Paper Code : 1001CT102116064 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) LEADER COURSE (SCORE-I) & ENTHUSIAST COURSE (SCORE-II) ANSWER KEY TEST DATE : 21-03-2017 Test Type : FULL SYLLABUS Test Pattern : JEE-Main Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Ans . 4 2 3 1 3 4 1 4 4 2 4 4 4 2 3 3 1 4 2 1 Que. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ans . 4 4 3 1 2 4 2 2 2 4 1 1 3 2 2 3 1 4 4 2 Que. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Ans . 2 3 4 1 4 3 3 4 2 2 2 1 2 4 2 3 2 4 3 4 Que. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Ans . 2 4 3 2 2 4 3 2 1 4 3 3 2 3 3 4 4 2 2 2 Que. 81 82 83 84 85 86 87 88 89 90 Ans . 2 4 3 2 4 3 3 1 2 2
Paper Code : 1001C T102116064 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) LEADER COURSE (SCORE-I) & ENTHUSIAST COURSE (SCORE-II) Test Type : FULL SYLLABUS Test Pattern : JEE-Main TEST DATE : 21 - 03 - 2017 1. Ans. (4) SOLUTION Momentum conservation ucos Mu M Mu' u u' Angular momentum conservation usin M.u Mu' M2 . 2 2 12 ucos u u' 6 h 2u sin h 2u2 sin2 4H u sin g g For elastic collision u' u 2 2. Ans. (2) Surface Area = 2 [ab + bc + ca] On solving 2u ; 12u = 2 [ 1.5 × 1.5 + 1.5 × 1.0 + 1.5 × 1.0] 5 5 = 2 [ 2.25 + 1.50 + 1.50] = 2 [ 2.2 + 1.5 + 1.5] now KE of upper half part = 2 × 5.2 = 10.4 cm2 1 M Vcm 2 1 .Icm .2 3. Ans. (3) 2 2 2 t.u1 cos 1 5 5/u1 cos = t 1 M . 2u 3u 2 + 1 M . 2 12u 2 2 2 5 5 2 2 2 5 10 t. u2 cos 2 10 ; t = u2 cos2 Now 12 5 10 Mu 2 t t 25 2m 5. Ans. (3) F P 15m 15 m g For the given situation disc will perform t t2 2h 2t translatory motion in radius l. Hence case is F 15 0.210 7.5N like simple pendulum (Refer to H.C. V. exercise 22 S.H.M.) 4. Ans. (1) 6. Ans. (4) For speed to be zero. v 1 K (S )2 mg(S ) 2 MM S2 + 2 - 2S = 2mg .S K u u’ KS2–2 KS 2mgS K2 0 Corporate Office : CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 HS-1/13 +91-744-5156100 [email protected] www.allen.ac.in
Target : JEE (Main + Advanced) 2017/21-03-2017 2K 2mg 4(K mg)2 4K2 k 10. Ans. (2) S= at some distance from centre inside core 2K G 4 r3 3 m S = K mg K 22 m2g 2 2Kmg K 22 3 r 2 K F = K mg 2mgK m2g2 ma = – 4 Gmr S= a = – 4 Gr K so 4 G 2 Now maximum speed will be at equilibrium T position 1 mv2 1 K mg 2 mg mg or T = 2 . 1 2 2 K K 4 G G 1 now time for A to B 2 G 1 mv2 1 m2 g 2 mg m2 g 2 11. Ans. (4) 2 2K K 1 mv2 mg m2g 2 GMm 2 2K For energy in radius r = 2r =nk i v = 2g mg 2 where n is integer k is constant energy , now K GMm = nk 2R 2 GMm = (n-1) k time of free fall is g 3R 2 and clearly option 4 is wrong. 2 7. Ans. (1) GMm diameter = 1 × pitch + L.C×C.S.R so solving k = 6R = 1.5 mm + 1.5mm 76 2.64mm now this implies that for R 100 max 8. Ans. (4) GMm 1 GMm Rmax 3R 2Rmax 6R particle speed = –v × slope w 12. Ans. (4) = 2×(2/1) at 3 sec . Let R 1 . l 4 Ka 9. Ans. (4) 2K K 2K = nCV t Vf PdV E F Q 2K D K C 2K Vi C= U W A B nΔT nT nT =C + . Vf VdV K V nt Vi R/4 R/2 R/4 R 1 V 2 Vi 2 1 2 f = nT = R 1 PfV f PiVi R 1 2 nT = R 1 1 R 1 Req = R 1 1 2 2 2 ka 2 1 HS-2/13 1001CT102116064
Leader Course (Score-I) & Enthusiast Course (Score-II)/21-03-2017 13. Ans. (4) Also, angle rotated by wheel in given time, av it 1 t2 4A 2 4A h = 2.5 (7) 1 272 6rad 343.7 P1 av 2 A A i.e. wheel is 16.3° short of complete revolution at that instant , so, desired colour is green. h 17. Ans. (1) a Finally system behaves as shown v P0 1 2v2 P1 2 gh 1 2 av 2 K =1, A =5m2, d=1m 2 2 A P0 1 av 2 gh P1 O 1 av 2 C1 C2 2 4A 2 A C3 K=3 C1 = 30(10) A = 10 m2 K=2 1 d= 1m A = 5 m2 d= 1m C1 =300 v2 a2v2 gh 2 gh a2v2 a2v2 C2 =50 32 A2 A2 2 A2 C1 =100 v2 1 a2 a2 .v 2 a 2v 2 gh 32 A2 A2 2 A2 (150 )(300 450 100 8.851011 F (net = ) 3gh v= 1 17a2 18. Ans. (4) 32 A2 V = y3+2 14. Ans. (2) y F = (P0 – Paverage). lh B F = 2T gh h d 2 h 2T 2T 2 x gd gd 2 A so F = z 15. Ans. (3) V y ln 2 n2 n(2)T0 E= iˆ 3y2 ˆj R half time = rate constant R / T0 VA = 2 volt 16. Ans. (3) VB = 10 volt [V = y3+2] current in bulbs B = 1A q(V –V )= 1 mv2 1 (8) 1 2V 2 1 BA 2 2 2 max current in B2 = 2A V = 2 m/s For same illumination current should be same So, velocity of ball before collision = (2m/s)j in both bulbs i.e. i = I (l - e–t/) l = 2 (l - e–t/) e–t/ = 2 So, velocity of ball after collision = –(1.5m/s)j t= ln2 = L ln 2 = 20 ln 2 = 7 seconds R 2 change in momentum = m VF Vi 7N.S j 1001CT102116064 HS-3/13
Target : JEE (Main + Advanced) 2017/21-03-2017 Net force = (–7) /(0.1) = (–70N)j 22. Ans. (4) from FBD of ball during collision B= E 104 3.31013T qE C 3108 Fnet 23. Ans. (3) Fwall Let Ec be the amplitude of carrier wave and Es F Fnet = wall –qE is signal amplitude Fwall = Fnet + qE = (70+6) = 76 N then EC Vmax Vmin , Es Vmax Vmin [E at top face = 3y2 = 3(2)2 = 12 N/C] 2 2 19. Ans. (2) E = mE 4 = m6 m= 2 8V CC R 3 + Ans. 24.(1) - 2V .eff vB 2iˆ 3 ˆj 4kˆ . 3iˆ 4 ˆj | | 32volt 25. Ans. (2) Xi 1 Li Xf Ci E VLED 82 1 i = 20mA = = CF Lf RR R 6V 300 0n2A 1 1 K 20mA K0A = = Also reverse voltage across red diode is 2V 0A 2A K 1 r which is fine for LED with reverse breakdown 0rn voltage of 3V. 20. Ans. (1) [Using 00 1 ] & [2A2 n2 C2 ] C2 water level y 26. Ans. (4) dy dr r h =app observerhi 1 dy tan 1 1 i 0 y2 1 4 21. Ans. (4) X Y Z X .Y Y.Z R X .Y Y .Z dR dr 4r 2 000 1 1 0 010 1 1 0 dR r2 dr (r2 r1) 4 r1 r2 4r1r2 001 1 1 0 R R 011 1 0 0 100 1 1 0 Rate of melting is max when power dissipated 110 0 1 0 in sphere is max. Using maximum power 101 1 1 0 transfer theorem, 111 0 0 1 R = r. of battery i.e. (r2 r1) 2 4r1r2 From truth table, answer is AND gate. HS-4/13 1001CT102116064
Leader Course (Score-I) & Enthusiast Course (Score-II)/21-03-2017 8r1r2 8(200) 160 (in SI) k 78 12 22 = k 25 r2 r1 10 100 k 78 3 25 k 22 Also, 1 10 5 31. Ans. (1) 16 8 27. Ans. (2) Average atomic mass of carbon = 0.988 × 12 + 0.0118 × 13 + 0.0002 × 14 = 12.0122 d 32. Ans. (1) 33. Ans. (3) Considering gaussian surface In H2O strength of H-bonding is greater than in NH3. qin E 4d2 2ed3 34. Ans. (2) 0 0R3 35. Ans. (2) E 2edk 36. Ans. (3) R3 For equilibrium of charge, Ag(CN) – is more stable than Ag(NH3)2 2 kee k2ed e 37. Ans. (1) (2d)2 R3 1 2d R3 38. Ans. (4) 4d 2 R3 8 d3 d R/2 a 3 a3 2 2 28. Ans. (2) rc + ra = 180 = When light enters medium of refractive index a= 360 = 120 3 pm. c 3 , its speed decreases, to . wavefront at point P is option (2). Closest distance between two cation 29. Ans. (2) ynth n1D ; n = 2, 4, 6, 8..... = a 120 3 pm 2d 39. Ans. (4) ymth m2 D ; m= 2, 4, 6, 8...... 40. Ans. (2) 2m (Na ) (SO42 ) 2d m y ynth mth d from central fringe. 1000(2.6103) 260Scm2mol1 2 0.001 30. Ans. (4) 41. Ans.(2) M k 3 CH3 EDG [strongly activating] EWG +M>-I O - M - I [Deactivating] L k 12 K 78 N C A hc H O k Ek EL [weakly activating] H EDG [moderately activating] B O +M>-I D hc Ek Em Rate of EAS C < B < D < A k 1001CT102116064 HS-5/13
Target : JEE (Main + Advanced) 2017/21-03-2017 42. Ans.(3) HBr ,ROOR Br CH3 CH3 Br (1) light / Heat + Intermediate : CH3 Br Stereochemistry of addition – (Syn + Anti) ++ Regiochemistry of addition – Markovnikov Br CH3 Br CH3 Br CH3 43. Ans. (4) SOCl2 / Py SN 2 Intermediate – Free Radical PBr3 SN 2 OH NaH Stereochemistry of addition – (syn + Anti) Br H2 Regiochemistry of addition – Antimarkovnikov O (2) Br2H2O OH + Br O Na I Br CH3 CH3 ICl Br OH AlCl3 Intermediate 44. Ans. (1) CH3 + CH3 HO O OH Br HO Br OH Stereochemistry of addition – Anti OH - ketohexofuranose Regiochemistry of addition – Markovnikov CH2OH like HO (3) (1)B2H6 -THF CH3 HO OH has 7(c) atoms hence not (2)H2O2 -OH- HO H OH OH hexose sugar. + OH HOH2C O HO H HO OH HO OH Stereochemistry of addition – Syn is -Aldohexopyranose. Regiochemistry of addition – Antimarkovnikov OH O OH (4) HBr OH OH OH HS-6/13 -Ketohexopyranose 1001CT102116064
Leader Course (Score-I) & Enthusiast Course (Score-II)/21-03-2017 45. Ans.(4) Cl (4) Cl CH3 - MgCl (1) Mg,diethyl ether O MgCl CH3 Cl O O MgCl CH3 CH3 Na H2O O O MgBr 46. Ans. (3) OH H + Na H 1 + 2 H2 OH + Na O Na + (2) H 1 H2 (3) 2 1001CT102116064 H2O H OH + 2Na 2Na CH3 COOH Na CH3COO N 1 H 2 2 a 47. Ans. (3) CH3CHO NaOH CHI 3 HCOO I2 O CH3 - MgCl PhCHO Tollen'sReagent PhCOO Ag CH3CHO Tollen 's Reagent CH3COO Ag CHO O MgCl H OH HO H CH3 H2O H OH Br2 H2O OH H OH CH2OH glucose HS-7/13
Target : JEE (Main + Advanced) 2017/21-03-2017 COOH (2) H & H Br H OH Br HO H H OH enantiomers H OH Cl Br CH2OH (3) & identical Fructose Br2H2O No Reaction Br Cl O (4) & 2(P,4H4DN5P) chain isomers NO2 50. Ans. (2) N - NH - NO2 O OH yellow/ orange/red I = H3C H+ H3C H3C O 2(P,4H4DN5P) Chiral H OO H3C NO2 H3C + H3C N - NH - NO2 H enantiomers yellow/ orange/red 48. Ans. (4) (a)NaBH4 OH O (b) H2O II = O H3C O Chiral (a)DIBAL-H H3C Cl (b)H2O Ch3 H no racemization under acidic condition 49. Ans. (2) O O (1) O O H3C N2H4 OH H or & H3C H chain isomers H3C HS-8/13 1001CT102116064
Leader Course (Score-I) & Enthusiast Course (Score-II)/21-03-2017 51. Ans. (2) 63. Ans. (3) The correct of order of bond energy in f x 2 x4 3 4x 23 7x2 halogens is I < F < Br < Cl 22 22 Let h x x4 7x2 4x 23 52. Ans. (1) Bond order in the four cases is 1, 1.33, 1.5 and x2 4 2 x 22 3 2 respectively. h(x) 3 53. Ans. (2) Range of h(x) is [3,) KNO3 KNO2 O2 Range of f(x) is (2, 3] 54. Ans. (4) 64. Ans. (2) 55. Ans. (2) y = f(x) 56. Ans. (3) It has two geometric isomers and two optical x=1 y=2 isomers. 57. Ans. (2) y=1 58. Ans. (4) x 59. Ans. (3) 2 CuSO4 + 4KI K2SO4 + Cu2I2 + I2 x=0 60. Ans. (4) 1 Mg3N2 6H2O 3Mg(OH)2 2NH3 A= 2 x3 3x2 3x 1 0 NaNO3 4Zn 7NaOH 1 A x3 3x2 3x 1 dx 4Na2ZnO2 NH3 2H2O 0 CaNCN 3H2O CaCO3 2NH3 A= x4 x3 3x2 1 1 61. Ans. (2) 4 2 4 x 0 65. Ans. (2) x coty y dy + ln siny dx + ln cosx dyy tan x dx=0 f 5x 3y 5 f x 3 f y 53 d x ln sin y d y ln cos x 0 Given 53 x ln sin y + y ln cos x = c Which satisfies section formula for abscissa on (sin y)x . (cos x)y = c L.H.S. and ordinate on R.H.S. Hence f(x) must be linear function 62. Ans. (4) let f(x) = ax + b f(0) = b = 1 f(x) = 2x + 1 f'(0) = a = 2 period of sin (2x + 1) is 66. Ans. (4) x = 1 12k . 1211 Ck C11 1 k 1 k n 12 2 12.K 12CK . 11CK1 122 x=1 C11 K 1 K 1 K 1 x=0 x=2 122. 22! 11! 11! 12. 21.19.17......3 212 .6 p 6 11! 1001CT102116064 HS-9/13
Target : JEE (Main + Advanced) 2017/21-03-2017 67. Ans. (3) 71. Ans. (3) We have, z = 0 for the point where the line a = 0 and y = bx2 + cx + d is symmetric intersects the curve about x c 2b x 2 y 1 01 3 2 1 x = k = c k c 0 2b 2b x = 5 and y = 1 Putting these values in xy = c2 5 = c2 c 5 a c k 0 68. Ans.(2) 2b 1 72. Ans. (3) y Put x y tan1 x 2 cot 1 x 1 0 2 1 1 tan1 x 1 tan1 x 2 0 1 f y 1 dy y y2 0 1 0 1 dy 1 tan1 x 2 f y dy f y tan1 x tan 2 73. Ans.(2) y y y2 1 0 1 1 log2 1 6x x2 8 0 y y y dy 0 z Putting z f f z dz 1 1 6x x2 8 1 6x x2 8 0 x2 6x 8 0 x 2x 4 0 69. Ans.(1) 2 x4. D C xy y x Now f '(x) = x2 + 2x + 2 > 0 x R A B f(x) is strictly increasing in [2, 4] sin 2 1 f x x3 x2 2x In ABD 2x 2R1 3 x 25sin cos , a f 2 8 4 4 32 In ACD sin 2 1 33 2 y 2R2 b f 4 64 16 8 136 y 50 sin cos 33 tan x 1 y 50. 1 . 2 20 y2 55 a b 56 and x = 10 74. Ans. (3) D.R's of normal to plane x + y + z1 =0 and Area of rhombus = 2xy= 400 x + ky + 3z1 = 0 is (1, 1, 1) and (1, k, 3) respectively 70. Ans.(4) D.R. of normal to a plane perpendicular to |z|2 -|z| - 2 < 0 given planes z 2 z 1 0 z 2 iˆ ˆj kˆ Now z2 zsin z 2 zsin z 2 z 4 2 6 1 1 1 iˆ3 k ˆj 2 kˆ k 1 1k 3 HS-10/13 1001CT102116064
1 2 2 1 3 Leader Course (Score-I) & Enthusiast Course (Score-II)/21-03-2017 3 k 2 k 1 77. Ans. (4) 2 4 6 3 2k k 2x3 3x2 x 3 2x 1 1 3 x2 x 2 x 1 4 10 4 2 12 8 2 x 2 3 d 2x3 3x2 x 3 2 1 3 dx 2 2 8 6 2 2k 2 k 3 x2 x x 12 x 22 3 A = 2, B = 1, C = 3 2 4 4 k 10 4 k k 5 A + B + C = 0 3 3 33 2 78. Ans. (2) PA × PB = (PT)2 75. Ans. (3) where PT = length of tangent (PT)2 = (1)2 + 32 2(1) + 4(3) 8 = 16 g(x) = x |x|3 has 4 repeated roots P(A) P(B) = 16 g\"(x) is cont. and diff. at x = 0 consider f(x) = xp sin 1 x0 x x =0 0 h p sin 1 AM GM f ' 0 lim h 0 if p > 1 PA PB 8 h0 h f '0 0 for p > 1 79. Ans. (2) n 1 n n 1 n! f ' x p x p1 sin 1 x p2 cos 1 x 0 Tn n2 1 n n n 1 n 1 n xx Sn n n 1 0 x=0 T10 10110 101. b a 9 p h p1 sin 1 h p2 cos 1 S10 10 11 110 80. Ans. (2) f \" 0 lim h h 0 Since f\"(x) > 0 h0 h if p > 3 f ' x is always increasing sin 1 cos 1 x x f \"x p p 1 x p2 x p4 2x p3 for x 0 = 0 for x = 0 f \"(x) to be continuous p 4, g'(x) =2f '(2x33x2)×(6x2 6x) + f'(6x2 4x3 3)(12x12x2) 76. Ans. (4) = 12(x2x) (f '(2x33x2)f '(6x24x33)) =12x(x1)][f '(2x33x2)f '(6x24x33))] lim ax2 bx c 1 For increasing g'(x) > 0 2 Case-I x < 0 or x > 1 x1 2x 12 f(2x33x2) > f '(6x24x33) 2 2x33x2 > 6x24x33 ax2 bx c 1 2x 12 f ' xisincreasing 2 ax2 bx c 2x2 2x 1 2 a 2,b 2, c 1 x 12 x 1 0 x 1 2 2 2 x 2 x 2 x 1 3 1 2 2 lim 4 6 x , 0 1, x2 x 2 2 1001CT102116064 HS-11/13
Case II : If 0 < x < 1 Target : JEE (Main + Advanced) 2017/21-03-2017 f '(2x33x2) < f '(6x24x33) 83. Ans. (3) x 12 x 1 0 AI 0 2 1 1 2 1 0 2 1 0 2 1 0 2 x , so there is no solution x1 1 2 2 0 0 1 2 0 2 0 2 Hence the values are x 1 , 0 1, 1 2 2 1 4 2 0 2 1 2 4 4 3 2 0 81. Ans. (2) 2 4 4 3 42 4 3 2 0 0 x 3 52 6 1 5 1 1 6 A3 5A I A I cos x > x cos x 1 a = 5, b = 1 or a = 1, b = 5 x a+b= 6 /6 cos x /6 84. Ans. (2) 0x dx 1.dx 0 I ; x p q pq (pq)p ~q q~q [(pq)p] (q~q) 63 2 TT T T F F F cos x < x TF F T T F F FTF T F F F x /2 x /2 1 dx cos cos dx J FF F T T F F x /3 x /3 6 Given compound statement is always false. So it is a contradiction. 82. Ans. (4) ax + by + c = 0 85. Ans. (4) a + c = 2b a 2b + c = 0 x = 1, y = 2 n1 = 10, n2 = 10 average m1 = 60, m2 = 40 (1, 2) = , 1 4, 2 6 (x 1)2 + (y + 2)2 = x2+y22x + 4y + 5 =0 Standard deviation of combined series it is orthogonal to x2+y2 4x 4y 1 = 0 4 8 5 1 n1 12 2 2 n1 n2 2 n1n2 m1 m2 8 n1 n2 2 n2 128 7 10 16 10 36 10 1060 40 2 10 10 10 102 8 18 100 126 11.2 HS-12/13 1001CT102116064
Leader Course (Score-I) & Enthusiast Course (Score-II)/21-03-2017 86. Ans. (3) 89. Ans. (2) Problem is same as arranging 8 things out of 2 cases arise (i) P & P are in same pair & one 12 8! which 5 identical i.e. 5! which gives total loses p 1 11 number of ways of selecting block and 8! (ii) P1 & P2 are in different pairs & one loses distributing them away 3 children i.e. 5! 3!. 10 1 1 1 1 5 p 11 2 2 2 2 11 87. Ans. (3) c For a b to be greatest must be 6 a required probability = 11 . b wpeirthpebndiccu.lar to both and c i.e. collinear 90. Ans. (2) iˆ ˆj kˆ Region where 2 tangents to two different branches can be drawn. b c 1 4 6 = 2iˆ 2 ˆj kˆ y 2 7 10 y = 4x/5 y = 4x/5 2iˆ 2 ˆj kˆ a 3 88. Ans. (1) x The normal at the extremities of focal chord meet at right angle. So orthocentre is the point of intersection of normals. If P at12 , 2at1 ,Q at22 , 2at2 then t1t2 = 1,. (1, 6), (1, 3) But from (1, 6) 2 tangents to circle can be drawn Point of intersection of normals Ans. (1, 3) h a t12 t22 t1t2 2 k at1t2 t1 t2 1001CT102116064 HS-13/13
Search
Read the Text Version
- 1 - 14
Pages: