[ f (x ) = x3 + 3x2 + 5x + c f ( 1 ) = 1 + 3 + 5 + c = 3 j c = -6 # #^ x6 - 1 h ^ 3 - 1 h^ 3 + 1 h f ( 3) = 27 + 27 + 15 - 6 = 63 dx = x x dx ^ x 4 - 3 + x - 1 h 3 ^ x - 1 h + x - 1 x x # #= f ^ x3 - 1 h^ x3 + 1 h p dx = ^ x2 + x + 1 hdx ^ 3 h^ + 1 x - 1 h x 32 xx = + +x+c 32 ÖRNEK 17  Ghh Y = 6x2 +Y Gh  = 0 ve f ( -1 ) = 1 PMEVôVOBHÌSF f ( x ) fonksiyonunu bulunuz. ÖRNEK 14 f' ( x ) = 2x3+ 3x2 + c f' ( 1 ) = 2 + 3 + c = D= -5 # 3 x - 6 dx + # 6+2 x f' ( x ) = 2x3 + 3x2 - 5 dx 43 xx 2x 3x f(x) = + - 5x + c 43 integralinJOFöJUJOJCVMVOV[ 1 7 f^ -1 h = - 1 + 5 + c = 1, c =- 22 # #3 x - 6 + 6 + 2 x 5x dx = 5x + c 4 dx = f^ x h = x + x3 - 5x - 7 22 xx ÖRNEK 15 ÖRNEK 18  Gh Y = 3x2 - 4x + 1 ve f ( 1 ) = 2 y =G Y FóSJTJOJOÐ[FSJOEFLJ5   OPLUBTŽOEBO¿J[JMFO PMEVôVOBHÌSF G Y GPOLTJZPOVOVCVMVOV[ UFóFUEPóSVTVOVOFóJNJEŽS f (x ) = x3 - 2x2 + x + c olur. f'' ( x ) =PMEVôVOBHÌSF G  LBÀUŽS f(1) = 1 - 2 + 1 + c = 2 c=2 f ( 3 ) = Gh  = Ghh Y = 4 f ( x ) = x3 - 2x2 + x + 2 f' ( x ) = 4x +D Gh  = 12 + c = D= -6 f'( x ) = 4x - 6 j f ( x ) = 2x2 - 6x + c f ( 3 ) = 18 - 18 + c = D= 7 f ( x ) = 2x2 - 6x + 7 f ( 5 ) = 50 - 30 + 7 = 27 32 4 x3 7 xx 14. 5x+c 15. x3 – 2x2 + x + 2 10 16. 63 17. + x - 5x - 18. 27 13. + + x + c 22 32

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 19 ÖRNEK 22 y = f ( x ) fonksiyonunun r Y Z OPLUBTŽOEBLJUFóFUJOJO f ( x ) = 4x3 + 6x2 + 2x - 1 FóJNJ POPLUBOŽOBQTJTJOJOLBUŽOBFõJUUJS fonksiyonunun ilkeli g ( x ) ve g ( -1 ) = -PMEVôVOB f ( 3 ) =PMEVôVOBHÌSF G  LBÀUŽS HÌSF H  LBÀUŽS  f'( x ) = 2x j f ( x ) = x2 + c g ( x ) = x4 + 2x3 + x2 - x + c g ( -1 ) = 1 - 2 + 1 + 1 + c = - D= -2 f ( 3 ) = 9 + c =  D= 1 g ( x ) = x4 + 2x3 + x2 - x - 2 f ( x ) = x2 +  G  = 5 g ( 1 ) = 1 + 2 +1 - 1 - 2 = 1 ÖRNEK 20 ÖRNEK 23 # x2.d (x2)  EG Y = ( 3x2 + EYWFG  = 0 JOUFHSBMJOJOFöJUJOJCVMVOV[ PMEVôVOBHÌSF G  LBÀUŽS 2x 4 f' ( x ) dx = ( 3x2+ 4 ) dx f' ( x ) = 3x2 + 4 j f ( x ) = x3 + 4x + c # #2dx = 3 dx = 4 +c f ( 1 ) = 1 + 4 + c = 0 j c = -5 x .2x f ( x ) = x3 + 4x - 5 2x f ( 0 ) = -5 4 x = +c 2 ÖRNEK 21 ÖRNEK 24 # x.f (x) dx = ax2 + 4x + b # 3 3 x2 FõJUMJóJWFSJMJZPS x+ dx f ( 1 ) =PMEVôVOBHÌSF BLBÀUŽS x x f ( x ) = 2ax + 4 1.f ( 1 ) = 2a + 4 = 0 a = -2 JOUFHSBMJOJOFöJUJOJCVMVOV[ 1/3 2/3 # # #x + x dx = x 1/3 – 1/2 dx + x 2/3–1/2 dx x 1/2 # #–1/6 1/6 = x dx + x dx 5/6 7/6 6x 6x = + +c 57 4 11 22. 1 23. –5 24. 6 5/6 + 6 7/6 + c 19. 5 x 21. –2 x x 20. + c 57 2

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÖRNEK 25 ÖRNEK 28 f (x) = # (3x2 - 2x + 1) dx ve f ( 2 ) = 8  Gh Y = 3x2 - 6x + 4 ve f ( 1 ) = 7 PMEVôVOBHÌSF G  LBÀUŽS PMEVôVOBHÌSF G  LBÀUŽS f ( x ) = x3 - 3x2 + 4x + c f ( x ) = x3 - x2 + x + c f(1) = 1 - 3 + 4 + c = 7 j c = 5 f(0) = 5 f(2) = 8 - 4 + 2 + c = 8 jc=2 f ( x ) = x3 - x2 + x + 2 j f ( 1 ) = 1 - 1 + 1 + 2 = 3 ÖRNEK 26 ÖRNEK 29 Ghh Y =YPMNBLÐ[FSF f (x) = # x4 - 1 dx ve f ( 1 ) = 3 f ( x ) fonksiyonuna A ( -  OPLUBTŽOEBO¿J[JMFOUFóFUJO FóJNJPMEVóVOBHËSF G  LBÀUŽS x-1 PMEVôVOBHÌSF G  LBÀUŽS f''( x ) = 6x j f' ( x ) = 3x2 + c f ( -1 ) = Gh -1) = 3 j f'(-1) = 3 + c = 3 j c = 0 432 f' ( x ) = 3x2 j f ( x ) = x3+ c x x x f(-1) = -1 + c = D= 3 j f ( x ) = x3 + 3 #f(x) = ^ 3 + x 2 + x + 1 h dx = + + +x+c f(1) = 1 + 3 = 4 x 432 f^ 1 h = 1 + 1 + 1 + 1 + c = 3 432 26 48 22 11 j f(0) = 11 +c= j c= = 24 24 24 12 12 ÖRNEK 27 ÖRNEK 30 # ^ a b + b a h da f (x) = # (3x2 + 4x + 3) dx ve f ( 1 ) = 10 JOUFHSBMJOJOFöJUJOJCVMVOV[ PMEVôVOBHÌSF f ( x ) fonksiyonunun x =OPLUBTŽO- EBLJUFôFUJOJOEFOLMFNJOJCVMVOV[ 2 3/2 # ^ a b + b a h da = a b.a .2 f(x) = x3+ 2x2 + 3x + c b+ +c f(1) = 10 j c = G  = 4 23 f'(x) = 3x2 + 4x + 3 j f'(0) = 3 y - 4 = 3x j y = 3x + 4 a2 b b.a3/2.2 12 28. 5 29. 11 30. y = 3x + 4 25. 3 26. 4 27. + +c 12 23

÷OUFHSBM\"MNB,VSBMMBSŽ TEST - 4 1. G Y GPOLTJZPOVJ¿JOGh Y = 6x2 - 2x + 5 ve 5. P (x) = # a 6x 5 + 4 - 4x 3 k dx veriliyor. f ( 1 ) = 8 PMEVôVOBHÌSF G  LBÀUŽS 5x \"  #  $  %  &  #VOB HÌSF 1 Y  QPMJOPNV JÀJO 1   - 1   LBÀUŽS A ) - # - $  %  &  2. f ( x ) fonksiyonunun diferansiyeli d ( f ( x ) ) ol- 6. # x2.fl (x) dx = x4 - 2x3 + c ve f^ 1 h = - 5 NBLÑ[FSF 42 9 - x3E G Y  = 6x ve f ( 3 ) = 2 PMEVôVOB HÌSF  G Y  BöBôŽEBLJMFSEFO IBOHJTJ- EJS PMEVôVOBHÌSF G  LBÀUŽS \"  #  $  %  &  A ) x2 - 12x + 6   #  x2 - 4x + 12 2 2 3. # ^ x - 2 h2.x dx C ) x3 - 12x2 + 6   %  2x3 - 18x2 + 1 2 6  JOUFHSBMJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- EJS E ) x2 - 3x + 1 A) x3 - 4x2 + 4x +D # Y3 + 4x2 - 4x +D 7. y = G Y  FóSJTJ Ð[FSJOEFLJ IFS Y  Z  OPLUBTŽOEBO C) x4 - 4x3 + 4x +D %  x4 - 4x3 + 2x2 + x + c FóSJZF¿J[JMFOUFóFUMFSJOFóJNJ POPLUBJMFZFLTFOJ 43 BSBTŽOEBLJV[BLMŽóŽOLBSFTJOFFõJUUJS E) x4 - 4x3 + 2x2 + c 43 f ( 1 ) =PMEVôVOBHÌSF G  LBÀUŽS A ) 10  #  11  $  %  14 E ) 16 33 33 4. # 3 x x3 x dx  JOUFHSBMJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- 8. :FSFM FLTUSFNVN OPLUBMBSŽOEBO CJSJ \"   -2 ) EJS #  3 x9/4 + c PMBOG Y GPOLTJZPOVJÀJO A) 4 x11/3 + c  7 f (x) = # (3x2 - a) dx 7 C) 9 x9/7 + c  %  14 x9/14 + c  PMEVôVOBHÌSF f ( 3 ) LBÀUŽS 14 9 E) 9 x14/9 + c \"  #  $  %  &  14 1. \" 2. B 3. & 4. & 13 5. D 6. \" 7. & 8. &

TEST - 5 ÷OUFHSBM\"MNB,VSBMMBSŽ 1.  Gh Y = 6x2 + 4x ve f ( 1 ) = 5 5. f(x) = # d 9 # ^ 3x2 - 2 h dxC ve f ( 1 ) = 0 PMEVôVOBHÌSF G - LBÀBFöJUUJS  PMEVôVOBHÌSF G  LBÀUŽS \"  #  $  %  &  A) - #  $  %  &  6. # f(x) dx + # x.f'(x) dx 2. f : R Z3PMNBLÐ[FSFG Y GPOLTJZPOVOVO  JOUFHSBMJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- EJS  \"  - OPLUBTŽOEBLJOPSNBMJOJOFóJNJ- 1 ve 3 f2^ x h # Y+ f ( x ) +D A) + f (x) + c  fŽŽ( x ) = 12x2 -PMEVóVOBHËSF  f ( - LBÀUŽS 2 C) x.f ( x ) +D % Y2+ f ( x ) +D A ) -7 # - 9 C ) - 7 % -3 E ) - 5 E) f2 (x) + x2 f (x) + c 22 2 2 7. # x.f' (x) - 2f (x) dx x3 3. Ghh Y = 12x +PMNBLÐ[FSF integraliOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ-  G Y  GPOLTJZPOVOVO \"      OPLUBTŽOEB ZFSFM EJS ekstremumVPMEVôVOBHÌSF G  LBÀUŽS f(x) f(x) f(x) A) + c  #  + c C) + c xx 2x x2 \"  #  $  %  &  f(x) E) + c % YG Y +D x3 4. # ^hlogh ^xh .gl^xh dx 8. # x .^ x + 1 h.^ x - x h^ x2 + x h dx  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS \"  IhPH  Y +D #  HhPI  Y +D A) x5 + x3 + c  #  x5 - x3 + c 53 53 $  HhPIh  Y +D %  IPH  Y +D C) x6 + x4 + c  %  x6 - x4 + c 64 64   &  HPI  Y +D E) x9 + x5 + c 95 1. B 2. \" 3. D 4. D 14 5. & 6. C 7. C 8. B

