Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore P1-Allens Made Physics Theory {PART-2}

P1-Allens Made Physics Theory {PART-2}

Published by Willington Island, 2021-07-02 01:25:09

Description: P1-Allens Made Physics Theory {PART-2}

Search

Read the Text Version

JEE-Physics Ans.  (A,B,C,D) Solution P  In this situation  T1  T2  a a  m1  m2 g               T2 T1 r I a m2 m1 a m1  m2  r2 Example#19 A uniform rod AB of length  is free to rotate about a horizontal axis passing through A. The rod is released from rest from horizontal position. If the rod gets broken at midpoint C when it becomes vertical, then just after breaking of the rod : A C B (A)  Angular  velocity  of  upper  part  starts  to  decrease  while  that  of  lower  part  remains  constant. (B)  Angular  velocity  of  upper  part  starts  to  decrease  while  that  of  lower  part  starts  to  increase (C)  Angular  velocity  of  both  the  parts  is  identical (D)  Angular  velocity  of  lower  part  becomes  equal  to  zero Solution . Ans.  (A,C) v/2 On upper part torque of mg about A will decrease the angular velocity.   v/2 Lower part of rod will not experience any couple hence its angular velocity can't change. v Initially both parts are having same angular velocities. Example#  20  to  22 A  uniform  hollow  sphere  is  released  from  the  top  of  a  fixed  inclined  plane  of  inclination  37°  and  height  3m.  It rolls  without  sliding. 37° fixed 2 0 . The  acceleration  of  the  centre  of  mass  of  the  hollow  sphere  is NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Rotation\\Eng\\Theory.p65 30 18 9 15 (A)  7 m/s2 (B)  m/s2 (C)  m/s2 (D)  7 m/s2 5 5 2 1 . The  speed  of  the  point  of  contact  of  the  sphere  with  the  inclined  plane  when  the  sphere  reaches  half–way  of  the incline  is (A)  42   m/s (B)  21 m/s (C)  84 m/s (D)  zero 2 2 . The  time  taken  by  the  sphere  to  reach  the  bottom  is 3 5 5 (D)  None  of  these (A)  5 s (B)  3 s (C)  4 s 60 E

JEE-Physics Solution 20. Ans.  (B) a g sin   103 / 5  18 m s2  K2 5 12 1  R2 3 21. Ans.  (D) Speed  of  point  of  contact  in  pure  rolling  is  always  zero 22. Ans.  (B) s  ut  1 at2  3  1  18   t 2   t  5 s 2 sin 37 2  5  3 Example#23  to  25 A  mouse,  searching  for  food,  jumped  onto  the  rim  of  a  stationary  circular  disk  mounted  on  a  vertical  axle. The  disk  is  free  to  rotate  without  friction.  The  velocity  of  the  mouse  was  tangent  to  the  edge  of  the  disk  before it  landed.  When  the  mouse  landed,  it  gripped  the  surface,  remained  fixed  on  the  outer  edge  of  the  disk  at a  distance  R  from  the  center,  and  set  it  into  rotation.  The  sketch  indicates  the  situation. v0 R 1 Before After The  mass  of  the  mouse  is  m  =  0.10  kg,  the  radius  of  the  disk  is  R  =  0.20  m,  and  the  rotational  inertia of  the  disk  is  I  =  0.0080  kg·m².  The  speed  of  the  mouse,  just  before  it  landed  on  the  disk  is  v   =  1.5 o m/s. 2 3 . Magnitude  of  the  angular  velocity  of  the  disk  plus  mouse,  after  it  landed  becomes (A)  0.25 rad/s (B)  2.5 rad/s (C)  0.375  rad/s (D)  3.75  rad/s 2 4 . Find  the  magnitude  of  the  impulse  received  by  the  mouse  as  it  landed  on  the  disk. (A)  0.01  kg.m/s  opposite  to  direction  of  motion (B)  0.01  kg.m/s  in  the  direction  of  motion (C)  0.10  kg.m/s  opposite  to  direction  of  motion (D)  0.10  kg.m/s  in  the  direction  of  motion 2 5 . The  mouse,  still  searching  for  food,  crept  to  the  center  of  the  disk  (where  r  =  0).  Find  angular  velocity  of  the disk  plus  mouse,  when  the  mouse  was  at  the  center  of  the  disk. (A) 0.25  rad/s (B)  2.5 rad/s (C)  0.375  rad/s (D)  3.75  rad/s NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Rotation\\Eng\\Theory.p65 Solution 23. Ans.  (B) By  conservation  of  angular  momentum  mv0R  =  (I  +  mR2)    mv0R  0.1 1.5 0.2  2.5   rad/s I  mR2 0.008  0.004 24. Ans.  (C) Impulse  received  by  mouse  =  change  in  momentum  =  0.1  (2.5  ×  0.2  –  1.5)  =  –  0.1  kg  m/s 25. Ans.  (D) By  conservation  of  angular  momentum  :  mv R  =  I    =  0.1 1.5  0.2   =  3.75  rad/s 0 0.008 E 61

JEE-Physics Example#26  to  27 A  hollow  sphere  is  released  from  the  top  of  a  wedge,  friction  is  sufficient  for  pure  rolling  of  sphere  on  the wedge.  There  is  no  friction  between  the  wedge  and  the  ground.  Radius  of  sphere  is  R.  At  the  instant  it  leaves  the wedge  horizontally. m m 2 6 . Velocity  of  centre  of  mass  of  sphere  w.r.t.  ground  is- (A)  5 (B)  2gh (C)  3 (D)  11 gh gh gh 7 7 7 2 7 . Angular  velocity  of  sphere      is- 12gh 27 gh 20gh 44gh (A)  7R 2 (B)  7 R 2 (C)  7R 2 (D)  7R 2 Solution 26. Ans.  (C) m  2v v R  v  v    m v R 27. Ans.  (A) Enegy  conservation mgh  =  1 mv2  1 mv2  1 2 m R 2   4v2   v  3 gh 2 2 2  3   R2  7 2v 4 3 12gh   R2  7 gh  R 7R 2 Example#28  to  30 A  disc  of  mass  2  M  and  radius  R  is  placed  on  a  fixed  plank  (rough)  of  length  L.  The  coefficient  of  friction between  the  plank  and  disc  is    =  0.5.  String  (light)  is  connected  to  centre  of  disc  and  passing  over  a  smooth light  pulley  and  connected  to  a  block  of  mass  M  as  shown  in  the  figure.  Now  the  disc  is  given  an  angular velocity  0  in  clockwise  direction  and  is  gently  placed  on  the  plank.  Consider  this  instant  as  t=0.  Based  on above  information,  answer  the  following  questions  : 2M  Fixed plank M NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Rotation\\Eng\\Theory.p65 2 8 . Mark  the  correct  statement  w.r.t.  motion  of  block  and  disc. (A)  The  block  remains  at  rest  for  some  time,  t  >  0. (B)  The  block  starts  accelerating  just  after  placing  of  disc  on  plank. (C)  The  disc  is  performing  pure  rotational  motion  for  some  time  t  >  0 (D)  Both  (A)  and  (C)  are  correct. 2 9 . Time t  upto which the block remains stationary is 0 (A)  0R (B)  40R (C)  Zero (D)  Question  is  irrelevant g g E 62

JEE-Physics 3 0 . Time  time  t   at  which  the  disc  will  cross  the  other  end  of  the  plank  is- 01 8L (B)  0R  8L (C)  8L  40R (D)  0R  4L (A)  g g g gg g g Solution 2M 28. Ans.(D) fr 29. Ans.  (A) M Frictional  force  =  Mg Friction  will  act  up  to  the  instant  when  the  velocity  of  contact  point  becomes  zero f  =  i  +  t    t  =  i ....(i)             fr R   ....(ii)      By  solving  (i)  and  (ii)    time   0R  I g 30. Ans.  (B) T  –  f   =  2Ma  ...(ii) Mg  –  T  =  Ma  ...(i) r By  adding  (i)  and  (ii) Mg  –  f   =  3  Ma  ...(iii) f R  =  I =  2MR2 a   f   =  Ma  ...(iv) r r 2R r From  equation  (iii)  and  (iv)  a  =  g/4   L  1 at2  t  8L 2 g Total  time  =  0R  8L g g Example#31 3 1 . Four  different  situations  of  a  moving  disc  are  shown  in  column  I  and  predictions  about  its  final  motion  and  forces acting  on  it  are  given  in  column  -  II. Column  I Column  II v v (P)    finally  disc  will  roll  along  the  initial  direction  of  velocity  (v) 2R (A) 2v R (B) v (Q)  finally, disc will roll in direction opposite to the initial direction of velocity (v) NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Rotation\\Eng\\Theory.p65 2v v (R)    finally,  disc  stops R (C) 4v v (S)    Initially  friction  force  acts  in  the  direction  opposite  to  that  of  initial    velocity R (T)  None  of  these (D) 63 E

JEE-Physics Solution Ans.  (A)(S,P);(B)(P);(C)(S,R);(D)(S,Q) Final direction of pure rolling will be in direction of initial angular momentum about point of contact L = mv r + I cm cm  For  (A)  :  m vr  MR2  v  3 m vR   :  hence  in  clockwise  direction. 2  2R  4 For  (B)  :  m vR  mR2  2v   2mvR   :  hence  in  clockwise  direction. 2  R  For  (C)  :  mvR  mR2  2v   0 2  R  mR2  4v For  (D)  :  mvR  – 2  R    =  –mRv  :  hence  in  anticlockwise  direction. Direction  of  friction  force  : For  (A)  :  Velocity of point of contact v/2 v Friction will be opposite to velocity For  (B)  :  Velocity of point of contact 2v v Friction will be in the direction of velocity For  (C)  :  Velocity of point of contact v 2v Friction will be opposite to the velocity For  (D)  :  Velocity of point of contact v 4v Friction will be opposite to the velocity Example#32 Co l u m1n   II (P) 3 mv Column  I 2 0 (A) A  ring  of  mass  m  is  projected  on  rough  horizontal  plane  with  velocity  v  . 0 The  magnitude  of  work  done  by  frictional  force  to  start  rolling 0                 (B) Kinetic  energy  of  pivoted  rod  of  mass  m,  velocity  of  centre  of  mass  is  v . (Q) 1 m v 2 0 8 0                                  0 (C) Kinetic  energy  of  translation  of  a  smooth  rod  of  mass  m, (R) 1 m v 2 where  velocity  of  one  end  is  v . 4 0 0 (S) 2 m v 2 NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Rotation\\Eng\\Theory.p65 3 0 v0 m                                         v=0  (D) Kinetic  energy  of  a  rod  of  mass  m,  as  shown  in  figure.                              (T) 1 m v 2 9 0 45° v0 64 E

JEE-Physics Solution                                                        Ans.  (A)(R),  (B)(S),  (C)(Q),  (D)(P)  For  (A)  :    Final  velocity  v0  v  v  2    m v 0 R  mR2 R  m vR                    So  work  done  by  friction  =  1 m v 2  1 m  v0 2  1 m  v0 2   1 m v 2 2 0   2 2  2  4 0 2      v0 2v0 1  m 2   2v  2 2   2  3     3 For  (B)  :         so  KE  =  0  m v 2  = 2v0 2 0  v0 /2 v0 1 1 / 2 2 2 8 For (C) :  vcm   so KE =  m v 2  m v 2                                           cm 0 v0 For  (D)  :  KE  of  rod  =  1 IC2  1  m2  m2   2v0   1 m v 2 2 2  12 4     3 0 Example#33 A  disc  of  radius  R  is  rolling  without  slipping  with  an  angular  acceleration   ,    on  a  horizontal  plane.  Four  points are  marked  at  the  end  of  horizontal  and  vertical  diameter  of  a  circle  of  radius  r  (<R)  on  the  disc.  If  horizontal and  vertical  direction  are  chosen  as  x  and  y  axis  as  shown  in  the  figure,  then  acceleration  of  points  1,  2,  3  and   4  are    a1, a2 , a3   and  a4   respectively,  at  the  moment  when  angular  velocity  of  the  disc  is   .  Match  the  following R1   y 4 r2 x3 Column-I Column-II  (A) a1  (P) R  rˆi  r2 ˆj   (Q) R  rˆi  r2 ˆj (B) a2   (R) R  r2 ˆi  rˆj (C) a3   (S) R  r2 ˆi  rˆj (D) a4 NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Rotation\\Eng\\Theory.p65 (T) None  of  these Solution Ans.  (A)  Q;  (B)  R;  (C)  P;  (D)  S For (A): Acceleration of 1 w.r.t. centre of mass =  rˆi  2rˆj    rˆi  2rˆj  Rˆi  R  r  ˆi  2rˆj a1   ˆi  rˆj For (B) :  a2  rˆj  2rˆi  Rˆi  R  2r   rˆi  2rˆj  Rˆi  R  rˆi  2rˆj For (C) :  a3   ˆi  rˆj For (D) :  a 4  rˆj  2rˆi  Rˆi  R  2r E 65

JEE-Physics Example#34 A  solid  uniform  cylinder  of  mass  m  =  6 kg  and  radius  r  =  0.1 m  is  kept  in  balance  on  a  slope  of  inclination    = 37°  with  the  help  of  a  thread  fastened  to  its  jacket.  The  cylinder  does  not  slip  on  the  slope.  The  minimum required  coefficient  of  friction  to  keep  the  cylinder  in  balance  when  the  thread  is  held  vertically  is  given  as  . Find  the  value  of  4. F m r  Solution Ans.  3 Fr  –  fr  =  0  and  mg  sin  –  F  sin  –  f  =  0 F mg sin  f F  =  f  =   mg 1  sin  F  cos  +  N  –  mg  cos  =  0 N  =   mg  mg sin   cos  =  mg cos  ;  f  =  N;  mg sin    =  mg cos       =  tan  =  0.75  1 sin   1  sin  1  sin  1  sin  max Example#35 A  uniform  rod  ABC  of  mass  M  and  length    is  placed  vertically  on  a  rough  horizontal  surface.  The  coefficient  of friction  between  the  rod  and  surface  is  .A  force  F  =  1.2  mg  is  applied  on  the  rod  at  point  B  at  a  distance  / 3  below  centre  of  rod  horizontally  as  shown  in  figure.  If  the  initially  acceleration  of  point  A  is  k  then  find  value of  k.  (Friction  is  sufficient  to  prevent  slipping) A BF C Solution Ans.  6 Taking  torque  about  C  F    m2   3 g So,  a   =    3 g  6 6  3       5  A 5 NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Rotation\\Eng\\Theory.p65 66 E

JEE-Physics SEMI CONDUCTOR - ELECTRONICS ENERGY  BANDS  IN  SOLIDS Based  on  Pauli's  exclusion  principle In  an  isolated  atom  electrons  present  in  energy  level  but  in  solid,  atoms  are  not  isolated,  there  is  interaction among  each  other,  due  to  this  energy  level  splitted  into  different  energy  levels.  Quantity  of  these  different energy  levels  depends  on  the  quantity  of  interacting  atoms.  Splitting  of  sharp  and  closely  compact  energy  levels result  into  energy  bands.  They  are  discrete  in  nature.  Order  of  energy  levels  in  a  band  is  1023  and  their  energy difference  =  10–23  eV. Energy  Band Range  of  energy  possessed  by  an  electron  in  a  solid  is  known  as  energy  band. Valence  Band  (VB) Range  of  energies  possessed  by  valence  electron  is  known  as  valence  band. (a)  Have  bonded  electrons. (b)  No  flow  of  current  due  to  such  electrons. (c)  Always  fulfill  by  electrons. Conduction  Band    (CB) Range  of  energies  possessed  by  free  electron  is  known  as  conduction  band. (a)  It  has  conducting  electrons. (b)  Current  flows  due  to  such  electrons. (c)  If  conduction  band  is  fully  empty  then  current  conduction  is  not  possible. (d)  Electrons  may  exist  or  not  in  it. Forbidden  Energy  gap  (FEG) (Eg)   E  =  (C  B)   –  (V  B) g min max Energy  gap  between  conduction  band  and  valence  band,  where  no  free  electron  can  exist. E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 band energy (eV)  Width  of  forbidden  energy  gap  depends  upon  the  nature  of  substance.            conduction band  Width  is  more,  then  valence  electrons  are  strongly  attached  with  nucleus forbidden energy gap  Width  of  forbidden  energy  gap  is  represented  in  eV. valence band  As  temperature  increases  forbidden  energy  gap  decreases  (very  slightly). CLASSIFICATION  OF  CONDUCTORS,  INSULATORS  AND  SEMICONDUCTOR  :  - On  the  basis  of  the  relative  values  of  electrical  conductivity  and  energy  bands  the  solids  are  broadly  classified into  three  categories (i)  Conductors (ii)  Semiconductors (iii)  Insulator 1 E

JEE-Physics Comparison  between  conductor,  semiconductor  and  insulator  : Properties Conductor Semiconductor Insulator Resistivity 10–2  –  10–8  m 10–5  –  106  m 1011  –  1019  m Conductivity 102  –  108  mho/m 105  –  10–6  mho/m 10–11  –  10–19  mho/m Negative  (Very  slightly) Temp.  Coefficient Positive Negative No  current of  resistance  () Current Due  to  free Due  to  electrons electrons and  holes Conduction Band Conduction Band Conduction Band Electron Energy Electron Energy ForbiddeEng  3eV Electron Energy No gap Overlapping Forbidden Eg  1ev Gap Valence Band region Gap    Energy  band  diagram    Valence Band Valence Band Insulator Conductor Semi conductor Forbidden  energy  gap   0eV   1eV   3eV Ge,  Si,  GaAs, Wood,  plastic, Example  : Pt,  Al,  Cu,  Ag GaF2 Diamond,  Mica CONCEPT  OF  \"HOLES\"  IN  SEMICONDUCTORS Due  to  external  energy  (temp.  or  radiation)  when  electron  goes  from  valence  band  to  conduction  band  (i.e. bonded  electrons  becomes  free)  a  vacancy  of  free  e–  creats  in  valence  band, hole free e– which  has  same  charge  as  electron  but  positive.  This  positively   Si Si charged  vacancy  is  termed  as  hole  and  shown  in  figure. Si Si Si Si • It  is  deficiency  of  electron  in  VB. Si Si Si • It's  acts  as  positive  charge  carrier. • It's  effective  mass  is  more  than  electron. Si Si Si • It's  mobility  is  less  than  electron. Note  :  Hole  acts  as  virtual  charge  carrier,  although  it  has  no  physical  significance. GOLDEN  KEY  POINTS E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 • Number  of  electrons  reaching  from  VB  to  CB  at  temperature  T  kelvin n  =  A  T 3 /2  e –  E  g  AT 3 / 2 exp  Eg  2kT – 2kT    where T  =  absolute  temperature k    =  Boltzmann  constant  =  1.38    10-23  J/K A  =  constant E   =  energy  gap  between  CB  and  VB g • In  silicon  at  room  temperature  out  of  1012  Si  atoms  only  one  electron  goes  from  VB  to  CB. • In  germanium  at  room  temperature  out  of  109  Ge  atoms  only  one  electron  goes  from  VB  to  CB. 2E

JEE-Physics EFFECT  OF  TEMPER ATURE  ON  SEMICONDUCTOR At  absolute  zero  kelvin  temperature Above  absolute  temperature At  this  temperautre  covalent  bonds  are  very With    increase  in  temperature  few  valence strong  and  there  are  no  free  electrons  and semiconductor  behaves  as  perfect  insulator. electrons  jump  into  conduction  band  and  hence   it  behaves  as  poor  conductor. hole free e– Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si at 0 K at high temperature Valence band fully filled Valence band partially empty Conduction band fully empty Conduction band partially filled EFFECT    OF  IMPURITY  IN  SEMICONDUCTOR Doping  is  a  method  of  addition  of  \"desirable\"  impurity  atoms  to  pure  semiconductor  to  increase  conductivity  of semiconductor. or Doping  is  a  process  of  deliberate  addition  of  a  desirable  impurity  atoms  to  a  pure  semiconductor  to  modify  its properties  in  controlled  manner. Added  impurity  atoms  are  called  dopants. The  impurity  added  may  be    1  part  per  million  (ppm).  The  dopant  atom  should  take  the  position  of  semiconductor  atom  in  the  lattice.  The  presence  of  the  dopant  atom  should  not  distort  the  crystal  lattice.  The  size  of  the  dopant  atom  should  be  almost  the  same  as  that  of  the  crystal  atom.  The  concentration  of  dopant  atoms  should  not  be  large  (not  more  than  1%  of  the  crystal  atom). It is to be noted that the doping of a semiconductor increases its electrical conductivity to a great extent. GOLDEN  KEY  POINTS • The  concentration  of  dopant  atoms  be  very  low,  doping  ratio  is  vary  from impure  :  pure  ::  1  :  106 to 1  :  1010 In  general  it  is  1  :  108 • There  are  two  main  method  of  doping. (i)  Alloy  method (ii)  Diffusion  method  (The  best) • The  size  of  dopant  atom  (impurity)  should  be  almost  the  same  as  that  of  crystal  atom.  So  that  crystalline E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 structure  of  solid  remain  unchanged. CLASSIFICATION OF SEMICONDUCTOR SEMICONDUCTOR Intrinsic semiconductor Extrinsic semiconductor (doped semicondutor) (pure form of Ge, Si) N-type  P-type ne = nh = ni trivalent impurity  pentavalent impurity  E (P, As, Sb etc.) (Ga, B, In, Al) acceptor impurity (NA) donar impurity (ND) ne >> nh nh >> ne 3

JEE-Physics N  type  semiconductor When  a  pure  semiconductor  (Si  or  Ge)  is  doped  by  pentavalent  impurity  (P,  As,  Sb,  Bi)  then  four  electrons  out of  the  five  valence  electrons  of  impurity  take  part,  in  covalent  bonding,  with  four  silicon  atoms  surrounding  it  and the  fifth  electron  is  set  free.  These  impurity  atoms  which  donate  free  e–  for  conduction  are  called  as  Donar impurity  (N ).  Due  to  donar  impurity    free  e–  increases  very  much  so  it  is  called  as  \"N\"  type  semiconductor.  By D donating  e–    impurity  atoms  get  positive  charge  and  hence  known  as  \"Immobile  Donar  positive  Ion\".  In  N-type semiconductor  free  e– are  called  as  \"majority\"  charge  carriers  and  \"holes\"  are  called  as  \"minority\"  charge  carriers. thermally  generated e– Si As Si Si thermally  free electrons generated hole minority  Si Si Si Si donar e– positive  hole As Si Si As      donar ions N-type semiconductor N-type semiconducting crystal P  type  semiconductor When  a  pure  semiconductor  (Si  or  Ge)  is  doped  by  trivalent  impurity  (B,  Al,  In,  Ga)  then  outer  most  three electrons  of  the  valence  band  of  impurity  take  part,  in  covalent  bonding  with  four  silicon  atoms  surrounding  it and  except  one  electron  from  semiconductor  and  make  hole  in  semiconductor.  These  impurity  atoms  which accept  bonded  e–  from  valance  band  are  called  as  Acceptor  impurity  (N ).  Here  holes  increases  very  much  so  it A is  called  as  \"P\"  type  semiconductor  and  impurity  ions  known  as  \"Immobile  Acceptor    negative  Ion\".  In  P-type semiconductor  free  e–  are  called  as  minority  charge  carries  and  holes  are  called  as  majority  charge  carriers. Extra hole created by thermally  holes E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 acceptor impurity atom generated e– minority e Si Al– Si Si thermally  generated hole Si Si Si Si Al– Si Si Al– negative acceptor       ions P-type semiconductor P-type semiconducting crystal 4E

  Intrinsic  Semiconductor N-type  (Pentavalent  impurity) JEE-Physics P-type(Trivalent  impurity) CB CB CB   1. donor  acceptor impurity  impurity  VB level VB level VB   2. free  hole electron negative positive  acceptor  donar ion ion   3. Current  due  to Mainly  due  to  electrons Mainly  due  to  holes electron  and  hole n   <<  n   (N     ~  n ) n   >>  n   (N     ~  n )   4. n   =  n   =  n h eD e h eA h ehi I ~ I I ~  I   5. I  =  I   +  I e h eh Entirely  neutral Entirely  neutral   6. Entirely  neutral Majority  -  Electrons Majority  -  Holes   7. Quantity  of  electrons Minority  -  Holes Minority  -  Electrons and  holes  are  equal Mass  action  Law In  semiconductors  due  to  thermal  effect,  generation  of  free  e–  and  hole  takes  place. Apart  from  the  process  of  generation,  recombination  also  occurs  simultaneously,  in  which  free  e–  further  recombine with  hole. At  equilibrium  rate  of  generation  of  charge  carries  is  equal  to  rate  of  recombination  of  charge  carrier. The  recombination  occurs  due  to  e–  colliding  with  a  hole,  larger  value  of  n  or  n , higher  is  the  probability  of  their e h  recombination. Hence for a given semiconductor rate of recombination   n   ×    n eh so rate  of  recombination  =  R  n   ×    n R  =  recombination  coefficient, eh The  value  of  R  remains  constant  for  a  solid,  according  to  the  law  of  thermodynamics  until  crystalline  lattice structure  remains  same. E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 For  intrinsic  semiconductor  n   =  n   =  n ehi so rate  of  recombination  =  R  n 2 i R  ne  ×  nh  =  R  ni2  ni2  =  ne  ×    nh Under  thermal  equilibrium,  the  product  of  the  concentration  'n '  of  free  electrons  and  the  concentration  n   of eh holes  is  a  constant  and  it  is  independent  of  the  amount  of  doping  by  acceptor  and  donor  impurities. Thus  from  mass  action  law  n e  n h  n12 E5

JEE-Physics Electron-hole  Recombination  : It  is  necessarly  to  complete  a  bond  that  electron  is  shared  from  neighbouring  atoms  or  it  may  also  be  received from  conduction  bond.  In  the  second  case  electron  recombines  with  the  hole  of  valnce  bond.  This  process is  known  as  electron-hole  recombination. The  breaking  of  bonds  or  generation  of  electron-hole  pairs,  and  completion  of  bonds  due  to  recombination is  taking  place  continuously. At  equilibrium,  the  rate  of  generation  becomes  equal  to  the  rate  of  recombination,  giving  a  fixed  number of  free  electrons  and  holes. E x . 1 The  energy  of  a  photon  of  sodium  light  (   =  589  nm)  equals  the  band  gap  of  a  semiconducting  material.    Find  : (a) the  minimum  energy  E  required  to  create  a  hole-electron  pair. E (b) the  value  of    at  a  temperature  of  300  K. kT Sol. (a) E   hc   (in  eV) so  E  12400 (E is in eV and  is in Å)   =  5890  Å e  so E  12400  2.1eV (b) E  2.1 1.6 1019 J  81 5890 kT 1.38 1023  300 E x . 2 A  P  type  semiconductor  has  acceptor  level  57  meV  above  the  valence  band.  What  is  maximum  wavelength  of light  required  to  create  a  hole  ? Sol. E  hc hc 6.62 1034  3 108     E =  57  103 1.6  1019 =    217100  Å Ex .3 A  silicon  specimen  is  made  into  a  p-type  semiconductor  by  doping  on  an  average  one  indium  atom  per 5  ×  107silicon  atoms.  If  the  number  density  of  atoms  in  the  silicon  specimen  is  5  ×  1028   atoms/m3;  find  the number  of  acceptor  atoms  in  silicon  per  cubic  centimeter. S o l . The  doping  of  one  indium  atom  in  silicon  semiconductor  will  produce  one  acceptor  atom  in  p-type  semiconductor. Since  one  indium  atom  has  been  dopped  per  5  ×  107  silicon  atoms,  so  number  density  of  acceptor  atoms  in 5 1028  1021   atom/m3  =  =  1015  atoms/cm3 silicon     5 107 E x . 4 A  pure  Ge  specimen  is  doped  with  A.  The  number  density  of  acceptor  atoms  is  approximately  1021  m–3.  If E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 density  of  electron  holes  pair  in  an  intrinsuc  semiconductor  is  approximately  1019m–3,  the  number  density  of electrons  in  the  specimen  is  : S o l . In  pure  semiconductor  electron-hole  pair  n   =  1019 m–3 i  acceptor  impurity  N   =  1021 m–3 A Holes  concentration  nh  =  1021 m–3 electrons  concentration  =  n   =  n 2 1019 2   =  1017  m–3 e i  1021 nh 6 E

JEE-Physics E x . 5 Pure  Si  at  300  K  has  equal  electron  (n )  and  hole  (n )  concentrations  of  1.5  ×    1016  m–3.  Dopping  by  indium eh increases  n   to  3  ×  1022  m–3.  Calculate  n   in  the  doped  Si. he Sol. For  a  doped  semi-conductor  in  thermal  equilebrium  n n   =  n 2   (Law  of  mass  action) eh i ne  n 2  (1.5  1016 )2   =  7.5  ×    109  m–3 i 3 1022 hh A  RESISTIVITY  AND  CONDUCTIVITY  OF  SEMICONDUCTOR Conduction  in  conductor Relation  between  current  (I)  and  drift  velocity  (v ) V d     I  =  ne    A    v n  =  number  of  electron  in  unit  volume E= d A=  cross  sectional  area I  V J =   amp/m2 =  ne  v current  density drift  velocity  of  electron  v    =  E Ad d J  =  ne  E J  =  E Conductivityne   Resistivity N  -  type Mobility   vd P  -  type n   >>  n E n   >>  n eh   Conduction  in  Semiconductor he J      e  ne  ve Intrinsic  semiconductor n     =  n J      e  nh  vh eh J  =  ne  [  ve +  vh]   1   =    en  [  e  +  h  ]   1   e  n h   1       e  n e   h   e     GOLDEN  KEY  POINTS • Due  to  impurity  the  conductivity  increases  approximately  105  times E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 • sc  =  e  +  h  =  neee  +  n  eh  =  e(n µ   +  nµ) h ee hh E x . 6 What  will  be  conductance  of  pure  silicon  crystal  at  300K  Temp..  If  electron  hole  pairs  per  cm3  is  1.072  x  1010 at  this  Temp,  n  =  1350  cm2  /  volt      sec  &      P  =  480  cm2  /  volt    sec S o l .   =  niee  +  nieh =  nie  (e  +  h)  =  3.14×10–6 mho/cm E x . 7 Pure  Si  at  300  K  has  equal  electron  n   and  hole  n   concentration  of  1.5  ×    1016/m3.  Doping  by  indium  increases eh n   to  4.5  ×    1022/m3.  Calculate  n   in  doped  silicon. he n 2  (1.5  1016 )2  5  109 m 3 i (4.5  1022 ) Sol. n   =  e nh E 7

JEE-Physics E x . 8 A  semiconductor  has  equal  electron  and  hole  concentration  of  6  ×    108/m3.  On  doping  with  certain  impurity electron  concentration  increases  to  9  ×    1012/m3. (i) Identify  the  new  semiconductor  obtained  after  doping. (ii) Calculate  the  new  hole  concentration. S o l . n   =  6  ×    108/m3 and n   =  9  ×    1012  /m3 i e (i) n   >  n so  it  is  N-type  semiconductor ei  2 n 2 36  1016 i i  9  1012 (ii) n  nenh n   =    =  4  ×    104  /m3 h ne P  -  N  JUNCTION Technique s  for  maki ng  P-N  junct ion (i) Alloy  Method  or  Alloy  Junction Here  a  small  piece  of  III  group  impurity  like  indium  is  placed  over  n–Ge  or  n–Si  and  melted  as  shown  in  figure ultimetely  P  –  N  junction  form. indium indium liquid indium buttom PN Jn N-type N-type N-type arsenic  arsenic  liquid arsenic buttom PN Jn P-type P-type P-type (ii) Diffusion  Junction vacuum A  heated  P–type  semiconductor  is  kept  in  pentavalent                          heat N-type Ge/Si P-N Jn impurity  vapours  which  diffuse  into  P–type  semiconductor  as Al  diffused  shown  and  make  P–N  junction. vapours P-type layer (iii) Vapour  deposited  junction  or  epitaxial  junction If  we  want  to  grow  a  layer  of  n–Si  or  p–Si  then  p–Si  wafer  is kept  in  an  atmosphere  of  Silane  (a  silicon  compound  which to vacuum  dissociates  into  Si  at  high  temperatures)  plus  phosphorous pump vapours. On  craking  of  silane  at  high  temperature  a  fresh  layer  on  n–Si  grows  on  p–Si  giving  the  \"P–N junction\".  Since  this  junction  growth  is  layer  by  so  it  is  also  referred  as  layer  growth  or  epitaxial  junction  formation of  P–N  junction. –+ n Description  of  P-N  Junction  without  applied  voltage  or  bias p Given  diagram  shows  a  P–N  junction  immediately  after  it  is  formed. P  region  has  mobile  majority  holes  and  immobile  negatively charged  impurity  ions. E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 N  region  has  mobile  majority  free  electrons  and  immobile  positively hole free electron charged  impurity  ions. Due  to  concentration  difference  diffusion  of  holes  starts    from  P  to  N charge deplition layer side  and  diffusion  of  e–  s  starts  N  to  P  side. density width (10)-6 Due  to  this  a  layer  of  only  positive  (in  N  side)  and  negative + (in  P–side)  started  to  form  which  generate  an  electric  field  (N  to  P – distance side)  which  oppose  diffusion  process,  during  diffusion  magnitude  of electric  electric  field  increases  due  to  this  diffusion  it  gradually  decreased field distance intensity and  ultimately  stopes. Electric  Potential The  layer  of  immobile  positive  and  negative  ions,  which  have  no V0 = Potential free  electrons  and  holes  called  as  depletion  layer  as  shown  in distance         barrier diagram. 8E

JEE-Physics GOLDEN  KEY  POINTS • Width  of  depletion  layer      10-6  m (a) As  doping  increases  depletion  layer  decreases (b) As  temperature  is  increased  depletion  layer  also  increases. (c) P-N  junction   unohmic,  due  to  nonlinear  relation  between  I  and  V. • Potential  Barrier  or  contact  potential G e  0.3  V Si  0.7  V • Electric  field,  produce  due  to  potential  barrier  E  V  0.5  E   105  V/m d 106 This  field  prevents  the  respective  majority  carrier  from  crossing  barrier  region DIFFUSION  AND  DRIFT  CURRENT (1)  Diffusion  current  –  P  to  N  side (2)  Drift  current  –  N  to  P  side If  there  is  no  biasing  diffusion  current  =  drift  current So  total  current  is  zero BEHAVIOUR  OF  P–N  JUNCTION  WITH  AN  EXTERNAL  VOLTAGE  APPLIED  OR  BIAS Forward  Bias           V If  we  apply  a  voltage  \"V\"  such  that  P–side  is  positive  and  N–side VB is  negative  as  shown  in  diagram. The  applied  voltage  is  opposite  to  the  junction  barrier  potential.Due  to PN this  effective  potential  barrier  decreases,  junction  width  also  decreases, so  more  majority  carriers  will  be  allowed  to  flow  across  junction.  It  means the  current  flow  in  principally  due  to  majority  charge  carriers  and  it  is  in the  order  of  mA  called  as  forward  Bias. Reverse  Bias          V N If  we  apply  a  voltage  \"V\"  such  that  P–side  is  negative  and VB N–side  is  positive  as  shown  in  diagram. P E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 The  applied  voltage  is  in  same  direction  as  the  junction  barrier  potential.  Due to  this  effective  potential  barrier  increase  junction,  width  also  increases,  so  no majority  carriers  will  be  allowed  to  flow  across  junction. Only  minority  carriers  will  drifted.  It  means  the  current  flow  in  principally  due  to  minority  charge  carriers  and  is very  small  (in  the  order  of  µA).  This  bias  is  called  as  reversed  Bias. GOLDEN  KEY  POINTS • In  reverse  bias,  the  current  is  very  small  and  nearly  constant  with  bias  (termed  as  reverse  saturation  current). However  interesting  behaviour  results  in  some  special  cases  if  the  reverse  bias  is  increased  further  beyond  a certain  limit,  above  particular  high  voltage  breakdown  of  depletion  layer  started. • Breakdown  of  a  diode  is  of  following  two  types  : (i)  Zener  breakdown (ii)  Avalanche  breakdown E9

JEE-Physics Comparison  between  Forward  Bias  and  Reverse  Bias Reverse  Bias Forward  Bias P positive P negative N negative N positive PN PN V V +– –+ 1. Potential  Barrier  reduces 1. Potential  Barrier  increases. 2. Width  of  depletion  layer  decreases 2. 3. P-N  jn.  provide  very  small  resistance 3. Width  of  depletion  layer  increases. 4 Forward  current  flows  in  the  circuit 5 . Order  of  forward  current  is  milli  ampere. 5. P-N  jn.  provide  high  resistance 4 . Very  small  current  flows. Order  of  current  is  micro  ampere  for  Ge or  Neno  ampere  for  Si. 6 . Current  flows  mainly  due  to  majority  carriers. 6 . Current  flows  mainly  due  to  minority  carriers. 7. Forward  characteristic  curves. 7. Reverse  characteristic  curve Vr(volt) if Reverse saturation (mA) current 0 knee  break down voltage voltage Vf(volt) Ir (A) 8. Forward  resistance 8. Reverse  resistance E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 Rf  Vf  100 Rr  Vr  106  If Ir 9 . Order  of  knee  or  cut  in  voltage 9. Breakdown  voltage Ge  Ge  0.3  V Si  25  V 35  V Si  0.7  V Special  point  :  Generally  Rr  =  103  : 1 for Ge R r  =  104  : 1 for Si Rf Rf 10 E

JEE-Physics Ex .9 The  resistance  of  p-n  junction  diode  decreases  when  forward  biased  and  increases  when  reverse  biased. Why? S o l . When  p-n  junction  is  forward  biased,  the  width  of  depletion  layer  decreases  and  the  barrier  potential  is  opposed by  the  forward  bias.  In  other  words,  potential  barrier  decreases.  Hence  the  diffusion  of  holes  and  electrons through  the  junction  increases.  Due  to  this,  the  diode  current  increases  and  hence  resistance  decreases. When  p-n  junction  is  reverse  biased,  the  barrier  potential  is  supported  and  the  width  of  depletion  layer  increases. As  a  result  of  this,  the  diode  current  becomes  almost  zero  as  there  is  no  diffusion  of  majority  carriers  (electrons and  holes)  through  the  junction.  Hence  the  resistance  of  the  junction  diode  increases  when  reverse  biased. Ex.10  What  is  an  ideal  diode  ?  Draw  the  output  waveform  across  the  load  resistor  R,  if  the  input  waveform  is as  shown  in  the  figure. +6V V -6V S o l . An  ideal  diode  has  zero  resistance  when  forward  biased  and  infiniter  resistance  when  it  is  reversed  biased. Output  wave  form  is  shown  in  fig. +6V 0V Ex.11A  potential  barrier  of  0.5  V  exists  across  a  p-n  junction  (i)  If  the  depletion  region  is  5  ×  10–7  m  wide.  What  is  the intensity  of  the  electric  field  in  this  region  ?  (ii)  An  electron  with  speed  5×105 m/s  approaches  the  p-n junction  from  the  n-side  with  what  speed  will  it  enter  the  p-side. Sol.: (i) Width  of  depletion  layer  L  =  5  ×  10–7  m E= V V 0.5V L E  L  5 10 7 =  106  volt/m PN (ii) Work  energy  theorm  1 M v 2  eV  1 M v 2 2 i 2 f E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 vf  M v 2  2eV =  2.7  ×  105  m/s i M Ex.12  Figure  shows  a  diode  connected    to  an  external  resistance  and  an  e.m.f.  Assuming  that  the  barrier  potential developed  in  diode  is  0.5  V1  obtain  the  value  of  current  in  the  circuit  in  milliampere. Sol. E  =  45  V R  =  100   100 1 voltage  drop  across  p-n  junction  =  0.5  V effective  voltage  in  the  circuit  V  =  4.5  –  0.5  =  4.0  V 4.5V current  in  the  circuit  I  V  4.0  0.04 A   =  0.04  ×  1000  mA    =  40mA R 100 Ex.13Differentiate  zener  and  avalanche  breakdown. Sol. The  difference  between  these  two  are  as  follows E 11

JEE-Physics Zener  Break  down Avalanche  Break  down Where  covalent  bonds  of  depletion  layer,  its Here  covalent  bonds  of  depletion  layers  are  bro self  break,  due  to  high  electric  field  of  very ken  by  collision  of  \"Minorities\"  which  aquire high  Reverse  bias  voltage. high  kinetic  energy  from  high  electric  field  of very-very  high  reverse  bias  voltage. This  phenomena  predominant This  phenomena  predominant (i)  At  lower  voltage  after  \"break  down\" (i)  At  high  voltage  after  breakdown (ii)  In  P  –  N  having  \"High  doping\" (ii)  In  P  –  N  having  \"Low  doping\" (iii)  P  –  N  Jn.  having  thin  depletion  layer (iii)  P  –  N  Jn.  having  thick  depletion  layer Here  P  –  N  not  demage  paramanently Here  P  –  N  damage  peramanentaly  due  to \"In  D.C  voltage  stablizer  zener  phenomenan \"Heating  effect\"  due  to  abruptly  increament  of is  used\".   minorities  during  repeatative  collisoins. CHARACTERISTIC  CURVE  OF  P-N  JUNCTION  DIODE PN symbol PN +(0-1)–V (0-10)V If(mA)Forward A Ir(A) bias curve + mA Vr (Volt) –  E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 + D D O Vf(Volt) Rh R Reverse – Rh R bias curve Forward bias Reverse bias In  forward  bias  when  voltage  is  increased  from  0V  is  steps  and  corresponding  value  of  current  is  measured,  the curve  comes  as  OB  of  figure.  We  may  note  that  current  increase  very  sharply  after  a  certain  voltage  knee voltage.  At  this  voltage,  barrier  potential  is  completely  eliminated  and  diode  offers  a  low  resistance. In  reverse  bias  a  microammeter  has  been  used  as    current  is  very  very  small.  When  reverse  voltage  is  increased from  0V  and  corresponding  values  of  current  measured  the  plot  comes  as  OCD.  We  may  note  that  reverse current  is  almost  constant  hence  called  reverse  saturation  current.  It  implies  that  diode  resistance  is  very  high.  As reverse  voltage  reaches  value  V ,  called  breakdown  voltage,  current  increases  very  sharply. B For    Ideal  Diode in forward bias R f = 0  in reverse bias R r =    'ON' switch 'OFF' switch RECTIFIER It  is  device  which  is  used  for  converting  alternating  current  into  direct  current. E 12

JEE-Physics Half  wave  rectifier A.C. Supply S1 D A S1 D Secondry Voltage S2 RL A.C. Supply S2 B A Input RL B Output For positive half cycle For negative half cycle During  the  first  half  (positive)  of  the  input  signal,  let  S   is  at  positive  and  S   is  at  negative  potential.  So,  the  PN 12 junction  diode  D  is  forward  biased.  The  current  flows  through  the  load  resistance  R   and  output  voltage  is L obtained. During  the  second  half  (negative)  of  the  input  signal,  S1  and  S2  would  be  negative  and  positive  respectively.  The PN  junction  diode  will  be  reversed  biased.  In  this  case,  practically  no  current  would  flow  through  the  load resistance.  So,  there  will  be  no  output  voltage. Thus,  corresponding  to  an  alternating  input  signal,  we  get  a  unidirectional  pulsating  output  as  shown. Peak  inverse  voltage  (PIV) In  half  wave  rectifier  PIV  =  maximum  voltage  across  secondary  coil  of  transformer  (V ) s                 =  Peak  value  of  output  (V ) m Full  wave  rectifier When  the  diode  rectifies  the  whole  of  the  AC  wave,  it  is  called  full  wave  rectifier.  Figure  shows  the  experiemental arrangement  for  using  diode  as  full  wave  rectifier.  The  alternating  signal  is  fed  to  the  primary  a  transformer.  The output  signal  appears  across  the  load  resistance  RL. D1 D1 Secondry Voltage S1 A A. C. Supply S1 Input B BA A. C. Supply D1 D2 D1 D2 D1 D2 D1 RL RL S2 S2 Output For positive half cycle D2 For negative half cycle D2 E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 During  the  positive  half  of  the  input  signal  : Let  S   positive  and  S   negative. 12 In  this  case  diode  D   is  forward  biased  and  D   is  reverse  biased.  So  only  D   conducts  and  hence  the  flow  of 12 1 current  in  the  load  resistance  R   is  from  A  to  B. L During  the  negative  half  of  the  input  signal  : Now  S1  is  negative  and  S2  is  positive.  So  D1  is  reverse-biased  and  D2  is  forward  biased.  So  only  D2  conducts  and hence  the  current  flows  through  the  load  resistance  R   from  A  to  B. L It  is  clear  that  whether  the  input  signal  is  positive  or  negative,  the  current  always  flows  through  the  load  resistance in  the  same  direction  and  full  wave  rectification  is  obtained. E 13

JEE-Physics D2 Input D4 RL Bridge  Rectifier D1,D4 D2,D3 D1,D4 D2,D3 D1,D4 D1 Output D3 During  positive  half  cycle During  negative  half  cycle D  and  D    are  forward  biased      on  switch D  and  D  are  forward  biased      on  switch 1 4 2 3 D   and  D   are  reverse  biased     off  switch D   and  D   are  reverse  biased     offswitch 23 14 In  bridge  rectifier  peak  inverse  voltage  PIV  =  V   =  V sm Form  Factor Irms E rms F =    Idc or E dc   for  full  wave  rectifier   F  =  for  half  wave  rectifier F  = 22 2 Ripple  and  ripple  factor In  the  output  of  rectifier  some  A.C.  components  are  present.  They  are  called  ripple  &  there  measurement  is  given by  a  factor  known  as  ripple  factor.  For  a  good  rectifier  ripple  factor  must  be  very  low. Total  output  current I =    I2ac  +  I2dc Where I   =  rms  value  of  AC  component  present  in  output rms ac Iac r  =  I2 1   =  F2 1 Ripple  factor r  =  Idc  rms I2dc Rectifier  efficiency  =   Pdc  =   I2dc  R L Half  wave  rectifier Pac I2  (R F  +  R L ) rms Full  wave  rectifier  or  bridge  wave  rectifier 0.406 0.812 E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65  =    1  Rf 1 Rf RL RL If    Rf  < <  1 ,  then   =  40.6% If      Rf  < <  1 , then  81.2% RL RL Special  Note If    R   =  R Special  Note If    R   =  R fL fL   20.3%   40.6% Note  :    In  brige  full  wave  rectifier  R   is  two  times  of  resistance  of  P-N  jn.  diode  in  FB. f 14 E

JEE-Physics Ripple  Frequency (i) For  half  wave  rectifier input output input frequency = 50Hz ripple frequency = 50Hz (ii) for  full  wave  rectifier input output ripple frequency = 100Hz input frequency = 50Hz output Pulse Pulse frequency = 50 Hz  (i) For  half  wave  rectifier input Pulse frequency = 100 Hz  (ii) For  full  wave  rectifier input output Pulse frequency = 100 Hz Pulse frequency = 100 Hz Comparison  Between  Average  Rectifiers E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65   Number  of  Diodes Half-wave Centre-tap Full-wave   Transformer  necessary 1 2 Bridge   Peak  secondary  voltage No Ye s 4   Peak  Inverse  Voltage V V No (when  peak  of  output  =  V ) V s s m s V   =  V V =  2V   Peak  load  Current,  I sm s  m V =  V m s  m Vin Vin   RMS  Current,  Irms rd  R L rd  R L Vin 2rd  R L Im Im 2 2 Im 2   DC  current,  I Im 2 Im 2 Im dc      Ripple  factor,  r 1.21 0.482 0.482   Rectification  efficiency  (max) 40.6% 81.2% 81.2%   Ripple  frequency  (when  input  =  50  Hz) 50  Hz 100  Hz 100  Hz E 15

JEE-Physics Ex . 14 A  sinusoidal  voltage  of  amplitude  25  volts  and  frequency  50  Hz  is  applied  to  a  half  wave  rectifier  using PN  diode.  No  filter  is  used  and  the  load  resistor  is  1000  .  The  forward  resistance  Rf  ideal  diode  is 10  .  Calculate (i) Peak,  average  and  rms  values  of  load  currrent. (ii) d.c.  power  output (iii)  a.c.  power  input (iv) %  Rectifier  efficiency (v)  Ripple  factor S o l . (i) m  Vm  25   =  24.75  mA Rf  RL (10  1000) (ii) (iii) dc  m  24.75  7.88mA  3.14 rms  m  24.75  12.38mA 2 2 Pdc  =  Idc2  ×  RL  =  (7.88  ×  10–3)2  ×  103    62  mW Pac  =  Irms2(Rf  +  RL)  =  (12.38  ×  10–3)2  ×  (10  +  1000)   155  mW Pdc (iv) Rectifier  efficiency    =  Pac   ×  100 62               =    ×  100  =  40  % 155 (v) Ripple  factor  =   Irms 2 1/2 =   12.38  2    =  1.21  Iac  7.88  1     1    Ex.15  The  halfwave  rectifier  supplies  power  to  a  1  k  load.  The  input  supply  voltage  is  220  V  neglecting  forward resistance  of  the  diode,  calculate (i)  Vdc (ii)  dc  and (iii)  Ripple  voltage  (rms  value) S o l . (i) Vdc  Vm  2 Vrms  2  220  99   volt   3.14 (ii) dc  Vdc  99  99 mA RL 1000 (iii) r  =  (Vr )rms Vdc or      (Vr)rms  =  r  ×  vdc  =  1.21  ×  99  =  119.79  volt. Ex.16  A  fullwave  rectifier  supplies  a  load  of  1  K.  The  a.c.  voltage  applied  to  the  diodes  is  220  volt  rms.  If diode  resistance  is  neglected,  calculate. (i)  Average  d.c.  voltage (ii)  Average  d.c.  current (iii)  Ripple  voltage  (rms) E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 Sol. (i)  Average  d.c .  voltag e  Vdc  = 2 Vm   =  0.636  Vm  where  Vm  =  maximum  across  each  half  of  the  secondary  winding. If  V  be  the  rms  voltage  across  each  half  of  the  secondary  winding  then  V  Vm 2  Vdc  =  0.636  ×  V 2   =  0.9  V   =  0.9  ×  220  =  198  volt. Vdc 198 (ii)  For  fullwave  rectifier    Idc =  RL   = 1000 =  198  mA Vr (rms)  Vr(rms)  =  r  ×  Vdc  Vr(rms)  =  0.482  ×  198  =  95.436  volt (iii)  r  =  Vdc 16 E

JEE-Physics Ex.17  A  fullwave  P.N.  diode  rectifier  used  load  ressitor  of  1500  .  No  filter  is  used.  Assume  each  diode  to  have idealized  charcteristic  with  Rf  =  10  and  Rr  =  .  Since  wave  voltage  applied  to  each  diode  has  amplitude of  30  volts  and  frequency  50Hz.  Calculate. (i)  Peak,  d.c.  rms  load  current (ii)  d.c.  power  input (iii)  A.C.  power  input (iv)  Rectifier  efficiency Sol. (i)  Peak  current  Im  =  Vm Rf  RL 30volts Im  =  10  1500   =  19.9  mA d.c.  load  current    Idc  =  2Im   =  0.636  Im  =  0.636  ×  19.9  mA  =  12.66  mA. rms  =  m  19.9  14 mA 2 2 (ii)  D.C.  Power  output  Pdc  =  Id2c  ×  RL =  (12.66  ×  10–3)2  ×  1500  Watt  =  240.41  mW (iii)  A.C.  power  input  Pin  =  Irms2  (Rf  +  R2) =  (14  ×  10–3)2  (10  +  1500)  watt  =  295.96  mW FILTER  CIRCUIT To  reduce  A.C.  Components Capacitor  Filter DC AC + DC AC C RL output of rectifier output L  -  C  Filter DC + low AC DC E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 AC + DC AC C RL output of rectifier output  -  Filter  (Best  Filter) output DC + low AC approx pure D.C DC AC + DC AC C1 AC C2 RL output of rectifier E 17

JEE-Physics ZENER  DIODE A  specifically  doped  crystal  diode  which  can  work  in  break  down  region  is  known  as  Zener  diode. It  is  always  connected  in  reverse  biased  condition  manner.         + Used  as  a  voltage  regulator RS RL regulated  output Symbol of  + Fluctuating Zener diode  input In  forward  biased  it  works  as  a  simple  diode.  Voltage regulating circuit of Zener diode SOME  OTHER  SPECIAL  DIODES Photodiode A  junction  diode  made  from  “light  or  photo  sensitive  semiconductor”  is  called  a  “photo  diode”  its  symbol  . When  light  of  energy  \"h''  falls  on  the  photodiode  (Here  h  >  energy  gap)  more  electrons  move  from  valence band,  to  conduction  band,  due  to  this  current  in  circuit  of  photodiode  in  \"Reverse  bias\",  increases.  As  light intensity  is  increased,  the  current  goes  on  increases  so  photo  diode  is  used,  \"to  detect  light  intensity\"  for  example it  is  used  in  \"Vedio  camera\". Light  emitting  diode  (L.E.D) When  a  junction  diode  is  “forward  biased”  energy  is  released  at  junction  in  the  form  of  light  due  to  recombination of  electrons  and  holes.  In  case  of  Si  or  Ge  diodes,  the  energy  released  is  in  infra-red  region. In  the  junction  diode  made  of  GaAs,  InP  etc  energy  is  released  in  visible  region  such  a  junction  diode  is  called \"light  emitting  diode\"  (LED)  Its  symbol  Solar  cell Solar  cell  is  a  device  for  converting  solar  energy  into  electrical.  A  junction  diode  in  which  one  of  the  P  or  N sections  is  made  very  thin  (So  that  the  light  energy  falling  on  diode  is  not  greatly  asorbed  before  reaching  the junction)  can  be  used  to  convert  light  energy  into  electric  energy    such  diode  called  as  solar  cell.  Its  symbol  E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 (i) It  is  operated  into  photo  voltaic  mode  i.e.,  generation  of  voltage  due  to  the  bombardment  of  optical photon. (ii) No  external  bias  is  applied. (iii) Active  junction  area  is  kept  large,  because  we  are  intrested  in  more  power.  Materials  most  commonly used  for  solar  cell  is  Si,  As,  Cds,  CdTe,  CdSe,  etc. Variable  capacitor  (Varactor) P  –  N  junction  diode  can  be  used  as  a  \"Capacitor\"  here  depletion  layer  acts  as  \"dielectric  material\"  and  remaining \"P\"  and  \"N\"  part  acts  as  metallic  plates.   its symbol  E Diode  laser It  is  intersting  form  of  LED  in  which  special  construction  helps  to  produce  stimulated  radiation  as  in  laser. 18

JEE-Physics E x . 1 8 A  zener  diode  of  voltage  VZ  (=6V)  is  used  to  maintain  a  constant  voltage  across  a  load  resistance  RL  (=1000) by  using  a  series  resistance  RS  (=100).  If  the  e.m.f.  of  source  is  E  (=  9  V),  calculate  the  value  of  current through  series  resistance,  Zener  diode  and  load  resistance.  What  is  the  power  being  dissipated  in  Zener diode. Sol. Here,  E  =  9V  ;  VZ  =  6V  ;  RL  =  1000  and  RS  =  100, Potential  drop  across  series  resistor VR  =  E  –  VZ  =  9  –  6  =  3  V Current  through  series  resistance  RS  is     VR 3  0.03A R 100 Current  through  load  resistance  RL  is    L  VZ 6  0.006A RL  1000 Current  through  Zener  diode  is    IZ  =  I  -  IL  =  0.03  -  0.006  =  0.024  amp. Power  dissipated  in  Zener  diode  is  PZ  =  VZ  IZ  =  6  x  0.024  =  0.144  Watt Ex.19  A  Zener  diode  is  specified  having  a  breakdown  voltage  of  9.1  V  with  a  maximum  power  dissipation  of 364  mW.  What  is  the  maximum  current  that  the  diode  can  handle. Sol. Maximum  current  that  the  given  diode  can  handle  is  364  103   A  i.e.,  40  mA. 9.1 TRANSISTORE:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 Inventor  William  Bradford  Shockley,  John  Bardeen  and  Walter  Houser  Brattain. Transistor  is  a  three  terminal  device  which  transfers  a  singal  from  low  resistance  circuit  to  high  resistance  circuit. It  is  formed  when  a  thin  layer  of  one  type  of  extrinsic  semiconductor  (P  or  N  type)  is  sandwitched  between  two thick  layers  of  other  type  of  extrinsic  semiconductor. Each  transistor  have  three  terminals  which  are  :- (i) Emitter (ii) Base (iii) Collector Emitter  :  It  is  the  left  most  part  of  the  transistor.  It  emit  the  majority  carrier  towards  base.  It  is  highly  doped  and medium  in  size. Base  :  It  is  the  middle  part  of  transistor  which  is  sandwitched  by  emitter  (E)  and  collector  (C).  It  is  lightly  doped and  very  thin  in  size. Collector  :  It  is  right  part  of  the  transistor  which  collect  the  majority  carriers  emitted  by  emitter.  It  has  large  size and  moderate  doping. There  are  two  semiconducting  PN-junctions  in  a  transistor (i) The  junction  between  emitter  and  base  is  known  as  emitter-base  junction  (J ). EB (ii) The  junction  between  base  and    collecter  is  known  as  base-collector  junction  (J ). CB E 19

JEE-Physics TRANSISTOR  ARE  OF  TWO  TYPES N-P-N  Transistor If  a  thin  layer  of  P-type  semiconductor  is  sandwitched  between  two  thick  layers  of  N-type  semiconductor  is known  as  NPN  transistor. E NPN NPN C EC BB P-N-P  Transistor If  a  thin  layer  of  N-type  of  semiconductor  is  sandwitched  between  two  thick  layer  of  P-type  semiconductor  is known  as  PNP  transistor. E P NP PNP C EC BB GOLDEN  KEY  POINTS • Transistor  have  two  P-N  Junction  J   and  J ,  therefore  it  can  be  biased  in  four  following  ways  as  given  below: EB CB E NPN C Emitter-Base B Region  of  working Forward  biased Active Reverse  biased Collector-Base Inverse  Active Reverse  biased Reverse  biased Cut  off Forward  biased Forward  biased Saturation Reverse  biased • Comparsion  between  E,  B  and  C Forward  biased High  dopping Low  dopping Emitter Medium  size Medium  dopping Smallest  size Base Largest  size Collector • The  collector  region  is  made  physically  larger  than  the  emitter.  Because  collector  has  to  dissipiate  much E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 greater  power. • Transistor  all  mostly  work  in  active  region  in  electronic  devices  &  transistor  work  as  amplifier  in  Active  region only. • Transistor  i.e.  It  is  a  short  form  of  two  words  \"Transfer  resistors\".  Signal  is  introduced  at  low  resistance  circuit and  out  put  is  taken  at  high  resistance  circuit. • Base  is  lightly  doped.  Otherwise  the  most  of  the  charge  carrier  from  the  emitter  recombine  in  base  region  and not  reaches  at  collector. • Transistor  is  a  current  operated  device  i.e.  the  action  of  transistor  is  controlled  by  the  motion  of  charge carriers.  i.e.  current 20 E

JEE-Physics WORKING  OF  NPN  TRANSISTOR The  emitter  Base  junction  is  forward  bias  and  collector  base  junction  is  reversed  biased  of  n-p-n  transistor  in circuit  (A)  and  symbolic  representation  is  shown  in  Figure. emitter-base collectoremitter-base IE IC junction junction N PN IE e IC h mA E BC mA VEE IB VCC VEE IB VCC When  emitter  base  junction  is  forward  bias,  electrons  (majority  carriers)  in  emitter  are  repelled  toward  base. The  barrier  of  emitter  base  junction  is  reduced  and  the  electron  enter  the  base,  about  5%  of  these  electron recombine  with  hole  in  base  region  result  in  small  current  (I ). b The  remaining  electron  (  95%)  enter  the  collector  region  because  they  are  attracted  towards  the  positive terminal  of  battery. For  each  electron  entering  the  positive  terminal  of  the  battery  is  connected  with  collector  base  junction  an electron  from  negative  terminal  of  the  battery  connected  with  emitter  base  junction  enters  the  region. The  emitter  current  (I )  is  more  than  the  collector  (I ). ec The  base  current  is  the  difference  between  I   and  I   and  proportional  to  the  number  of  electron  hole  recombination ec in  the  base. I   =  I   +I e bc WORKING  OF  PNP  TRANSISTOR When  emitter-base  junction  is  forward  biased  holes  (majority  carriers)  in  the  emitter  are  repelled  towards  the base  and  diffuse  through  the  emitter  base  junction.  The  barrier  potential  of  emitter-base  junction  decreases  and hole  enter  the  n-region  (i.e.  base).  A  small  number  of  holes  (  5%)  combine  with  electron  of  base-region  resulting small  current  (I ).  The  remaining  hole  (  95%)  enter  into  the  collector  region  because  they  are  attracted  towards b negative  terminal  of  the  battery  connected  with  the  collector-base  junction.  These  hole  constitute  the  collector current  (I ). c E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 emitter-base collectoremitter-base IC IC junction junction VEE IB + VCC P NP IE mA E BC mA VEE IB VCC As  one  hole  reaches  the  collector,  it  is  neutralized  by  the  battery.  As  soon  as  one  electron  and  a  hole    is neutralized  in  collector  a  covalent  bond  is  broken  in  emitter  region.  The  electron  hole  pair  is  produced.  The released  electron  enter  the  positive  terminal  of  bettary  and  hole  more  towards  the  collector. E 21

JEE-Physics Basic  Transistor  Circuit  Configurations  :- To  study  about  the  characterstics  of  transistor  we  have  to  make  a  circuit  [In  which  four  terminals  are  required. But  the  transistor  have  three  terminals,  so  one  of  the  terminal  of  transistor  is  made  common  in  input  and  output both.  Thus,  we  have  three  possible  configuration  of  transistor  circuit. (i)  Common  base  configuration (ii)  Common  emitter    configuration (iii)  Common  collector  configuration In  these  three  common  emitter  is  widely  used  and  common  collector  is  rarely  used. Common  emitter  characterstics  of  a  transistor Circuit  Diagram  : R1 R2 ( ) ( ) Circuit diagram for characteristic curve of n-p-n transistor in CE mode Input  characterstics input characteristic curves The  variation  of  base  current  (I )  (input)  with  base  emitter  voltage  (V )        100 0V 5V b EB 75 = = at  constant-emitter  voltage  (V )  is  called  input  characterstic. 50 CE 25 V e ce (i) Keep  the  collector-emitter  voltage  (V )  constant  (say  V   =  1V) 0 V CE CE c (ii) Now  change  emitter  base  voltage  by  R   and  note  the  corresponding I b(A) 1 value  of  base  current  (I ). 0.2 0.4 0.6 0.8 0.8 b (iii) Plot  the  graph  between  V   and  I . EB b (iv) A  set  of  such  curves  can  be  plotted  at  different  (V   =  2V) Vbe(volt) CE Output  characterstics The  variation  of  collector  current  I   (output)  with  collector-emitter 10 Ib = 100A c 8 Ib = 75A 6 Ib = 50A voltage  (V )  at  constant  base  current  (I )  is  called  output  characterstic. CE b 4 Ib = 25A 2 Ib =0 (i) Keep  the  base  current  (Ib)  constant  (say  Ib  =  10A) (ii) Now  change  the  collector-emitter  voltage  (V )  using  variable  resistance  R   and 1 234 5 VCE(volt) CE 2 IC(mA) note  the  corresponding  values  of  collector  current  (I ). E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 c (iii) Plot  the  graph  between  (V   versus  I ) CE c (iv) A  set  of  such  curves  can  be  plotted  at  different  fixed  values  of  base  current  (say  0,  20  A,  30  A  etc.) TRANSISTOR  AS  AN  AMPLIFIER The  process  of  increasing  the  amplitude  of  input  signal  without  distorting  its  wave  shape  and  without  changing its  frequency  is  known  as  amplification. A  device  which  increases  the  amplitude  of  the  input  signal  is  called  amplifier. A  transistor  can  be  used  as  an  amplifier  in  active  state. A  basic  circuit  of  a  common  emitter  transistor  amplifier  is  shown. 22 E

IC – JEE-Physics intput  C Vo amplifier signal B IB RL 3.  Common  Collector  (CC) + amplified E VCE VCC output signal C  C – Vi IE + IB IC +– VBB common emitter amplifier NPN transistor  Comparative  study  of  transistor  configurations 1.  Common  Base ( C B ) 2.  Common  Emitter  (CE) C  B C  E E C B C B E CB B CE E CC C B E C IE IC C E IC IE IB B B IC C BB IB IE IB E E C Input  Resistance Low  (100    ) High  (750    ) Very  High   750  k Output  resistance Current  Gain Very  High High Low (A   or  ) (A   or  ) (A   or   ) I I I IC IC IE  =  IE   =  IB    =  IB   Voltage  Gain AV  Vo =  IC R L         A V  Vo IC R L AV  Vo =  IE R L Vi IE R i Vi =  IB R i Vi IBRi A v =   RL A v =   RL A v =   RL Ri Ri Ri E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65   less  than  1 Power  Gain Ap  Po Ap  Po Ap  Po Pi Pi Pi Ap  2 RL      A p  2 RL Ap  2 RL Ri Ri Ri Phase  difference same  phase opposite  phase same  phase (between  output and  input) Application For  High  Fequency For  Audible  fequency For  Impedance  Matching E 23

JEE-Physics Relation  Between       and           -- I   =  I  +  I I   =  I  +  I    1+    E B  C E B  C 1- divide  by      I divide  by  I  1 C B 1- IE  IB 1 IC IC IE  1+ IC 11 IB IB  +1     1- GOLDEN  KEY  POINTS • In  transistor  charge  carriers  move  from  emitter  to  collector.  Emitter  send  the  charge  carriers  and  collector collect  them  this  happen  only  when  emitter-base  junction  is  forward  bias  and  collector-base  junction  is  reverse bias  (base  of  amplifier) • In  transistor  reverse  bias  is  high  as  compared  to  forward  bias  so  that  the  charge  carriers  move  from  emitter  to base  exert  a  large  attractive  force  to  enter  in  collector  region  so  base  current  is  very  less. • CE  configuration  is  widely  used  becasue  it  have  large  voltage  and  power  gain  as  compared  to  other  amplifiers. • In  amplifier  negative  feed  back  is  used  to  stabilized  the  gain. • CC  is  used  for  impdence  matching  for  connecting  two  transistors  in  cascade. Q . 2 0 A  transistor  is  a  current  operated  device.  Explain  why  ? E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 A n s . The  action  of  a  transistor  is  controlled  by  the  charge  carriers  (electrons  or  holes).  That  is  why  a  transistor  is  a current  operated  device. Q . 2 1 In  a  transistor,  reverse  bias  is  quite  high  as  compared  to  the  forward  bias.  Why  ? A n s . In  a  transistor,  charge  carriers  (electrons  or  holes)  move  from  emitter  to  collector  through  the  base.  The  reverse bias  on  collector  is  made  quite  high  so  that  it  may  exert  a  large  attractive  force  on  the  charge  carriers  to  enter the  collector  region.  These  moving  carriers  in  the  collector  constitute  a  collector  current. Q . 2 2 A  transistor  is  a  temperature  sensitive  device.  Explain. A n s . In  a  transistor,  conduction  is  due  to  the  movement  of  current  carriers  electrons  and  holes.  When  temperature  of the  transistor  increases,  many  covalent  bonds  may  break  up,  resulting  in  the  formation  of  more  electrons  and holes.  Thus,  the  current  will  increase  in  the  transistor.  This  current  gives  rise  to  the  production  of  more  heat energy.  the  excess  heat  causes  complete  breakdown  of  the  transistor. Q . 2 3 The  use  of  a  transistor  in  common-emitter  configuration  is  preferred  over  the  common-base  configuration. Explain  why  ? A n s . The  current  gain  and  hence  voltage  gain  in  the  common-emitter  configuration  is  much  more  than  i  of  common- base  configuration.  Hence  the  former  is  preferred  over  the  later. 24 E

JEE-Physics Q . 2 4 Why  do  we  prefer  transistor  over  the  vacuum  tubes  in  the  portable  radio  receivers  ? A n s . This  is  because  of  two  reasons  : (i) Transistor  is  compact  and  small  in  size  than  the  vacuum  tube. (ii) Transistor  can  operate  even  at  low  voltage  which  can  be  supplied  with  two  or  three  dry  cells. Q . 2 5 Why  a  transistor  cannot  be  used  as  a  rectifier  ? A n s . If  transistor  is  to  be  used  as  a  rectifier  the  either  emitter-base  or  base-collector  has  to  used  as  diode.  For  equated working  of  the  said  set  of  diodes,  the  number  density  of  charge  carriers  in  emitter  and  base  or  base  and  collector must  be  approximately  same.  As  base  is  lightly  doped  and  comparatively  thin,  so  emitter  cannot  work  as  a rec t i f i er. Ex.26  In  a  transistor,  the  value  of   is  50.  Calculate  the  value  of  . S o l .  =  50      50  –  50    =      50 =  0.98 1 50  =  1   51 Ex.27  Calculate  the  collector  and  emitter  current  for  which  Ib =  20  A,   =  100 S o l .  =  100, I  =  20  A b I  =   I  =  100  ×    20  ×    10–6  =  2000  A c b I   =  I   +  I   =  20  +  2000  =  2020  A  =  2.02  ×    10–3  A  =  2.02  mA ebc Ex.28  For  a  common  emitter  amplifier,  current  gain  =  50.  If  the  emitter  current  is  6.6  mA,  calculate  the  collector  and base  current.  Also  calculate  current  gain,  When  emitter  is  working  as  common  base  amplifier. S o l . =  50  ; I   =  6.6  mA e    Ic  I  =  Ib  =  50I ...(i) Ib b c I   =  I   +  I using  equation  (i)  we  get 6.6  =  50  I   +  I   =  51I bb b ecb 6.6 or Ib  51   =  0.129  mA HenceI   =  50  ×    6.6   =  6.47  mA and   =  50  0.98 c 1 51 51 E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 Ex.29  Transistor  with   =  75  is  connected  to  common-base  configuration.  What  will  be  the  maximu  collector  current for  an  emitter  current  of  5  mA  ? Sol.  =  75,  I  =  5  mA e       1 75  =  1    75  –  75  =   or 76  =  75 or 75  = 76   Ic  I  =  Ie  =  75   ×    5  =  4.93  mA Ie c 76 E 25

JEE-Physics Ex.30  The  base  current  is  100  A  and  collector  current  is  3  mA. (a) Calculate  the  values  of  ,  I  and   e (b) A  change  of  20  A  in  the  base  current  produces  a  change  of  0.5  mA  in  the  collector  current.  Calculate  . a.c. Sol. I  =  100  A  =  0.100  mA, I  =  3  mA b c (a)   Ic =  3   =  30 Ib 0.100   1    1 30  30   =  0.97 and I   =  Ic  3  31   =  3.1  mA   30 31 e  30 (b) Ib  =  20  A  =  0.02  mA  , Ic  =  0.5  mA   ac  Ic 0.5  25 I b  0.02 Ex.31  In  npn  transistor  circuit,  the  collector  current  is  10  mA.  If  95%  of  the  electrons  emitted  reach  the  collector,  what is  the  base  current  ? S o l . I   =  95% I   =  0.95  I c ce 100 100  10mA   =  10.53  mA ( I   =  10  mA)  I   =   Ic  c 95 95 e Now  I   =  I   +  I  I   =  I   –  I     =    10.53  –  10  =  0.53  mA ecb bec Ex.32  In  an  NPN  transistor  1010  electrons  enter  the  emitter  in  10–6  s  and  2%  electrons  recombine  with  holes  in  base, then  current  gain    and    are  : Ne 1010 1.6  1019 =  1.6  mA S o l . Emitter  current  I =  =  et 10 6 Base  current  I   =  2 1.6 =  0.032  mA b 100 but I   =  I   +  I  I   =  I   –  I   =  1.6  –  0.032  =  1.568  mA e  c b ceb     Ic 1.568  0.98  Ie 1.6 and  Ic 1.568  49 E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65  Ib 0.032 FEEDBACK Feedback  are  two  types  : Positive  feedback When  input  and  output  are  in  the  same  phase  then  positive  feedback  is  there.  It  is  used  in  oscillators. Negative  feedback If  input  and  output  are  out  of  phase  and  some  part  of  that  is  feedback  to  input  is  known  as  negative  feedback. It  is  used  to  get  constant  gain  amplifier. 26 E

JEE-Physics TR ANSISTOR  AS  AN  OSCILLATOR Oscillator  is  device  which  delivers  a.c.  output  wave  form  of  desired  frequency  from  d.c.  power  even  without input  singal  excitation. C T1 mutual inductance 1 (coupling through  The  electric  oscillations  are  produced  by  L–  C  circuit                          n-p-n 2 magnetic field) (i.e.  tank  circuit  containing  inductor  and  capacitor).  These 3 T'2 output oscillations  are  damped  one  i.e.  their  amplitude  decrease with  the  passage  of  time  due  to  the  small  resistance  of  the T2 inductor.  In  other  words,  the  energy  of  the  L  –  C  oscillations L 4 decreases. If this loss of energy is compensated from outside, E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 then  undamped  oscillations  (of  constant  amplitude)  can  be S1 (switch) obtained.  This  can  be  done  by  using  feed  back  arrangement  and  a transistor  in  the  circuit. L  –  C  circuit  producing  L  –  C  oscillations  consists  of  an  inductor  of  inductance  L  and  capacitor  of variable  capacitance  C  inductor  of  inductance  L'  is  connected  in  the  collector-emitter  circuit  through  a  battery and  a  tapping  key  (K).  Inductors  L  and  L'  are  inductively  coupled  (Figure) Working When  key  K  is  closed,  collector  current  begins  to  flow  through  the  coil  L.  As  this  current  grows,  magnetic  flux linked  with  coil  L  increase  (i.e.  changes). Since  coil  L  is  inductively  coupled  with  L,  so  magnetic  flux  linked  with  coil  L'  also  changes.  Due  to  change  in magnetic  flux,  induced  e.m.f.  is  set  up  across  the  coil  L'. The  direction  of  induced  e.m.f.  is  such  that  the  emitter-base  junction  is  forward  biased.  As  a  result  of  this  biasing, emitter  current  I  increases  which  in  turn  increases  the  collector  current  I  [ I  =  I  +  I ]. e c e b c With  the  increase  in  collector  current,  magnetic  flux  linked  with  coil  L  also  increases.  This  increases  the  e.m.f. induced  in  the  coil  L'. The  increased  induced  e.m.f.  increases  the  forward  bias  of  emitter-base  junction.  Hence  emitter  current  is further  increased  which  in  turn  increases  the  collector  current.  The  process  of  increasing  the  collector  current continues  till  the  magnetic  flux  linked  with  coil  L'  becomess  maximum  (i.e.  constant).  At  this  stage,  the  induced e.m.f.  in  coil  L'  becomes  zero. The  upper  plate  of  the  capacitor  C  gets  positively  charged  during  this  process. When  induced  e.m.f.  becomes  zero,  the  capacitor  C  starts  discharging  through  the  inductor  L. The  emitter  current  starts  decreasing  resulting  in  the  collector  current.  With  decreasing  collector  current  which flows  through  L',  e.m.f.  is  again  induced  in  the  coil  L'  but  in  the  opposite  direction.  It  opposes  the  emitter  current and  hence  collector  current  ultimately  decreases  to  zero. The  change  in  magnetic  flux  linked  with  coil  L'  stops  and  hence  induced  e.m.f.  in  the  coil  L  becomes  zero.  At  this stage,  the  capacitor  gets  discharged  through  coil  L  but  now  in  the  opposite  direction.  Now  the  emitter  current and  hence  collector  current  increase  but  now  in  the  opposite  direction  . This  process  repeats  and  the  collector  current  oscillates  between  maximum  and  minimum  values. f 1 27 2 LC E

JEE-Physics ADVANTAGES  OF  SEMICONDUCTOR  DEVICES  OVER  VACUUM  TUBES Advantages  Semiconductor  devices  are  very  small  in  size  as  compared  to  the  vacuum  tubes.  Hence  the  circuits  using semiconductor  devices  are  more  compact.  In  vacuum  tubes,  current  flows  when  the  filament  is  heated  and  starts  emitting  electrons.  So,  we  have  to  wait  for some  time  for  the  operation  of  the  circuit.  On  the  other  hand,  in  semiconductor  devices  no  heating  is  required and  the  circuit  begins  to  operate  as  soon  as  it  switched  on.  Semiconductor  devices  require  low  voltage  for  their  operation  as  compared  to  the  vacuum  tube.  So  a  lot  of electrical  power  is  saved.  Semiconductor  devices  do  not  produce  any  humming  noise  which  is  large  in  case  of  vacuum  tube.  Semiconductor  devices  have  longer  life  than  the  vacuum  tube.  Vacuum  tube  gets  damaged  when  its  filament  is burnt.  Semiconductor  devices  are  shock  proof.  The  cost  of  production  of  semiconductor-devices  is  very  small  as  compared  to  the  vacuum  tubes.  Semiconductor  devices  can  be  easily  transported  as  compared  to  vacuum  tube. Disadvantages  Semiconductor  devices  are  heat  sensitive.  They  get  damaged  due  to  overheating  and  high  voltages.  So  they have  to  be  housed  in  a  controlled  temperature  room.  The  noise  level  in  semiconductor  devices  is  very  high.  Semiconductor  devices  have  poor  response  in  high  frequency  range. Q . 3 3 Why  is  a  transistor  so  called  ? A n s . The  word  Transistor  can  be  treated  as  short  form  of  two  words  'transfer  resistor'.  In  a  transistor,  a  signal  is introduced  in  the  low  resistance  circuit  and  output  is  taken  across  the  high  resistance  circuit.  Thus,  a  transistor helps  to  transfer  the  current  from  low  resistance  part  to  the  high  resistance  part. Q . 3 4 The  base  region  of  a  transistor  is  lightly  doped.  Explain  why  ? E:\\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Electronics\\Eng\\1. Electronics-Semi Conductor Theory.p65 A n s . In  a  transistor,  the  majority  carriers  (holes  or  electrons)  from  emtter  region  move  towards  the  collector  region through  base.  If  base  is  made  thick  and  highly  doped,  then  majority  of  carriers  from  emitter  will  combine  with the  carriers  in  the  base  and  only  small    number  of  carriers    will  reach  the  collector.  Thus  the  output  or  collector current  will  be  considerably  small.  To  get  large  output  or  collector  current,  base  is  made  thin  and  lightly  doped so  that  only  few  electron-hole  combination  may  take  place  in  the  base  region. Q . 3 5 Explain  why  the  emitter  is  forward  biased  and  the  collector  is  reverse  biased  in  a  transistor  ? A n s . In  a  transistor,  the  charge  carriers  move  from  emitter  to  collector.  The  emitter  sends  the  charge  carriers  and collector  collects  them.  This  can  happen  only  if  emitter  is  forward  biased  and  the  collector  is  reverse  biased  so that  it  may  attract  the  carriers. 28 E

JEE-Physics METHOD OF IMPULSE AND MOMENTUM Until now, we have studied kinematics of particles, Newton’s laws of motion and methods of work and energy. Newton’s laws of motion describe relation between forces acting on a body at an instant and acceleration of the body at that instant. Therefore, it only helps us do analyze what is happening at an instant. The work kinetic energy  theorem is obtained by integrating equation of motion (F   ) over a path. Therefore, methods of work and energy ma help us to in exploring change in speed over a position interval. Now, we direct our attention on another principle –  principle of impulse and momentum. It is obtained when equation of motion (F   ) is integrated with respect to ma time. Therefore, this principle facilitates us with method to explore what is happening over a time interval. Impulse of a Force Net force applied on a rigid body changes momentum i.e. amount of motion of that body. A net force for a longer duration cause more change in momentum than the same force acting for shorter duration. Therefore duration in which a force acts on a body together with magnitude and direction of the force decide effect of the force on the change in momentum of the body. Linear impulse or simply impulse of a force is defined as integral of the force with respect to time.  a its t to t is given following equation. If a force F acts on body, impulse in a time interval from by the i f  tf  Fdt Imp  ti  If the force is constant, its impulse equals to product of the force vector F and time interval t.  I mp  F t  F For one-dimensional force, impulse equals to area between force-time graph and the time axis. In the given figure is shown how a force F along x-axis varies with time t. Impulse of this force in time interval ti to ti tf t tf equals to area of the shaded portion.    If several forces F1 , F2 , F3 ..... Fn act on a body in a time interval, the total impulse I mp of all these forces equals to impulse of the net force.      tf tf  tf  tf   dt ti F1dt ti F2dt ti Fndt ti Imp    ..............   F1  F2  .............  Fn NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 Impulse is measured in newton-second. Dimensions of impulse are MLT1 Example  F  Calculate impulse of force 3t 2ˆi  2t  1 ˆj  2kˆ N over the time interval from t = 1 s to t = 3 s. Solution.  tf       Fdt Imp  Imp   3 3t 2ˆi  2t  1 ˆj  2kˆ dt  t 3ˆi  t 2  t  ˆj  2tkˆ13  ˆi t 3 3  ˆj t 2 t 3  kˆ2t 13 1 1 ti 1  26ˆi  6 ˆj  4kˆ N-s E 1

JEE-Physics Example A one-dimensional force F varies with time according to the given F (N) graph. Calculate impulse of the force in following time intervals. 10 (a) From t = 0 s to t = 10 s. 5 10 15 t (s) (b) From t = 10 s to t = 15 s. (c) From t = 0 s to t = 15 s. Solution. F (N) AB For one-dimensional force, impulse equals to area between force- time graph and the time axis. 10 (a) I = Area of trapazium OABC = 75 N-s CE 010 O 5 10 15 t (s) (b) I = – Area of triangle CDE = – 25 N-s D 1015 (c) I = Area of trapazium OABC – Area of triangle CDE = 50 N-s 015 Impulse Momentum Principle Consider body of mass m in translational motion. When it is moving with velocity  , net external force acting  v on it is F . Equation of motion as suggested by Newton’s second law can be written in the form   d (mv) Fdt  If the force acts during time interval from t to t and velocity of the body changes from vi to v f , integrating the if above equation with time over the interval from ti to t we have f, tfti    Fdt  mvf  mvi  Here left hand side of the above equation is impulse I mp of the net force F in time interval from ti to tf, and  quantities mv i and mvf on the right hand side are linear momenta of the particle at instants t and tf. If we  i denote them by symbols pi and pf , the above equation can be written as   I mp  pf  pi The idea expressed by the above equation is known as impulse momentum principle. It states that change in the momentum of a body in a time interval equals to the impulse of the net force acting on the body during the concerned time interval. For the ease of application to physical situations the above equation is rearranged as   pi  Imp  pf This equation states that impulse of a force during a time interval when added to momentum of a body at the NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 beginning of an interval of time we get momentum of the body at the end of the interval concerned. Since impulse and momentum both are vector quantities, the impulse momentum theorem can be expressed by there scalar equations making use of Cartesian components. p1x  I mp,x  p2 x p1y  I mp,y  p2 y p1z  Imp,z  p2z The impulse momentum principle is deduced here for a single body moving relative to an inertial frame, therefore impulses of only physical forces are considered. If we are using a non-inertial reference frame, impulse of corresponding pseudo force must also be considered in addition to impulse of the physical forces. 2E

JEE-Physics How to apply Impulse Momentum Principle The impulse momentum principle is deduced here for a single body, therefore it is recommended at present to use it for a single body. To use this principle the following steps should be followed.  ( i ) Identify the initial and final positions as position 1 and 2 and show momenta p1 and p2 of the body at these instants. ( i i ) Show impulse of each force acting on the body at an instant between positions 1 and 2.   (i i i ) Use the impulse obtained in step (ii) and momenta obtained in step (i) into equation pi  I mp  pf .  Consider a particle moving with momentum p1 in beginning. It is acted upon by two forces, whose impulses in  a time interval are Imp1 and Imp2 . As a result, at the end of the time interval, momentum of the particle  becomes p2 . This physical situation is shown in the following diagram. Such a diagram is known as impulse momentum diagram.   I mp1 p2  p1    p1 I mp2 I mp1  I mp2 Example  A  particle of mass 2 kg is moving with velocity vo  2iˆ 3 ˆj m/s in free space. Find its velocity 3 s after a constant force    3iˆ  4ˆj  N starts acting on it. F Solution.     mv f  mv o  F t pf  pi  Imp  Substituting given values, we have   2 2iˆ 3ˆj   3iˆ  4ˆj   3  13iˆ  6 ˆj 2v f   6.5iˆ 3ˆj  m/s vf NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 Example  vo   A particle of mass 2 kg is moving in free space with velocity 2ˆi  3ˆj  kˆ m/s is acted upon by force   F 2ˆi  ˆj  2kˆ N. Find velocity vector of the particle 3 s after the force starts acting. Solution.     mv f  mv o  F t pf  pi  Imp  Substituting given values, we have E     2v f 2 2ˆi  3ˆj  kˆ  2ˆi  ˆj  2kˆ  3  10ˆi  3ˆj  4kˆ   vf  5ˆi  1.5 ˆj  2kˆ m/s 3

JEE-Physics Example F 20 N A box of mass m = 2 kg resting on a frictionless horizontal ground is acted upon by a horizontal force F, which varies as shown. Find speed of the particle 10 N when the force ceases to act. Solution. 2s 4s t     pf  pi  Imp   mvi  Fdt  tf mvf ti 2v 20  1  20  4 2 v = 20 m/s Example Two boxes A and B of masses m and M interconnected by an ideal rope and ideal pulleys are held at rest as shown. When it is released, box B accelerates downwards. Find velocities of box A and B as function of time t after system has been released. AB Solution. We first explore relation between accelerations aA and aB of the boxes A and B, which can be written either by using constrained relation or method of virtual work or by inspection. T T T vA = 2vB ...(i) v A B v A B Applying impulse momentum principle to box A y Tt zero x mv A p2 y  p1y  Imp,y  Mv A  0  Tt  mgt ...(ii) A mgt Applying impulse momentum principle to box B y NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 zero 2Tt x p2 y  p1y  Imp,y  mv B  0  Mgt  2Tt ...(iii) B Ma B Mgt From equations (i), (ii) and (iii), we have vA  2  M  2m  gt and vB   M  2m  gt  M  4m   M  4m  4 E

JEE-Physics Impulsive Motion Sometimes a very large force acts for a very short time interval on a particle and produces finite change in momentum. Such a force is known as impulsive force and the resulting motion as impulsive motion. When a batsman hits a ball by bat, the contact between the ball and the bat lasts for a very small duration t, but the average value of the force F exerted by the bat on the ball is very large, and the resulting impulse Ft is large enough to change momentum of the ball. During an impulsive motion, some other forces of magnitudes very small in comparison to that of an impulsive force may also act. Due to negligible time interval of the impulsive motion, impulse of these forces becomes negligible. These forces are known as non-impulsive forces. Effect of non-impulsive forces during an impulsive motion is so small that they are neglected in analyzing impulsive motion of infinitely small duration. Non-impulsive forces are of finite magnitude and include weight of a body, spring force or any other force of finite magnitude. When duration of the impulsive motion is specified, care has to be taken in neglecting any of the non-impulsive force. In analyzing motion of the ball for very small contact duration (usually in mili-seconds), impulse of the weight of the ball has to be neglected. Unknown reaction forces may be impulsive or non-impulsive; their impulse must therefore be included. Example A 100 gm ball moving horizontally with 20 m/s is struck by a bat, as a result 35 m/s 20 m/s it starts moving with a speed of 35 m/s at an angle of 37° above the horizontal in the same vertical plane as shown in the figure. (a) Find the average force exerted by the bat if duration of impact is 0.30 s. (b) Find the average force exerted by the bat if duration of impact is 0.03 s. (c) Find the average force exerted by the bat if duration of impact is 0.003 s. (d) What do you conclude for impulse of weight of the ball as duration of contact decreases? Solution. The impulse momentum diagram of the ball is shown in the figure below. Here F, mg, and t represent the average value of the force exerted by the bat, weight of the ball and the time interval. mgt = 1.0t y P = 3.5 f p = 2 p = 2.1 ix x 37° fy Ft p = 2.8 F t fx x F t y NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 Applying principle of impulse and momentum in x- direction, we have p fx  p ix  I mp,x  2  Fx t  2.8 Fx  4.8 N ...(i) t Applying principle of impulse and momentum in y- direction, we have p fy  piy  I mp,y  0.0  Fy t  1.0t  2.1 Fy   2.1  1.0 N ...(ii)  t E5

JEE-Physics (a) Substituting t = 0.30 s, in equations (i) and (ii), we find  (b) Substituting t = 0.03 s, in equations (i) and (ii), we find F  16iˆ 8ˆj N (c) Substituting t = 0.003 s, in equations 1 and 2, we find  F  160ˆi  71ˆj N  F  1600ˆi  701ˆj N (d) It is clear from the above results that as the duration of contact between the ball and the bat decreases, effect of the weight of the ball also decreases as compared with that of the force of the bat and for sufficiently short time interval, it can be neglected. Momentum and Kinetic Energy A moving particle possesses momentum as well as kinetic energy. If a particle of mass m is moving with velocity v, magnitude of its momentum p and its kinetic energy K bear the following relation. p2 1 K   pv 2m 2 Example An object is moving so that its kinetic energy is 150 J and the magnitude of its momentum is 30.0 kg-m/s. With what velocity is it traveling? Solution. K  p 2  1 pv  v  2  150  10.0 m/s 2m 2 30.0 Internal and external Forces and System of interacting Particles Bodies applying forces on each other are known as interacting bodies. If we consider them as a system, the forces, which they apply on each other, are known as internal forces and all other forces applied on them by bodies not included in the system are known as external forces. Consider two blocks A and B placed on a frictionless horizontal floor. Their weights W and W are counterbalanced by normal A B 12 W W reactions N and N on each of them from the floor. Push F 1 2 12 FA N NB by the hand is applied on A. The forces of normal reaction on-A on-B Non-A and Non-B constitute Newton’s third law action-reaction N N NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 pair, therefore are equal in magnitude and opposite in 1 direction. Among these forces weights W and W applied by 2 12 the earth, normal reactions N and N applied by the ground 12 and the push F applied by the hand are external forces and normal reactions Non-A and Non-B are internal forces. If the blocks are connected by a spring and the block A is either pushed or pulled, the forces W , W , N and 1 21 N still remain external forces for the two block system and the forces, which the spring applies on each other 2 are the internal forces. Here force of gravitational interaction between them being negligible has been neglected. We can conceive a general model of two interacting particles. In the m   1 F12 F21 m figure is shown a system of two particles of masses m and m . Particle 2  12 m attracts m with a force F12 and m attracts (or pulls) m with a 12 21 Particles attracting each other    force F21 . These forces F12 and F21 are the internal forces of this two- F12 m 1 m particle system and are equal in magnitude and opposite in directions. 2 F21 Instead of attraction may repeal each other. Such a system of two particles repealing each other is also shown. Particles repealing each other 6E

JEE-Physics In similar way we may conceive a model of a system of n interacting particles having masses m m ,... mi. .. .mj.. ... and mn respectively. The m m  1, 2 i Fij n forces of interaction Fij and Fji between mi and mj are shown in the m  m 1 3 figure. Similar to these other particles may also interact with each m2 F ji other. These forces of mutual interaction between the particles are m j internal forces of the system. Any of the two interacting particles always System of n interacting particles. apply equal and opposite forces on each other. Here fore simplicity  only the forces Fij and Fji are shown. Principle of Conservation of linear momentum The principle of conservation of linear momentum or simply conservation of momentum for two or more interacting bodies is one of guiding principles of the classical as well as the modern physics. To understand this principle, we first discuss a system of two interacting bodies, and then extend the ideas developed to a system consisting of many interacting bodies. Consider a system of two particles of mass m and m . Particle m    1 2 1 F12 F21 m m attracts m with a force F12 and m attracts m with a force F21 . 2 12 21 These forces have equal magnitudes and opposite directions as shown Particles attracting each other in the figure. If the bodies are let free i.e. without any external force  acting on any of them, each of them move and gain momentum equal F12 m 1 m to the impulse of the force of interaction. Since equal and opposite 2 F21 interaction forces act on both of them for the same time interval, the momenta gained by them are equal in magnitude and opposite in Particles repealing each other direction resulting no change in total momentum of the system. However, if an external force acts on any one of them or different forces with a nonzero resultant act on both of them, the total momentum of the bodies will certainly change. If the system undergoes an impulsive motion, total momentum will change only under the action of external impulsive force or forces. Internal impulsive forces also exist in pairs of equal and opposite forces and cannot change the total momentum of the system. Non-impulsive forces if act cannot change momentum of the system by appreciable amount. For example, gravity is a non-impulsive force, therefore in the process of collision between two bodies near the earth the total momentum remains conserved. NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 The total momentum of a system of two interacting bodies remains unchanged under the action of the forces of interaction between them. It can change only if a net impulse of external force is applied. In similar way we may conceive a model of a system of n interacting particles having masses m m, ....mi....mj.....and m respectively. The m  m  1, 2 n i n forces of interaction Fij and Fji between mi and mj are shown in the m Fij m 1 3  F ji figure. Since internal forces exist in pairs of equal and opposite forces, m in any time interval of concern each of them have a finite impulse but j m2 their total impulse is zero. Thus if the system is let free, in any time System of n interacting particles. interval momentum of every individual particle changes but the total momentum of the system remains constant. It can change only if external forces are applied to some or all the particles. Under the action of external forces, the change in total momentum of the system will be equal to the net impulse of all the external forces. E7

JEE-Physics Thus, total momentum of a system of particles cannot change under the action of internal forces and if net impulse of the external forces in a time interval is zero, the total momentum of the system in that time interval will remain conserved.    p final p initial The above statement is known as the principle of conservation of momentum. It is applicable only when the net impulse of all the external forces acting on a system of particles becomes zero in a finite time interval. It happens in the following conditions. • When no external force acts on any of the particles or bodies. • When resultant of all the external forces acting on all the particles or bodies is zero. • In impulsive motion, where time interval is negligibly small, the direction in which no impulsive forces act, total component of momentum in that direction remains conserved. Since force, impulse and momentum are vectors, component of momentum of a system in a particular direction is conserved, if net impulse of all external forces in that direction vanishes. Example Two blocks of masses m and M are held against a compressed spring on a frictionless horizontal floor with the help of a light thread. When the thread is cut, the smaller block leaves the spring with a velocity u relative to the larger block. Find the recoil velocity of the larger block. Mm Solution. NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 When the thread is cut, the spring pushes both the block, and impart them momentum. The forces applied by the spring on both the block are internal forces of the two-block system. External forces acting on the system are weights and normal reactions on the blocks from the floor. These external forces have zero net resultant of the system. In addition to this fact no external force acts on the system in horizontal direction, therefore, horizontal component of the total momentum of the system remains conserved. Velocities of both the objects relative to the ground (inertial frame) are shown in the adjoining figure. v uv Mm Since before the thread is cut system was at rest, its total momentum was zero. Principle of conservation of momentum for the horizontal direction yields n Mv  m(u  v )  0  p horizontal  0  i 1 v  mu M m 8E

JEE-Physics Example A shell fired vertically up, when reaches its highest point, explodes North into three fragments A, B and C of masses mA = 4 kg, mB = 2 kg 3 m/s and mC = 3kg. Immediately after the explosion, A is observed A 4.5 m/s moving with velocity vA = 3 m/s towards north and B with a velocity B East C v = 4.5 m/s towards east as shown in the figure. Find the velocity B v of the piece C. C Solution. Explosion takes negligible duration; therefore, impulse of gravity, which is a finite external force, can be neglected. The pieces fly off acquiring above-mentioned velocities due to internal forces developed due to expanding gases produced during the explosion. The forces applied by the expanding gases are internal forces; hence, momentum of the system of the three pieces remains conserved during the explosion and total momentum before and after the explosion are equal.  Assuming the east as positive x-direction and the north as positive y-direction, the momentum vectors p A and  p B of pieces A and B become   mAv A ˆj  12 kg-m/s and   mBv B iˆ  9 kg-m/s pA pB Before the explosion, momentum of the shell was zero, therefore from the principle of conservation of momentum, the total momentum of the fragments also remains zero.    (9iˆ 12ˆj ) pA  pB  pC  0  pC From the above equation, velocity of the piece C is    (3iˆ  4 ˆj ) = 5 m/s, 53° south of west. vC  pC mC Example In free space, three identical particles moving with velocities v oˆi , 3v o ˆj and 5v okˆ collide successively with each other to form a single particle. Find velocity vector of the particle formed. Solution. Let m be the mass of a single particle before any of the collisions. The mass of particle formed after collisions must be 3m. In free space, no external forces act on any of the particles, their total momentum remains conserved. Applying principle of conservation of momentum, we have    m v o iˆ  3 m v o ˆj  5 m v o kˆ  3 m  pfinal  v p initial NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65   v  1 v o ˆi  3ˆj  5kˆ m/s 3 Example A bullet of mass 50 g moving with velocity 600 m/s hits a block of 600 m/s mass 1.0 kg placed on a rough horizontal ground and comes out of Block the block with a velocity of 400 m/s. The coefficient of friction between the block and the ground is 0.25. Neglect loss of mass of the block as the bullet pierces through it. (a) In spite of the fact that friction acts as an external force, can you apply principle of conservation of momentum during interaction of the bullet with the block? (b) Find velocity of the block immediately after the bullet pierces through it. (c) Find the distance the block will travel before it stops. E9

JEE-Physics Solution. (a) There is no net external force in the vertical direction and in the horizontal direction, only external force friction is non-impulsive, therefore momentum of the bullet-block system during their interaction remains conserved. (b) Let us denote velocities of the bullet before it hits the block and immediately after it pierces through the block by vbo and vb, velocity of the block immediately after the bullet pierces through it is vB and masses of the bullet and the block by m and M respectively. These are shown in the adjacent figure. v v bo B v mM b Mm Immediately before the bullet hits the block Immediately after the bullet pierces the block Applying principle of conservation of momentum for horizontal component, we have mvbo  mv b  Mv B  vB  m vbo  vb  M Substituting the given values, we have vB = 10 m/s (c) To calculate distance traveled by the block before it stops, work kinetic energy theorem has to be applied. K1  1 M v 2 Mg K =0 2 B N = Mg 2 M v F = Mg B k M x During sliding of the box on the ground only the force of kinetic friction does work. W12  K 2  K 1  Mgx  0  1 M v 2 2 B x v 2 B 2g Substituting given values, we have x = 20 m Example Ballistic Pendulum : A ballistic pendulum is used to measure speed of bullets. It consists of a wooden block NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 suspended from fixed support. A wooden block of mass M is suspended with the help of two threads to prevent rotation while swinging. A bullet of mass m moving v horizontally with velocity vo hits the block and becomes embedded in o the block. Receiving momentum from the bullet, the bullet-block system swings to a height h. Find expression for speed of the bullet in terms of given quantities. Solution. When the bullet hits the block, in a negligible time interval, it becomes embedded in the block and the bullet- block system starts moving with horizontally. During this process, net force acting on the bullet-block system in vertical direction is zero and no force acts in the horizontal direction. Therefore, momentum of the bullet-block system remains conserved. 10 E

JEE-Physics Before the bullet Immediately after the hits the block bullet becomes embedded in the block v p o Let us denote momentum of the bullet-block system immediately after the bullet becomes embedded in the block by p and apply principle of conservation of momentum to the system for horizontal component of momentum. p = mvo Using equation K = p2 / 2m, we can find kinetic energy K of the bullet-block system immediately after the 1 bullet becomes embedded in the block. K1  mvo 2 2M  m During swing, only gravity does work on the bullet-block system. Applying work-kinetic energy theorem during swing of the bullet-block system, we have Immediately after the K K =0 bullet becomes 1 2 embedded in the block p h W12  K 2  K 1   M  m  gh  0  mvo 2 2 M  m Rearranging terms, we have vo  M  m 2gh m NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 Impact between two bodies Impact or collision is interaction of very small duration between two bodies in which the bodies apply relatively large forces on each other. Interaction forces during an impact are created due to either direct contact or strong repulsive force fields or some connecting links. These forces are so large as compared to other external forces acting on either of the bodies that the effects of later can be neglected. The duration of the interaction is short enough as compared to the time scale of interest as to permit us only to consider the states of motion just before and after the event and not during the impact. Duration of an impact ranges from 1023 s for impacts between elementary particles to millions of years for impacts between galaxies. The impacts we observe in our everyday life like that between two balls last from 103 s to few seconds. Central and Eccentric Impact The common normal at the point of contact between the bodies is known as line of impact. If mass centers of the both the colliding bodies are located on the line of impact, the impact is called central impact and if mass centers of both or any one of the colliding bodies are not on the line of impact, the impact is called eccentric impact. E 11

JEE-Physics B A B A Common Normal Common Common Normal Common or Tangent or Tangent Line of Impact Line of Impact Central Impact Eccentric Impact Central impact does not produce any rotation in either of the bodies whereas eccentric impact causes the body whose mass center is not on the line of impact to rotate. Therefore, at present we will discuss only central impact and postpone analysis of eccentric impact to cover after studying rotation motion. Head–on (Direct) and Oblique Central Impact If velocities vectors of the colliding bodies are directed along the line of impact, the impact is called a direct or head-on impact; and if velocity vectors of both or of any one of the bodies are not along the line of impact, the impact is called an oblique impact. A B tB n u A u u u A B B n A Central Impact Oblique Impact In this chapter, we discuss only central impact, therefore the term central we usually not use and to these impacts, we call simply head-on and oblique impacts. Furthermore, use of the line of impact and the common tangent is so frequent in analysis of these impacts that we call them simply t-axis and n-axis. Head–on (Direct) Central Impact To understand what happens in a head-on impact let us consider two balls A and B of masses m and m A B moving with velocities uA and uB in the same direction as shown. Velocity uA is larger than uB so the ball A hits the ball B. During impact, both the bodies push each other and first they get deformed till the deformation reaches a maximum value and then they tries to regain their original shape due to elastic behaviors of the materials forming the balls. AB AB AB uu vv u u A B AB Deformation Restitution NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 Period Period Instant when Instant of maximum Instant when impact starts deformation impact ends The time interval when deformation takes place is called the deformation period and the time interval in which the ball try to regain their original shapes is called the restitution period. Due to push applied by the balls on each other during period of deformation speed of the ball A decreases and that of the ball B increases and at the end of the deformation period, when the deformation is maximum both the ball move with the same velocity say it is u. Thereafter, the balls will either move together with this velocity or follow the period of restitution. During the period of restitution due to push applied by the balls on each other, speed of the ball A decrease further and that of ball B increase further till they separate from each other. Let us denote velocities of the balls A and B after the impact by vA and vB respectively. 12 E

Equation of Impulse and Momentum during impact JEE-Physics Impulse momentum principle describes motion of ball A during deformation period. ...(i)  Ddt ...(ii) m u ...(iii) AA ...(iv) mu A mAuA  Ddt  mAu Impulse momentum principle describes motion of ball B during deformation period. mu  Ddt mu BB B mBuB  Ddt  mBu Impulse momentum principle describes motion of ball A during restitution period. m u  Rdt m v A A A m Au  Rdt  m Av A Impulse momentum principle describes motion of ball B during restitution period. mu  Rdt mv B B B mBu  Rdt  mBv B Conservation of Momentum during impact From equations, (i) and (ii) we have  mAuA  mBuB  m A  mB u ...(v) ...(vi) From equations, (iii) and (iv) we have  mA  mB u  mAv A  mBv B ...(vii) From equations, (v) and (vi) we obtain the following equation. mAv A  mBv B  mAuA  mBuB The above equation elucidates the principle of conservation of momentum. Coefficient of Restitution Usually the force D applied by the bodies A and B on each other during period differs from the force R applied by the bodies on each other during period of restitution. Therefore, it is not necessary that magnitude of impulse  Ddt of deformation equals to the magnitude of impulse  Rdt restitution. The ratio of magnitudes of impulse of restitution to that of deformation is called the coefficient of restitution and is denoted by e. NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 e   Rdt ...(viii)  Ddt Now from equations (i), (ii), (iii) and (iv), we have e  vB vA ...(ix) uA uB Coefficient of restitution depend on various factors as elastic properties of materials forming the bodies, velocities of the contact points before impact, state of rotation of the bodies and temperature of the bodies. In general, its value ranges from zero to one but in collision where kinetic energy is generated its value may exceed one. Depending on values of coefficient of restitution, two particular cases are of special interest. E 13

JEE-Physics Perfectly Plastic or Inelastic Impact For these impacts e = 0, and bodies undergoing impact stick to Perfectly Elastic Impact each other after the impact. For these impacts e = 1. Strategy to solve problems of head-on impact Write momentum conservation equation mAv A  mBv B  mAuA  mBuB ...(A) Write rearranging terms of equation of coefficient of restitution v B  v A  e uA  uB  ...(B) Use the above equations A and B. Example A ball of mass 2 kg moving with speed 5 m/s collides directly with another of mass 3 kg moving in the same direction with speed 4 m/s. The coefficient of restitution is 2/3. Find the velocities after collision. Solution. Denoting the first ball by A and the second ball by B velocities immediately before and after the impact are shown in the figure. u= u =4 vv A B AB AB AB Immediately after Immediately before impact starts impact ends Applying principle of conservation of momentum, we have mBv B  mAv A  mAuA  mBuB  3v B  2v A  2  5  3  4 3v B  2v A  22 ...(i) Applying equation of coefficient of restitution, we have v B  v A  e uA  uB   vB vA  2 5  4 3 3v B  3v A  2 ...(ii) From equation (i) and (ii), we have vA = 4 m/s and vB = 4.67 m/s A n s . Example A block of mass 5 kg moves from left to right with a velocity of 2 m/s and collides with another block of mass 3 kg moving along the same line in the opposite direction with velocity 4 m/s. (a) If the collision is perfectly elastic, determine velocities of both the blocks after their collision. (b) If coefficient of restitution is 0.6, determine velocities of both the blocks after their collision. NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 Solution. Denoting the first block by A and the second block by B velocities immediately before and after the impact are shown in the figure. A B v A Bv u =2 u =4 A B A B Immediately before Immediately after impact starts impact ends Applying principle of conservation of momentum, we have mBv B  m Av A  m AuA  mBuB  3v B  5v A  5  2  3  4 3v B  5v A  2 ...(i) 14 E

JEE-Physics Applying equation of coefficient of restitution, we have v B  v A  e uA  uB   v B  v A  e 2  4 v B  v A  6e ...(ii) (a) For perfectly elastic impact e = 1. Using this value in equation (ii), we have vB – vA = 6 ...(iia) Now from equation (i) and (iia), we obtain vA = – 2.5 m/s and vB = 3.5 m/s (b) For value e = 0.6, equation 2 is modified as vB – vA = 3.6 (iib) Now from equation (i) and (iib), we obtain v = – 1.6 m/s and v = 2.0 m/s A B Block A reverse back with speed 1.6 m/s and B also move in opposite direction to its original direction with speed 2.0 m/s. Example Two identical balls A and B moving with velocities uA and uB in the same direction collide. Coefficient of restitution is e. (a) Deduce expression for velocities of the balls after the collision. (b) If collision is perfectly elastic, what do you observe? Solution. Equation expressing momentum conservation is vA  vB  uA  uB ...(A) Equation of coefficient of restitution is v B  v A  euA  euB ...(B) (a) From the above two equations, velocities v and v are AB vA   1  e  u   1  e  u ...(i)  2   2  A B vB   1  e  u   1  e  u ...(ii)  2   2  A B (b) For perfectly elastic impact e = 1, velocities vA and vB are vA = uB ...(iii) NODE6 E : \\Data\\2014\\Kota\\JEE-Advanced\\SMP\\Phy\\Unit No-3\\Centre of mass & collision\\Eng\\Theory.p65 v = u ...(iv) B A Identical bodies exchange their velocities after perfectly elastic impact. Conservation of kinetic energy in perfectly elastic impact For perfectly elastic impact equation for conservation of momentum and coefficient of restitution are mAv A  mBv B  mAuA  mBuB ...(A) vB  vA  uA uB ...(B) Rearranging the terms of the above equations, we have mA v A  uA   mB uB  v B  uA  vA  vB uB E 15


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook