Paper Code : 1001CT103316001 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE (PHASE : III) ANSWER KEY TEST DATE : 03-07-2016 Test Type : MINOR PART-1 : PHYSICS Test Pattern : JEE-Advanced Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. D D B D B B C,D A,B D or A,D A,D Q. 11 12 13 14 A. A D D C SECTION-IV Q. 1 2 3 4 5 6 A. 4 1 6 5 5 5 PART-2 : CHEMISTRY Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. D A B C D B B,C A,B,D B,D A,B,C,D Q. 11 12 13 14 A. C B A C SECTION-IV Q. 1 2 3 4 5 6 A. 2 8 3 0 2 0 PART-3 : MATHEMATICS Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. C A A C B B A,B,C A,B,C A,B,D A,C,D Q. 11 12 13 14 A. B D B B Q. 1 2 3 4 5 6 SECTION-IV A. 7 1 4 4 1 5
Paper Code : 1001CT103316001 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE Test Type : MINOR PHASE : III Test Pattern : JEE-Advanced TEST DATE : 03 - 07 - 2016 PART-1 : PHYSICS SOLUTION SECTION-I 5. Ans. (B) 1. Ans. (D) Sol. Heat required to melt 10 gm ice at hc Sol. KEmax = eV 0°C = 10 × 80 = 800 cal 800 cal heat have to be absorbed from m gm water at 50°C 12400eV 4.5eV e(2V) Then, 800 = m × 1 × 50, m = 16 gm 200 10 m = 16 gm 2. Ans. (D) = 6.2 – 4.5 + 2 KEmax = 3.7 eV 6. Ans. (B) dQ dQ Sol. P mv h dt B dt C Sol. Momentum is same for neutron & -particle to C to A m > mneutron kA 2T TC kA TC T v > vneutron – particle L L 7. Ans. (C,D) TC 3T Sol. d’ = d(1+T) = +ive (coefficient of linear 2 expansion) 3. Ans. (B) r’ = r(1+T) = +ive (coefficient of linear expansion) W 8. Ans. (A,B) Sol. Breaking stress = Sol. Intensity = Nh A After joining in parallel We can double the intensity by taking twice Area = 2A no. of photons or by increasing the frequency to twice its initial value. Breaking stress = W' W 2A A 9. Ans. (D or A,D) Sol. Since area is same, so spectral emissive W' = 2W 4. Ans. (D) power must be same. Sol. At steady state dE dE d S1 d S2 P dQ eA T4 04 dt No. of photons is segment S2 > S1 for same T = 2100 K area Corporate Office : CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 HS-1/5 +91-744-5156100 [email protected] www.allen.ac.in
Target : JEE (Main + Advanced) 2017/03-07-2016 10. Ans. (A,D) Sol. hC 1 eV0 1eV Sol. Let thermal conducitivity of A, B & C be 2k, 3k & 4k respectively hC At steady state 2k.A 100 3kA ' 4kA ' 30 2 eV0 3eV 0.40 0.30 0.20 2hC 1 2 4eV On solving = 60°C ' = 40°C 2hC 6.2eV 11. Ans. (A) 2 12400 Å Sol. m1 = 1260 mm 6.2 m1 = 1260 × 10–4, T1 = 2300 K = 4000 Å = 400 nm E 4, E1 T1 4 E2 T2 1/4 1/4 4 E1 T1 E2 100 E2 T2 , T2 T1 E1 2. Ans. 1 E2 1/4 I 1 2Reh E1 2 T2 T1 Sol. F I.R.h . IRh C CC 500 1/4 1 = 1 3. Ans. 6 Sol. Let volume of mercury be x cm3 T2 = 2300 × 8000 = 2300 × 2 = 1150 k According to question T2 = 1150 k 12. Ans. (D) (34 + x) (1 + 3vessel T) – x(1 + HgT) = 34 On solving, x = 6 T1m1 T2 4. Ans. 5 Sol. T1m1 T2m2 ; m2 Sol. We have m2 2300 1260 109 = 2520 × 10–9 M mu LuAudu 4 2 m LAd 6 3 1150 Ratio of maximum stress m2 = 2520 nm (m u m )g A 13. Ans. (D) = u mu 1 A 51 5 Sol. The value of Young’s modulus for a material m Au mg depends only on the type of material under 32 6 consideration.] 14. Ans. (C) Sol. The value of the constant k A , where A is (u )max 5 ( )max 6 5. Ans. 5 the cross-sectional area, and l the length of Sol. F the material. A SECTION-IV so Fbrass = 3 Fsteel 1. Ans. 4 HS-2/5 1001CT100336001
so Fbrass x = Fsteel (2 – x) Leader Course/Phase-III/03-07-2016 x = 0.5 m kice. .t x2 6. Ans. 5 L Sol. dQ k ice A A dx L dt x dt x t [t is the time to form ice of thickness x from –°C starting] ice x 2 4 0°C dx water 3 t t = 9 days Extra time = 9 – 4 = 5 days kice t dt x xdx L 0 0 PART–2 : CHEMISTRY SOLUTION SECTION -I 12. Ans.(B) 1. Ans.(D) 13. Ans. (A) M1V1 + M2V2 = M3V3 2. Ans.(A) 14. Ans. (C) n1 = nNH3 × R1 × R2 × R3 × Y1 × Y2 × Y3 SECTION -IV 630 600 4 2 2 20 50 x 1. Ans. 2 63 4 2 3 100 100 100 2. Ans. 8 xy y CxH4 + 4 O2 xCO2 + 2 H2O 3. Ans.(B) M = V.S 44.8 4M 12x + y = 30 88 2 11.2 11.2 44 y=6 x=2 4. Ans. (C) 3. Ans. 3 5. Ans. (D) 6. Ans. (B) nA nA MB n n 7. Ans.(B, C) nB MA 8. Ans.(A,B,D) n A 8 1 16 23 = 2n 9. Ans. (B, D) B 1 1 4 10. Ans. (A, B, C, D) 11. Ans.(C) n=3 4. Ans. 0 5. Ans. 29 [OMR Ans. 2] 6. Ans. 0 PB = XB × PT 3 15 9atm 5 1001CT100336001 HS-3/5
Target : JEE (Main + Advanced) 2017/03-07-2016 PART-3 : MATHEMATICS SOLUTION SECTION-I 3 sin C C 3 1. Ans. (C) 2 2 sin 2 16 0 x 0 sin2 C 3 sin C 3 0 ƒ(x) = I + B, B 0 0 0 2 2 2 16 0 0 0 C 3 2 0 sin C 3 (ƒ(x))n = (I + B)n sin 2 4 2 4 = In + nC1In–1B + nC2B2In–2 .... + Bn = I + nC1B as B2 = 0 cosC 1 3 5 88 1 nx 0 = 0 1 0 5. Ans. (B) tan( +) – tan – tan 0 0 1 = tan{1 + tan tan( +)} – tan tan + tan – tan = tan 2. Ans. (A) 6. Ans. (B) C1 C1 C3 ,C2 C2 C3 1 0 2 cos3A + cos3B – cos(3A + 3B) =1 0 1 2 sin3A sin3B = 1 + cos3A cos3B – cos3A – cos3B 1 1 1 1 0 2 1 cos3A .1 cos3B 1 1 2 sin 3A sin 3B 1 2 0 tan 3A tan 3B 1 2 2 1 = (1 + + )2[1 + – + 2] = (1 + + )3 3A 3 B 90 = 125 2 2 3. Ans. (A) adjA = adjB |A|n–1 = |B|n–1 A + B = 60º C = 120º |A||B| if n is even 1 12 22 C2 C 7 |A| |B| if n is odd If n is even adjA = adjB 2 2.1.2 |A|A–1 = |B|B–1 A–1 = B–1 = A = B 7. Ans. (A,B,C) A If n is odd adjA = adjB AM = 17 |A|A–1 = |B|B–1 A–1 = ±B–1 A = B or A = –B CM = DM = 12 17 4. Ans. (C) 642 = 12R2S 8 = 3RS ACD = 1 .24.5 60 13 5 2 8r = 3R sin–1 5 D 17 32 sin A sin B sin C 3R 222 B CM r 60 12 S 25 5 8. Ans. (A,B,C) by x = 2 and x = –2 all three rows become identical therefore (x – 2)2, (x + 2)2 will be factor of ƒ(x) cos A B cos A B sin C 3 Also by C1 C1 + C2 + C3 we obtain x2 + 8 as 2 2 2 16 a factor. HS-4/5 1001CT100336001
Leader Course/Phase-III/03-07-2016 9. Ans. (A,B,D) 13. Ans. (B) Coefficient of 14. Ans. (B) (1) x17 x2.x5.x10 1 a 2 1 (2) x16 x 2x 4 x10 5 6 2 1 1 0 a = 4 21 x x5 x10 1 1 3 b b3 1 x5 x10 1 (a, b) (1, 4), (3, 18) I case for (a, b) = (1, 4) 1 0 (3) x15 x x4 x10 5 21 x 2x 3 x10 no solution 10 II case for (a, b) = (3, 18) 1 = 2 = 3 = 0 infinite solutions. x2 x5 x8 5 SECTION – IV (4) x 1x..x1..11516 10. Ans. (A,C,D) 1. Ans. 7 A2 = 0 C = A Paragraph for Question 11 & 12 CB 24 34 36 51 11. Ans. (B) 2. Ans. 1 cos C a2 62 52 9 a 4 2.a.6 16 7 6 b 1 3 c 0 0 0 C 4 7 2 c 0 0 1 0 b = –2, c = 5 3. Ans. 4 64 4. Ans. 4 40C25 36C0 – 40C24 36C1 + ...... – 40C0 36C25 is A5B coeff. of x25 in the product of –(1 – x)40(1 + x)36 or – (1 – x2)36(1 – x)4 cos C 1 1 cosC 5 = – 36 C124C1 36 C114C3 4 C36 C36 12 11 22 42 = 4 CM 2.6.4 . 5 3 2 5. Ans. 1 64 4 2 |A1 | 27 A 1 12. Ans. (D) 27 15 . 5 . 7 . 3 15 7 |adj(3A)| = |9adjA| = 93|A|2 2 222 4 93 1 1 15 7 272 4 r 15 7 6. Ans. 5 S 2 2 1 22 3 12 2 3 R abc 4.5.6 8 2 2 2 4 15 7 7 LA 1 50 72 16 1 106 4 3 5 3 2 3 2 2 3 26 /3 n=5 LB 1 50 32 36 1 46 1 2 2 1001CT100336001 HS-5/5
Search
Read the Text Version
- 1 - 6
Pages: