1PMJOPNMBS¦BSQBOMBSB\"ZSNB KARMA TEST - 1 1. 1 Y =NY4 - ( n + Y3 +Y2 -Y+ 3 5. m + n = 2 PMEVóVOBHËSF 2 Y =Y4 +NY3 + N+O Y2 -Y+ 1 nm QPMJOPNMBSWFSJMNJõUJS ^ m + n h2 mn der [1 Y +2 Y ] = 2 JGBEFTJBöBôEBLJMFSden hangisidir? PMEVôVOBHÌSF NOLBÀUS \" # $ % & \" - # - $ % & 2. Y+ 1 Y+ =Y2 -Y+ k 6. a2 + b2 + c2 + 8a - 6b + 2c + 32 PMEVôVOBHÌSF 1 Y QPMJOPNVBöBôEBLJMFSEFO JGBEFTJOJFOLÑÀÑLZBQBOB CWFDUBNTBZMBS hangisidir? için, a + b +DUPQMBNLBÀUS \" Y- # Y- $ Y+ 2 \" - # - $ % & % Y- & Y+ 1 3. 1 Y WF2 Y QPMJOPNMBSOO Y- JMFCËMÐ- 7. x = 3 23 + 5 NÐOEFOFMEFFEJMFOLBMBOMBSTSBTJMFWF-EJS EFôFSJJÀJO Y3 - 15x2 + 75x -JöMFNJOJOTP x2 . P (x) + 2 OVDVLBÀUS Q (x) - 4 \" # $ % & polinomunun ( x - 4 ) JMF CÌMÑNÑOEFO LBMBO LBÀUS \" - # - $ - % & 4. 1 Y+ +2 Y- =Y2 +Y+WFSJMJZPS 8. x = 5 – x PMEVóVOBHËSF P ( x ) polinomunun x -JMFCÌMÑNÑOEFOLBMBO 3x + 15 PMEVôVOBHÌSF2 Y QPMJOPNVOVOYJMFCÌMÑ x NÑOEFOLBMBOLBÀUS JGBEFTJOJOEFôFSJLBÀUS \" # $ % & \" # $ % & 1. & 2. # 3. \" 4. \" 49 5. C 6. \" 7. # 8. #
KARMA TEST - 2 1PMJOPNMBS¦BSQBOMBSB\"ZSNB 1. 1 Y CJSQPMJOPNPMNBLÐ[FSF 5. B CWFD` R, a = 5 + b +DWFBC+ ac - bc = 4 Y- 1 Y =Y3 +BY2 -Y+ 2 PMEVôVOBHÌSF a2 + b2 + c2OJOEFôFSJLBÀUS \" # $ % & PMEVôVOBHÌSF 1 LBÀUS \" # $ % & 2. 1 Y =Y3 +BY2 -CY+ 1 6. a = 5 + 3 ve b = 3 - 2 PMEVóVOBHËSF QPMJOPNVOVOY-JMFCËMÐNÐOEFOLBMBOPMVQ b2 - 9 + a2 - 2ab Y+ 3 JMFUBNCËMÐONFLUFEJS a-b+3 #VOBHÌSF BLBÀUS JGBEFTJOJOTBZTBMEFôFSJLBÀUS \" 4 # 14 $ 16 % 17 & 6 \" # $ % & 5 15 15 15 5 3. 1 Y =Y28 -Y14 +Y7 + a - 2 7. a3 + 3ab2 - 41 =WFB2 b + b 3 + 23 = 0 QPMJOPNVOVOCJSÀBSQBOY7 +PMEVôVOBHÌ PMEVôVOBHÌSF B-CGBSLLBÀUS SF BLBÀUS \" 3 4 # $ % 2 & 3 2 \" # $ % & 8. xy - = 0PMNBLÐ[FSF yx 4. 1 Y CJSQPMJOPNPMNBLÐ[FSF x x2 x15 + +··· + = A 1 Y+ +1 Y- =Y2 + 10 y y2 y15 PMEVôVOBHÌSF 1 LBÀUS UPQMBNOEB\"OOBMBCJMFDFôJEFôFSMFSJOGBSLen azLBÀUS \" # $ % & \" - # - $ - % & 1. # 2. D 3. D 4. \" 50 5. D 6. \" 7. C 8. \"
1PMJOPNMBS¦BSQBOMBSB\"ZSNB KARMA TEST - 3 1. 1 Y CJSQPMJOPNPMNBLÐ[FSF 4. 1 Y 2 Y WF 3 Y CJSCJSJOF FõJU PMNBZBO QPMJ- Y1 Y + P( -Y =Y2 -Y+ 1 OPNMBSES PMEVôVOBHÌSF 1 LBÀUS \" # $ % & der [ P ( x )] = der [ Q ( x )] = der [3 Y ] =OFöJUMJ 2. 1 Y- QPMJOPNVOVO Y-JMFCËMÐNÐOEFOLB- ôJOEF MBO 2 Y+ QPMJOPNVOVO Y-JMFCËMÐNÐOEFO I. EFS<1 Y +2 Y >+EFS<3 Y >âO II. EFS<1 Y >EFS<3 Y >= n2 LBMBO-PMEVóVOBHËSF 2Q [ P( x + 1 ) ] + x2 + 1 III. EFS<1 Y 2 Y +3 Y >= 3n polinomunun x -JMFCÌMÑNÑOEFOLBMBOLBÀ US JGBEFMFSJOEFOIBOHJMFSJEPôSVEVS \" - # - $ % & \" :BMO[* # :BMO[** $ :BMO[*** 3. % *WF** & *WF*** 5. 1 + x1 + x2 + x3 + ... + x7 : x6 + x4 + x2 + 1 x2 - 2x - 3 x2 - 9 ifadesinin FOTBEFöFLMJBöBôEBLJMFSEFOIBOHJ sidir? \" Y+ # Y+ $ mY % x 1 1 & x 1 3 + + (x + 1) 6. Y4 +Y3 +Y2 + 3 = Y+ Y3 +BY2 +CY+D + d (x + 2) olduôVOBHÌSF B b + c + d JGBEFTJOJOEFôFSJ LBÀUS \" # 13 $ % 15 & 2 2 &WJOCJSLFOBSV[VOMVóV 7. Y ZWF[QP[JUJGUBNTBZMBSPMNBLÑ[FSF 1 Y =Y3 +BY2 + ( b + Y+ 3 -Y2 + y2 -[2 = 13 +Y[ CJSJNPMBOLBSFõFLMJOEFLJËOEVWBS FOJ Y+ CJ- SJN CPZV Y + CJSJN PMBO EJLEËSUHFO õFLMJOEFLJ NBOUPMBNBNBM[FNFTJJMFUBNBNFOLBQMBOBDBLUS #VOBHÌSF B+CLBÀPMNBMES PMEVôVOBHÌSF ZLBÀUS \" # $ % & \" # $ % & 1. & 2. \" 3. D 51 4. D 5. \" 6. & 7. C
KARMA TEST - 4 1PMJOPNMBS¦BSQBOMBSB\"ZSNB 1. 1 Y+ a + =Y2 +Y-QPMJOPNVWFSJMJZPS 5. 1 Y =Y6 -12k +Y6 - 5k -Y P( x + 1 ) polinomunun x -BJMFCÌMÑNÑOEFOLB polinomu ( x + JMFUBNCÌMÑOFCJMEJôJOFHÌSF L MBOLBÀUS TBZTJÀJOBöBôEBLJMFSEFOIBOHJTJEPôSVEVS \" /FHBUJG¿JGUTBZES # /FHBUJGUFLTBZES \" - # - $ % & $ 1P[JUJG¿JGUTBZES % 1P[JUJGUFLTBZES & /FHBUJGTBZES 2. #JS1 Y QPMJOPNVOVO Y- Y+ JMFCËMÐNÐO 6. x - 3 = 10 EFOLBMBOY+NEJS x P( x ) in x -JMFCÌMÑNÑOEFOLBMBOPMEVôVOB PMEVôVOBHÌSF x2 + 1 ifadesinin deôFSJLBÀ HÌSF Y+JMFCÌMÑNÑOEFOLBMBOLBÀUS x \" # $ - % - & m US 3. * #BõLBUTBZTWFLËLMFSJOEFOJLJTJJWFJPMBO \" # $ % & EFSFDFEFOQPMJOPN 7. Y2 -Y- 2 =Y3 + 5 II. #BõLBUTBZTWFLËLMFSJOEFOJLJTJ-WFJPMBO FöJUMJôJOJ TBôMBZBO Y HFSÀFM TBZMBSOO UPQMBN EFSFDFEFOQPMJOPN LBÀUS III. #BõLBUTBZTWFLËLMFSJOEFOJLJTJWFPMBO \" - # - $ % & EFSFDFEFO¿JGUGPOLTJZPOPMBOQPMJOPN IV. #BõLBUTBZTWFLËLMFSJOEFOCJSJmJPMBO 8. x - x–2 EFSFDFEFOQPMJOPN 1 + x–1 + x–2 :VLBSEB UBONMBOBO HFS¿FM LBUTBZM QPMJOPNMBSO ifadesinin en sade bJÀJNJBöBôEBLJMFSEFOIBO LVSBMMBSWFSJMNJõUJS HJTJOFFöJUUJS #V LVSBMB HÌSF QPMJOPNMBS ZB[EôN[EB BöB \" Y2 + # Y+ $ Y- 1 ôEBLJMFSEFOIBOHJTJCVQPMJOPNMBSEBOCJSJola maz? % -Y & -Y2 \" 1 Y = Y+ Y2 + # 2 Y = Y2- Y2 - $ 3 Y = Y2 + Y2 + 2 % , Y = Y- 2 Y+ 2 & 4 Y =Y2 -Y+ 5 4. 3 x + 7 - 3 x - 7 = 2 PMEVôVOBHÌSF Y2OJOEFôFSJLBÀUS \" # $ % & 1. # 2. D 3. D 4. \" 52 5. # 6. # 7. & 8. C
1PMJOPNMBS¦BSQBOMBSB\"ZSNB KARMA TEST - 5 1. 1 Y = Y2 - 2 Y -Y+PMNBLÐ[FSF 5. 3 2 - 1 = a PMEVóVOBHËSF P ( x ) polinomunun x +JMFCÌMÑNÑOEFOFMEF 3 4-1 FEJMFOCÌMÑNBöBôEBLJMFSEFOIBOHJTJEJS 3 4 - 2. 3 2 + 1 \" Ym 2 Y m # Y+ 2 Y m $ Ym 2 Y + % -2 JGBEFTJOJOFöJUJBöBôEBLJMFSEFOhangisidir? & \" a + 1 # a $ 1 a+3 a+2 a % a + 2 & a + 3 a a+1 2. 1 Y QPMJOPNVTBCJUUFSJNJ-PMBO EFSFDF 6. \"#$пHFOJOJOLFOBSV[VOMVLMBSB C DPMNBLÐ[FSF EFOCJSQPMJOPNEVS a - b = c WF B+ b +D C+ c -B = 60 c b+a #VQPMJOPNY+ 1, x - 2 ve x +JMFUBNCÌ MÑOEÑôÑOFHÌSF 1 Y JOY-JMFCÌMÑNÑOEFO olduôVOBHÌSF \"#$ÑÀHFOJOJOBMBOLBÀUS LBMBOLBÀUS \" # $ % & \" # $ % & 3. P [1 Y -Y+ 2] -1 Y+ =Y+PMNBL 7. Y4 +Y3 +Y2 +Y+ 1 =PMEVóVOBHËSF Ð[FSF 1 Y QPMJOPNVOVOY-JMFCËMÐNÐOEFOLB- Y2016 +Y2015 - 1 MBOEJS JGBEFTJOJOFöJUJBöBôEBLJMFSEFOIBOHJTJEJS P( x ) in x - 1 ve x -JMFBZSBZSCÌMÑOEÑ ôÑOEFFMEFFEJMFOLBMBOMBSUPQMBNPMEVôVOB \" Y+ # Y- $ Y2 HÌSF 1 BöBôEBLJMFSEFOIBOHJTJOFFöJUUJS % & Y \" # $ - % - & -10 4. 1 Y QPMJOPNV TBCJU UFSJNJ PMBO EFSFDFEFO 8. BWFC` Z+PMNBLÐ[FSF CJSQPMJOPNEVS a+ b #VQPMJOPNVOTGSMBS LÌLMFSJ WFPMEV x2 + x–6 x2 + 2x - 3 ôVOBHÌSF 1 Y QPMJOPNVOVOLBUTBZMBSUPQMB NLBÀUS keTSJTBEFMFöFCJMJSCJSLesir oldVôVOBHÌSF a + C UPQMBNOO BMBCJMFDFôJ LBÀ GBSLM EFôFS WBSES \" # $ % & \" # $ % & 1. \" 2. C 3. D 4. C 53 5. D 6. \" 7. & 8. \"
KARMA TEST - 6 1PMJOPNMBS¦BSQBOMBSB\"ZSNB 1. 1 Y CJSQPMJOPNPMNBLÐ[FSF 5. x = 28 - 10 3 PMEVóVOBHËSF 1 Y2 = ( a + Y3 +Y2 - ( b + Y+ 2 x4 - 10x3 + 23x2 - 10x + 32 PMEVôVOBHÌSF a +CLBÀUS x2 - 10x + 24 \" - # - $ - % & ifadesinin eöJUJLBÀUS \" # $ % & 2. 1 Y QPMJOPNVJ¿JO 1 Y - 1 Y- =Y2EJS 6. YWFZHFS¿FMTBZPMNBLÐ[FSF P ( x ) polinomunun x -JMFCÌMÑNÑOEFO Y2 + y2 -YZ- 2 7 x + 4 = 0 kalan PMEVôVOBHÌSF Y- JMFCÌMÑNÑOEFO kalan LBÀUS PMEVôVOBHÌSF YZLBÀUS \" # $ % & \" 1 # 8 $ 4 % & 5 7 7 7 7 7. Yá-WFY3 +Y2 +Y+ 1 =PMEVóVOBHËSF 3. Y3 -Y2 +Y+ 2 Y2007 -Y2003 +Y1004 + 1 JGBEFTJOJOTPOVDVBöBôEBLJMFSEFOIBOHJTJEJS QPMJOPNVOEBO BöBôEBLJQPMJOPNMBSOIBOHJTJ OJÀLBSSTBL FMEFFEJMFOQPMJOPNY2 +JMFCÌ \" Y- # Y+ $ % & Y+ 2 MÑOEÑôÑOEFY-LBMBOOWFSJS \" -Y+ # -Y+ $ -Y+ 5 % -Y+ & -Y+ 7 x2 - ^ x + 1 h2 8. = 2PMEVóVOBHËSF 3 x 2 -1 4. 1 Y =Y3 +Y2 -Y+QPMJOPNVOVO Y+ JMF ^ x - 1 h2 + 1 CËMÐNÐOEFOCËMÐN4 Y UJS ^ x - 1 h2 #VOBHÌSF 4 Y QPMJOPNVOVO Y- JMFCÌMÑ ifadesininFöJUJLBÀUS NÑOEFOLBMBOLBÀUS \" # $ % & \" # $ % & 1. \" 2. C 3. C 4. # 54 5. # 6. # 7. D 8. C
1PMJOPNMBS¦BSQBOMBSB\"ZSNB <(1m1(6m/6258/$5 1. 1 Y CJSQPMJOPNPMNBLÐ[FSF 1 B FõJUMJóJOJTBó- 3. B C DWFE`/PMNBLÐ[FSF MBZBOBTBZTOB1 Y QPMJOPNVOVOCJSLËLÐEFOJS EFSFDFEFOCJS1 Y QPMJOPNV EFSFDFEFO1 Y QPMJOPNVOVOLËLMFSJ-WFUJS 1 Y =BY3 +CY2 +DY+EõFLMJOEFUBONMBOZPS #VOB HÌSF 1 = LPöVMVOV TBôMBZBO LBÀ #VOBHÌSF I. -4 GBSLM1 Y QPMJOPNVZB[MBCJMJS II. 2 \" # $ % & III. 0 TBZMBSOEBO IBOHJMFSJ 1 Y + 3 ) polinomunun CJSLÌLÑEÑS \" :BMO[* # :BMO[** $ *WF*** % **WF*** & *WF** 2. ,FOBSV[VOMVLMBSYCSWFYCSPMBO*õFLJMEFWFSJ- 4. 14 cm MFOLºóUBõBóEBLJHJCJTSBTZMBLBUMBOZPS :VLBSEBWFSJMFODNV[VOMVóVOEBLJUFMBõBóEB- LJHJCJLWSMQ\"WF#V¿MBSCJSMFõUJSJMFSFLCJSEJLп- HFOPMVõUVSVMVZPS x A x+3 måY B 2x I II x+3 måY y 2y III IV V AB 7õFLJMEFFMEFFEJMFOEJLпHFOEFOLFOBSV[VOMVL- 0MVöUVSVMBOEJLÑÀHFOJOBMBOOODN2PMNBT MBSZCSWFZCSPMBOCJSEJLпHFOLFTJMJQ¿LBSUM- JÀJOYLBÀDNPMNBMES yor. \" 3 # 4 #VOB HÌSF LBMBO L»ôU UBNBNFO BÀMEôOEB $ 5 BMBO BöBôEBLJMFSEFO IBOHJTJ JMF JGBEF FEJMFCJ % 6 lir? & #VõFLJMEFпHFOPMVõUVSVMBNB[ \" _ 2x - 6 y i_ 2x + 6 y i # _ 3 x - 2 y i _ 3 x + 2 y i $ _ 3 x - 2y i_ 3 x + 2y i % 3_ x - 2 y i_ x + 2 y i & 2_ 2 x - y i_ 2 x + y i 1. & 2. D 55 3. # 4. C
<(1m1(6m/6258/$5 1PMJOPNMBS¦BSQBOMBSB\"ZSNB 1. ¥FWSFTJYCSPMBO*õFLJMEFWFSJMFOFõLFOBSпHFO- 3. :BS¿BQCSPMBOCJSLÐSFNFSLF[JOEFOYCSV[BL- MFSõFLJMEFLJHJCJCPZBONõUS MLUBCJSEÐ[MFNMFLFTJMJZPS O1 x O2 I II #VOBHÌSF PMVöBOBSBLFTJUJOBMBOOOYJOCJS QPMJOPNVPMBSBLJGBEFTJ \" Y JÀJO \"ZOLVSBMBHËSF**õFLJMEF¿FWSFTJYCSPMBOFõ- I. \" Y -YJMFLBMBOT[CËMÐOÐS LFOBSпHFOMFSCPZBONõUS Y` N+ II. \" Y QPMJOPNVOVOLBUTBZMBSUPQMBNÕEJS III. \" Y QPMJOPNVOVOCBõLBUTBZTÕEJS #VOBHÌSF 1 Y = ¥FWSFTJYCSPMBOFõLFOBS пHFOEFLJ CPZBONBNõ пHFO TBZT öFLMJOEF ifadelerinden hangileri kesinlikleEPôSVEVS UBONMBOBO QPMJOPNVO LBUTBZMBS UPQMBN LBÀ US \" # $ % & \" :BMO[* # *WF** $ *WF*** % **WF*** & * **WF*** 2. ôFLJMEF Fõ EJLEËSUHFOEFO PMVõBO PZVO QBSL 4. ,VõCBLõ HËSÐOÐNÐ õFLJMEFLJ HJCJ PMBO CJS SFTJN NPEFMJWFSJMNJõUJS BUËMZFTJOJO LFOBS V[VOMVLMBSOO CB[MBS õFLJMEF HËTUFSJMNJõUJS b xx ba x xx ba x a x y y #V QBSLO IFS CJS EJLEËSUHFOTFM CËMHFTJOJO LFOBS- x MBSOBCJSTSBPMBDBLõFLJMEF¿JU¿FLJMNJõUJS,VMMBO- x MBO¿JUJOUPQMBNV[VOMVóVNFUSFEJS \"UÌMZFOJO BMBO CJSJNLBSF ÀFWSFTJ CJSJN PMEVôVOBHÌSF YLBÀCJSJNEJS #VOBHÌSF QBSLOUPQMBNBMBOOOBUÑSÑOEFO FöJUJBöBôEBLJMFSEFOIBOHJTJEJS \" # $ % & \" 520a - 13a2 # B- 13a2 3 $ B- 13a2 % 310a - 12a2 3 & 530a - 12a2 3 1. & 2. \" 56 3. # 4. C
Search