÷OUFHSBM\"MNB,VSBMMBSŽ TEST - 6 1. P (x) = # r' (x) .k (x) dx + # r (x) .k' (x) dx 5. f(x) = # ^x2 - 2hf 1 + 2 p dx x4 P ( 4 ) = S  L  = 6 ve r ( 3 ) . k ( 3 ) = 10 PMEVôVOBHÌSF 1  LBÀUŽS fonksiyonu veriliyor. \"  #  $  %  &  f ( 1 ) = -PMEVóVOBHËSF f ( - LBÀUŽS \"  #  4 C) 5  %  &  7 3 3 3 2. f(x) = # f x.g'(x) - g(x) p dx 6. Gh Y = 4x -NPMNBLÐ[FSF x2  G Y  GPOLTJZPOVOVO \"     OPLUBTŽOEB ZFSFM fonksiyonu veriliyor. NJOJNVNVWBSTBG  LBÀUŽS 3.f ( 3 ) = g ( 3 ) - 6 ve g ( 2 ) = 8 \"  #  $  %  &  PMEVôVOBHÌSF G  LBÀUŽS \"  #  $  %  &  3. f (x) = # ^ x4 - x3 + 4x hdx 7. f(x) = # x9 - 8 dx ve f ( 2 ) = 5 x6 + 2x3 + 4  PMEVôVOBHÌSF G Y GPOLTJZPOVOVOY= -1 nok- UBTŽOEBLJ UFôFUJOJO FôJNJ BöBôŽEBLJMFSEFO IBO-  PMEVôVOBHÌSF G - LBÀUŽS HJTJEJS \"  #  $  %  &  A) - # -2 C) - %  &  4. # f(x) dx = 4x2 + 3x 8. # ^ x - 2 h P (x) dx = x3 + mx2 - 4x x2  FöJUMJôJOJTBôMBZBO1 Y QPMJOPNVJÀJO1  EF- ôFSJLBÀUŽS PMEVôVOBHÌSF f ( x ) fonksiyonunun yerel eks- USFNVNOPLUBMBSŽOŽOBQTJTMFSJUPQMBNŽLBÀUŽS A) - 1  # - 1  $  %  1 E) 1 \"  #  $  %  &  42 2 4 1. C 2. \" 3. B 4. \" 15 5. & 6. C 7. D 8. C

TEST - 7 ÷OUFHSBM\"MNB,VSBMMBSŽ 1. Q Y L Y S Y UÐSFWMFOFCJMFOGPOLTJZPOMBSPMNBL 5. %JGFSBOTJZFMJ Y+ EYPMBOG Y GPOLTJZPOVJMFEJ- Ð[FSF feransiyeli ( 3x2 - EYPMBOH Y GPOLTJZPOVOVO LFTJNOPLUBMBSŽOEBOCJSJZFLTFOJÐ[FSJOEFEJS p (x) = # k' (x) dx k (x) = # r (x) dx  G Y JMFH Y GPOLTJZPOMBSŽOŽOLFTJöUJLMFSJEJôFS OPLUBMBS\" Q S WF# L N PMEVôVOBHÌSF  PMEVôVOBHÌSF BöBôŽEBLJMFSEFOIBOHJTJZBOMŽö- Q+LLBÀUŽS UŽS \" Qh Y =Lh Y  A) - # - $  %  &  # S Y =Qh Y $ Lh Y = r( x ) 6. # x2 dx - # 4x - 4 dx % Q Y -L Y TBCJUGPOLTJZPOEVS x+2 x2 + x - 2 & Q( x ) =Sh( x ) JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 2. Diferansiyeli ( 2x - EYPMBOGPOLTJZPOBöBôŽ- A) x2 - 2x + c  #  x2 + 2x + c 2 2 EBLJMFSEFOIBOHJTJEJS C) x3 - 4x + c  %  x4 - 2x + c A) 2x - #  $ Y2 +D 3 4  % Y2- 4x +D & Y2- 4x +D E) x4 - x2 + c 42 3. \"öBôŽEBLJFöJUMJLMFSEFOIBOHJTJZBOMŽöUŽS A) # eda = e.a + c  #  # ndn = n2 + c 7. G Y FóJNJQP[JUJGPMBOEPóSVTBMCJSGPOLTJZPOPMNBL C) # p2r dr = p3 .r + c 2 Ð[FSF 3 %  # u.t2 du = u2 t2 + c # x2.f (x) .f' (x) dx = 4x4 + 24x3 2 FõJUMJóJWFSJMJZPS E) # k3 dk = k4 + c  #VOBHÌSF G Y GPOLTJZPOVOVOZFLTFOJOJLFT- UJôJOPLUBOŽOPSEJOBUŽLBÀUŽS m 4m \"  #  $  %  &  4. f (x) = 3x + 1  g (x) = 2x + 1 x-2 x-3  GPOLTJZPOMBSŽWFSJMJZPS 8. d^ h (x) h = 2x + 4 ve p (x) = # h (x) dx # ^ fog h (x) dx dx  FõJUMJLMFSJWFSJMJZPS  JGBEFTJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  I  =WFQ  = 5 PMEVôVOBHÌSF Q  LBÀ- A) x +D #  3x + 1 + c C) x2 + c UŽS x-2 2 \"  #  $  %  &   %  x - 2 + c E) x2+D 3x + 1 1. & 2. D 3. C 4. C 16 5. D 6. \" 7. C 8. &

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, %&ó÷õ,&/%&ó÷õ5÷3.&:²/5&.÷ TANIM ÖRNEK 3  öOUFHSBMBMNBLVSBMMBSŽJMFBMŽONBTŽ[PSPMBOCB- # ^ 1 - 4x2 h25.4x dx [ŽJOUFHSBMMFSEFóJõLFOEFóJõUJSNFZËOUFNJLVM- MBOŽMBSBLEBIBCBTJUJOUFHSBMMFSIBMJOFHFUJSJMEJL- JOUFHSBMJOJOFöJUJOJCVMVOV[ UFOTPOSBLPMBZDBJOUFHSBMJBMŽOBCJMJS #^ 1 - 2 h25 .4x dx  V= 1 - 4x2 EV= -8x dx  Oá Oá-1 ve n `2PMNBLÐ[FSF 4x # ^ F^ x hhn.F'^ x h dx  CJ¿JNJOEFLJ JOUFHSBMMFSEF j du = -2.4x dx TŽSBTŽZMBBõBóŽEBLJBEŽNMBSVZHVMBOŽS u = F^ x h PMTVOEFOJS #j u25.d - du n 2 du = F'^ x h dx olur.  #VEVSVNEBJOUFHSBMJNJ[ #1 25 1 26 - 1 ^ 1 - 2 h26 # un.du CJ¿JNJOFEËOFS =- u du = - u +c= 4x +c # un.du = un + 1 + c olur. 2 2 26 52 n+1  VZFSJOF' Y ZB[ŽMŽSTB ÖRNEK 4 F^ x hn + 1 # ^ x6 + 3x2 h3^ x5 + x hdx = +c JOUFHSBMJOJOFöJUJOJCVMVOV[ n+1  õFLMJOEF¿Ë[ÐNÐCVMNVõPMVSV[ #a 6 + 2 k3.^ 5 + x hdx  V= x6 + 3x2  ÖRNEK 1 x 3x x # (x + 3) 7dx JOUFHSBMJOJOFöJUJOJCVMVOV[ du = (6x5 + 6x) dx j du = 6(x5+ x) dx 4 du 1 u3 du = 1 · u + c # #j ^ 3 h· = u 66 64 4 a x6 + 3x2 k4 +c u = +c= 24 24 # ^ x + 3 h7 dx  V= x + EV= dx #j 7 du = 8 +c= ^ x + 3 h8 +c u u 88 ÖRNEK 5 ÖRNEK 2 # x2 dx # 2 2x - 1 dx JOUFHSBMJOJOFöJUJOJCVMVOV[ x3 + 4 inteHSBMJOJOFöJUJOJCVMVOuz. #x 2 dx  V= x3 + EV= 3x2 dx 3 x +4 # 2 2x - 1 dx  V= 2x - EV= 2dx & # du 3u u 3/2 + c = 2 ^ 2x - 1 h3/2 + c 1/2 # #j 1/2 #1 –1/2 1 u2 3 u du = du = = u du = +c= u 33 x +4+c 13 33 2 2 ^ x + 3 h8 2. 2 ^ 2x - 1 h3/2 + c 17 - ^ 1 - 2 h26 a x6 + 3x2 k4 23 1. + c 3 3. 4x + c 4. + c 5. x +4+c 8 52 24 3

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÖRNEK 6 ÖRNEK 9 # 3x dx # x d^ x3 h 5 - x2 4 + x4 inteHSBMJOJOFöJUJOJCVMVOuz. inteHSBMJOJOFöJUJOJCVMVOuz. # 3x dx  V= 5 - x2 EV= -2x dx # #x.d^ 3 h 3 5 - x2 x = 3x dx V= 4 + x4 EV= 4x3 dx # #3 du - 3 –1/2 4 4 4+x 4+x j- = u du 2 u2 du 3 3 4 + x4 = +c - 3 1/2 2 # #3 –1/2 du = j u 4 u4 2 = 2u + c = - 3 5 - x + c 2 ÖRNEK 7 ÖRNEK 10 # F ›^ 3x + 1 h .F^ 3x + 1 h dx rYWFG Y PMNBLÐ[FSF G Y G h Y = 2x3 + 12x2 + 16x tir. inteHSBMJOJOFöJUJOJCVMVOuz. f ( 2 ) = 12 PMEVôVOBHÌSF G  LBÀUŽS f ( x ).f' ( x ) = 2x3 + 12x2 +Y G  = G  = # #f^ x h.f'^ x h dx = 32 2x + 12x + 16x dx #u = f^ x h x 4 u du = du = f'^ x h dx & 2 + 4x3 + 8x2 + c # F'^ 3x + 1 h.F^ 3x + 1 h dx  V= F(3x +  24 du = F'(3x + 1).3 dx u x + 4x3 + 8x2 + c = 22 2 u.du 1 u + c = 1 ^ F^ 3x + 1 h h2 + c #j =· 2 ^ x h 4 3 32 6 j f = x + 4x3 + 8x2 + c 22 x=2j 2 ^ x h = 8 + 32 + 32 + c j 72 = 72 + c j c = 0 f 2 f2 ^ 3 h = 81 + 108 + 72 = 441 & f^ 3 h = 21 22 2 ÖRNEK 8 ÖRNEK 11 # f3 (x) .f› (x) dx # dx 3 f (x) inteHSBMJOJOFöJUJOJCVMVOuz. ^ x + 2 h4 inteHSBMJOJOFöJUJOJCVMVOuz. #3 ^ x h.f'^ x h dx f  u =G Y  EV= f'( x ) dx 3 f^ x h 3 11/3 # dx u .du u8/3du = 3u  V= x + EV= dx = ^ x + 2 h4 # #j 11 +c 1/3 u = 3 ^ f^ x h h11/3 + c # #du –4 u –3 -1 11 j 4 = u du = +c= +c –3 3^ x + 2 h3 u 6. - 3 5 - x2 + c 7. 1 ^ F^ 3x + 1 h h2 + c 8. 3 ^ f^ x h h11/3 + c 18 3 4 + x4 10. 21 -1 6 11 9. + c 11. + c 2 3^ x + 2 h3

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 12 ÖRNEK 15 # ^ 3x2 - 2x + 5 h3.^ 3x - 1 h.dx g^ x h = # fl^ x h.f^ x hdx ve f^ 1 h = g^ 1 h = - 3 tür. inteHSBMJOJOFöJUJOJCVMVOuz. f ( 2 ) = 6 ise H  LBÀUŽS # a 3x2 - 2x + 5 k3 ^ 3x - 1 hdx #g ( x ) = Gh Y G Y EY G  = g ( 1 ) = - G  =  g ( 2 ) = u = 3x2 - 2x + EV= 6x -EY EV= 2(3x - 1) dx #u =G Y  EV=Gh Y EY H Y = u du #= 3 du 4 1 a 3x2 - 2x + 5 k4 + c g^ x h = f2^ x h +c u· = 1u +c= 8 2 · 2 24 9 - 15 , g^ 2 h = 36 - 15 -3 = +c & c = 2 2 22 g^ 2 h = 21 2 ÖRNEK 13 ÖRNEK 16 # fl (x) .fm (x) dx # ^ 1 + x2 h11.x dx inteHSBMJOJOFöJUJOJCVMVOuz. JOUFHSBMJOJOFöJUJOJCVMVOV[ # f' (x) .f' ' (x) dx  V=Gh Y  EV= f'' ( x ) dx #^ 1 + 2 h11 .x dx  V= 1 + x2 EV= 2x dx x #2 ^ f' (x) h2 #1 ^ u h11.du = 1 · 12 +c= ^ 1 + x2 h12 +c u j u.du = + c = +c & u 22 2 2 12 24 ÖRNEK 14 ÖRNEK 17 # 20.^ x2 - 4 h19.x dx # 1+3 k dk inteHSBMJOJOFöJUJOJCVMVOuz. 3 k2 JOUFHSBMJOJOFöJUJOJCVMVOV[ #20. ^ 2 - 4 h19 .x dx V= x2 - EV= 2x dx # 1 + 3 k dk  u = 1 + 3 k   du = 1 dk x #1 ^ u h19 du = 10.u 20 32 32 20· k 3k 2 20 +c u 3/2 .2 = 2^ 1 + 3 k h3/2 + c u du = 3 #3 3 = 1 ^ x2 - 4 h20 + c 2 a 3x2 - 2x + 5 k4 + c 13. ^ f'^ x h h2 +c 14. 1 ^ x2 - 4 h20 + c 19 21 ^ 1 + x2 h12 17. 2^ 1 + 3 k h3/2 + c 2 15. 16. + c 12. 24 82 2

TEST - 8 %FôJöLFO%FôJöUJSNF:ÌOUFNJ 1. # ^ 2x - 3 h6 dx 5. # ^ x4 - 2 h3 .x3 dx  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) 1 ^ x4 - 2 h3/2 + c  #  1 ^ x4 - 2 h5/2 + c ^ 2x - 3 h7 ^ 2x - 3 h6 4 10 A) + c  #  + c C) 1 ^ x4 - 2 h5/2 + c  %  1 ^ x4 - 2 h3/2 + c 12 16 7 6 E) 1 ^ x4 - 2 h3/2 + c ^ 2x - 3 h7 ^ 2x - 3 h6 12 C) + c  %  + c 6. # 3x - 3 dx 14 12 3 x2 - 2x + 6 2.^ 2x - 3 h7 integralJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS E) + c A) ( x2 - 2x + 6 )2/3 +D #  Y2 - 2x + 6 )3/2 +D 7 C) 4 ^ x2 - 2x + 6 h3/2 + c 2. # ^ x2 - 4x h5.^ x - 2 h dx 9 %  4 ^ x2 - 2x + 6 h2/3 + c  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 9 A) ^ x2 - 4x h6 + c  #  ^ x2 - 4x h6 + c E) 9 ^ x2 - 2x + 6 h2/3 + c 6 12 4 ^ x - 2 h6 %  2^ x2 - 4x h6 + c C) + c  3 6 E) ^ x2 - 4x h5 + c 10 3. # ^ x3 + 1 h3.x2 dx  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 7. # x2.f' ^ x3 h dx A) ^ x3 + 1 h4 + c  #  ^ x3 + 1 h4 + c  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 12 6 A) f ( x3 ) +D # G Y3 ) +D C) ^ x3 + 1 h4 + c  %  Y3 + 1)4 +D 3 C) f^ x3 h + c % Ghh Y3) +D 3 E) 3 ^ x3 + 1 h4 + c E) f'^ x3 h + c 4 2 4. # x2 + 4 xdx 8. # 4x.f' ' ^ x2 h dx  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) x2 + 4 + c  # 2 x2 + 4 + c A) f'^ x2 h + c  # Ghh Y2 ) +D 2 2 C) 2 ^ x2 + 4 h3/2 + c  %  1 ^ x2 + 4 h3/2 + c C) f' '^ x2 h + c  % Gh Y2) +D 33 2 E) 1 ^ x2 + 4 h2/3 + c  & Ghhh(x2) +D 3 1. C 2. B 3. \" 4. D 20 5. B 6. & 7. C 8. D

%FôJöLFO%FôJöUJSNF:ÌOUFNJ TEST - 9 1. # ^ 2x3 + 3x h.^ 2x2 + 1 h dx 4. # x dx  JOUFHSBMJOJOEFôFSJOFEJS x-3 A ) 1 ^ 2x3 + 3x h2 + c  #  1 ^ 2x3 + 3x h2 + c 24  JOUFHSBMJOJO TPOVDV BöBôŽEBLJMFSd en hangisi- C ) 1 ^ 2x3 + 3x h2 + c  %  1 ^ 2x2 + 1 h2 + c 66 EJS E ) 1 ^ 2x2 + 1 h2 + c 2 ^ x - 3 h3 A) + x - 3 + c 3 ^ x - 3 h3 # + 6 x - 3 + c 3 C) 2 f ^ x - 3 h3 x - 3 p+ c +3 3 2. # ^x2 + 3hdx 2^ x - 3 h3 % + 3 x - 3 + c x3 + 9x + 8 3  JOUFHSBMJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- E) 2 3 x - 3 + 6 x - 3 + c EJS A) 1 3 #  2 3 5. # ^ 3x - 1 h4 ^ 2x + 1 h dx x + 9x + 8 + c  x + 9x + 8 + c integralinin sPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- 33 EJS C) 2 +c %  3 x3 + 9x + 8 + c A) 1 f ^ x - 1 h6 + ^ 3x - 1 h5 p + c 3 x3 + 9x + 8 2 93 E ) 3 x3 + 5x + 8 + c # 1 f ^ 3x - 1 h6 + ^ 3x - 1 h5 p + c 3. # x11dx 93 1 + x6 C) 1 f ^ 3x - 1 h6 + ^ 3x - 1 h5 p + c integralinin sonucu aöBôŽEBLJMFSEFO IBOHJTJ- EJS 64 % 1 f ^ 3x - 1 h3 + ^ 3x - 1 h6 p + c 93 E) 1 f ^ 3x - 1 h6 + ^ 3x - 1 h5 p + c 94 A) 2a 1 + x 6 3 + 2 1 + x6 + c 1- x k dx # 3 6. # 2 a 1 + x6 k - 2 1 + x6 + c 1+ x 3 integralinde x = t2EÌOÑöÑNÑZaQŽMŽSTB BöBôŽ- 1a 3 EBLJJOUFHSBMMFSEFOIBOHJTJFMEFFEJMJS k C) 1 + x 6 + 2 1 + x6 + c 3 A ) # 1 - t dt #  # t.^ t - 1 h dt 2a 3 1+t 1+t % 1 + x 6 k - 2 1 + x6 + c 3 # t^1 -th % 2 # t^ 1 - t h dt E) 1 a 3 1 C ) .dt  1+t 1 + x 6 k - 1 + x6 + c 1 +t 93 E ) 2 # 1 - t dt 1+t 1. C 2. B 3. & 21 4. C 5. B 6. D

TEST - 10 %FôJöLFO%FôJöUJSNF:ÌOUFNJ 1. # x2.f' (x3) dx 5. f^ x h = # x4 - 8x3 .^ x3 - 6x2 hdx veriliyor.  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS f ( -1) =PMEVóVOBHËSF G  LBÀUŽS A) f ^ x3 h + c  # 3 f ^ x3 h + c C) f ^ x3 h + c  %  x3.f^ x3 h + c A) 1  #  1 C) 1  %  &  3 3 8 4 2 E) 2 f ^ x3 h + c 3 6. # dx 9x2 - 12x + 4  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 2. g^ x h = # x.f' ^ x2 + 1 h dx H  = G  = A) - 1 + c  #  - 1 + c 9x - 6 6x - 4 f (10) =PMEVôVOBHÌSF H  LBÀUŽS C) 1 + c  %  1 + c 9x - 6 6x - 4 \"  #  $  %  &  E) 3 + c 6x - 4 7. # 3 x2 - 6x ^ x - 3 h dx 3. # f' ' '^ x h.f' ^ f' '^ x hh dx integralinde t3 = x2 -YEFôJöLFOEFôJöUJSNFTJ ZBQŽMŽODBBöBôŽEBLJJOUFHSBMMFSEFOIBOHJTJFMEF  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS FEJMJS \" Gh Y +D # Ghh Y +D $ Ghhh Y +D A) 2 # t3 dt  #  3 # t3 dt  % G Gh Y  +D & G Ghh Y  +D 3 2 C) 2 # t2 dt %  9 # t2 dt 9 2 E) 9 # t3 dt 4 4. # 3 2x + 5 - 2x + 5 dx 6 2x + 5 8. # dx integralinde 2x + 5 = u6 deôJöLFOEFôJöUJSNFTJ 6 2x + 3 ZBQŽMŽODBBöBôŽEBLJJOUFHSBMMFSEFOIBOHJTJFMEF integralinde m6 = 2x +EFôJöLFOEFôJöUJSNFTJ FEJMJS ZBQŽMŽODBBöBôŽEBLJJOUFHSBMMFSEFOIBOHJTJFMEF A) 3 # ^ u7 - u6 h du  # 3 # ^ u6 - u7 h du FEJMJS A) 3 # m6 dm  # 3 # m5 dm C) 1 # ^ u7 - u6 h du  %) 1 # ^ u6 - u7 h du C) 3 # m4 dm % 5 # m5 dm 3 3 E) 3 # ^ u5 - u6 h du E) 5 # m4 dm 1. C 2. & 3. & 4. B 22 5. C 6. \" 7. B 8. C

%FôJöLFO%FôJöUJSNF:ÌOUFNJ TEST - 11 1. # x2.^ x - 2 h ^ x2 + 2x + 4 h dx 5. # 3x + 3 dx x3.^ x + 2 h3  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) ^ x3 - 8 h + c  #  ^ x3 - 8 h2 + c integrBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 6 6 A) - 3 + c  #  - 4 + c C) x3 - 8 + c  %  ^ x3 - 8 h + c 4^ x2 + 2x h2 3^ x2 + 2x h2 3 2 C) - 3 + c  %  - 2 + c E) ^ x3 - 8 h3 + c 2^ x2 + 2x h2 3^ x2 + 2x h2 6 E) - 3 + c 4^ x + 2 h2 f'f 2 p x 2. # dx 4x2 6. # f' '^ x h dx integraliOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS ^ f'^ x hh3 A) - 1 ff 2 p + c  # - 1 ff 2 p + c JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS 2x 8x C) 1 ff 2 p + c  %  1 ff 2 p + c A) - 2^ f'^ x hh2 + c  # -^ f'^ x hh2 + c 2x 8x - f'^ x h -^ f'^ x hh2 E) 2ff 2 p + c C) + c %  + c x 2 2 E) - 1 + c 2^ f'^ x hh2 3. # dx x .^ x + 4 h2 7. # x5 ^ x2 + 1 h dx  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS integralinde u = x2 +  EFôJöLFO EFôJöUJSNFTJ A) - 4 + c  #  - 3 + c ZBQŽMŽODBBöBôŽEBLJJOUFHSBMMFSEFOIBOHJTJFMEF x+4 x+4 FEJMJS C) - 2 + c  %  2 + c A) 1 # u3 du  #  1 # ^ u - 1 h2 du x+4 x+4 2 2 E) 3 + c C) 1 # ^ u - 1 h2 u du  % 2 # ^ u - 1 h3 du x+4 2 E) 2 # ^ u - 1 h2 u du 4. # ^ 3 x + 2 h3 8. # ^ f^ 3x + 1 hh2.f'^ 3x + 1 h dx dx 3 x2  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS  JOUFHSBMJOJOFöJUJBöBôŽEBLJMFSEFOIBOHJTJEJS A) 2 ^ 3 x + 2 h4 + c  #  2 ^ 3 x + 2 h3 + c A) 1 f^ 3x + 1 h + c #  1 ^ f^ 3x + 1 hh3 + c 3 3 27 27 C) 3 ^ 3 x + 2 h4 + c  %  3 ^ 3 x + 2 h3 + c C) 1 ^ f^ 3x + 1 hh3 + c  %  1 ^ f^ 3x + 1 hh3 + c 4 4 93 ^ 3 x + 2 h4 E) 3 ( f ( 3x + 1 ) )3 +D E) + c 4 1. B 2. B 3. C 4. C 23 5. \" 6. & 7. C 8. C

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr #&-÷3-÷÷/5&(3\"-* TANIM ÖRNEK 1 # f^ x h dx = F^ x h + c PMNBLÐ[FSF  2 b # ^ 2x - 3 h dx inteHSBMJOJOTPOVDVLBÀUŽS # f^ x h dx JGBEFTJOe f ( x ) inBEBOCZFbelirli 1 a 22 integrali EFOJS #^ 2x - 3 h dx = 2 - 3x x b 11 # f^ x h dx = F^ x h b = F^ b h - F^ a h = (4 - 6) - (1 - 3) = 0 a a ile bulunur. ÖRNEK 2 UYARI 2 öOUFHSBMTBCJUJPMBODTBEFMFõUJóJJ¿JOCFMJSMJJOUFHSBM- # ^ x2 - x + 2 h dx inteHSBMJOJOTPOVDVLBÀUŽS EFZB[ŽMNB[ –1 2 32 2 x x #^ 2 - x + 2 h dx = - + 2x x 32 –1 –1 = d 8 - 2 + 4 n - d - 1 - 1 - 2 n = 15 3 32 2 #FMJSMJ÷OUFHSBMJO²[FMMJLMFSJ b bb ÖRNEK 3 1. # 6f^ x h ± g^ x h@ dx = # f^ x h dx ± # g^ x h dx 4 x+1 dx inteHSBMJOJOTPOVDVLBÀUŽS a aa # 0x bb 44 2. # c.f^ x h dx = c. # f^ x h dx # #x + 1 dx = x + –1/2 dx aa x a 0x 0 3. # f^ x h dx = F^ a h - F^ a h = 0 = 2 3/2 + 1/2 4 16 +4 n-0 = 28 a x 2x =d ba 3 03 3 4. # f^ x h dx = - # f^ x h dx ab 5. a <D<CPMNBLÐ[FSF ÖRNEK 4 b cb 3 # f^ x h dx = # f^ x h dx + # f^ x h dx # 3x2 dy inteHSBMJOJOTPOVDVLBÀUŽS a ac 2 6. G Y TÐSFLMJWF¿JGUGPOLTJZPOJTF 3 aa 3 # f^ x h dx = 2. # f^ x h dx #2 dy = 2 = 2 ^ 3- 2h 3x –a 0 3x y 3x a 2 7. G Y TÐSFLMJWFUFLfonksiyon ise # f^ x h dx = 0 2 –a 24 1. 0 15 28 4. 3x2^ 3 - 2 h 2. 3. 23

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 5 ÖRNEK 8 10 0 dx inteHSBMJOJOTPOVDVLBÀUŽS # ^ 5y - 2 h dt inteHSBMJOJOTPOVDVLBÀUŽS # -4 1 - 2x 1 01 10 10 # #dx 1 du  V= 1 -Y EV= -2dx j - # ^ 5y - 2 h dt = ^ 5y - 2 ht 2 –4 1 - 2x u 11 9 = ( 5y - 2 ) . ( 10 - 1 ) = 9. ( 5y - 2 ) #1 11 1 =- –1/2 du = - 1/2 = -(1 - 3) = 2 u ·2u 22 9 9 ÖRNEK 6 52 # f (x) dx = 9 PMEVôVOBHÌSF  # f (3x - 1) dx ifade- 21 TJOJOTPOVDVLBÀUŽS 5 2 # f^ x h dx = 9   # f ^ 3x - 1 h dx 2 1 VYm EVEY ÖRNEK 9 5 ôFLJMEFZG Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS y #1 f^ u h du = 1 ·9 = 3 4 y = f(x) 33 2 ÖRNEK 7 2 x 5 –3 –2 O1 4 # f (3x + 2) dx = 45 PMEVóVOBHËSF  –2 0 3 # f^ 5x + 2 hdx JOUFHSBMJOJOTPOVDVLBÀUŽS 0 53 1 # #f^ 3x + 2 h dx = 45   f^ 5x + 2 h dx LBÀUŽS #VOBHÌSF  # f›^ 4x hdx JOUFHSBMJOJOTPOVDVLBÀUŽS 00 –1 2 hh u = 3x + 2 u = 5x + 2 17 #1 du = 3 dx f^ u h du 14 du =EY  # #1 17 5 f' (4x) dx  V=Y EV= 4dx j f'^ u h du 2 #1 f^ u h du = 45 4 1 –2 3 – 2 2 17 1 4 1 ^0-4h= 1 ·-4 =-1 #j f^ u h du = 135 1 = f^ u h = & 135· = 27 4 –2 4 4 2 5 5. 9(5y – 2) 6. 3 7. 27 25 8. 2 9. –1

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÖRNEK 10 ÖRNEK 14 4 5 # 2x2dx JOUFHSBMJOJOTPOVDVLBÀUŽS # f (4x - 1) dx = A PMEVóVOBHËSF  –4 -2 4 43 4 16 # #2 2 x 256 # f (x + 3) dx integSBMJOJOTPOVDVLBÀUŽS 2x dx = 4 x dx = 4 = 3 –2 3 –4 0 0 5 16 # #f^ 4x - 1 hdx = A   f^ x + 3 hdx = ? –2 –12 u = 4x - 1 u=x+3 ÖRNEK 11 du = 4dx du = dx 100 19 19 # 4x3dx JOUFHSBMJOJOTPOVDVLBÀUŽS #1 f^ u h du = A # f^ u h du = 4A –100 4 –9 100 –9 #3 ÖRNEK 15 4x dx = 0  ÷ÀUFLJGPOLTJZPO UFLGPOLTJZPO –100 GWFHTÐSFLMJGPOLTJZPOMBSPMNBLÐ[FSF 22 5 # f(x) dx = 5  # f(x) dx = 4 # g(x) dx = 3 ÖRNEK 12 –1 5 –1 2 FõJUMJLMFSJWFSJMJZPS # x 2x2 + 1 dx JOUFHSBMJOJOTPOVDVLBÀUŽS 5 0 #VOBHÌSF  # ^ 2 f (x) - 3 g^ x hh dx integralinin sonu- DVLBÀUŽS –1 2 5 55 # x. 2 + 1 dx  V= 2x2 + EV= 4x dx # # #^ 2f^ x h - 3g^ x h h dx = 2 f^ x h dx - 3 g^ x h dx 2x –1 –1 –1 0 9 = 2 ( 5 - 4 ) - 3.3 = 2 - 9 = -7 9 1 #1 1 3/2 2 = u du = u · 4 43 1 = 1 ^ 27 - 1 h = 26 = 13 6 63 ÖRNEK 13 ÖRNEK 16 :BOEBLJöFLJMEFWFSJMFO- MFSFHÌSF  5 x dx JOUFHSBMJOJOTPOVDVLBÀUŽS y y = f(x) x 3 # 2 2 x-1 –2 3 # fl (x) .f (x) dx integrali- -2 OJOTPOVDVLBÀUŽS 5 3 # x dx  V2 = x - VEV= dx # f'^ x h.f^ x h dx  V=G Y  EV= f'(x) dx 2 x-1 2 ^ 2 h 3 2 #= 2 u + 1 u du = 2f u +up –2 3 u f^ 3 h 2 2 2 11 # #u =2-0=2 u du = u du = = 2 d d 8 + 2 n - d 1 + 1 n n = 2d 7 + 1 n = 20 2 0 f^ –2 h 0 33 33 256 11. 0 13 20 26 14. \" 15. –7 16. 2 10. 12. 13. 3 3 3

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 17 ÖRNEK 20 3EFUBOŽNMŽGGPOLTJZPOV- OVO HSBGJóJ õFLJMEFLJ HJCJ- f ( 1 ) = 1 ve f ( 3 ) =PMEVóVOBHËSF  y EJS 4 3 x a Ob # f^ x h. fl^ x h dx integralinin sonucu kaÀUŽS 1 3 # f^ x h.f'^ x h dx  V=G Y  EV= f'(x) dx 1 b 42 4 # f^xh.fl^xh dx JOUFHSBMJOJOTPOVDVLBÀUŽS #u 1 15 a u du = =8- = 2 22 1 1 b # f^ x h.f'^ x h dx  V=G Y  EV= f' ( x ) dx a ÖRNEK 18 42 4 G Y GPOLTJZPOVOVOBOBMJUJLEÐ[MFNEFY1 =OPLUBTŽO- #u =8-0=8 EBLJUFóFUJOFóJNJ Y2 =OPLUBTŽOEBLJUFóFUJOJOFóJ- NJ-EŽS = u du = 0 2 7 0 #BunaHÌSF  fll ^xh fl ^xh dx JOUFHSBMJOJOTPOVDVLBÀ- ÖRNEK 21 UŽS 4 7 7 # ^x2 + x5 + x7 + x11 + x15hdx # f' '^ x h.f'^ x h dx  V=Gh Y  EV= f'' ( x ) dx -7 4 integralinin sonucu LBÀUŽS –6 2 –6 #u 9 27 = 18 - = & u du = 2 22 3 3 77 2 5 7 11 15 2 x x x x x x dx # #^ + + + + h dx = –7 –7 3 7 343 - ^ - 343 h 686 x == ÖRNEK 19 = –7 3 3 y 3 F(x) :BOEBLJõFLJMEF' Y GPOL- TJZPOVOVO HSBGJóJ WFSJMNJõ- tir. –1 3 x O2 4 –2 ÖRNEK 22 3 7 #VOBHÌSF # ^x + F' (x)hdx integralinin sonucuLBÀ- # ^x7 - x5 - 5x3h21dx UŽS  -1 -7 integralinin sonucu LBÀUŽS 32 3 3 #7 7 - 5 - 3 k21 dx = 0 –1 a # ^ x + F'^ x h h dx = x +F^ x h x x 5x 2 –1 –1 =d 9 - 1 n+^-2-0h= 4-2 = 2 –7 22 15 27 19. 2 27 20. 8 686 22. 0 17. 18. 21. 2 2 3

TEST - 12 #FMJSMJ÷OUFHSBM a 3 #1. ^3x2 - 2x + ch dx = a3 - a2 + 5a 5. # 9x2.f' (x) + 2x.f (x)C dx = 18 0 0 PMEVôVOBHÌSF  DEFôFSJLBÀUŽS  PMEVôVOBHÌSF G  LBÀUŽS A ) -B # mB $  % B &  A ) 22  #  $  16  %  &  3 3 k 6. ôFLJMEF G Y GPOLTJZPOVOVO   WF   OPLUB- 2. # ^4x - 2hdx = 54 ve k -N= 3 MBSŽOEBLJFLTUSFNVNOPLUBMBSŽWFSJMNJõUJS y m (4, 7) (1, 2) PMEVôVOBHÌSF L+NLBÀUŽS O1 f(x) \"  #  $  %  &  x 4 4 integralinin so- #VOB HÌSF  # f' ^ x h f' ' ^ x h dx 1 nucu kaÀUŽS A ) - # - $  %  &  k 3. # ^3x2 + 6x - 2hdx = k3 + 1 0  FöJUMJôJOFHÌSFLOJOBMBCJMFDFôJEFôFSMFSUPQMB- NŽLBÀUŽS 59 7. # f(x) dx = 7 ve # f(x) dx = 16 \"  #  2 C ) 1  % - 1 E ) –1 22 3 33 5 PMEVôVOB HÌSF  # f^ x h dx integralinin sonucu 9 LBÀUŽS A) - # - $  %  &  5 11 8. 3 3 dx 4. # f^ x h dx = 12   # f^ x h dx = - 3 # x +x 15 2 0 x +1 11 JOUFHSBMJOJOTPOVDVLBÀUŽS  PMEVôVOBHÌSF  # 2f^xhdx integralinin sonucu A) - #  7 C) 8  %  10 1 3 3 E) LBÀUŽS 3 A ) - # - $  %  &  1. & 2. \" 3. B 4. & 28 5. & 6. C 7. \" 8. B

#FMJSMJ÷OUFHSBM TEST - 13 1 5. y ôFLJMEFZ= f( x ) fonk- #1. ^2x + 1ht dx = 40 6A TJZPOVOB Ð[FSJOEFLJ \" t +1 OPLUBTŽOEBO¿J[JMFOUF- 0 PMEVôVOBHÌSF ULBÀUŽS óFUEEPóSVTVEVS \"  #  $  %  &  f(x) x 4 10 d 4 #fŽ( 1 ) =PMEVôVOBHÌSF  f› (x) .f›› (x) dx integ- 1 SBMJOJOTPOVDVLBÀUŽS 2 \" m # - 3 C ) –1 % - 1 E ) 0 22 2. # x2 f^ x3 h dx = 20 0 8  PMEVôVOB HÌSF  # f (x) dx integralinin sonucu 0 LBÀUŽS \"  #  $  %  &  6. 2 x3 dx # –2 x4 + x2 + 6 integralinin soOVDV BöBôŽEBLJMFSEFO IBOHJTJ- EJS A) - # - $  %  &  9 #3. 1 + x dx JOUFHSBMJOJOTPOVDVLBÀUŽS 0 A) 232  #  242 C) 202 7. ôFLJMEF G Y GPOLTJZ POVOVO\"  Z0 OPLUBTŽOE BLJ 15 15 15 teóFUJZ= x +EPóSVTVEVS  %  191 E) 12 15 y y=x+2 A y = f(x) O2 x –3 11 G Y  GPOLTJZPO VOVO HSBGJôJ Z FLTFOJOJ   -3 ) 4. # f^xh dx = K PMEVóVOBHËSF 2 3 OPLUBTŽOEB LFTUJôJOF HÌSF # x . f' '^ x h.dx in- 5 0 # f^ 2x + 1 h dx tegralinin sonucu LBÀUŽS 1 JOUFHSBMJOJOTPOVDVLBÀUŽS A) K  # , $ , % , & , \" m # m $ m % m &  2 1. B 2. & 3. \" 4. \" 29 5. B 6. C 7. \"

TEST - 14 #FMJSMJ÷OUFHSBM 1 3x2 2x3 i4._ x2 i m+1 3m 1. 4. f # 2x dx p = # 6x5 dx #_ - x - dx 0 00  JOUFHSBMJOJOTPOVDVLBÀUŽS olEVôVOBHÌSF NLBÀUŽS A) 1  #  1 C) 1  %  1 1 A) - 1  # - 1 C) 1  %  1 E) 1 60 50 40 30 E) 4 24 2 20 10 3 2. # x2 + 6 .x dx 5. # F_ 4x - 1 i dx = 48 PMEVóVOBHËSF 3 1 integralinde u2 = x2 + EFôJöLFOEFôJöUJSNFTJ 2 ZBQŽMŽSTB BöBôŽEBLJ JOUFHSBMMFSEFO IBOHJTJ FMEF FEJMJS # F_ 3x + 5 i dx 10 10 4 2 – A) # u.du  #  # u2.du C) # u2.du 3 3 3 3  JOUFHSBMJOJOTPOVDVLBÀUŽS 4 E) 1 4 \"  #  $  %  &   % 2 # u2 .du # u2.du 23 3 6. ôFLJMEF Z = ' Y  GPOLTJZPOVOVO HSBGJóJ WFSJMNJõ- tir. 3. ôFLJMEF Z = ' Y  GPOLTJZPOVOVO HSBGJóJ WFSJMNJõ- y = F(x) y tir. Ap Bm y 6 135° 4 O –2 –1 O x x F ( x ) in A ( -  Q  OPLUBTŽOEB ZFSFM FLTUSFNVNV 3 PMVQ ' Y F# - N OPLUBTŽOEBO¿J[JMFOUFóFUY FLTFOJJMFQP[JUJGZËOEF™MJLB¿ŽZBQNBLUBEŽS y = F(x) –1 3  #VOBHÌSF  # F'_ x i.F' '_ x i dx integralinin so-  #VOBHÌSF  # F'_ x i dx JOUFHSBMJOJOTPOVDVBöB- –2 0 OVDVLBÀUŽS ôŽEBLJMFSEFOIBOHJTJEJS A) 5  $  3  %  &  1 A) - # -3 C) - %  &  2 2 2 #  1. D 2. C 3. C 30 4. B 5. & 6. &

#FMJSMJ÷OUFHSBM TEST - 15 57 4. 16 x - 16 dx 1. # 3 x5 + 1 .x4 dx # 4 x+4 0 integralinde x5 + 1 = u3EFôJöLFOEFôJöUJSNFTJ integraliniOTPOVDVLBÀUŽS ZBQŽMŽSTB BöBôŽEBLJ JOUFHSBMMFSEFO IBOHJTJ FMEF A) - 64  # - 32 - 16 FEJMJS 3 3 C) 7 #  3 7  % - 8 3 50 3 A) # u3 du  # u3 du E) - 4 3 0 3 2 %  3 7 C) # u3 du  # u3 du 51 51 E) 5 2 31# u3 du 2. ôFLJMEFLJHSBGJLUFZ=' Y GPOLTJZPOVOVO\"WF# 5. y =' Y GPOLTJZPOVOVOHSBGJóJ\"   WF#    OPLUBMBSŽOEBLJUFóFUMFSJ¿J[JMNJõUJS OPLUBMBSŽOEBOHF¿NFLUFEJS y y = F(x)  #VOBHÌSF  10 A 4 x.F'_ x i - F_ x i B6 dx # 2 F2 _ x i  JOUFHSBMJOJOTPOVDVLBÀUŽS x A) - 1  # - 1 C) - 1  %  1 E) 1 6 9 8 66 9 –4 –2 O2 6  #VOB HÌSF  # x.F' '_ x i integralinin sonucu –2 LBÀUŽS \"  #  $  %  &  7 44 3. # F_ 3x + 1 i dx = 10 PMEVóVOBHËSF  6. # x.F'_ x i dx = 2m, # F_ x i dx = n 3 0 03 5  PMEVôVOBHÌSF '  Ñn m ve OUÑSÑOEFOFöJUJ BöBôŽEBLJMFSEFOIBOHJTJEJS # F_ 2x i dx A) 3m + n  #  2m + n C) 6m + n 11 6 12 12 integralinin sonucu LBÀUŽS  %  6m + n E) 3m + 2n 18 12 \" m # m $  %  &  1. C 2. & 3. B 31 4. B 5. C 6. C

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr #&-÷3-÷÷/5&(3\"-** 1BSÀBMŽ'POLTJZPOMBSŽO#FMJSMJ÷OUFHSBMJ ÖRNEK 2 TANIM æ F^ x h = * 2 - x , x < 3 ise 2x - 7 , x ≥ 3 ise  H Y WFI Y JOUFHSBMMFOFCJMJSJLJGPOLTJZPOWF 3 a #D#CPMNBLÐ[FSF PMEVôVOB HÌSF  # F^ x + 1 h dx integralinin deôFSJ LBÀUŽS 1 F_ x i = * g_ x i , x < c ise h_ x i , x $ c ise  CJ¿JNJOEF UBOŽNMŽ ' Y  GPOLTJZonunun [B  C] 3 u = x + EV= dx BSBMŽóŽOEBLJ JOUFHSBMJOJ CVMNBL J¿JO JOUFHSBM  # F^ x + 1 h dx = GPOLTJZPOVOVO LVSBMŽOŽO EFóJõUJóJ D OPLUBTŽOB 1 HËSF  43 4 b cb # # #F^ u h du = ^ 2 - x h dx + ^ 2x - 7 h dx # F_ x i dx = # g_ x i dx + # h_ x i dx 22 3 a ac 2 3 4 2 x + x - 7x 2x - 23 2 biçiNJOEFJLJJOUFHSBMJOUPQMBNŽPMBSBLZB[ŽMNB- = =d 6 - 9 n - ^ 4 - 2 hG + 7^ 16 - 28 h - ^ 9 - 21 hA MŽEŽS 2 = = 3 - 2 G + 7 - 12 + 12 A = - 1 22 ÖRNEK 1 ÖRNEK 3 F (x) = * x2 x < 0 PMNBLÐ[FSF F_ x i = * 6x2 + 1 , x < 1 ise 2x + 1 x $ 0 4x - 1 , x $ 1 ise CJ¿JNJOEFUBOŽNMŽ' Y GPOLTJZPOVWFSJMJZPS 3 2 # F (x) dx JOUFHSBMJOJOTPOVDVLBÀUŽS #VOBHÌSF  # F_ x i dx JOUFHSBMJOJOTPOVDVLBÀUŽS –2 –1 3 03 21 2 2 # # #F^ x h dx = a 6x2 + 1 k dx + ^ 4x - 1 hdx x dx + # # #F^ x h dx = ^ 2x + 1 h dx –2 –2 0 –1 –1 1 3 0 2 3 1 2 x = + x + x & 2x3 + x + 2 - x 3 2x –2 0 –1 1 = = 0 - d - 8 nG + 7^ 9 + 3 h - 0 A = 8 + 12 = 44 = 7^ 2 + 1 h-^ -2 - 1 hA+7^ 8 - 2 h-^ 2 - 1 hA 3 33 = (3 + 3) + (6 - 1) = 11 44 32 1 3. 11 1. 2. - 2 3

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, .VUMBL%FôFS'POLTJZPOVOVO#FMJSMJ÷OUFHSBMJ ÖRNEK 3 TANIM 3  .VUMBL EFóFS GPOLTJZPOVOVO CFMJSMJ JOUFHSBMJOJ # a x - 2 + x + 1 k dx JOUFHSBMJOJOTPOVDVLBÀUŽS CVMNBL J¿JO  NVUMBL EFóFSJO J¿JOJ  ZBQBO EF- óFSMFSFHËSFJOUFHSBMJOTŽOŽSMBSŽQBS¿BMBOŽS -2 33 # #x - 2 dx + x + 1 dx –2 –2 2 3 –1 3 # # # #= 2 - x dx + x - 2 dx + - x - 1dx + x + 1dx –2 2 –2 –1 ÖRNEK 1 2 2 2 3 2 –1 2 3 x x - 2x +f - x -xp x = 2x - + + +x –2 2 22 –2 2 3 2 –1 # x dx JOUFHSBMJOJOTPOVDVLBÀUŽS 9 19 1 = 8 + - 6 + 2 + + + 3 + = 17 -2 2 22 2 3 03 # # #x dx = - x dx + x dx –2 –2 0 2 02 3 0 -x x & + –2 2 2 = 7 0 - ^ - 2 hA + = 9 - 0 G = 2 + 9 = 13 2 22 ÖRNEK 2 ÖRNEK 4 2 4 # x2 - x dx JOUFHSBMJOJOTPOVDVLBÀUŽS # x + x - 2 dx JOUFHSBMJOJOTPOVDVLBÀUŽS –1 -3 2 01 2 4 24 # # #x + x - 2 dx = x - x + 2 dx + 2x - 2 dx –3 –3 2 a x2 - x k dx + 2 2 # # # #2 a x - x k dx + a x - x k dx 24 x - x dx = # #= 2 dx + 2x - 2 dx –1 –1 0 1 –3 2 32 0 23 13 2 2 xx xx xx +- +- 11 2 4 &- –1 2 3 03 2 = = 2x 2 + - 2x 2 16 x 32 –3 = 10 + (16 - 8) - (4 - 4) = 10 + 8 = 18 13 11 33 3. 17 4. 18 1. 2. 2 6

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÖRNEK 5 ÖRNEK 8 2 2x + 3 , x < 0 F_ x i = * 4x + 3 , x $ 0 # x + 1 dx integralinin sonucu LBÀUŽS fonksiyonu veriliyor. -3 1 2 –1 2 #VOBHÌSF  # Fa x k dx integralinin eöJUJLBÀUŽS # # #x + 1 dx = - x - 1 dx + x + 1dx –2 –3 –3 –1 2 –1 2 2 -x x = -x + +x 1 01 2 –3 2 –1 # # #Fa x k dx = F^ - x h dx + F^ x h dx =d - 1 +1 n-d -9 +3 n+4-d 1 -1 n –2 –2 0 22 2 0 13 1 13 # F^ - x h dx u = -Y EV= -dx = + +5- = –2 22 22 022 # # #- F^ u h du = F^ u h du = ^ 4x + 3 h dx ÖRNEK 6 200 2 21 # x - 1 . dx JGBEFTJOJOTPOVDVLBÀUŽS # #= ^ 4x + 3 h dx + ^ 4x + 3 h dx –2 00 2x2 + 3x 2 + 2x2 + 3x 1 00 2 12 14 + 2 + 3 = 19 # # #x - 1 dx = 1 - x dx + x - 1dx –2 –2 1 2 12 2 x x =x- + -x –2 2 2 1 =d 1- 1 n-^-2-2h+0-d 1 -1 n 22 11 = +4+ =5 22 ÖRNEK 7 ÷OUFHSBMWF5ÑSFW÷MJöLJTJ %m/*m 2 d # F_ x i dx = F_ x i # x2 - x dx JöMFNJOJOTPOVDVLBÀUŽS dx 0 # dF_ x i = F_ x i+ c 21 2 # f d F_ x i p dx = F_ x i + c # # #2 2 dx x )BUŽSMBUNB#FMJSMJJOUFHSBMMFSEFDZB[ŽMNB[ - x dx = ^ - x2 + x h dx + ^ x - x h dx 34 8. 19 00 1 32 13 2 2 xx 1 -x x +- =+ 03 2 32 =d -1 + 1 n+d 8 -2 n-d 1 - 1 n 32 3 32 118 11 =- + + -2- + = 1 323 32 13 5. 6. 5 7. 1 2

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 1 ÖRNEK 4 F (x) = d 9 # ^ x2 - 1 hdxC f : R Z3 ' -3 ) = -1 ve F ( 2 ) = 2 dx 2 3 PMEVôVOBHÌSF  # F2_ x i.d _ F_ x i i EFôFSJLBÀUŽS PMEVôVOBHÌSF  # F (x) dx LBÀUŽS –3 1 #F^ x h = d ^ x2 - 1 h dx 2 dx # F2 ^ x h.d F^ x h u =' Y EV= F'(x) dx –3 3 3 3 ^ h 2 –3 #& F^ h 2 - ^ 2 - h #& 2 u F x x = 1& 1 dx du = = x x u 1 33 33 = ^ 9 - 3 h - d 1 - 1 n = 20 = 8 -d -1 n= 3 x 33 & -x 31 33 ÖRNEK 2 ÖRNEK 5 f (x) = 3x - 1 3 F_ x i = x2 PMEVóVOBHËSF  2x + 1 x+1 PMEVôVOBHÌSF  # da f-1^ x h kLBÀUŽS 2 1 # d_ F_ x i i integralinin sonucu LBÀUŽS #3 –1 –1 3 1 df ^ x h = f ^ x h 1 22 1 # d F^ x h = F^ x h & –1 ^ x h = -x - 1 11 f 2x - 3 22 -x - 1 3 -4 -d -2 n= - 10 & x 41 5 = -1 = =-= 2x - 3 1 3 3 x+1 1 3 2 6 ÖRNEK 3 ÖRNEK 6 F_ x i = # f x2 + 4 + x2 - 1 p dx d J 3 _ x2 + 1 i3.2xdx N integralinin sonucu LBÀUŽS dx K O x+3 KK # OO PMEVôVOBHÌSF 'h  LBÀUŽS P L2 #F'^ x h = d f x2 + 4 + 2 + 1 p dx 3 dx x + 3 x #d f ^ x2 + 1 h3.2xdx p = ? & F' (x) = x2 + 4 + 2 - 1 dx x+3 x 2 55 ÷OUFHSBMJOTPOVDVCJSTBZŽÀŽLBS F' (1) = + 0 = d ^ say› h = 0 olur. dx 44 20 10 5 35 4. 3 5. 5 6. 0 1. 2. - 3. 6 3 3 4

TEST - 16 .VUMBL%FôFSWF1BSÀBMŽ'POLTJZPOVO÷OUFHSBMJ 1. F_ x i = * x+2, x < 1 5. ôFLJMEFZ=' Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 2x + 2, x $ 1 fonksiyonu veriliyor. y 4 3 #VOB HÌSF  # F_ x - 1 i dx integralinin sonucu 0 LBÀUŽS \"  #  $  %  &  24 x O –3 y = F(x) 2. F ( x ) = 2x + 6 fonksiyonu veriliyor. 4 2 #VOB HÌSF  # F_ x i .F'_ x i dx integralinin so- #VOB HÌSF  # Fa x k dx integralinin sonucu 0 OVDVLBÀUŽS LBÀUŽS –2 A) - 27  C) - 25 2 2 #) –13 \" m # m $  %  &  E) - 23 2  % m 3 3 3. # x - 1 - 2 dx 6. # x2 - 4x + 4 dx 0 1 integralinin sonuDVLBÀUŽS integralinin sonucu BöBôŽEBLJMFSEFO IBOHJTJ- EJS A) 5  #  $  7  %  &  9 2 2 2 \"  #  $  %  &  3 %  46 56 5 3 E) 4. # x2 - 4 dx 7. # a x - 4 + x k dx 3 –3 3  JOUFHSBMJOJOTPOVDVLBÀUŽS integralinin sonucu kaÀUŽS \"  #  $  \"  #  $  %  &  1. D 2. & 3. C 4. D 36 5. C 6. B 7. C

.VUMBL%FôFSWF1BSÀBMŽ'POLTJZPOVO÷OUFHSBMJ TEST - 17 1. F_ x i = * 4x - 2 , x < 2 4 2x , x $ 2 fonksiyonu veriliyor. 4. # x - 2 dx 6 –2  #VOBHÌSF  # F_ x - 3 i dx integralinin sonucu integralJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- EJS 0 BöBôŽEBLJMFSEFOIBOHJTJEJS \"  #  $  %  &  A) - # -12 C) - % -6 E) -3 2. ôFLJMEFZ=' Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 5. F_ x i = * 3x2 + 4 , x # 1 fonksiyonu veriliyor. y g_ x i, x > 1 –3 O x 44 –2 4 # F_ x i dx = 6 # g_ x i dx y = F(x) –1 1 –2 4 1 # F_ x i dx = - 4 , # F_ x i dx = 6  PMEVôVOBHÌSF  # g_ x i dx integralinin sonucu –3 –2 4  PMEVóVOBHËSF BöBôŽEBLJMFSEFO hBOHJTJEJS A) - # - $  %  &  44 6. ôFLJMEFZ=' Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS # F_ x i dx - # F_ x i dx y –3 –3 4 y = F(x) integralinin sonucu aöBôŽEBkilerden hangisi- EJS x O 35 A) - # - $  %  &  –2 3 5 3. # 3x2 - 3 dx  #VOBHÌSF  # F_ x i .F'_ x i dx integralinin so- –2 0 integralinJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- OVDVBöBôŽEBLJMFSEFOIBOHJTJEJS EJS \"  #  $  %  &  \"  #  $  %  &  1. \" 2. \" 3. D 37 4. C 5. B 6. &

TEST - 18 .VUMBL%FôFSWF1BSÀBMŽ'POLTJZPOVO÷OUFHSBMJ 1. ôFLJMEFZ=' Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõUJS 4. F_ x i = * x - 2 , x < 2 y 4x + m , x $ 2 y = F(x) 3 1234 # F_ x i dx = 12 1 –3 x –2 O 5 PMEVôVOBHÌSF NLBÀUŽS A) 1  #  $  3  %  &  5 2 2 2  #VOBHÌSF  2 F'_ x i 5 F'_ x i dx # dx + # 0 F'_ x i 4 F'_ x i  JOUFHSBMJOJO TPOVDV BöBôŽEBLJlerden hangisi- EJS A) - # - $  %  &  2x - 1, x < 2 5. F_ x i = * 3x2, fonksiyonu veriliyor. x$2 2 3 2. # a x2 - 2x + 1 - x + 1 kdx  #VOB HÌSF  # F_ - x i dx integralinin sonucu –1 –2 integraliOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- BöBôŽEBLJMFSEFOIBOHJTJEJS EJS A) - # -18 C) - % -12 E) -10 \"  #  $  %  &  Z ] x-5 , x$4 3. F_ x i = [ ] x-3, x<4 PMEVóVOBHËSF 2, x#1 F_ x i = * - 1, \\ 6. x > PMEVóVOBHËSF 1 6 3 # F_ x i dx # x .F_ x i dx 2 –2 JOUFHSBMJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- EJS integralinin sonucu aöBôŽEBLJMFSEFO IBOHJTJ- EJS \"  C  $  %  &  A) - #  $  %  &  1. B 2. C 3. \" 38 4. C 5. & 6. C

.VUMBL%FôFSWF1BSÀBMŽ'POLTJZPOVO÷OUFHSBMJ TEST - 19 1. F (x) = 1 PMEVóVOBHËSF  4. ôFLJMEF Z = F ( x -   GPOLTJZPOVOVO HSBGJóJ WFSJM- x-1 NJõUJS 3 y # d a F–1_ x i k y = F(x–1) 6 2 5  JOUFHSBMJOJOTPOVDVLBÀUŽS 4 A ) - 1  # - 1 C ) - 1 %  1 E) 0 3 2 63 –2 O 3 x 2. y 1 y = F(x)  #VOBHÌSF  # F'_ x + 1 i dx integralinin sonu- 5 –2 DVBöBôŽEBLJMFSEFOIBOHJTJEJS 3 \"  #  $  %  &  2 –3 3 x –2 O 5. ôFLJMEF Z = ' Y  GPOLTJZPOVOVO HSBGJóJ WFSJMNJõ- :VLBSŽEBLJõFLJMEFZ=' Y GPOLTJZPOVOVOHSBGJóJ WFSJMNJõUJS tir. y 03 6  #VOB HÌSF   # F'_ x i dx + # F'_ x i dx integrali- 4 –3 –2 y = F(x) niOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS \"  #  $  %  &  x –1 O 2 3. y 2 –2 O 135° x # x.F'_ x i dx = 10PMEVóVOBHËSF  –2 3 –1 y = F(x) 2 # F_ x i dx –1 JOUFHSBMJOJO TPOVDV BöBôŽEBLJMFSEFO IBOHJTJ- EJS \"  #  $  %  &  :VLBSŽEBLJ õFLJMEF Z = F ( x ) fonksiyonunun grafi- 6. F_ x i = # x2 - 6 dx fonksiyonu veriliyor. óJWFSJMNJõUJS' Y GPOLTJZPOVOBY=BQTJTMJOPL- UBTŽOEBO¿J[JMFOUFóFUJYFLTFOJJMF™MJLB¿ŽZBQ- 2x - 3 NBLUBEŽS F ( x ) fonksiyonunun x =OPLUBTŽOEBLJUFôFUJ- OJOFôJNJBöBôŽEBLJMFSEFOIBOHJTJEJS 3 A) - # -2 C) - %  &  #VOB HÌSF  # 7F' '_ x i + F'_ x i.F' '_ x iA dx in- –2 tegSBMJOJOTPOVDVBöBôŽEBLJMFSEFOIBOHJTJEJS A) - 1  #  $  1  %  &  5 2 2 2 1. C 2. C 3. \" 39 4. \" 5. D 6. &

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr 3*&.\"//501-\".* TANIM ÖRNEK 1 B C` R ve a <CPMNBLÐ[FSF ôFLJMEFLJHSBGJLUF' Y = x2GPOLTJZPOVOVOHSBGJóJWFSJM-  BY0 < x1 < x2 < ... < xk–1 < xk < ... < xnC NJõUJS[ ] FõJUBMUBSBMŽóBBZSŽMŽZPS  õFLMJOEFLJ TBZŽMBSŽO PMVõUVSEVóV LÐNFZF y y = F(x) <B  C> BSBMŽóŽOŽO CJS iQBSÀBMBONBTŽu veya iCÌMÑOUÑTÑuEFOJS  1  \\Y0  Y1  Y2    Yk–1  Yn ^  õFLMJOEFLJ 1 O2 x CËMÐOUÐTÐOEF r <Yk–1 Yk >BSBMŽLMBSŽOBLBQBMŽBMUBSBMŽL #VOBHÌSF IFTBQMBOBO a) 3JFNBOOBMUUPQMBNŽOŽCVMVOV[ r Dxk  Yk – xk–1  TBZŽTŽOB CV BMU BSBMŽóŽO b) 3JFNBOOÐTUUPQMBNŽOŽCVMVOV[ c) )FSBMUBSBMŽóŽOPSUBOPLUBTŽOBHËSFIFTBQMBOBO V[VOMVóVWFZBCPZV b–a n 3JFNBOOUPQMBNŽOŽCVMVOV[ r )FSL`\\   O^J¿JO Dxk = ise 1CËlüntüsüne EÑ[HÑOCÌMÑOUÑEFOJS 1\\x0 Y1 Y2  Yk–1 Yk Yn ^EÐ[HÐOCË- ¦Ì[ÑN lünUÐTÐOEF a) x1 – x0Y2 – x1Y3 – x2Yn – xn–1 y EJS 4 y = F(x) 9 4 a = x0 C= xnPMNBLÐ[FSF [B C]BSBMŽóŽiOu 1 FõJUQBS¿BZBCËMÐOTÐO#VEVSVNEB  1 x 4 x =B Y=CEPóSVMBSŽ YFLTFOJWF[B C] ara- O MŽóŽOEB Z = G Y  GPOLTJZPOVOVO HSBGJóJ BMUŽOEB 1 1 32 22 LBMBOBMBOŽOZBLMBõŽLEFóFSJBõBóŽEBLJUPQMBN- MBSJMFIFTBQMBOBCJMJS n <  > BSBMŽóŽOŽ  FõJU QBS¿BZB CËMFMJN  &ó- / \"MUUPQMBN An = f^ xk–1 h.Dxk SJ BMUŽOEB LBMBO BMBO  UBSBMŽ EJLEËSUHFOMFSJO k=1 BMBOMBSŽ UPQMBNŽOEBO CÐZÐLUÐS #V EJLEËSU- n HFOMFSJOBMBOMBSŽUPQMBNŽOŽ\"4 BMUUPQMBN JMF HËTUFSFMJN ôFLJMEFLJ BMU EJLEËSUHFOMFSJO UB- / ¶TUUPQMBNÜn = f^ xk h.Dxk CBOV[VOMVLMBSŽ 1 CJSJNEJS k=1 2 tk = xk–1 + xk PMNBLÐ[FSF 1 1 1 1 3 2 2 2 2 2 2 A4 = ·Ff p+ ·F^ 1 h + ·Ff p n A4 = 1·1 + 1 + 1·9 = 7 br2 olur. /Rn = f ^ tk h.Dxk ifBEFTJOF3JFNBOOUPQ- 24 2 24 4 k=1 MBNŽEFOJS  #VUPQMBNMBSBSBTŽOEB\"n < Rn < ÜnFõJUTJ[-  3JFNBOOBMUUPQMBNŽ 7 br2EJS MJóJWBSEŽS 4 40

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, b) y F(x) = x2 NOT [ ]BSBMŽóŽOŽEBIB¿PLFõJUQBS¿BZBBZŽSEŽóŽNŽ[- 4 EBHFS¿FLBMBOBEBIBZBLŽOCJSEFóFSCVMVSV[ 9 4 1 SONUÇ 1 y 4 y = F(x) O 1132 x 22 <  > BSBMŽóŽOŽ  FõJU QBS¿BZB CËMFMJN  &ó- SJ BMUŽOEB LBMBO BMBO  UBSBMŽ EJLEËSUHFOMFSJO BMBOMBSŽ UPQMBNŽOEBO LпÐLUÐS #V EJLEËSU- HFOMFSJO BMBOMBSŽ UPQMBNŽOŽ ¶4 ÐTU UPQMBN  x JMF HËTUFSFMJN ôFLJMEFLJ EJLEËSUHFOMFSJO UB- O a=x0 c1 x1 c2 x2 xn–1cn b=xn CBOV[VOMVLMBSŽ 1 CJSJNEJS 2 Ü4 = 1 ·Fd 1 n+ 1 ·F^ 1 h + 1 ·Fd 3 n+ 1 F^ 2 h 2 2 2 2 2 2 = 1 · 1 + 1 ·1 + 1 · 9 + 1 ·4 j Ü = 15 br2 y =' Y GPOLTJZPOVOEB[B C] OBEFUFõJUBMU 24 2 24 2 44 BSBMŽóBCËMÐOTÐO olur. 3JFNBOOÐTUUPQMBNŽ 15 br2EJS 4  D1 ` [ x0 x1] D2 ` [ x1 Y2 ] Dn ` [ xn-1 Yn ] D y F(x) = x2 ve Dx = b - a PMNBLÐ[FSFIFTBQMBOBO3JF- n 49 16 NBOOUPQMBNŽ\" ise y =' Y FóSJTJOJOBMUŽOEB LBMBOBMBOZBLMBõŽLPMBSBL 25 16 9 A = DY' D1 ) + DY' D2) + ... + DY' Dn) 16 /n 1 A = TxF_ ck iPMBSBLJGBEFFEJMJS 16 1 1315 3 7 2 x O k=1 4 24 424  \"MUWFÐTUUPQMBNMBSŽCVMVSLFO<0 > aralŽóŽOŽ [B  C] EB ' Y  GPOLTJZPOVOVO BMUŽOEB kalan P = * 0, 1 , 1, 3 , 2 4LÐNFTJOJOFMFNBOMBSŽ BMBO [B C]OJOEBIBGB[MBBMUBSBMŽóBCËMÐONFTJ 22 EVSVNVOEB EBIB ZBLŽO EFóFSMFS WFSFDFóJ J¿JO JMF  FõJU QBS¿BZB CËMÐQ IFTBQMBNBMBS ZBQ- UŽL 1 LÐNFTJOEF BSEŽõŽL FMFNBOMBSŽO BSJU- 3JFNBOOUPQMBNŽOJOTPOTV[BZBLMBõNBTŽEV- NFUJL PSUBMBNBMBSŽOŽ CVMBSBL ZFOJ CJS 1h LÐ- NFTJFMEFFPE'F=MJN* 1 , 3 , 5 , 7 4 SVNVOEBZ=' Y JMFYFLTFOJBSBTŽOEBLBMBO 44 4 4 BMBOŽWFSFDFóJOEFOCVBMBO  ôFLJMEFLJ EJLEËSUHFOMFSJO UBCBO V[VOMVLMBSŽ n 1 bJSJNEJSôFLJMEFLJEJLEËSUHFOMFSJOBMBO- /lim 2 Dx.F^ ck h MJNJUJJMFIFTBQMBOŽS MBSŽUPQMBNŽOŽ34 3JFNBOOUPQMBNŽ JMFHËT- n\"3 UFSFMJN k=1 R = 1 ·Fd 1 n + 1 Fd 3 n + 1 Fd 5 n + 1 Fd 7 n #VSBEB' Y >PMEVóVOBEJLLBUFEJOJ[ 42 4 2 4 2 4 2 4 F ( x ) < 0 olNBTŽ EVSVNVOEB ZVLBSŽEBLJ MJNJU EFóFSJ OFHBUJG PMBDBLUŽS #V EVSVNEB CV MJNJU EFóFSJGPOLTJZPOVOHSBGJóJJMFYFLTFOJBSBTŽOEB LBMBOBMBOŽOOFHBUJGEFóFSJOFFõJUPMBDBLUŽS 1 1 1 9 1 25 1 49 NOT R= · + · + · + · 4 2 16 2 16 2 16 2 16 R4 = 84 = 21 nb 2.16 8 /lim Dx.F^ c h = # f^ x h dx EJS  :VLBSŽEBLJIFTBQMBNBMBSTPOVDVOEB n\"3 k k=1 a A4 < R4 < Ü4PMEVóVHËSÐMÐS 41

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÖRNEK 2 ÖRNEK 4 F : [ ] Z < >PMNBLÐ[FSF ôFLJMEFLJHSBGJLUF' Y = x2 +GPOLTJZPOVWFSJMNJõUJS y F(x) = x2 + 1 F ( x ) =YGPOLTJZPOVFöJUBMUBSBMŽôBCÌMFOEÑ[HÑO 1QBSÀBMBONBTŽOBBJUÑTUUPQMBN BMUUPQMBNEBOLBÀ CJSJNLBSFGB[MBEŽS O1 x y ·TUUPQMBN 6 1.2 = 1.4 + 1.6 = 12 5 4 \"MUUPQMBN 2 1.2 + 1.4 = 6 [  ] BSBMŽôŽ  FöJU BMU BSBMŽôB BZSŽMŽSTB 3JFNBOO BMU 12 - 6 = 6 birimkare O 123 UPQMBNŽLBÀCJSJNLBSFPMVS x y \"4 = 1F(1)+ 1.F(2)+1.F(3)+1.F(4) \"4 = 1.2 + 1.5 + 1.10 + 1.17 = 2 + 5 + 10 + 17 = 34 x O 12345 ÖRNEK 3 y :BOEBLJHSBGJLUF ÖRNEK 5 13 x F ( x ) = -x2 + 1 fonksiyo- 3 F : [ ] Z < >PMNBLÐ[FSF O OVWFSJMNJõUJS F ( x ) = -x2 + 12x +GPOLTJZPOVOVFöJUBMUBSB- #VFôSJJMFYFLTFOJBSB- MŽôB CÌMFO EÑ[HÑO 1 QBSÀBMBONBTŽOB BJU BMU UPQMBN LBÀCJSJNLBSFEJS TŽOEB LBMBO CÌMHFOJO BMBOŽOŽ [  ] OŽ  FöJU F(x) = –x2 + 1 BMU BSBMŽôB CÌMFSFL 3JF- NBOOÑTUUPQMBNŽZBSEŽ- NŽZMBZBLMBöŽLPMBSBLIFTBQMBZŽOŽ[ y y 43 1.28 + 35 + 1.40 + 1.43 3 5 7 9 11 13 x 40 = 146 birimkare 35 O Tx = 13 - 3 =2 28 5 x O 23456 \"= Dx.F(3) + Dx.F(5) + Dx.F(7) + Dx.F(9) + DxF(11) \"= 2.(-8) + 2.(-24) + 2.(-48) + 2.(-80) + 2(-120) \"= -560 y = ' Y  GPOLTJZPOVOVO HSBGJôJ Y FLTFOJOJO BMUŽOEB LBM- EŽôŽOEBO 3JFNBOO ÑTU UPQMBNŽ OFHBUJG PMVS #VOB HÌSF  BMBOZBLMBöŽLPMBSBLCS2 dir. 2. 34 3. 560 42 4. 6 5. 146

3JFNBOO5PQMBNŽ TEST - 20 1. \"öBôŽEBLJ QBSÀBMBONBMBSEBO IBOHJTJ EÑ[HÑO 5. [  ] BSBMŽóŽOEB UBOŽNMŽ CJSFCJS WF ËSUFO CJS G Y  CJSQBSÀBMBONBMŽEŽS 5 A) P1 = * 0, 1 , 1, 3 ,34 fonksiyonu için # f^ x h dx = 7 olarak verJMNJõUJS 2 2 2 # P = \" 1, 2, 3, 4, 6 , [ ]BSBMŽôŽOŽiOuFöJUQBSÀBZBCÌMFOEÑ[HÑOCJS 2 1 QBSÀBMBONBTŽOB BJU 3JFNBOO BMU UPQMBNŽOŽO C) P = * 2, 7 , 8 ,3, 10 4 BMBCJMFDFôJ FO CÑZÑL UBN TBZŽ EFôFSJ iBu  3JF- 3 3 3 NBOO ÑTU UPQMBNŽOŽO BMBCJMFDFôJ FO LÑÀÑL UBN 3 TBZŽ EFôFSJ iCu PMEVôVOB HÌSF  B + C UPQMBNŽ LBÀUŽS % P = * 0, 1 , 3 , 1 4 4 55 \"  #  $  %  &  E) P = * 1, 5 , 3 ,24 4 2 5 2. f : [ ] Z3UBOŽNMŽG Y = 3x fonksiyonu veriliyor. 6. f : [ ] Z [ ]PMNBLÐ[FSF f ( x ) = x2GPOLTJZPOVOVOUBOŽNMŽPMEVóVBSBMŽóŽJLJ FõJUQBS¿BZBCËMFOEÐ[HÐOCJS1QBS¿BMBONBTŽZB- QŽMŽZPS  #VOBHÌSF BSBMŽôŽFöJUQBSÀBZBCÌMFOEÑ[HÑO #VOBHÌSF PMVöBO3JFNBOOBMUUPQMBNŽOŽO 3JF- CJS1QBSÀBMBONBTŽOBBJUBMUUPQMBNLBÀCJSJNLB- NBOOÑTUUPQMBNŽOBPSBOŽLBÀUŽS SFEJS A) 7  #  13 C) 13  %  16 25 25 25 E) A) 5  $  9  %  &  13 29 29 29 2 2 2 #  7. 3JFNBOOUPQMBNŽ /n 1 1 16 1 81 1 1 F^ zK h DxK = 4 . n + 4 · n + 4 . n + . . . + 1· n k=1 n n n 3. f : [ ] Z3UBOŽNMŽG Y = x2 + 1 fonksiyonu ve-  PMBOCJSGPOLTJZPOVOVOJOUFHSBMJOJOEFôFSJLBÀ- riliyor. UŽS #VOB HÌSF [  ] BSBMŽôŽOŽ  FöJU QBSÀBZB CÌMFO A) 1  #  1 C) 1  %  1 1 EÑ[HÑOCJS1QBSÀBMBONBTŽOBBJUÑTUUPQMBNLBÀ 6 5 43 E) CJSJNLBSFEJS 2 \"  #  $  %  &  4. f ( x ) = x3 fonksiyonu x ekseni ve x =EPôSVTV m BSBTŽOEBLBMBOCÌMHFOJO[ ]BSBMŽôŽOEBiOuBMU 8. # _ m + k i dx = 24  [L  N]  BSBMŽóŽ  FõJU QBS¿BZB BSBMŽôBCÌMÑOEÑôÑOEFOZßJÀJO3JFNBOOUPQ- MBNŽLBÀUŽS k \"  #  $  %  &  BZSŽMEŽóŽOEB CV CËMÐOUÐOün HFOJõMJóJ  CJSJN PMEV- k óVOBHËSF  # 2x dx JOUFHSBMJOJOTPOVDVBöBôŽ- 0 EBLJMFSEFOIBOHJTJEJS \"  #  3 C) 5  %  25 25 2 E) 4 16 4 1. C 2. C 3. \" 4. \" 43 5. C 6. B 7. B 8. &

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr #&-÷3-÷÷/5&(3\"-÷-&\"-\"/)&4\"#* bx A2 %m/*m %m/*m F : [B C] Z3 Z= F ( x ) fonksiyonu integralle- y = F(x) y OFCJMFOCJSGPOLTJZPOPMNBLÐ[FSF  A1 y =' Y GPOLTJZPOVOVOHSBGJóJ Y= a ve x = b Oa c EPóSVMBSŽJMFYFLTFOJBSBTŽOEBLBMBOTŽOŽSMŽCËM- HFOJOBMBOŽ b A = # F_ x i dx integrBMJJMFIFTBQMBOŽS a y y = F ( x ) fonksiyonu [B C]OEBQP[JUJGWFOFHB- y = F(x) UJGEFóFSMFSJOIFSJLJTJOJEFBMŽZPSTB F_ x i = * - F_ x i , a # x # c ise F_ x i , c < x # b ise A Oa b x  PMEVóVOEBO' Y GPOLTJZPOVOVn grBGJóJ  x = a ve x =CEPóSVMBSŽJMFYFLTFOJBSBTŽOEB LBMBOCËMHFOJOBMBOŽ  y = F ( x ) fonksiyonu [B C]OEBQP[JUJGEFóFS- cb MJJTFZBOJ' Y GPOLTJZPOVOVOHSBGJóJ Y= a ve A = A1 + A2 = # F_ x i dx - # F_ x i dx x = C EPóSVMBS JMF Y FLTFOJ UBSBGŽOEBO TŽOŽSMB- OBO CËMHFOJO BMBOŽ Y FLTFOJOJO Ð[FSJOEF LBMŽ- ac | |yosa F ( x ) =' Y PMBDBóŽOEBOCVCËMHFOJO integrBMJJMFIFTBQMBOŽS BMBOŽ UYARI b y A = # F_ x i dx integrBMJJMFIFTBQMBOŽS a y A2 a bx a A1 b O x O c y = F(x) A  :VLBSŽEBZ=' Y GPOLTJZPOVOVOHSBGJóJWFFL- y = F(x) TFOMFSBSBTŽOEBLBMBOTŽOŽSMŽCËMHFMFSJOBMBOMBSŽ y = F ( x ) fonksiyonu [B C]OEBOFHBUJGEFóFS- A1 ve A2PMNBLÐ[FSF MJJTFZBOJ' Y GPOLTJZPOVOVOHSBGJóJY= a ve x =CEPóSVMBSŽJMFYFLTFOJUBSBGŽOEBOTŽOŽSMB- c OBOCËMHFOJOBMBOŽYFLTFOJOJOBMUŽOEBLBMŽZPS- # F_ x i dx integraMJOJOEFóFSJ | |sa F ( x ) = -' Y  PMBDBóŽOEBO CV CËMHFOJO a olur. BMBOŽ c b # F_ x i dx = - A1 + A2 A = - # F_ x i dx integrBMJJMFIFTBQMBOŽS a a [B D]OEBF ( x )GPOLTJZPOVOVOHSBGJóJJMFYFL- TFOJBSBTŽOEBLBMBOTŽOŽSMŽCËMHFOJOBMBOŽ c olur. # F_ x i dx = A1 + A2 a 44

www.aydinyayinlari.com.tr ÷/5&(3\"- 7. MODÜL ·/÷7&34÷5&:&)\";*3-*, ÖRNEK 1 ÖRNEK 4 15 br2 y (SBGJLUF WFSJMFOMFre y = -x2 +YQBSBCPMÐ –3 y = F(x) x = - Y= -1 HÌSF 5 EPôSVMBSŽ WF Y FLTFOJ JMF TŽOŽSMŽ CÌMHFOJO BMBOŽ LBÀ 2 5 br2 5 br2EJS x # F (x) dx LBÀUŽS –3 5 y x 2 # F^ x h dx = 15 - 5 = 10 –2 –1 O –3 y =–x2 + 2x –1 3 –1 x #A = - ^ - 2 + 2x h dx = 2 x 3 -x ÖRNEK 2 –2 –2 y = d - 1 - 1 n - d - 8 - 4 n = - 4 + 20 = 16 y = F(x) 3 3 333 S1 S3 ÖRNEK 5 3 S2 x y = -x2 + 1 7 QBSBCPMÑWFYFLTFOJJMFTŽOŽSMŽCÌMHFOJOBMBOŽLBÀ 7 br2EJS # F (x) dx = 15 br2 S1 = 7 br2 S2 = 6br2 -3 PME VôVOBHÌSF 43LBÀCS2EJS y1 -x 31 #1 ^ - 2 h = +x A= + 1 dx x –1 3 –1 7 –1 1 x =d -1 +1 n-d 1 -1 n # F^ x h dx = S - S + S = 15 O 33 123 –3 22 4 =+= = 7 - 6 +43 = 15 j43 = 14 33 3 ÖRNEK 3 F(x) = 2x2 (SBGJLUFLJ UBSBMŽ CÌM ÖRNEK 6 x HFOJO BMBOŽOŽ CV y lunuz. y = x3 - 4x 3 FôSJTJ WF Y FLTFOJ JMF TŽOŽSMŽ CÌMHFOJO BMBOŽ LBÀ CS2 –1 EJS y 0 #A = 2 ^ x3 - 4x h dx x–24 0 3 = 2f - 2 p 2x x 4 –2 #5BSBMŽBMBO= 2 –2 O 2 2x dx –1 = 2(0 - (4 - 8)) = 8 3 3 2x = 2 ^ 27 - ^ - 1 h h = 56 & –1 3 3 3 1. 10 56 45 16 4 6. 8 2. 14 3. 4. 5. 33 3

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- ÖRNEK 9 www.aydinyayinlari.com.tr y y = F(x) ÖRNEK 7 y = x3 -FôSJTJY= -1 ve x =EPôSVMBSŽJMF0YFL- TFOJOJOPMVöUVSEVôVBMBOLBÀCJSJNLBSFEJS y y = x3–1 –3 A1 O A3 x –1 45 A2 –1 O x 12 –1 12 :VLBSŽEBLJöFLJMEF\"1 =CJSJNLBSF \"2 = 9 birimka- SFWF\"3 =CJSJNLBSFPMEVôVOBHÌSF BöBôŽEBLJJO- # #A = ^ - x3 + 1 hdx + ^ x3 - 1 h dx UFHSBMMFSJOEFôFSMFSJOJCVMVOV[ –1 1 4 5 - x4 14 2 a) # f_ x i dx b) # F_ x i dx x –3 –3 = +x + -x 44 4 5 –1 1 D  # F_ x i dx  E  # F_ x i dx =d - 1 +1 n-d - 1 -1 n+^4-2h-d 1 -1 n  –1 –3 44 4 35 3 19 4 45 = + +2+ = 44 44 e) # F_ x i dx f) # F_ x i dx - # F_ x i dx 5 –1 4 a) 3 - 9 = -6 b) 3 - 9 + 4 = -2 c) -9 d) 3 + 9 + 4 = 16 e) -4 f) -9 - 4 = -13 ÖRNEK 8 :BOEBLJõFLJMEFZ= F ( x ) ÖRNEK 9 EPóSVTBM GPOLTJZPOVOVO y HSBGJóJWFSJMNJõUJS y 4 –1 O :BOEBLJõFLJMEF 6x y = F(x) F_ x i = x y = F(x) O2 _ x2 + 1 i2 5BSBMŽCÌMHFOJOBMBOŽOŽJOUFHSBMZBSEŽNŽJMFCVMVOV[ 2 x fonksiyonunun gra- GJóJWFSJMNJõUJS xy #VOBHÌSF UBSBMŽCÌMHFOJOBMBOŽLBÀCJSJNLBSFEJS %PôSVEFOLMFNJ 6 + 4 = 1 02 x ^2h ^3h x dx dx + 12 - 2x # #A = - 2x + 3y = 12 j y = –1 ^ x2 + 1 h2 ^ 2 h + 1 3 x 6 0 #A = d 12 - 2x n dx u = x2+ EV= 2x dx 3 2 15 # #1 du 1 du 13 6 -+ = 1 ^ 12x - x2 h = 1 16 2 2 2 2 20 & ^ ^ 72 - 36 h - ^ 24 - 4 h h = 2 u 1 u 3 23 3 19 16 46 9. B m C m D m E  F m G m 13 7. 8. 10. 20 4 3

#JS'POLTJZPOVO(SBGJôJJMFY&LTFOJ\"SBTŽOEB,BMBO#ÌMHFOJO\"MBOŽ TEST - 21 1. ôFLJMEF41 42 43CVMVOEVLMBSŽCËMHFMFSJOBMBOMBSŽ- 4. ôFLJMEF G Y GPOLTJZPOVOVOHSBGJóJWFSJMNJõtir. EŽS y y –1 S1 S3 x S1 y = f(x) –3 2 S2 4 x 4 S2 7 10 S1 ve S2J¿JOEFCVMVOEVóVCËMHFMFSJOBMBOMBSŽOŽ f(x) HËTUFSNFLÐ[FSF S1 = 21 br2 42 = 16 br2 ve 4 10 # f (x) dx = 6 ve S1 = 9 br2 # f(x) dx = 16 -3 –1  PMEVôVOBHÌSF 42 kBÀCS2EJS PMEVôVOBHÌSF 43BMBOŽLBÀbr2EJS \"  #  $  %  &  \"  #  $  %  &  2. ôFLJMEFZ=G Y JOHSBGJóJWFSJMNJõUJS y y = f(x) A 12 C x –3 B 57 6 5. y  YFLT FOJOJO \"#ZBZŽJMFTŽOŽSMBEŽóŽCËMHFOJOBMBOŽ S2 5 x 12 br2 #$ZBZŽJMFTŽOŽSMBE ŽóŽCËMHFOJOBMBOŽ5 br2 –6 S1 1 y = f(x) 6 ôFLJMEF S = 12 br2 42 = 6 br2 ise PMEVôVOBHÌSF  # f (x) dx LBÀUŽS 1 –3 5 \"  #  $  %  &  # af^xh + f^xh kdx -6 integrBMJOJOEFôFSJLBÀUŽS A ) - # - $  %  &  3. y ôFLJMEF  \"1  \"2 CVMVOEVLMBSŽ CËM- –3 –2 A1 O 4x HFOJO BMBOŽOŽ HËTUFSNFLUFEJS A2 A1 = 3 br2 \"2 = 8 br2 ve 6. y = x2 –2 4  QBSBCPMÑJMFZ= Y= 1 ve x =EPôSVMBSŽBSB- TŽOEBLBMBOBMBOLBÀCS2EJS # f(x) dx = - 5 ise # f_ x i dx \"  #  $  %  &  –3 –3 E ) 16  JOUFHSBMJOJOEFôFSJLBÀUŽS A ) - # -8 C ) -5 %  1. \" 2. & 3. \" 47 4. & 5. D 6. C

·/÷7&34÷5&:&)\";*3-*, 7. MODÜL ÷/5&(3\"- www.aydinyayinlari.com.tr ÷,÷'0/,4÷:0/6/(3\"'÷ó÷\"3\"4*/%\",\"-\"/#²-(&/÷/\"-\"/* %m/*m UYARI y y = f(x) y y = g(x) A1 b A1 y = g(x) x a Ob A2 A2 aO y = f(x) x c  :VLBSŽEBHËTUFSJMFOG Y WFH Y GPOLTJZPOMBSŽ-  &óFSG Y WFH Y GPOLTJZPOMBSŽOŽOHSBGJLMFSJZV- OŽOHSBGJLMFSJJMFY= a ve x =CEPóSVMBSŽBSBTŽO- LBSŽEBLJ HJCJ WFSJMJSTF CPZBMŽ CËMHFMFSJO UPQMBN EBLBMBOTŽOŽSMŽCËMHFOJOBMBOŽ\"1 H Y GPOLTJ- BMBOŽ \"1 ve A2BMBOMBSŽOŽOBZSŽBZSŽIFTBQMBOB- ZPOVOVOHSBGJóJY= a ve x =CEPóSVMBSŽJMFY SBLUPQMBONBTŽJMFCVMVOVS FLTFOJBSBTŽOEBLBMBOTŽOŽSMŽCËMHFOJOBMBOŽ\"2 bc PMNBLÐ[FSF  # #A = A + A = ^ f^ x h - g^ x h h dx + ^ g^ x h - f^ x h hdx b x i dx = A1 + A2 _ 12 b ab # f_ b bb a ` bb # g_ x i dx = A2 b bb a a bb & A1 = # f_ x idx - # g_ x idx aa b ÖRNEK 1 & A1 = # f_ x i - g_ x i dx y 3 a Sonuç olarak [B C]OEBJLJGPOLTJZPOVn grafJóJ –1 O x 3 BSBTŽOEB LBMBO BMBOŽ CVMNBL J¿JO ÐTUUFLJ GPOL- TJZPOVOVO EFOLMFNJOEFO BMUUBLJ GPOLTJZPOVO EFOLMFNJ¿ŽLBSŽMBSBLJOUFHSBMJBMŽOŽS :VLBSŽEBLJHSBGJLUFQBSBCPMJMFEPôSVBSBTŽOEBLBMBO CÌMHFOJOBMBOŽLBÀCJSJNLBSFEJS 1BSBCPMEFOLMFNJZ= -1 (x + 1) (x - 3) %PôSVEFOLMFNJZ= -x + 3 3 #5BSBMŽBMBO= 7 -^ x + 1 h^ x - 3 h - ^ - x + 3 hA dx 0 3 32 3 a - x2 + 3x k dx = - x 3x #= + = d - 9 + 27 n = 9 32 0 22 0 48 9 1. 2


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook