Paper Code : 1001CT102116063 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) LEADER COURSE (SCORE-I) & ENTHUSIAST COURSE (SCORE-II) ANSWER KEY TEST DATE : 12-03-2017 Test Type : FULL SYLLABUS Test Pattern : JEE-Main Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Ans. 4 4 2 4 3 2 1 2 1 3 2 2 2 1 4 3 2 3 4 3 Que. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ans. 2 4 4 2 4 4 4 3 4 2 3 1 4 4 2 3 3 3 2 3 Que. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Ans. 2 1 2 1 4 4 2 1 1 2 4 3 4 4 4 3 4 4 3 3 Que. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Ans. 2 3 1 3 3 2 1 2 2 2 4 2 3 4 1 2 3 2 3 1 Que. 81 82 83 84 85 86 87 88 89 90 Ans. 3 3 1 2 1 3 4 2 3 1
Paper Code : 1001C T102116063 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) LEADER COURSE (SCORE-I) & ENTHUSIAST COURSE (SCORE-II) Test Type : FULL SYLLABUS Test Pattern : JEE-Main TEST DATE : 12 - 03 - 2017 SOLUTION 1. Ans. (4) P3 90°– Sol. F = F – mg =Vg – mg = r2hg – mg P1 P2 net b 2. Ans. (4) Sol. mT = constant 3. Ans. (2) Sol. Flux linked with both loops is same, so emf Intensity of light emitted from P induced is same for both loops. 3 4. Ans. (4) Conceptual I1 I0 cos2 5. Ans. (3) 2 Sol. Between 2 – 3sec both x and y position are not Intensity of light transmitted from last polaroid changing. P2 = I1cos2 (90° – ) 6. Ans. (2) Sol. Some of the characteristics of an optical fibre P= I0 cos2 sin2 2 2 are as follows (i) This works on the principle of total internal P = I0 (2 sin cos )2 reflection. 28 (ii) It consists of core made up of glass/silica/ P2 = I0 sin2 2 8 plastic with refractive index n , which is 1 8. Ans. (2) surrounded by a glass or plastic cladding Sol. For permanent magnet we prefer a material with refractive index n2 (n2 > n1). The refractive index of cladding can be either changing abruptly or gradually changing with high retentivity (so as to make a stronger (graded index fibre). magnet) and high coercivity (so that (iii) There is a very little transmission loss magnetization any not be wiped out easily). for through optical fibres. electromagnet we prefer high saturated (iv) There is no interference from stray electric magnetism low coercivity and least possible and magnetic field to the signals through area of hysteresis loop so that electromagnet optical fibres. develops high magnetization, is easily 7. Ans. (1) demagnetized and energy loss in a magnetization cycle is least. Therefore, P is Sol. Let initial intensity of light is I0. So intensity suitable for making permanent magnet and Q of light after transmission from first for making electromagnet. polaroid = I0 . 2 Corporate Office : CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 HS-1/7 +91-744-5156100 [email protected] www.allen.ac.in
Target : JEE (Main + Advanced) 2017/12-03-2017 9. Ans. (1) 15. Ans. (4) 10. Ans. (3) Sol. From Newton's law of cooling Sol. F = mg sin ms 1 2 1 2 0 mg tan t 2 mg dy mg 2x in the first case 50 40 50 40 0 dx 40 5 2 ms a= xm 2 ......(i) a = x in second case 45 41.5 45 41.5 2 5 2 0 1 ......(ii) = 2 11. Ans. (2) From (i) and (ii) Sol. For constant pressure process. 0 = 33.3ºC Work done (W) = nRT. 16. Ans. (3) Sol. Flux going in pyramid = Q 20 Which is divided equally among all 4 faces T 25 Flux through one face = Q nR 80 Now, for above process f = 6, 17. Ans. (2) So CP 1 f R 4R Sol. Behaviour of lens is opp. If outside medium is 2 denser than lens medium Heat absorbed = nC T 18. Ans. (3) P = n × 4R × 25 100 J Sol. A1 1N1 nR A2 2N2 12. Ans. (2) N0e 2 n2 n2 1 2 n2 2 2 Sol. At equilibrium dU 0 2 2 dr N0e 4 n2 1 2 12A 6B 4 2 r13 r7 0 19. Ans. (4) r 2A 1/ 6 Sol. La = Lb B mvar = 3mvbr 13. Ans. (2) va =3:1 vb R0 R0 20. Ans. (3) Sol. R0 R0 R0 R0= R/3 v(m/s) R0 R0 R0 R0 7R0 = Req 10 R0 3 Sol. R0 t(s) R0 1s t 2s 14. Ans. (1) 1 1 210 10t 135 Sol. h h 6.63 1034 mv 2Km 2 54 1.6 1019 9.11031 2 t = 12s (3) HS-2/7 1001CT102116063
21. Ans. (2) Leader Course (Score-I) & Enthusiast Course (Score-II)/12-03-2017 28. Ans. (3) Sol. Induced e.m.f. = Bv = 0.125 V Sol : geff = 5g current l = 10 e 10 0.125V R 2 P 5gR 0.5T 29. Ans. (4) Sol : Use concept of series combination. + 10V 0.25m 30. Ans. (2) – 0.5N 2 V Q Sol. vv Force Bl fb 4 4 x = 0.5 10 0.125V 0.25 0.5N(given) v 1 1 v x 2 4 4 = x x Solving V = 16 m/s. 22. Ans. (4) vx ( x << ) 42 L C Sol. 2 cos = v0 31. Ans. (3) v=? L v0 Sol. Metal hydrides are less dense than the parent 2 sin = v metal because the crystal lattice has expanded v = v0 tan through the inclusion of hydrogen. 23. Ans. (4) Sol. y A B B 32. Ans. (1) (4) 33. Ans. (4) 24. Ans. (2) 34. Ans. (4) Sol. 40 × 10–3 = mvp2 v = 50 × 10–3 × vp2 × 20 Sol. 2KMnO4 K2MnO4 MnO2 O2 4KMnO4 4KOH 4K2MnO4 O2 2H2O 4 = v 2 0.2 m/s = v = 20 cm/s 2MnO2 4KOH O2 2K2MnO4 2H2O 100 p p KMnO4 H2SO4 (con) K2SO4 Mn2O7 H2O 35. Ans. (2) 25. Ans. (4) Sol : Resistance in box is 30 26. Ans. (4) Sol. 1msd = 200 × 0.005 = 1mm 2r = 4 × 1 + 25 × 0.005 – 5 × 0.005 Sol. 6PCl5 P4O10 10POCl3 = 4.1 POCl3 3H2O 3HCl H3PO4 r = 2.05 mm 36. Ans. (3) (2) Sol. Due to synergic bonding between Pt and ethylene, C2H4 is distorted and bond angles 27. Ans. (4) change from free C2H4. C 60 103 103 37. Ans. (3) Sol. W J/s J/s cop 601.2 1.2 No of units consumed 103 4 30 Sol. (1). H PO one P–H bond. 1.2 33 = 100 units (2). H4P2O7 no P–H bond. 1000 (3). H P O two P–H bond. Cost of energy = (6) (100) = 600 Rs 42 5 (4) (4). HPO no P–H bond 42 6 1001CT102116063 HS-3/7
Target : JEE (Main + Advanced) 2017/12-03-2017 38. Ans. (3) 45. Ans. (4) Sol. K [Co(C O ) ] : diamagnetic, NO[PF ] : Sol. Gold number is minimum amount of protective 3 2 43 6 colloid when can protect 10 ml standard gold sol from coagulation when 1 ml of 10% NaCl NO [PF6] is added. dia dia [NMe4]O3 : NMe4 O3 , H[BF4] : 46. Ans. (4) dia Para 47. Ans. (2) H BF4 dia 0.0591 1 2 [Cu2 ] 39. Ans. (2) Sol. E= E0cell – log . cell 10 2 2– 48. Ans. (1) O HO O OH Sol. H solution < 0 ; Exothermic B Sol. 1 B 3 Temperature ; Solubility for X, O OH HO O 49. Ans. (1) 40. Ans. (3) Sol. U = 2RT Sol. Hydrated aluminium chloride is formed in (1) MPS M and (2) 41. Ans. (2) U = 3RT RMS M Sol. Rn1 = n12 = 1 n1 = 1,2, 3 etc. 8RT Rn2 n22 4 n2 24 6 Uav = M Among the first four orbits n and n can be 1 12 50. Ans. (2) 51. Ans. (4) and 2 or 2 and 4. Energy difference can be : E = 10.2 eV or E = 2.55 eV. Sol. H /Pd-BaSO reduced alkyne into alkene. 21 42 24 42. Ans. (1) 52. Ans. (3) Sol. K depends only on temperature and mode of Sol. Compound CH3 can not exhibit P CH3 representation so will change on changing pressure and PH2 > PN2 . geometrical isomerism. 43. Ans. (2) 53. Ans. (4) Sol : Suniverse : Ssystem + Ssurrounding Sol. Refer NCERT = 100 (0.4 – 0.3) + (75–80) 54. Ans. (4) = 5kJ/K Sol. Internal cannizzaro reaction then esterification 44. Ans. (1) 55. Ans. (4) Sol : 2C6H5COOH (C6H5COOH)2 O Sol. Product is CH3 – C – CH3 t =0 1 0 Degree of unsaturation = 1. t 1–x x/2 i = 1 – x + x/2 It can undergo aldol condensation. i Tf 0.504 56. Ans. (3) kbm 57. Ans. (4) 1– x 0.504 Sol. More is the stability, lesser will be heat of 2 hydrogenation. x = 0.992 HS-4/7 1001CT102116063
Leader Course (Score-I) & Enthusiast Course (Score-II)/12-03-2017 58. Ans. (4) 66. Ans. (2) Sol : Refer NCERT Ellipse and circle touches each other at (2,0) 59. Ans. (3) Length of common chord = 0 Sol : Refer NCERT 67. Ans. (1) 60. Ans. (3) , are roots of x2 + x + = 0 is 61. Ans. (2) + = – ...(1) 1 icos 1 i cos 1 2i cos and = ...(2) 1 2i cos 1 2i cos 1 2i cos from (1) & (2) = 1, = –2 1 2 cos2 3i cos Now ||y + 2| – 1| < 1 = 1 4cos2 –1 < |y + 2| – 1 < 1 0 < |y + 2| < 2 3cos –2 < y + 2 < 2 and X –2 is a real number only if 1 4cos2 = 0 i.e. if cos = 0 y (–4, 0) – {–2} 68. Ans. (2) i.e. if = (2n + 1)/2, n I 1 1 1 A (r 1) D a b c So (b) is correct alternative. A (p 1) D , A (q 1) D , 62. Ans. (3) 1 1 (p q) D or p–q= ba and so on ab abD 1 1 2 2 m Pi .x i 1 c b ˆi a c ˆj b a kˆ u bcD caD abD 2 m 2 1 4 Pi xi 3 6 1 Consider c b ac ba = 0 u.v abcD abcD abcD 63. Ans. (1) 69. Ans. (2) 6! Let the equation of plane be 3!3! 26 1 20 a(x + 1) + b(y – 3) + c(z + 2) = 0 63 –3a + 2b + c = 0 plane passes through (0, 7, –7) 64. Ans. (3) a + 4b – 5c = 0 1 cos 3 a = b = c 2 4 plane is x + y + z = 0 log perpendicular line on which image lie is E = 1 x1 y2 z1 41cos 4 111 foot of perpendicular lies on plane 1 1 2 1 2 2 2 ( + 1) + ( + 2) + ( – 1) = 0 = log 1 = log 2 2 2 4 3 41 1 2 1 2 1 4 5 2 1 foot of perpendicular is 3 , 3 , 3 21 2 2 = log =1 22 & image point is 1 , 2 , 7 . 3 3 3 65. Ans. (3) 70. Ans. (2) 4sin 9sin 21sin 39sin 51sin 69sin 81 DAB ADC 180º sin 54 ADP DAP 90º (because DQ and AS = 4 sin9 cos9 . sin39 cos 39 sin 21 cos 21 are angle bisectors of angle A&D) sin 54 = sin18 . sin78 sin 42 DPA 90º SPQ 90º . Similiarly, 2 sin54 PSR 90º , SRQ 90º , PQR 90º .So = sin18 (cos36 cos 60) 1 PQRS is a rectangle. =8 4 sin 54 1001CT102116063 HS-5/7
Target : JEE (Main + Advanced) 2017/12-03-2017 71. Ans. (4) 77. Ans. (3) a Since 32 – < 100 < 32 b [ b c a]b [b c a]c 2 = a.b | |2 a.c b.c a sin–1 (sin 100) = 100 – 32 [b c a] b b a b tan–1 (tan 100) = 100 – 32 = [a b c][(a c b a)b (| b |2 b c)a] cos–1 (cos 100) = 32 – 100 72. Ans. (2) cot–1 (cot 100) = 100 – 31 3 3 78. Ans. (2) sin2 sin2 2d 2 sin2 sin2 2d The given differential equation can be written 3 0 as y5 xdx + ydx – xdy = 0 . Multiplying by 3 x3/y5 , we have 8 sin4 cos2 d 24 sin4 cos2 d x4 dx x3 ydx xdy 0 00 y3 y2 /2 Integrating, we get x5/5 + (1/4) (x/y)4 = C 48 sin4 cos2 d 0 48.3.1.1 . 3 79. Ans. (3) 6.4.2 2 2 12 73. Ans. (3) Area = ex (1 x) dx + ex (x 1) dx 01 Let side of square and cube = x A x2 dA 2x dx dx 1 dt dt dt 2 Now V x3 dv 3x2 dx dv 6 dt dt dt x2 74. Ans. (4) ƒ(x + 2y) = 2yƒ(x) + xƒ(y) – 3xy + 1 x2 1 x2 2 ƒ(0) = 1 2 0 2 let y = 0, then ƒ(x) = x + 1 = e x x + e x x 1 = e1 1 e1 1 1 75. Ans. (1) 1 2 – 1+ e2 2 2 – 2 Minimum distance will be along the common = e2 – 2 normal of parabola y2 = 8x is y = mx – 4m – 2m3 80. Ans. (1) should passes through centre of circle x2 – 2p x + p 4 = 0 i.e. (–2,–8) p5 p5 m=1 foot of normal is (am2, – 2am) = (2, –4) Minimum distance between curves 4 2 2 3 2 76. Ans. (2) f(0) > 0, f(2) < 0, f(3) > 0 Range : , //////////////////////////2///////////// p4 4 1/2 f(0) > 0 p 5 > 0...... (1) Non derivable at x 1 p 24 f(2) < 0 p 5 < 0..........(2) 2 4p 49 f(3) > 0 p 5 > 0..........(3) I and II are wrong 49 , 24 4 Intersection of (1) (2) & (3) gives HS-6/7 1001CT102116063
Leader Course (Score-I) & Enthusiast Course (Score-II)/12-03-2017 81. Ans. (3) 87. Ans. (4) Sum of roots = sum of diagonal elements f(1–) f(1) and f(1+) f(1) 2 = 1 + 2 + k k = –1 and product of roots = value of the determinant. – 2 + log (b2 – 2) 5 2 12 3 0 < b2 – 2 128 2 < b2 130 = 2 2 1 2k 24 88. Ans. (2) 30 k f(x) = 2 has 3 solutions x = –3, 1/2, where (2 < <3). 82. Ans. (3) Now f(x) = –3 has no solution nC1.21 + nC2.22 + nC323 + .... + nCn2n f(x) = 1/2 has 2 solutions (1 + 2)n = nC0 + nC121 + nC2.22 + .... + nCn2n f(x) = has 2 solutions (3n – 1) = nC1.21 + nC2.22 + ....... + nCn.2n So, f(f(x)) = 2 has 4 solutions 83. Ans. (1) 89. Ans. (3) Let d1 & d2 are the distance of point (1, 2) from f(x) is symmetrical about the line x = 7. the bisector B & B . Let x1, x2, x3, x4 and x5 are the real and distinct 12 387 4 x1 x5 7 , d= =5 roots of f(x) = 0. Then x3 = 7, 2 15 4 6 14 16 x2 x4 7 . d2 = 5 =5 2 d1 < d2 S = x1 + x2 + x3 + x4 + x5 = 35 B1 is an acute angle bisector S/7 = 5 84. Ans. (2) 90. Ans. (1) As altitude from A is fixed and orthocentre lies Replacing even numbers by zero and odd on altitude hence x + y = 3 is required locus. numbers by one, we have 85. Ans. (1) Curve represent a triangle formed by x = 0, 100 y = 0, x + y = . |A| = 0 1 0 = 1 86. Ans. (3) 001 f(a2) – 3f(a) = 0 (a4 + a2 + 1) –3(a2 + a + 1) = 0 which is an odd number and hence |A| can not (a2 + a + 1) (a2– a + 1) –3(a2 + a + 1) = 0 be zero. Hence A is invertible for all n N. (a2 + a + 1) (a2 – a – 2) = 0 1001CT102116063 HS-7/7
Search
Read the Text Version
- 1 - 8
Pages: