Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore Esters-in-4-stroke-engine-oils-v3-Oct-2013

Esters-in-4-stroke-engine-oils-v3-Oct-2013

Published by info.nycolub, 2015-03-23 11:07:18

Description: Esters-in-4-stroke-engine-oils-v3-Oct-2013

Search

Read the Text Version

4 stroke engine oils Benefits of esters 1

Content Introduction Technical trends Requirements on lubricants Nyco’s offerEvaluation in 4 stroke engine oils Conclusion 2

Introduction Esters were first Nowadays, engine Esters appear Nyco are “Esters are introduced in the design trends to be precious willing to work designed, late 70s to cope not refined” driven by recent or formulation closely with with new upcoming tools to technologists turbocharged legislationengines. However, engineer oils to designimprovements on generate new that will meet tailored engine design lubrication issues chemistries gradually limited that conventional stretchy that will take the role of esters base stocks, either requirements up these new to simple seal mineral or PAO, challengesswell and additive solubility agents may not solve completely 3

Engine Technical trends design New emissions legislation, future ACEA 2014, GF-6 areDownsizing putting unprecedented strain on engine oilsTurbochargingDirect Injection Increasing temperatures New Lower viscosities standards Agressive environmentContribution tofuel economyimprovement Use of biofuelBiofuel dilution 4

Impact on lubricants Nowadays lubricants need to show conflicting properties: Lower viscosities with lower volatility Higher VIs with better shear stability Improved resistance to oxidation, coking and deposit formation whilst coping with biofuel ingress Better anti-wear and friction reducing capability Detergency, additive solubility and seal compatibility Can traditional base stocks (Gr I-II-III, PAOs) and additive technology cope ? 5

Nyco’s offerSpeciality • Used as base fluids esters • Used as boundary lubrication Tailored additives esters • To match specific needs 6

Benefits of esters Low evaporation versus viscosityHigh thermal and oxidative resistance Low coking propensityGood anti-wear capability Low friction coefficients Good low temperature properties Additives compatibility Seal swelling capability 7

Ester capability NYCO NYCO NYCO PAO 4 Group NYCO NYCO PAO 2 Low POE 1 POE 2 POE 3 III POE 4 POE 5 temperature 3.4 4.0 4.4 1.9 2.5 1.7 properties KV 100°C 13.8 17.2 19.7 3.9 4.3 5.7 8.3 5.4 2300 3260 4500 17.4 20 330 262 Viscosity ASTM D445 128 134 138 2700 - - index -66 -63 -46 124 122 - 144 - KV 40°C 235 248 255 -68 -18 <-60 -42 -66 Viscosity- 8.5 5.0 222 228 190 206 157 volatility ASTM D445 2.2 99 0.75 0.72 75 31 ratio KV -40°C 0.82 0.75 13 14.2 ASTM D445 - - 0.64 0.71 0.76 0.60 0.53 1.1 Inherent VI - - anti-wear featuresASTM D2270 0.71 1.78 - -Pour Point 0.230 0.492 0.311 - - - * HFRR – 5 N – 20 Hz ASTM D97 75 mm – 60°CFlash Point ASTM D92 NOACKASTM D63754 ball wear scarASTM D41724 ball wear scar60 kg, 30 min Frictioncoefficient* Esters combine various interesting features 8

Evaluation in 4 stroke engine oil 3 oils were formulated according to reference additive manufacturer’s recommendations 10W-40, high SAPS (< 1.6%), ACEA A3/B4-04 0W-30, low SAPS (< 0.8%), ACEA C3-08 - API SM/CF 0W-30, low SAPS (< 1.3%), ACEA A1/B1, A5/B5 – API SM/CF In each of them 20 to 26% of mineral base fluid was replaced by various esters - Formulations were not further optimized Basic properties were determined Catalyzed oxidation and micro-coking tests were carried out Resistance to catalyzed oxidation was assessed, in the presence of fuel spiked with biofuel (methyl oleate, ethanol and methanol) 9

Evaluation in 4 stroke engine oilModified ASTM D4636 GFC-Lu-27-T-07 oxidation test Micro Coking Test  Conditions  Conditions  Oil quantity: 160 / 200 cm³  Oil quantity: 0.6 cm³  Air flow: 5 l/h  Plate inclination: 1° to the hot  Metals: Fe, Cu, Al, Mg, Ag point  Duration: monitored  Cold point temperature:  Temperature: 175°C variable (200°C to 280°C)  Hot point temperature: variable  Measurements (250°C to 330°C)  Viscosity changes at 40°C  Duration: 90 minutes• GFC : 150 g - 170°C - 144 h - 10 l/h – Fe(AcAc)• ROBO : 170°C – 40 h – NOx - Fe 10

Evaluation in 4 stroke engine oil OIL 1 OIL 2 OIL 310W-40 high SAPS 0W-30 low SAPS 0W-30 low SAPS ASTM D4636 Oxidation testACEA A3/B4-04 ACEA C3-08 ACEA A1/B1, A5/B5 API SM/CF API SM/CF 175°C Group I 53.2 Group III 43.0 Group III 37.6 Base line Group III 26.0Package 1 10.8 Group IV 30.0 Group IV 40.0 +10% B30 8.9 VII 1 0.8 Package 2 11.3 Package 3 12.9 +8% E20Booster 1 0.3 VII 2 15.5 VII 3 8.9 +8% SP95 PPD 1 (15% MeOH) -- -- Booster 2 0.4 B30 : gasoil + 30% methyl oleate PPD 2 0.2 PPD 3 0.2 E20 : SP95 + 20% ethanol Basic Micro-Cokingproperties Test analysis 11

Evaluation in 4 stroke engine oil OIL 1, high SAPS 10W-40 Test matrixReference Base line F2 F3 F4 F5 53.2 53.2 27.2 27.2Group I 53.2 26.0 26.0 -- -- 10.8 10.8Group III 26.0 10.8 10.8 0.8 0.8 0.8 0.8 8.9 8.9Package 10.8 8.9 8.9 0.3 0.3 0.3 0.3 26.0Booster 0.8 26.0 -- -- -- 26.0VII 8.9 -- 26.0PPD 0.3Nycobase 8103 --NX 20480 -- 12

Evaluation in 4 stroke engine oil OIL 1, high SAPS 10W-40 Physical properties Unit Base F2 F3 F4 F5 line NB 8103 NX 20480 NB 8103 NX 20480 instead of Gr III instead of Gr III instead of instead of half Gr I half Gr IKinematic viscosity @ 100°C mm²/s 13.6 12.7 13.7 12.1 13.2Kinematic viscosity @ 40°C mm²/s 90.1 78.8 88.8 73.1 82.6 14400 17000 9400Kinematic viscosity @ -25°C mm²/s 14400 -39 9900 -42 -42Pour Point °C -39 -42Viscosity Index -- 153 161 157 163 161 12 11 11Evaporation 6.5 h @ 200°C % w 14 9 13

Evaluation in 4 stroke engine oil OIL 1, high SAPS 10W-40 MCT at 230-280°C Reference Unit Base F2 F3 F4 F5 Deposit linetemperature °C <230 246 234 237 241 Merit A -- 6.3 6.5 6.2 6.4 6.3Merit B -- 8.0 9.5 9.0 8.9 9.3Average Merit -- 7.1 8.0 7.6 7.7 7.7 14

Evaluation in 4 stroke engine oilOIL 1, high SAPS 10W-40 – modified ASTM D4636 oxidation testReference Oil 1 (reference oil) Oil 1E (reference oil with Nycobase 8103) Property Δ Ia Δ KV 40°C Deposit Δ Ia Δ KV 40°C Deposit Unit 24 h mg KOH/g % mg/100 cm3 mg KOH/g % mg/100 cm3 48 h 72 h - 1.35 - 7.8 -- -1.4 - 8.1 -- 96 h 120 h - 0.7 - 9.9 -- -1.0 - 12.3 -- 144 hReference 0.6 - 12.3 -- 0 - 15.2 -- Property 2.1 - 10.4 -- 1.4 - 19.2 -- Unit 4.1 1.8 -- 2.8 - 21.9 -- 24 h 48 h 6.2 179 108 5.3 - 17.0 110 72 h 96 h Oil 1 + 10% B30 Oil 1E + 10% B30 120 h 144 h Δ Ia Δ KV 40°C Deposit Δ Ia Δ KV 40°C Deposit mg KOH/g % mg/100 cm3 mg KOH/g % mg/100 cm3 0.2 - 2.8 -- - 0.7 - 4.5 -- 0.9 - 2.1 -- 0 - 6.9 -- 2.9 - 4.0 -- 2.2 - 6.2 -- 4.4 19.2 -- 4.3 0.1 -- 6.3 121 -- 6.2 32 -- -- solid solid 8.5 260 28 15

Evaluation in 4 stroke engine oilOIL 1, high SAPS 10W-40 - Oxidation stability with Biodiesel ASTM D4636 270 (modified)KV40 change - % 220 OIL 1 170 OIL 1E OIL 1 + 10% B30 120 OIL 1E + 10% B30 70 20 -30 Time (h) 0 24 48 72 96 120 144 Ester component achieves excellent viscosity control Ester brings back B30 diluted oil to reference level 16

KV40 change % Evaluation in 4 stroke engine oil OIL 1: impact of gasoline, MeOH and EtOH 350 ASTM D4636 300 (modified) 250 OIL 1 200 OIL 1 + 8% 150 gasoline 100 OIL 1 gasoline + EtOH 50 OIL 1 gasoline + 0 MeOH -50 0 24 48 72 96 120 144 Time (h) Gasoline dilution does degrade oil’s thermal stability Whilst ethanol further weakens oil’s stability, methanol seems to have little impact 17

Evaluation in 4 stroke engine oil OIL 1: dealing with EtOH in gasolineKV40 change % 320 ASTM D4636 270 (modified) 220 170 OIL 1 120 OIL 1 gasoline + EtOH OIL 1E gasoline + EtOH 70 OIL 1 + 8% gasoline 20 -30 24 48 72 96 120 144 Time (h) 0 Use of ester neutralizes detrimental presence of ethanol 18

Evaluation in 4 stroke engine oil OIL 1: dealing with MeOH in gasoline ASTM D4636 (modified) 450 OIL 1KV40 change % 350 OIL 1 gasoline + 250 MeOH OIL 1E 150 gasoline + MeOH OIL 1E 50 -50 24 48 72 96 120 144 168 192 Time (h) 0 Ester component has little impact on initial oil thickening Ester strongly delays viscosity increase runaway 19

Evaluation in 4 stroke engine oilOIL 2, low SAPS 0W-30 – Test matrixReference Base line F2 F3 Group III 43.0 21.5 43 Group IV 30.0 30.0 12.5 Package 2 11.3 11.3 11.3 15.5 15.5 13.0 VII 2 0.2 0.2 0.2 PPD 2 21.5Nycobase 8103 -- --Nycobase 8311 -- -- 20.0 20

Evaluation in 4 stroke engine oil OIL 2, low SAPS 0W-30 - Physical propertiesProperty Unit Base line F2 F3 Aspect - Limpid Nycobase 8103 Nycobase 8311 Density 20°C kg/dm3 0.841 mm²/s 9.78 Instead of Gr III instead of Gr IV KV 100°C mm²/s 51.2 KV 40°C mm²/s 3213 Limpid Limpid KV -25°C mm²/s 6337 0.863 0.864 KV -30°C mPa.s 5210 10.51 9.80 CCS -35°C 180 52.1 48.3 - 2908 VI °C -42 5122 -- Pour point °C 224 6700 Flash point mPa.s 2.90 -- 5950 HTHS 150°C % 13.8 197 194 Evaporation 6.5 h @ 200°C % 17 -48 -42 214 244Noack (through calculated correlation) 2.85 -- 10.7 -- -- 13 21

Evaluation in 4 stroke engine oil OIL 2, low SAPS 0W-30 Friction propertiesProperty Base line F3 Nycobase 8311 instead of Gr IVSRV: ASTM D6425, 300 N, 50 Hz, 100°C, 1 mm, 120 minFriction coefficient 0.131 0.124 - Average 0.138 0.127 - After 15 min 0.136 0.127 - After 30 min 0.127 0.122 - After 90 min 0.126 0.120 - After 120 minHFRR: 1.20 N, 50 Hz, 30°C and 100°C, 1 mm, 120 minFriction coefficient 0.120 0.080 - Average at 30°C 0.130 0.105 - Average at 100°C 22

Evaluation in 4 stroke engine oilOIL 2, low SAPS 0W-30 Coking propensity Property Unit Base F3 line230°C – 280°C - Deposit temperature °C 242 255 - Merit - 7.6 8.6 23

Evaluation in 4 stroke engine oil OIL 2, low SAPS 0W-30 - Oxidation stability with BiodieselKV40 change % 140 ASTM D4636 120 (modified) 100 24 48 72 96 120 144 168 192 216 240 264 288 OIL 2 80 OIL 2E 60 OIL 2 + 10% B30 40 OIL 2E + 10% B30 20 Time (h) 0 -20 -40 0 Effect of B30 on OIL 2 is very significant Use of ester offsets presence of B30 24

Evaluation in 4 stroke engine oil OIL 2: Impact of gasoline, MeOH and EtOH 250 ASTM D4636 (modified) 200KV40 change % 150 OIL 2 100 OIL 2 + 8% gasoline OIL 2 gasoline + EtOH 50 OIL 2 gasoline + MeOH 0 -50 24 48 72 96 120 144 168 192 216 240 Time (h) 0 Gasoline dilution does degrade oil’s thermal stability Whilst ethanol further weakens oil’s stability, methanol seems to have little impact 25

KV40 change % Evaluation in 4 stroke engine oil OIL 2: dealing with EtOH ASTM D4636 160 (modified) OIL 2 110 OIL 2 gasoline + EtOH 60 OIL 2E gasoline + EtOH OIL 2 + 8% gasoline 10 -40 24 48 72 96 120 144 168 192 216 240 Time (h) 0 Use of ester brings E20 diluted oil close to ethanol free oil 26

Evaluation in 4 stroke engine oil OIL 2: dealing with MeOH ASTM D4636 210 (modified)KV40 change % 160 OIL 2 110 OIL 2 gasoline + MeOH 60 OIL 2E gasoline + MeOH 10 -40 24 48 72 96 120 144 168 192 216 240 Time (h) 0 As with pure gasoline, ester delays viscosity increase runaway 27

Evaluation in 4 stroke engine oilOIL 3, low SAPS 0W-30 – Test matrix Reference Base line F2 F3 F4 F5 F6 F7 Group III 37.6 16.1 37.6 17.6 37.6 17.6 37.6 Group IV Package 3 40.0 40.0 18.5 40.0 20.0 40.0 20.0 VII 3 12.9 12.9 12.9 12.9 12.9 12.9 12.9 Booster 2 8.9 8.9 8.9 8.9 8.9 8.9 8.9 PPD 2Nycobase 8103 0.4 0.4 0.4 0.4 0.4 0.4 0.4Nycobase 8311 0.2 0.2 0.2 0.2 0.2 0.2 0.2 NX 20480 -- 21.5 21.5 -- -- -- --Nycobase 8812 -- -- -- 20.0 -- -- --Nycobase 7300 -- -- -- -- 20.0 -- -- -- -- -- -- -- 20.0 -- -- -- -- -- -- -- 20.0 28

Evaluation in 4 stroke engine oil OIL 3, low SAPS 0W-30 - Physical properties Property Unit Base F2 F3 F4 F5 F6 F7 line Density 20°C kg/dm3 NB 8103 NB 8103 NB 8311 NX 20480 NB 8812 NB 7300 KV 100°C mm²/s KV 40°C mm²/s Instead of Instead of Instead of Instead of Instead of Instead of KV -25°C mm²/s Gr III Gr IV Gr III Gr IV Gr III Gr IV KV -30°C mm²/s VI 0.842 0.863 0.867 0.861 0.848 0.862 0.868 Pour Point -- °C 12.4 12.0 12.5 11.6 12.5 13.5 11.7Evaporation 6h30 % 200°C 68.5 63.3 68.2 61.5 69.6 76.3 62.1 mm 4 ball wear scar 4870 -- -- 3740 5070 5250 4490 10640 6900 10900 7300 11900 10570 8880 182 189 185 187 181 181 187 -45 -48 -48 -48 -45 -48 -42 11.0 9.2 8.6 8.7 9.8 8.2 10.5 0.42 -- -- 0.41 0.43 0.36 0.38 29

Conclusion Effects of • Evaporation decreaseintroduction • VI increase • Friction coefficient and wear decrease (when of esters suitably formulated) • Coking propensity decrease • Thermo-oxidation resistance increase • Biodiesel impact is mitigatedBenefits • Helps resolve the viscosity/evaporation issue • Helps resolve the viscosity/engine wear issue • Improves oil duration • Reduces coking • Offsets the negative impact of biodiesel dilution • Helps improve shear stability 30

ConclusionTHANK YOU ! 31


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook