Let n2 photons are re-emitted then, (n2 or Energy converted into K.E. = 0.68 × 10–19J ) % of energy used in kinetic energy = hc 0.68 10 19 100 = 8.68% Total energy re-emitted out = n2 × emitted 7.83 10 –19 As given 47 4 6 . Energy given to I2 molecule Eabsorbed × 100 = Ere-emitted out hc 6.626 1034 3 108 hc 47 hc = 4500 10 –10 = 4.417× 10–19 J n1 n2 absorbed 100 emitted Also energy used for breaking up of I2 molecule n1 47 emitted = 47 5080 240 103 = 3.984 × 10–19 J n2 100 absorbed 100 4530 = 6.023 1023 n1 Energy used in imparting kinetic energy to two I n2 = 0.527 atoms 4 2 . H2 + Br2 hv 2HBr Br2 hv 2Br = [4.417 – 3.984] × 10–19 J BE = 192 kJ / mole K.E./iodine atom = [(4.417 – 3.984)/2] × 10–19 = 0.216 × 10–19 J 192 hv 192 1240 48. = 150 = 3.88 × 10–2 Å = 3.88 pm eV/mole = or = (nm) 103 100 93.368 96.368 = 6235 Å 4 9 . = 6.6 1034 6 1024 3 106 0.2 n 0.2 n 0.01 4 3 . 0.01 mole 1 128 = 1 1 1065 = 3.68 × 10–65 m 3 Na 5 0 . V = 30 × 102 cm/sec 0.2 n 1 127 10 127 100 2×n= = 5000 Å m = 200 g 10 127 12.7 h h n = 6 = mV 500 = m V 10 2 2 No. of protons 6 1022 3 1022 500 102 = = 6.626 1026 2 P = mV = 30 × × 200 44. 243 1240 1.75 1029 96.368 (nm) 1240 96.368 5 1 . v = 40 m/sec v = 0.01 = 243 = 491.75×10–9 m 4.9 × 10–7m h x = 4 9.1 1037 99.99 40 4 5 . Energy required to break H–H bond 430.53 103 J/molecule = 7.15 × 10–19 J 0.53 100 1054 = 6.023 1023 = 40 99.99 9.1 1037 hc 0.53 103 100 h Energy of photon used for this purpose = = m.x.x = 40 9.1 99.99 4 6.625 1034 3.0 108 = 7.83 × 10–19 J 5.27 1034 = 253.7 10–9 x = = 1.447 × 10–3 × 100 9.1 1031 40 0.04 1 Energy left after dissociation of bond = 100 (7.83 – 7.15) × 10–19
ATOMIC STRUCTURE EXERCISE # 4[B] 1 . Given that 1 = 486.1 × 10–9 m 4 . Since we obtain 6 emission lines, it means electron = 486.1 × 10–7 cm comes from 4th orbit energy emitted is equal to, 2 = 410.2 × 10–9 m = 410.2 × 10–7 cm less than and more than 2.7 eV. So it can be like 1 1 this : 1 and v v2 v1 2 (6 4th 2.7eV 1 1 1 1 = RH = 2 2 R 2 2 n12 ) n 2 H 2 E4 – E2 = 2.7 eV, E4– E3 < 2.7 eV, 1 1 E4– E1 > 2.7 eV v = RH n12 ........(i) (a) n = 2, n 2 2 For line I of Balmer series (E4 – E2)atom = (E4 – E2)H × Z2 2.7 = 2.55 × Z2 = 1.029 1 RH 1 1 1 1 1 2 2 2 2 n12 n 2 = 109678 (b) IP = 13.6 Z2=13.6 × (1.029)2 = 14.4 eV 1 (c) Maximum energy emitted=E4–E1 = (E4 – E1)H × Z2 1 1 1 = 12.75 × (1.029)2 456.1 107 n12 or = 109678 2 2 = 13.5eV Minimum energy emitted=E4 – E3 =(E4 – E3)H × Z2 n1 = 4 = .66 × (1.029)2 = 0.7eV For line II of Balmer series ; 5 . n 2E = 27.2eV(17 + 10.2) E3 – E2 17eV 1 RH 1 1 1 1 n 3E=10.2eV(4.25+5.95.2) 1 2 2 n 2 = 109678 22 n 2 17 eV = 1.89 × Z2 Z = 3 2 2 E2 = –3.4 × 9 = –30.6 eV 1 1 1 En – E2 = 27.2 eV 410.2 107 2 2 or = 109678 n 2 En = 27.2 + E2 = –3.4 eV 2 n2 = 6 1 3 .6 3 2 Thus given electronic transition occurs from 6th to n En = – 3.4 = – 2 n2 = 36 n = 6 4th shell. Also by eq. (i) 6 . = 975 Å (6th4th) E=c = 6.626 10–34 3 108 =2.03×10–18J=12.75eV 975 1010 v= 1 109678 1 1 So electron will excite to 4th energy level and when 42 62 comeback number of emission line will be 6. = 2.63 × 10–4 cm minimum energy emitted = E4 – E3 = 0.66 eV 2. Eext = 2.18 × 10–19 1 1 × 6.023 × 1023 = (4th 9 6 ) 116.71 kJ/mol H hc 1.9878 10–25 = 1.882 × 10–6 m= D.E. = 116.71 × 2.67 = 311.62 kJ/mol H = = .66 1.6 10–19 2 E 18820 Å n= PV 1 = 0.04 7. (a) kE = qV = 2 × 1.6–19 × 2 × 106 = 6.4 × 10–13J (b) At distance d = 5 × 10–14 m let K.E. is x J and RT 0.082 300 T.E. = 0.04 × 311.62 + 0.08 × 116.71 = 21.8kJ PE = k q1q2 = 9 109 2 1.6 10–19 47 1.6 10–19 3. E(ev) = 1240 d 5 1014 (n m ) PE = 4.33 × 10–13 J Energy of 1st photon = 1240 = 11.428 eV By energy conservation : 6.4 × 10–13 = x + 4.33 × 10–13 108.5 x = 2.06 × 10–13 J, Energy of 2st photon = 1240 =40.79 eV 30.4 kE = PE En = 52.217– 54.4 = – 2.182 eV (E1 = –54.4 eV) 6.4 × 10–13 9 109 2 47 (1.6 10 –19 )2 = 1 3 .6 4 d –2.182 = n2 n= 5 d = 3.384 × 10–14 m
8. pE = ke2 , since F = du = ke2 = 1.9878 10–25 = 0.3039 × 10–7 m = 303.9 3r3 dr r4 6.54 1018 Å mv2 ke2 mv2 E1=–8.72 × 10–18=–21.79 × 10–19 × Z2 Z = 2 For stable atom F = r so r4 r ...(1) 0.529 1 (ii) r1 = 2 A°=0.2645A°= 2.645 × 10–11m mv2 = ke2 ...(2) 1240 r3 11.(a) = 12.4 nm, E (ev) = = 100 eV 12.4 kE = 1 mv2 ke2 , PE = ke2 W0 = 25 eV 2 2r3 3r3 kE = E – W0 = 75 eV V = 75 volt ke2 ke2 ke2 150 T.E = 2r3 3r3 = + 6r 3 ...(3) A° = 2 A° = 1.414 A° (b) = V nh nh (c) since p = h dp h d Form bohr's postulate mvr = V= 2 2 2mr putting this in equation (2) nh 2 ke2 n2h2 ke2 d = 2 dp (1.414 10 –10 )2 6.62 10 –28 2m r3 r3 h 6.626 10–34 m m r 2 2r2 4 m d =2 × 10–14 m r 4 2 mke2 n2h2 1 2 . Since electron is in some exited state of He+ so it's energy 13.6 eV so energy need to exitation putting this in equation (3) is also < 13.6 eV & only for hydrogen E3 – E1 < 13.6 eV. So Z =1. Now for He+ this T.E. ke2 ke2 energy is equal to the energy gap of 2nd and 6th 4 2 m 2ke2 3 6 64 6 m 3k3e6 orbit so initial state is 2 and final state is 6. 6 n2h2 n6h6 He+ 13.6 eV <13.6 eV E3 – E1 < 13.6 eV Z=1 n6h6 He+ 2nd 6th E = 384 m 3 6k2e4 2 6 9.(a) (E3 –E2) =68 eV = (E3 – E2)H × Z2 68 = 1.89 × Z2 1 3 . mvr = nh 3.1652 × 10–34 = n 2 z=6 6.626 1034 (b) (kE)1 = – E1 =13.6 × 36 = 489.6 eV (c) Energy required = –E1 = 489.6 eV 2 3.14 1240 = = 2.53 nm 489.6 1 0 . E1 = IP = –4 R = –4 × 2.18 × 10–18 J = –8.72 × 10–18 J E1 = –2.18 × 10–18 J n=3 4 E2 = c R 1 – 1 = 8R = 1 32 9 E = E2 – E1 = 6.54 × 10–18 J
UNIT # 07 (PART - II) IONIC EQUILIBRIUM EXERCISE # 1 9 . pH = 1 pH = 2 28. pH = pKa + log H C O [H+] = 0.1 [H+] = 0.01 3 V = 50 V = 50 H2CO3 7 = 7 – log + log H C O H C O 4 3 3 [H+] of mixture is[H+]= N1V1 N2 V2 50(0.1 0.01) H2CO3 (H2CO3 ) 100 V1 V2 – = 4 100 3 5 [H+] 0.11 0.055 % H C O 80 % 2 30 . 2NaOH + H3PO4 Na3PO3 pH = 1.26 50mL,0.1M 1 1 . pH = 7 [H+] = 10–7 , [OH–] = 10–7 60mL,0.15 new pH after addition of base 0 7.33 pH = 12 [H+] = 10–12 H3PO4 H+ H 2 P O – 4 [OH–] = 10–2 [mass H+ obtain from first ionization of H3PO4] [OH+] concentration increase 105 times. pH = 1 pK a 1 log C = 1 pK a 1 log C 2 2 2 2 K a1 3 104 13. Relative strength = K a2 1.8 105 4 : 1 = 1.5 + 1.17 = 2.67 1 6 . HCOOH + KOH 3 2 . Mg(NO3)2 + 2NaF MgF2 + 2NaNO3 2.5 5 40mL,0.5 (M) 50mL,0.2M HCOOH + H2O after reaction is forms Buffer solution 0 0 2.5 10 10 2.5 [HCOOH] = [HCOOK] = (MgF2) = 35 MgF2 Mg+2 + 2 F 90 90 Ionic product pH = pKa + log [salt] pH = pKa [acid] 4 1 . AgCNS Ag+ + CNS pH = 4 – log (1.8) pH = 3.75 (1–1) (+2) 1 AgCl Ag+ + Cl 1 9 . Let weak acid is HA its sodium salt is NaA (1–2) (+2) 2 Ka = Kw KH = CH2 0.1 × (0.03)2 K sp AgCNS (1 ) (1 2 ) .........(i) KH Ka = 1 × 10–10 K sp AgCl (2 ) (1 2 ) ........(ii) 1 0 14 Ka = 9 105 adde equation (i) and (ii) 2 2 . CH3COOH + NaOH CH3COONa + H2O (1 + 2)2 =K sp K sp 100 mL, 0.4 M 100 mL, 0.2M AgCl AgCNS 40 20 (1 + 2) = =K sp K sp AgCl 1.0 1012 1.7 1010 AgCNS After reaction (AgT) = (1 + 2) =1.3 × 10–5 divide eq. ii from i 20 20 [Cl ] 1.7 1010 [CH3COOH] = , [CH3COONa] = [C NS ] 2 1.0 1012 250 200 1 = 1.7 × 102 [salt] 4 7 . IP > Ksp I.P. = (Ca+2) (F)2 pH = pKa + log [acid] I.P. (10–2) (10–3)2 10–8 IP > Ksp pH = pKa [H+] = Ka = 1.8 × 10–5 5 3 . pH = pHIn + log In 6 = 5 + log In 2 4 . CH3COONa + HCl CH3COOH + NaCl HIA HIn 20 In at equivalence the [CH3COOH] = 0.1 10 200 HIn 1 1 pH = 2 pK a 2 log C 5 4 . At Half way [HIn] = In– pH = 1 [5 log 2 – log101 ] pH = 5.5 + log [salt] 5.5 = pKa + log [salt] 2 [acid] [acid] pH = 1 [6 – log 2] pH = 3 – log 2 log [salt] =0.75 [salt] 5.62 2 [acid] [acid]
IONIC EQUILIBRIUM EXERCISE # 2 4 . HCl + NaCl pH = 4.2 1 ml, 0.1 99 ml C6H5COOH + NaOH C6H5COONa + H2O [H+] = 0.1 pH = 3 22 0.001 100 0 02 6 . HF + H2O F– + H3O+ pH = 7 + 1 + 1 log C pKa 22 Ka × Kb= Kw pKa + pKb= pKw 12 pKa =14 – 10.83 pKa = 3.17 pH = 7 + 2.1 + log Ka = 6.75 × 10–4 2 200 9. h = Kh Kw pH = 9.1 – 1 pH = 8.1 C Ka C h= 2 5 . CH3COOH + NaOH CH3COONa + H2O 0.1 0.1 10 –14 8.0 h = 2.48 % At 1/3 neutralization h = 1.3 10–9 1 2/3 1/3 1 3 . Ksp = s2 s = K sp = 6.4 10–5 (salt) s = 8 × 10–3 s = 8 mol/m3 pH = pKa + log + (acid) 1 5 . AgNO3 + NH 3 [Ag(NH3)2 ] pH1 = pKa + log 1 / 3 ...(1) x 2/3 ...(2) 1.6 5 × 10–8 (x – 1.6) 0.8 at 2/3 neutralization Ks = [Ag(NH3 )2 ] 2/3 (AgNO 3 )(NH3 ) pH2 = pKa + log 1 / 3 pH2 = 1 – log 2 pH1 – log 0.8 2 108= (5 10–8 )(x – 1.6)2 (x – 1.6)2 = 0.16 1 = log = – 2 log 2 x=2M mole of NH3 = 4 4 1 8 . C6H5COOH + NaOH C6H5COONa + H2O 27. H SO – H+ + SO 2 – 4 4 21 1 1 01 (1– ) pH = pKa + log [salt] pH = 4.2 + log 1 10–2 = 2 0.09 pH=1.02 [acid] 1 1 IONIC EQUILIBRIUM EXERCISE # 3 COMPREHENSION BASED QUESTIONS 1 c = [H3PO4] = 0.05 % Comprehension # 1 pH = 2 [pK a1 log c] 1. Suppose volume of H CO – = V mL = 0.05 10 mol L1 (M ) = 5.1 × 10–3 M 3 98 millimoles of H C O – = 5V 3 millimoles of H2CO3 = 20 –log c = 2.3, pK a1 2.12 pH = 2.21 pH = pK + log [H C O ] [H ]3 [P O 3 ] a 3 4 [H2CO3 ] 3. [H3PO4 ] K a1 K a2 K a3 V V = 78 mL 7.40 = 6.11 + log , 4 3log [H+] + log[PO 3–] 4 3 . If CO2 escapes, [H+] decreases, hence pH increases. = log K a1 + log K a2 + log K a3 – log [H PO ] 34 (CO2 ,[H+] pH ) 3 p H – l og [ P O 3 – ] = l og [ H 3P O 4] = pK a1 pK a2 pK a3 Comprehension # 2 4 1. Phosphoric acid with three ionisable hydrogens ions 21 – lo g [ P O 3 –] – 3 = 2.12 + 7.21 + 12.32 4 M is a tribasic acid. H-atoms are attached to O-atoms, 4 log[PO43–] = – 3.65 ( [PO43–]=2.24 × 10 – H-)4 .Zn3(PO4)2 3Zn2+ + 2PO 3– 4 2 . If first step is only taken ( Ksp = [Zn2+]3 [PO43–]2 9.1 × 10–33 = [Zn2+]3 (2.2 × 10–4)2 ) [Zn2+]3 = 1.88 × 10–25 [Zn2+] = 5.73 × 10–9 M
IONIC EQUILIBRIUM EXERCISE # 4[A] 1 . ( i ) H O Ka H+ + OH– 1 4 . For weak acid 2 10–7 10–7 [H+] = K1C1 K 2C2... K w = 1.8 10–5 0.02 6.4 10–5 .01 10–14 [H ][OH – ] 10–7 10 –7 10 –14 =1.8×10–16 K = = = a [H2O] 1000 / 8 55.5 = 100 10–8 ( i i ) K × K = 10–14 [H+] = 10–3 [H ][ACO – ] ab [ACO] = 3.6 × 10–4 K= [ACOH ]2 a 2. K = C2 2 = C1 = 1 same [C H O ] = 6.4 × 10–4 a 1 C2 1 /100 =10 252 3 . Ka = C2 1 5 . HCN is a weak acid so H+ due to it can neglect As comparision to HF 1 Ka1 1.8 10–5 [H+] = KC = 6.7 10–4 0.1 = 67 10–6 2 Ka2 = 6.2 10–10 = 8.18 × 10–3 11 pH = – log [8.18 × 10–3] = 3 – log [8.18] pH = pK – log C 4.(a) pH = 2.087 2 a2 5.(c) 1 6 . H S 2H+ + S–2 (e) 4.50 × 2 = pK –log (0.1) 2 (f) a [H+] = 2 × 10–4, [H S] = 0.1 M K = 10–8 (g) 9 – 1 = pK pK = 8 a 2 a a K = 10–7 × 10–7 [H+] = Ka C = 1.8 10–6 = 3 – log 1.8 = 2.87 K = K× K [H+] = 10–8 + 10–7 = 10–7 [0.1 + 1] 12 K = 10–21 pH = 7 –log 1.1 = 6.95 10–21 = [2 10 –4 ]2 [S –2 ] 10–21 = 4 × 10–8 [S–2] [OH–] = 10–10 + 10–7 = 10–7 [1.001] [0.1] POH = 7 –log 1.001 = 6.99 pH = 7.0004 1 10 –14 = [S–2] 2.5 × 10–15 = [S–2] 4 [H+] = Ka C = 1.8 10–5 10–6 [H+] = 1.8 10–11 = 18 10–12 = 4.24 × 10–6 17.(i) H PO H+ + H PO – K = 7.225 × 10–3 34 24 1 pH = 6- log 4.24 = 5.37 0.01 M C (1 –) C1 C1 H PO – HPO –2+ H+ K = 6.8 × 10–8 6. pK = 14 - log 2.56 = 13.59 13.6 (ii) 24 4 2 w C1 (1 – 2) C12 [C1] pH = pKw =6.795 HPO –2 PO –3 H+ K = 6.8 × 10–8 (iii) 4 4 + 3 2 [H+] = 10–11.5 12C1(1– 3) C (123) [C1] 1 0 . pH = 11.5 7.225 × 10–3 = C12 = 0.01 12 (1 1 ) 1 [OH–] = 10–2.5 RxN. (i) NH OH Kb NH + + OH– 4 4 10–2.5 10–2.5 (1 – ) × 0.7225 = 2 1 10–5 = 1.8 × 10–5 1 12 + 0.7225 – 0.7225 = 0 C C = =0.556 M 1 = 0.562 1 1 . C = 10–2, [H+] = 10–3 1.8 [H+] = 0.01 × 0.562 [H+] = 5.6 × 10–3 10 –3 10–3 10 –3 = 1.1 × 10–4 [H PO ] 5.6 × 10–3 RxN. (ii) K= 10–2 – 10 –3 24 a 9 H + CHCl COO– 6.8 × 10–8= [H P O –2 ][H ] 2 4 1 3 . CHCl COOH + from [i] reaction. 2 – [H P O 4 ] 0.01 2 0.01 – x 0.01+ x x [HPO –2] = 6.8 × 10–8 M RxN. (iii) 4 x(0.01 x) = 2.55 × 10–2 0.01 – x 4.5 × 10–13 = [P O –3 ][H ] 4 0.01 x + x2 = 2.55 × 10–4 – 2.55 × 10–2 x x2 + 0.355x – 0.000255 = 0 [H P O –2 ] 4 x = –0.0355 0.04775 =1.1 × 10–2 4.5 10–13 6.8 10 –8 = [PO4–3] 2 5.6 10 –3 CHCl COO– = 6.126 × 10–2 5.464 × 10–18 = [PO4–3] 2
20. NH4Cl N H + + Cl– 30. CH COO + H O CH COOH + OH 4 32 3 + NH4OH N H 4 + OH– 10 –14 [N H ][O H – ] 0.08 K= 1.8 10 –5 4 b Kb = [NH 4O H ] x2 10 10 –10 x2 = 0.8 10 –10 0.08 1.8 1.8 [NH +] = is due to salt because NH OH ionise in x2 = 0.44 × 10–10 44 x = 0.66 × 10–5 less amount due to common ions effect 1.8 × 10–5 = 0.1 [OH – ] 9 × 10–6 = [OH–] 32. C H N+ + H O C H NOH + H+ 56 2 55 0.05 CH COO 1 3 pH = [pK – pK – log C] 21. HC H O + NaOH + HO 2w b 232 2 50ml, 0.2M 50ml, 0.1M 1 2.699 = [14 – pK + 0.6] 10m mol 5m mol 2b O 2.398 = 14.6 – pK b OH CH3COO + H2O CH3–C–OH + pK = 14.6 – 5.398 = 9.802 b 10 5 K = 10–9.802 50 5 5 b pH = pK =5 – log 1.8 pH = 4.74 3 8 . pH = pK1 pK2 a 2 2 2 . (NH4)2SO4 pH = 11 7 – 2 log 4.5 = 9 – log 4.5 = 8.54 x 2 Molarity (NH ) SO = 100 40. C H C O O H + O H C H C O O – + H O (WASB) 42 4 3 3 2 2x 1 Molarity of NH4+= 100 pH = [pK + pK + log C] 2w a 0.1 11 Molarity of NH4OH = 100 =10–3 = [14 + 5 – log1.9 + log ] 2 20 1 = [19 – log1.9 – log 20] 2 2x /100 1 14 – 9.26 = 4.24 + log 0.1 / 100 pH= [19 – log 20 × 1.9] = 8.78 2 pOH= 5.28 [OH] = 10–5.28 0 = log (20x) 1 = 20x [OH] = 10–6 × 100.72 [OH] = 5.24 × 10–6 x = 1/20 mole x = 0.05 mole IONIC EQUILIBRIUM EXERCISE # 4[B] 1 . Q+ + H2O QOH + H+ kw/k1 adding both ( ) n1 n '1 (x + y)2 = k w n1' n2' = kw (k2n1' k1n2') V k1 k2 k1k2 n'1 – x x x+y kw R+ + k1k2V H 2O ROH + H+ [H+] = (x + y) = (k2n1 k1n2) n2 n 2' pH = –log [H+] V n'2 – y y y+x pH = 1 log k1k2 (k2n1 V k1n2 ) kw = x(x y) x(x y) ..........(i) 2 kw k1 n1' x n1' k w 1.818 10 4 k4 kw = y(x y) y(x y) .........(ii) 2. Na Y+H O Na HY+NaOH 42 3 k 2 n2' y n 2' 0.1 Assuming () x << n1' & y << n2' 0.1 – x xx from equation (i) & (ii) ((i) (ii) ) x2 =1.818× 10–4 5500.55x2 + x – 0.1 = 0 0.1 x x (x + y) = kw n1' & y (x + y) = kw n2' x = 4.17 × 10–3 k1 k2
kw 1.445 108 5. Cu3(AsO4)2 3 C u +2 + 2 A s O –3 Ksp=8×10–36 k3 4 N a H Y + H 2 O N a H 2 Y + N a O H 3 2 3x 2x+2y x Pb3(AsO4)2 3Pb+2+2AsO4–3 Ksp=4.096×10–36 3y 2y+2x x–y y y+x since y << x x – y ~ x, x + y ~ x 1.445 × 10–8 = y.x y Let solubility of Cu3(AsO4)2 & Pb3(AsO4)2 is x & y x respectively. (Cu (AsO ) Pb (AsO ) 3 42 3 42 x y ) Na2H2Y+H2O NaH3Y+NaOH k w 4.7 1012 108 x3 (x + y)2 = 8 × 10–36 .....(i) k2 108 y3 (x + y)2 = 4.096 × 10–36 ....(ii) y (i) x3 8 (ii) y3 4.096 x = 1.25 y y–z z z+x y – z ~ y, z + x ~ x z.x z = 1.628 × 10–17 putting this in equation (ii) ((ii)) 4.7 × 10–12 = y 108 y3 (2.25 y)2 = 4.096 × 10–36 NaH3Y+H2O H4Y+NaOH k w 9.8 1013 y = 2.3 × 10–8 x = 1.25 y = 2.875 × 10–8 z k1 [Cu+2] = 3x = 8.825 × 10–8 [Pb+2] = 3y = 7.1 × 10–8 z–t t t+x 6. (a) Al(OH)3 Al+3 + 3OH– Ksp z – t ~ z, t+x~x 9.8 × 10–13 = t.x t = 3.82 × 10–27 A l(O H ) – Al+3 + 4OH– K z 4 fraction ()= t = 3.82 × 10–26 Al(OH)3 + OH– Al(OH) – K sp 38.46 4K 0.1 1 0 3 3. s=[Zn(OH)2(aq)]+Zn(OH)++Zn+2+Zn(OH)–3+ Zn(OH)4–2 38.46 = Al(OH )4 = [OH ] [OH ] k1k2 k1k2k3 [OH ] [OH ]2 s=k1+ + +k1k4[OH–] + k1k4k5 [OH–]2 [OH–] = 2.6 × 10–5 s=10–6+ 10 13 + 10 17 +10–3[OH–]+10–2 [OH–]2 pOH = 4.585 [OH ] [OH ]2 pH = 9.415 (a) pH = 5, pOH = 9, [OH–] = 10–9 (b) K = [Al+3] [OH–]3 s = 10–6 + 10–4 + 10 + 10–12 + 10–20 = 10 M sp (b) pH = 9, pOH = 5, [OH–] = 10–5 5 × 10–33 = [1 × 10–3] [OH–]3 [OH–] = 1.7 × 10–10 s=10–6+10–8+10–7+10–8+10–12 = 1.12 × 10–6 M pOH = 9.767 (c) pH = 13, pOH = 1, [OH–] = 10–1 pH = 4.23 s = 10–6 + 10–12 + 10–15+10–4+10–4 = 2 × 10–4 M 7 . HCl 0.09 M 4 . Given : CH3COOH C1 = 0.1 M, 1 , K a1 10 –5 1 Cl2 AgCl G1°=–109.7kJ/mole–1 Cl2CHCOOH C2 = 0.09 M, 2 , K a2 ? Ag+ pH = 1, [H+] = 0.1 2 Ag Ag+ + e– G°2 = 77.2 kJ/mole–1 0.1 = 0.09 + C11 + C22 e– + 1 Cl2 Cl– G3°=–131.2kJ/mole–1 C11 + C22 = 0.01 ........(i) 2 CH3COOH CH3COO– + H+ so for reaction ( ) C1 AgCl Ag++Cl– G ° =– G1°+ G ° + G ° C1 – C11 C11 0.1 2 3 Cl HCCOOH Cl HCCOO– + H+ G° = 55.7 kJ/mole 22 G° = – RT ln Ksp C2 55.7 × 10–3 = –8.314 × 298 ln Ksp C2 – C22 C22 0.1 Ksp = 1.723 × 10–10 1.723 × 10–10 = [Ag+] [Cl–] = s × 0.05 K a1 (C11 )(0.1) ~ 1 × 0.1 = 10–5 C1 (1 1 ) s = 3.446 × 10–9 M 1 = 10–4
putting this in equation (i)((i) ) 1 2 . k1 = 7.5 × 10–3, k2 = 6.2 × 10–8 , k3 = 10–12 H3PO4 + NaOH NaH2PO4 + H2O 10–4 × 0.1 + 0.092 = 0.01 (a) 63 2 = 0.111 3– 3 K a2 (C22 )(0.1) = (0.111)(0.1) = 1.248 × 10–2 (b) pH = pk1 = 2.12 C2 (1 2 ) 1 0.111 H3PO4 + NaOH NaH2PO4 + H2O 66 8. C = 10 0.935 1000 = 5.5 M – –6 17 100 pH = pk1 pk2 = 4.66 2 Ka = C2 5.5 × 10–6 = 5.5 2 H3PO4 + NaOH NaH2PO4 + H2O = 10–3 (c) 4.8 7.2 [OH–] = C = 5.5 × 10–3 pOH = 2.26 , pH = 11.74 – 2.4 4.8 9. ln k w2 H 1 1 NaH2PO4 + NaOH Na2HPO4 + H2O k w1 R T1 T2 4.8 2.4 2.4 – 2.4 5.474 10 14 = H 1 1 (d) pH = pk2 = 7.2 ln 1.08 10 14 8.314 298 323 H3PO4 + NaOH NaH2PO4 + H2O 4 10 H = 51952.6 J = 51.95 kJ/mole –6 4 1 0 . In begining [H+] = KaC NaH2PO4 + NaOH Na2HPO4 + H2O 46 [H+] = 1.8 105 = 0.004242 pH = 2.372 – 24 On doubling pH, new pH(pH , pH) Na2HPO4 + NaOH Na3PO4 + H2O 42 = 4.744 [H+] = 1.8 × 10–5 2–2 CH3COOH CH3COO– + H+ 13. pH = pk3 = 12 C (a) For H2CO3 k1 = 4.2 × 10–7, k2 = 4.8 × 10–11 (b) H3PO4k1=7.5× 10–3, k2=6.2× 10–8, k3 = 10–12 C – C C C (c) Na2CO3 + HCl NaHCO3 + NaCl (d) 22 (C)2 , C = [H+] = 1.8 × 10–5 ––2 Ka = C(1 ) pH = pk1 pk2 = 8.347 1.8 × 10–5 = (1.8 10 5 )2 2 C C Na3PO4 + HCl Na2HPO4 + NaCl C – C = 1.8 × 10–5 0.8 1.6 + NaCl 0.8 C = 3.6 × 10–5 – 0.8 NaH PO 1 = 2.77 × 104 L Na HPO + HCl 24 V= 24 C 0.8 0.8 0.8 11.(a) PV = nRT –– 1 × 0.959 = n × 0.0821 × 298 pH = pk1 pk2 = 4.66 2 n = 0.03919 volume of H2O = 1 mL (per volume of H2O) Na3PO4 + NaH2PO4 2Na2HPO4 55 10 (H2O = 1 mL (H2O )) –– n 0.03919 C = V = 103 = 39.19 M pH = pk2 pk3 = 9.6 pkb = 3.39 kb = 4 × 10–4 2 [OH–] = K bC 0.1252M H3PO4 + Na3PO4 Na2HPO4 + NaH2PO4 44 pOH = 0.9023 pH = 13.097 –– 44 (b) M = 0.1252 for NaOH (NaOH 0.1252) pH = pk2 = 7.2
1 4 . BOH + HCl BCl + H2O 16. Initial ()pOH= pKb =4.744 4 4 Let x mole of NaOH has been added so (NaOH ––4 x ) At end point m moles of BOH = m moles of HCl [ N H + ] = 0.1 + x, [NH3] = 0.1 – x 4 ( BOH m moles) pOH = 5.744 0.16 × V = 4 V = 25 mL Total volume ( ) = 40 + 25 = 65 mL 0.1 x 5.744 = 4.744 + log 4 [BCl] = 0.1 x 65 0.1 x since BCl is SAWB 1 = log 0.1 x 11 0.1 x 0.9 pH = 7 – 2 pkb log C 2 = 10 x = = 0.0818 moles 0.1 x 11 1 14 5.23 = 7 – 2 pkb 2 log 65 17. Na3PO4 + H2O Na2HPO4 + NaOH pkb = 4.75 K = Kw = 0.0222 K3 Now on further adding NaOH NaOH Na2HPO4 + H2O NaH2PO4 + NaOH BCl + NaOH BOH + NaCl 4 1.8 K = Kw = 1.58 × 10–7 K2 2.2 – 1.8 pOH = pk + log 2.2 = 4.837 pH = 9.1628 NaH2PO4 + H2O H3PO4 + NaOH b 1.8 0.06 K = Kw = 1.4 × 10–12 15.(a) pH = pKa + log 0.05 K3 pH = 3.744 + log 1.2 = 3.823 since equilibrium constant of 2nd & 3rd reaction is very less, [OH–] will mainly come from 1st reaction. (b) On diluting solution 10 times (10 (2nd 3rd ) [HCOOH] = 0.005, [HCOONa] = 0.006 ,[OH–] 1st ) HCOOH H + + HCOO– Na3PO4 + H2O Na2HPO4 + NaOH 0.1 0.005 0.005 (1 – ) 0.005 0.005 + 0.006 0.1–x x x Ka = 1.8 × 10–4 = (0.005 0.006) (0.005) x2 = 0.0222 45x2 + x – 0.1 = 0 0.005(1 ) 0.1 x 0.0052 0.006 = 1.8 × 10–4 x = 3.73 × 10–2 1 [OH–] = x = 3.73 × 10–2 M 27.772 + 34.33 – 1 = 0 = 0.0285 [H+] = 0.005 = 1.425 × 10–4 pH = 3.846 Na2HPO4 + NaOH NaH2PO4 + NaOH x (c) On further diluting solution by 10 times ( x–y y y+x 10 ) x – y ~ x, y + x ~ x, so [HCOOH] = 0.0005, [HCOONa] = 0.0006 HCOOH H+ + HCOO– 1.58 × 10–7 = (y x) y y (x y) 0.0005 + NaOH NaH2PO4 + H2O H3PO4 z+x 0.0005(1–) 0.0005 0.0005+0.0006 y Ka = 1.8 × 10–4 = (0.0005 0.0006)(0.0005) y–z z 0.0005(1 ) y – z ~ y, z + x ~ x 0.00052 0.0006 = 1.8 × 10–4 z(x z) zx z 3.73 10–2 = (y z) y 1.58 107 1 1.4 × 10–12 = = = 2.772 + 4.33 – 1 = 0 = 0.2047 [H+] = 0.0005 = 1.0235 × 10–4 z = 5.93 × 10–18 [H3PO4] = z = 5.93 × 10–18 M pH = 3.9899
1 8 . pH = 8, [H+] = 10–8, [OH–] = 10–6 2 2 . 4 m mole of H+ ion will produce (H+ 4 m H C O – H+ + C O – 2 K = 5 × 10–13 mol ) 3 3 [H+] = 4 10 3 = 0.04 0.0005 0.1 0.0005–y–z 10–8 y P O –3 + H+ HPO4–2 1 4 k3 0.04 0.08 HCO –+H O H CO +OH– K= Kw =2 × 10–8 0.02 0.02 0.1 32 23 K1 – 0.0005 z 10–6 H P O –2 + H+ H 2P O – 1 0.0005–y–z 4 4 k2 since equilibrium constant for first reaction is very 0.1 0.02 less y << z ( 0.08 – 0.02 y<< z) so now they form a buffer solut ion of HPO –2 & H2PO4– 4 ( HPO –2 H2PO4– 4 2 × 10–8 = z(106 ) ) 0.0005 z = + 0.08 (k2 = 6.3 × 10–8) 51 z = 0.0005, z = 9.8 × 10–6 pH pk2 log 0.02 pH = 7.2 + log 4 = 7.8 [H2CO3] = 9.8 × 10–6 M 2 3 . At equivalence point ( ) [HCO3–] = 0.0005 – 9.8 × 10–6 = 4.9 × 10–4 M meq. of HA = meq. of NaOH = 3.612 10 –8 y NaA + HCl HA + HCl 4.9 104 5 × 10–3 = 3.612 1.806 –2 10–8 1.356 – 1.806 3 [ C O ] = y = 2.45 × M [S] pH = pKa + log [A] 1 9 . Fe+3 + H2O Fe(OH)+2 + H+ k = 6.5 × 10–3 x 4.92 pKa + 1.356 0.95x 0.05x 0.05x = log 6.5 × 10–3 = (0.05)2 x 1.806 0.95 x = 2.47 pKa = 5.044 [H+] = 0.05x = 0.1235 pH = 0.908 Now NaOH + HA NaA 22 –– 2 salt [NaA] = 2 0.1 2 0 . pH = pK2 + log acid 20 y pH = 7 1 1 log C = 7 5.044 1 6.7 = 7.2 + log + 2 pKa + + log 0.1 0.005 2 2 2 y = 1.58 × 10–3 mole pH = 9 2 1 . When indicator is half in ionic form pH( 2 4 . In begining let x m mole of BOH are present ( pH) = pKa = 7.2 BOH x m mole ) pH = 7.2 + log 5 = 7.898 BOH + HCl BCl + H2O x now with this pH ( pH ) 3x x 7.898 = pK + log 4 = pK = 7.2959 44 a1 a1 pOH 1 again when 50% of new indicator is in ionic form = pkb + log 3 (50% ) 14 – 9.24 = pkb – log 3 pH = pKa1 = 7.2959 pkb = 5.237 kb = 5.8 × 10–6
now BCl + NaOH BOH 26. Zn(OH)2(s) Zn+2(aq) + 2OH – Ksp x (aq) 6 4 Zn(OH)2(s) + 2OH– [ Z n ( OH )4] –2 KC (aq) –– x dissolved Zn(OH)2 is present in form of Zn+2 & x [Zn(OH)4–2] so solubility s = [Zn+2] + [Zn(OH)4]–2 = 6, x = 24 4 (Zn(OH)2Zn+2 [Zn(OH)4–2] 24 [BOH] = 0.48 50 [OH–] = kb C = 1.668 × 10–3 s= [Zn+2] + [Zn(OH)4]–2 ) pOH = 2.77 s = K sp + K [OH–]2 pH = 11.22 [OH ]2 C 2 5 . (a) pH at one fourth neutralization ( For min. solubility ( ) pH) x/4 ds 2K sp + 2KC [OH–] = 0 (pH)1 = pka + log 3x / 4 = pka + log d[OH] = 0 [OH ]3 1 3 [OH–] K sp 1/4 pH at three fourth neutralization ( = KC pH) [OH–] = 9.8 × 10–5 (pH) = pk + log 3x / 4 = pk + log pOH = 4.00869 pH = 9.9913 2a x/4 a 3 2 7 . AgCl(s) Ag+ + Cl– Ksp pH = (pH) – (pH) = 2 log 3 = 2 1 0.9542 Ag+ + 2NH3 A g ( N H ) + K × K2 2 3 1 (b) 4.45 = pk + log x/3 = pk – log 2 AgCl(s)+2NH3 Ag(NH3)2++Cl–, K = Ksp K1K2 a 2x /3 a pka = 4.751 0.2 xx (c) pH = 2 i.e. 0.2–2x (pH)1 = pka + 1, (pH)2 = pka – 1 K= x2 = K K K = 0.002828 sp 1 2 [S] 10 (0.2 2x) [A] For pk + 1 a x x = 10 x = 10a – 10x = 0.05318 ax 0.2 2x 10a x = 0.009613 x= Solubility () = 9.6 × 10–3 M 11 2 8 . [Cl–] = 0.02 M 10 th i.e. stage Ag(CN) – Ag ++2C N– K = 4 × 10–19 2 inst 11 [S] 1 0.05 For pka – 1 0.05–x~0.05 x 2x [A] 10 x1 4 × 10–19 x.(2 x )2 = = 0.05 a x 10 a 4x3 = 4 × 10–19 x = 1.7 × 10–7 x= 0.05 11 i.e. 1 th stage [Ag] [Cl] = 1.7 × 10–7 × 0.02 = 3.4 × 10–9 > Ksp 11 so AgCl will precipitate. ( AgCl )
2 9 . After mixing with equal volume ( A–2 + H2O HA– + OH– kw ) k2 [Ag+] = 0.01 M, HCN = 0.01 M HA– + H O H A + OH– kw 22 k1 HCN H+ + CN– Ka Ag+ + CN– AgCN(s) 1 kw [HA ][OH ] [HA–] = k w [A 2 ] K sp k2 = [A 2 ] k2 [OH ] HCN + Ag+ H+ + AgCN(s) , kw = [H2A][OH ] [H2A] = kw [HA ] k1 [HA ] k1[OH ] K = K a = 2.25 × 106 [H2A] = k 2 [A 2 ] K sp w k1k 2 [O H ]2 0.01 0.01 From mass balance ( ) x x 0.01 + kw [A 2 ] k 2 [ A 2 ] k2 [OH ] w since K value is very high almost all of reactant will s = x + convert into product k1k 2 [OH – ]2 (K [H ]x [H ]2 x s=x+ ) k2 k1k2 0.01 = 2.25 × 106 X = 6.6 × 10–5 s x2 x = 1 [H ] [H ]2 [Ag+] = 6.66 × 10–5 M k2 k1k2 3 0 . M A M + 2 + A–2 ss ksp = [M+2] [A–2] = s . x = s2 [H ] [H ]2 Let solubility is s. ( s) 1 k2 k1k2 But some amount of A–2 will undergo hydrolysis. [H ] [H ]2 k sp 1 Let x is the amount of A–2 left in solution. k2 k1k2 s= (A –2 x A–2 )
IONIC EQUILIBRIUM EXERCISE # 4[B] 1 . pH = 1 ; H+ = 10–1 = 0.1 M 6. H2CO3(aq) + H2O() HCO3–(aq) + H3O+(aq) pH = 2 ; H+ = 10–2 = 0.01 M 0.034–x xx M1 = 0.1 V1 = 1 M = 0.01 V = ? [H C O ][H O ] xx 3 22 K = 3 = From 1 [H2CO3 ] 0.034 x M1V1 = M2V2 4.2 × 10–7 x2 x = 1.195 × 10–4 0.1 × 1 = 0.01 × V 0.034 2 As H2CO3 is a weak acid so the concentration of H2CO3 will remain 0.034 as 0.034 >> x. V2 = 10 litre x = [H+] = [HCO3–] = 1.195 × 10–4 volume of water added = 10 – 1 = 9 litre. Now, HCO3– (aq) + H2O() CO32–(aq) + H3O+(aq) 2 . H+ = C ; = [H ] or 10 3 = 10–2 x–y y y C = As HCO3– is again a weak acid (weaker than H2CO3) 0.1 with x >> y. Ka = C 2 = 0.1 × 10–2 × 10–2 = 10–5 3 . Cr(OH)3(s) Cr3+ (aq.) + 3OH–(aq.) 27S4 = Ksp K sp 1/4 1.6 10 30 1/4 [C O 2 ][H O ] y (x y) 3 (x y) K2 = 3 S = 27 = 27 [H C O ] 3 4 . pH = 5 means Note : [H3O+] = H+ from first step(x) and from [H+] = 10–5 second step(y) = (x + y) HA H+ + A–1 [As x >> y so x + y x and x – y x] t=0 c 0 0 So, K y x = y c 2x teq c(1 – ) c (c)2 [H ]2 K2 = 4.8 × 10–11 = y = [ C O 2– ] 3 [H ][A ] Ka = So the concentration of [H+] [ H C O – ] [HA ] c(1 ) c [H ] 3 = concentrations obtained from the first step. As But, [H+] << C the first step. As the dissociation will be very low Ka = (10–5)2 = 10–10 5 . AgBr Ag+ + Br– in second step so there will beno change in these Ksp = [Ag+] [Br–] concentrations. For precipitation to occur [H+] = [ H C O 3– ] = 1.195 × 10–4 & [ C O 2 – ] Ionic product > Solubility product 3 = 4.8 × 10–11 7. AgBr Ag+ = Br– [Br–] = K sp 5 10 –13 = 10–11 Ksp = [Ag+] [Br] [Ag ] 0.05 For precipitation to occur Ionic product > Solubility product i.e., precipitation just starts when 10–11 moles of [Br–] = K sp 5 10 13 10 11 KBr is added to 1 AgNO3 solution [Ag ] 0.05 Number of moles of Br– needed from KBr = 10–11 i.e., precipitation just starts when 10–11 moles of Mass of KBr = 10–11 × 120 = 1.2 × 10–9 g KBr is added to 1 AgNO3 solution
Number of moles of Br– needed from KBr = 10–11 1 1 . MX2 M++ + 2X– Mass of KBr = 10–11 × 120 = 1.2 × 10–9 g s 2s 8. Na2CO3 2Na+ + CO 2– Where s is the solubility of MX2 3 then Ksp = 4s3 ; (2s)2 = 4 × 10–12 = 4s3 ; s = 1 × 104 [M++] = s = 1 [M++] = 10 × 10–4 1× 10–4M 1× 10–4M 1× 10–4M KSP(BaCO3) = [Ba2+] [CO32–] [Ba2+] = 5.1× 10 –9 = 5.1× 10–5 M 12. pH = –log[H+] = log 1 1 10 4 [H ] 9 . In corresponds to choice (c) which is correct answer. BA + H2O BOH + HA 5.4 = log 1 [H ] Base Acid On solving, [H+] = 3.98 × 10–6 Now pH is given by 1 3 . MX4 M4+ + 4X– 111 S 4S pH = 2 pKw + 2 pKa – 2 pKb Substituting given values, we get KSP = [s] [4s]4 = 256 s5 1 s = K sp 1/5 pH = (14 + 4.80 – 4.78) = 7.01 2 256 1 0 . Let s = solubility 1 4 . Mg(OH)2 [Mg2+] + 2[OH–] x 2x AgIO3 Ag+ + IO3– ss Ksp = [Mg] [OH]2 = [x] [2x]2 = x.4x2 = 4x3. 1 5 . AB A+2 + 2B– Ksp = [Ag+] [I O – ] = s × x = s2 3 2 Given Ksp = 1 × 10–8 [A] = 1.0 × 10–5, [B] = [2.0 × 10–5], Ksp = [B]2[A] = [2 × 10–5]2 [1.0 × 10–5] = 4 × 10–15 s = K sp 1 108 = 1.0 × 10–4 mol/lit = 1.0 × 10–4 × 283 g/lit ( Molecular mass of Ag IO3 = 283) 1.0 104 283 100 = gm/100ml 1000 = 2.83 × 10–3 gm/100 ml
REDOX REACTION EXERCISE # 1 1 . No. of equivalent = mole × n-factor 8. xHI + yHNO NO + I + HO 3 2 2 ( = ×n-) (2 I I2 2e) 3 .....(1) SO –2 + HO SO –2 + 2H+ + 2e– ...(1) 5 2 3 2 4 ( NO 3 3C N O ) 2 .....(2 ) n-factor for R × N (1) is (2) 50 × .1 × n = 25 × .1 × 2 Adding (1) and (2) 2.5 2 6I– + 2NO – 2NO + 3I n= 3 2 5 6HI + 2HNO3 2NO + 3I2 + 4H2O n=1 x=6, y=2 Final oxidation state will be (3 – 1) = 2 ( (3–1)= 2 ) +7 +3 +4 2 . Meq.( )ofK Cr O = Meq.( )9 . MnO4– + C2O–42+ H+ Mn+2 + 2CO2 + H2O 2 27 2× 1 of ABD n-factor of K Cr O in acidic medium = 6. 5 2 27 ( KC r O n =6) 2MnO4–+5C2O4–2+H+(6) 2Mn+2 + 10CO2 + 8H2O 2 27 (A) 2, 5, 16 6 × 1.68 × 10–3 = x × 3.26 × 10–3 x=3 10. Molarity () = Normality( ) New oxidation state of A–n will be = –n + 3 n factor( ) (A–n =–n +3 ) (e) 1 M H PO = 1/3 M H PO 34 34 OO OO 11. M= No. of equivalent( ) Volume of sol ( )(in L ) O––S––O––S=O Na–O––S––S––S––S=O +6 +6 +5 +5 Meq. = 50 × 2 = 10 3 . (A) OH OH O ONa M mole = 10 5 H2S2O7 (6, 6) Na2S4O6 (5, 0, 0, 5) 2 M H2C2O4.2H2O = 24 + 16 × 4 + 2 + 2 × 18= 126gm. H2SO5 Mass of H C O .2H O ( ) 2 O 22 4 S = 126 × 5 × 10–3 = .63gm + – +4 Na2S2O3 O=S––O––O––H 1 2 . 63 % (w/v) H2C2O4.2H2O O 100 mL contain = 63 gm (B) NaO––S=O O–Na+ (6) 125 mL = 63 125gm 100 (4, 0) (C) SO > SO > H S > S 8 Mole of HCO 63 125 5 3 22 22 4 = 126 100 8 +6 +4 –2 0 40 x 100 125 (D) H SO > SO > H S > H S O . 24 22 22 8 +6 +4 –2 (6, 6) 125 40 5 Mole of NaOH = 100 40 = 4 4. (NH ) Cr O N + Cr O + 4H O 42 2 7 2 23 2 Decomposition () R × N H2C2O4 + 2NaOH Na2C2O4 + 2H2O 5 . NaN3 N3– N –1/3 2 × mole of Acid () = Mole of NaOH NH N –1 55 22 2 NO N +2 5(A) 84 NO N +5 5 25 4 6. S O –2 + I S O –2 + I– And will have mole of NaOH (NaOH 25 2 46 Redox R × N () I2 Re dn I 5 4 S 2 O 2 Oxd. S 4 O 2 ) 3 6 (4, 0) (5, 0, 0, 5) Sol. is neutral ( )
1 3 . CaCO3 + HCl CaCl2 + H2O + CO2 (224 mL) 1 9 . M eq.()ofKMnO = M eq. () 4 CO mole = 224 102 of C 2O –2 2 22400 4 10 2 1 90 1 = 100 × NC 2 O 2 200 10 3 20 20 4 HCl M= HCl N = .05 99 M. eq. ()ofH3PO4 = M. eq. () M mole of oxalate = 22 4 of Ba(OH) Wt of oxalate = 9 88 103 22 9 × 10–3=198×10–3 2 4 % C O –2 = .198 100 = 66 % 1.5 v 3 90 .5 2 90 2 .5 2 4 .300 2 0 . M eq. of KMnO4=M eq. of C2O4–2 = M eq. of CaCO3 v = = 20 mL 3 1.5 40 × .25 = M eq. of CaO 1 5 . KMnO n factor in Acidic medium = 5 10 103 Mole of CaO 4 2 (KMnO4 n ) K Cr O n factor in acidic medium = 6 5 103 56 100 2 27 % CaO = (K Cr O n ) .518 2 27 CaO = 54 % 6 × 0.1 × V = 5 × 0.3 × V 21. 2CrO + 3H SO Cr (SO ) + 3H O + 7/2O 12 5 24 2 43 2 2 6 V1 V2 1 mole CrO Liberate () 7/4 mole of O 15 5 2 V2 2 V1 22. +3 +3 5 AsO–43+ 2H+ + 2I– AsO3 + H2O + I2 2 1 6 . K Cr O have greater n factor as compaire KMnO molar mass ( )NaAsO 2 27 4 34 so same volume of K2Cr2O7 will oxidise more = 23 × 3 + 75 + 15 × 4 amount of Fe+2. molar mass ( )=208 (K2Cr2O7 n KMnO4 K Cr O F e+2 eq.()of AsO – = 1 1 2 27 4 208 104 ) 2 17. Mole of V2O5= 10 16 10 80 10 =.055 equivalent ()of Na AsO = equivalent () 51 2 5 102 182 34 Mole of V+2 = .055 × 2 of I2 = .1098 mole ~ 0.11 = equivalent ()of Na2S2O3 . 4 1 .2 V 104 V 2 V O 2 2e I2 2e 2I 1 L V = 48.1 mL 104 .2 Mole of I = Mole of V+2 = .11 2 3 . M eq. of KMnO = 25 × .2 = 5 2 4 18. Cl2 + S 2O –2 S O –2 + Cl– + S 3 4 (A) M eq. of FeSO = 25 .2 5 41 50 × .01 × n factor () = 5 × 10–4 × 2 × 103 10 104 103 (C) M eq. of HO = 25 .1 2 2.5 2 5 .5 22 n factor S2O3–2 = = 2 × 10–3 × 103 (D) M eq. of SnCl = 25 .1 2 5 2 n factor = 2 (i) Cl + HO + Na S O Na SO + S + 2HCl 24. N N 1 V1 N 2 V2 3 250 750 1 1500 1.5 2 2 22 3 24 V1 V2 1000 1000 Balanced equation Molarity () = 1.5 0.75 3 (ii) Mole of S O –2 = 50 × 10–3 × 10–2 = .0005 24 23 (iii) Equivalent of oxidising agent ( 1 )= 5 × 10–4 × 2 = .001 HO HO + O 22 2 22 5 104 1L H O , 1 Mole H O give O = 11.2 L 50 103 22 22 2 (iv) Molarity of Na SO ( )= 1L HO, 0.75 HO = 11.2 × 3 24 22 22 = 10–2 = .01 M 4 = 8.4 V O 2
Volume strength( )= 8.4 V 2 8 . (320 mL, 10V H2O2) + (80 mL, 5NH2O2) Alternative( )V =5.6× N=5.6× 1.5=8.4V (A) (B) S 10 2 5 . M eq. of KMnO4 = .2 × 50 × 5 = 50 NA = 5.6 M eq. of H O = 2 × 25 × .5 = 25 NC N A VA N B VB 10 320 5 80 22 VA VB 5.6 M eq. of KMnO remaining (KMnO 320 80 44 ) = (50 – 25) = 25 Mole of KMnO = 25 103 5 103 = .005 400 1000 4 45 =7 26. 100x 3 2 NC 400 11 10 = (17/7) 1000 24 7 x = 20 2.5 VS 5.6 17 VS 13.6V 8 7 17 2 7 . Ca(HCO3)2 + CaO 2CaCO3 + H2O 17 M = Mole / L 2 × 100 C 14 56 gm 2 gm M= 72 Mol/L C 200 2 C = 17 34 gm / Ltr. 56 x 14 x = .56 gm Concentration () =41.285 gm/Ltr. REDOX REACTION EXERCISE # 2 1 . Fe + 1 5. HNO3 + N H + N2 + NO2 1 2 O2 FeO 4 0 0.65 Meq of HNO3 = Meq of N H + 2FeO + 4 0.15 1 mole × n-factor = mole × n-factor 1 1 × mole = 1 × 6 2 O 2 Fe O mole of HNO3 = 6 23 1 0.15 6 . Z x KMnO 4 H M n2 Z y (1–0.60) 0.30 0.4 0.30 Meq of Zx = Meq of KMnO 4 Mole ratio ( ) FeO = 0.40 4 25 × 0.1 × (y – x) = 25 × 0.04 × 5 Fe2O3 0.30 3 (y – x) = 0.04 5 2 2 . FeSO4 0.1 1 mole of SO 2– than 1 mole Fe2+ Z2+ Z4+ 4 In Fe (SO ) (4 – 2) = 2 2 43 2– Fe3+ 3 mole of S O 4 than = 2 mole 7 . Cl– + KMnO4 Mn2+ + Cl2 Meq of NaCl = Meq of KMnO 1 mole of SO 2– than = 2 mole Fe3+ 43 4 10 5 mole × n-factor = ratio ()= Fe2 1 3 158 2 Fe3 2 2 mole × 1 = 10 5 158 2 33 3. 2Fe + O Fe O 2 2 23 10 5 volume of Cl2 = × 22.4 = 3.54 L Let assume n mole of Iron 158 2 Initial n 0 8. I I– + IO – 3 2 n–x x I2 2I– I2 2IO3– 2 2e– I2 2I– × 5 I2 + 6H2O 2IO3– x 10e– 5I2 10I– I + 6H O + 12OH– wt. (n – x) × 56 + 2 × 160 = n × 56 × 1.1 22 24x = 5.6 n 2 I O – + 12H O 3 2 I + 12OH– 2 I O – + 6H O + 10e– 2 3 2 x 12OH– + 6I2 10I– + 2 I O – + 6H2O n = 0.2323 3 % total Iron = 23.3% ratio of IO 2 1:5 3 10 I
9 . Eq. mass ( ) 1 8 . Half meq of salt (Na2CO3) in neutralize using Hph molecular mass () indicator = n factor( ) ((Na CO ) Hph 23 ) As +3 2As+5 n-factor 4 1 2 meq of salt = meq of HCl 2 6 24 2 1 S3 3 S total n-factor (n-) = 28 (20 × 0.1 × 2) = 0.05 x .........(i) 2 Eq. mass ( )=m.wt. complete meq of salt (Na2CO3 . NaHCO3 . 2H2O) is neutralise using MeOH indicator 28 ((Na CO . NaHCO . 2H O) 23 32 2 2 5 2 5 6 4 MeOH ) 1 0 . Zn S HNO3 Zn (NO3 )2 H2SO4 NO2 Meq. of salt = Meq of HCl change in O.N. of Zn (Zn 20 × 0.1 × 3 = 0.05 y ..........(ii) ) eq (ii) – eq (i) Zn = 0 0.05 (y – x) = (6 – 2) S = 6–(–2) = 8 N=5–4=1 4 (y – x) = 4 × 20 (y – x) = 0.05 1 4 . From Hit and trial method (y – x) = 80 mL 3H O + CN– NO + CO + 6H+ + 7e– ...(i) 1 9 . Meq of I2 = Meq of Hypo solution ( ) 2 2 = 20 × 2.5 × 10–3 3CN– + 9H O 3NO + 3CO + 18H+ + 21e– 2 2 Meq of 10ml I–=Meq of I = 20 × 2.5 × 10–3 = 0.05 2 21e– + 7 N O – + 28H+ 7NO + 14H2O 3 Meq of 100 mL I– = 0.5 Balance equation ( ) Meq of CaCO = 0.5 3 3CN– + 7NO3– + 10H+ 10NO + 3CO2 + 5H2O 1 5 . K2Cr2O7 + Sn2+ Sn4+ + Cr3+ w 1000 0.5 w = 0.06175 123.5 Sn4+ + Fe2+ Fe3+ % = purity ()= 0.06175 100 61.75% meq. of Sn4+ = meq of K2Cr2O7 meq. of Sn4+ = meq of Fe3+ 0.1 20. I + Na S O I– + S O 2– 2 22 3 46 meq. of Fe3+ = meq of K2Cr2O7 let x mL of I react with Hypo (xmL, I 22 4.9 6 N K2Cr2O7 294 0.1 1 ) millimol () × n -factor = 1 × 10 meq of I2 = meq of Hypo xN = 15 × 0.4 xN = 6 .........(i) meq of H SO used by base ( HSO millimol () = 10 24 24 )=10 × 0.3 × 2 = 6 1 7 . Vol. of O at NTP meq of NaOH used by I (I NaOH 2 22 VO = 500 1 273 )=(30 – 6) 2 300 (150 – x) N = 24 ..(ii) VO = 455 mL from eq (i) & eq (ii) 2 150 x 4 5x = 150 35 mL of H2O2 gives 455 mL at N.T.P. x N = M × n-factor (35 mL H2O2N.T.P. 455 mL ) x = 30 mL 30 N = 6 455 1 1 mL of HO gives = 13 N= 22 35 5 = 13 mL of O2 at NTP 1 =M×2 hence volume strength of H O = '13 V' 22 5 M = 1 0.1 (H 2O2 ) 10
2 1 . Let a gm H2SO4 and (3.185 – a) g H2C2O4 2 2 . K2Cr2O7 + KI I2 + Cr3+ Meq of 10 mL mixture = 0.3 meq of 1000 mL mixture = 0.3 × 1000 = 30 I+ Na S O I + S O 2– meq of H2SO4 + meq of H2C2O4 = 30 2 22 3 2 46 Na2S2O3 + K2Cr2O7 meq of Na S O meq. of K Cr O 22 3 2 27 a 1000 (3.185 a) 1000 30 ......(i) 1 1 49 45 30 × N = 15 × N= 20 40 In another ex. meq. of I = meq. of Hypo meq of 100 mL mixture = meq of KMnO4 2 = 4 × 0.02 × 5 meq. of I2 =meq. of KI meq of 100 mL mixture = 0.4 meq of KI = meq. of K2Cr2O7 meq of 1000 mL mixture = 4 meq of H C O = 4 1 24 × = meq. of 25 mL K Cr O 22 4 40 2 2 7 24 500 meq. of 500 mL K2Cr2O7 = 40 25 w 6 1000 12 w = 0.588 294 3.185 a 1000 4 .............(ii) % purity ()= 0.588 100 73.5% 45 0.8 REDXO REACTION EXERCISE # 3 COMPREHENSION BASED QUESTIONS 4. eq. of H2SO4 + eq. of SO3 = eq. of NaOH x 2 (1 x) 2 = 54 × 0.4 × 10–3 Comprehension # 1 98 80 1 . H2O + SO3 H2SO4 ; 18 g water combines with 80 g SO3 % of free SO = 1 0.74 100 26% 31 (18 g 80 g SO ) 3 4.5 g of H2O combines with 20 g of SO3 Comprehension # 2 4.5 g H2O, 20 g SO3 1 L of H O (aq) provide 11.2 L of O at STP 22 2 100 g of oleum contains 20 g of SO3 or 20% free 1 . SO3 moles of O2 11.2 0.5 = 100g 20g SO3 20% SO3 22.4 2 . Initial moles of free SO3 present in oleum nH2O2 required 0.5 × 2 = 12 2 moles M H2O2 nH2O2 1M 18 3 Vsolution SO3 = moles of water that can combines with SO3 2. Strength in percentage mean how many g H2O2 combined with water = 9 1 mole present per 100 mL 18 2 (100 mLg SO3 H2O2 ) moles of free SO remainsSO 33 = 2 1 1 mole M 1 and mol. wt. of HO = 34 32 6 22 34 H O present per litre of solution or 3.4 H O 22 22 volume of free SO at STP (STP SO 33 present per 100 mL of solution. ) = 1 22.4 3.73L 34 H2O2 3.4H2O2 100 mL 6 3 . Na2CO3 + H2SO4 Na2SO4 + H2O + CO2 3. m.eq. of H2O2 = m.eq. of KMnO4 20 × N = 0.05 × 5 × 80 N = 1 moles of CO2 formed = moles of Na2CO3 reacted 5.3 N = volume strength ()of H2O2 = = 0.05 5.6 106 volume strength of H2O2 = 5.6 volume of CO2 formed at 1 atm pressure and 300 K = 0.05 × 24.63 = 1.23 L
4 . m-eq. of Ba(MnO ) = m. eq. of H O Comprehension # 3 42 2 2 n-factor () = 5 × 2 =10 M 33.6 3 1. H3PO2 is a monobasic acid ( ) 11.2 2. n-factor =1 w 3. n-factor = 3 – 2 × 0.95 = 0.8075 375 × 10 × 1000 = 3 × 125 × 2 ; w = 28.125 0.95 M eq. wt. = 0.8075 % purity ()= w 100 28.125 100 = 70.31 4. n-factor of VO = 3; Fe2O3= 1 × 2 =2 ; = 40 40 x and y are 2 and 3 REDOX REACTION EXERCISE # 4[A] 4 . KMnO4 + X+n X O – + Mn+2 1 3 . CaCO3 + 2HCl CaCl2 + CO2 + H2O 3 0.1 mole 0.25 1.61×10–3mole 2.63×10–3mole – 0.05 Eq. ()of KMnO4 = Eq. of X+n HCl + KOH KCl + H2O 0.05 2×V 1.61 × 10–3 × 5 = 2.63 × 10–3 × (5 – n) n=2 56 = M 35.5 M = 41 V = 0.05 L = 25 mL 2 2 6 . CuS + Cu2S + KMnO4 Mn+2 + Cu+2 + SO2 1 4 . 2NaOH + NaH2PO4 Na3PO4 + 2H2O 6 85 12 Eq. wt. () ofCuS = M1/6 1×V = 0.1 Mole Eq. wt. () ofCu2S = M2/8 Eq. wt. () ofKM nO4 = M3/5 120 8. N = 53 0.06 V × 1 = 0.1 × 2 250 V = 0.2 lit = 200 ml. n-factor = 2 1 5 . CaCO3 + 2HCl CaCl2 + H2O + CO2 0.06 x mole 2x M = 0.03 MgCO3 + 2HCl MgCl2 + H2O + CO2 2 y mole 2y 2x+2y= (50 0.8 – 16 0.25) x+y=0.018...(1) 9 . H2SO4 + 2 NH3 (NH4)2SO4 1000 (30 – 25) Meq. 25 Meq. x × 100 + y × 84 =1.64 ...(2) (30 × 0.2) Meq. % CaCO3 = x 100 100 = 48.78% 1.64 VNH3 = 25 × 10–3 × 22400 = 537.6 ml % MCO3 = 51.22% 1 0 . n1 × 56 + n2 × 74 = 4.2 ....(1) 1 6 . M Eq.()of CaCO3 = M Eq. of HCl – n1 × 1 + n2 × 2 = 0.1 ....(2) M Eq. of NaOH % of KOH = n1 56 100 = 35% ....(1) 4.2 w 1000 = 10 × 4 – 4 × 18.75 × 0.2 = 25 (100 / 2) Ca(OH)2 = 65% w = 1.25 gm 1 1 . n × 106 + n × 84 =1 n × 2 + n × 1 = 0.1 × V × 1000 ....(2) % CaCO3 = 1.25 100 = 83.33% 1.5 V = 157.89 ml 1 2 . Eq. of H2SO4 = Eq. of NaOH 1 7 . Na2CO3 + NaHCO3 n × 2 = 0.0267 × 0.4 x g milli mole n = [0.0267 × 0.2] mole of H2SO4 total. x= 4×1 ....(1) [N × 98 – 0.5] = mass of H2O added mole of H2O = mole of SO3 2x + 4 = 10.5 % of SO3 = 20.72 % y = 2.5, x = 4 Na2CO3 = 4 × 106 mg = 0.424 mg NaHCO3 = 0.21 gm
1 8 . Na2CO3 NaOH 26. Sn + K2Cr2O7 SnCl4 + Cr+3 x y m mole 1 0.1 N V ml x + y = 19.5 × 0.995 = 19.4025 ... (1) 1 ... (2) M / 4 × 1000 = 0.1 × V V = 337 ml 2x + y = 25.0.995 = 24.875 x = 5.4775 m mole 5.4725 106 2 7 . Meq. of Cu = 1000 [20 × 0.0327] = 32.7 Na2CO3 = = 23.2 gm/lit. 20 25 NaOH = 22.28 gm/lit. w (63.5/1) 19. NaOH + Na2CO3 1000 =32.7 w = 2.07645 gm x y m mole 1 ... (1) % Cu = 2.07645 100 41.53% x + y = × 17.5 = 1.75 5 10 2 8 . Meq. of Fe = Meq. of K2Cr2O7 0.84 x / 100 1000 = x × N y = 0.25 ... (2) x = 1.5, y = 0.25 m mole 56 N = 0.15 NaOH = 1.5 40 gm = 0.06 gm 1000 0.25 106 1000 Na2CO3= = 0.0265 g m 2 9 . H2C2O4.2H2O + KHC2O4.H2O+NaOH product 2 0 . Na2CO3 NaHCO3 x mole y mole 18.9ml, 0.5 N x y Meq. H2C2O4.2H2O+KHC2O4.H2O+KMnO4Mn+2+CO2 x = 2 × 0.2 = 0.4 ... (1) x mol y mol 21.55ml, 0.25N 4 4 y + x = 2.5 × 0.4 ... (2) =1 x×2+y×1= 18.9 0.5 .... (1) y = 0.6 x = 0.4 1000 2 1 . Same as 19. Ce+2 x y 2 × 1000 = 21.55 × 0.25 ....(2) 2 2 . C e +4 + S n +2 S n +4 + 4 4 × 40.05 + 20 ml % H2C2O4. 2H2O = 14.36% % KH2C2O4.H2O = 81.7% 1M 1M 3 0 . Meq. of Ca(OH)2 = Meq of HCl Meq. of Ce+4 = Meq. Sn+2 w 40.05 × 1 × (4 – n) = 20 × 1 × 2 74 / 2 × 1000 = (50 × 0.5 – 0.3 × 20) (4 – n) = 20 2 1 w 40.05 n=3 % Ca(OH)2 = × 100 = 1.406 50 4 23. + CrSO4 Cr+3 + Se+2 3 1 . Meq. of Na2CO3 = Meq of HCl SeO2 w Meq. of SeO2 = Meq. of CrSO4 106 / 2 × 1000 = 50 × 0.1 – 10 × 0.16 12.53 × 0.05093 × (4 – n) = 25.52 × .1 × 1 w 4–n~4 n=0 % purity = × 100 =90.1% 24. K2C2O4.3H2C2O4.4H2O+MnO4– Mn+2 4 1 + CO2 3 2 . x gm substance () V ml, 0.1 M 0.6 x gm NaCl, 0.37 x gm KCl 1 0.6x 0.37x 1000 = 25 × 0.1 – 5.5 × 0.1 5 0 8 58.5 74.5 × 8 1000 = V × 0.1 × 5 x = 0.1281 gm V = 31.68 ml 3 3 . 12 = 5.6 × N N = 2.1428.57 2 5 . H2O2 + KMnO4 Mn+2 + O2 700 × 2.1428 = 1000 × N 1 x /100 N1 = 1.5 = M1 × 2 (34 / 2) × 1000 = x × N M1 = 0.75 gm/lit = 0.75 × 34 = 25.5 Volume strength of final solution ( 20 )= 5.6 × 1.5 = 8.4 N = = 0.5882 34
3 4 . 50 × N = 20 × 0.1 4 0 . 100 ml 1.62 mg Ca(HCO3)2 N = 0.04 = M × 2 60 × 103 ml 1.62 × 60 × 103 = 972 mg M = 0.02 gm/ = 0.02 × 34 100 gm/ = 0.68 Ca(OH)2 + Ca(HCO3)2 2 CaCO3 + 2 H2O 35. 5 106 =41.66 ppm w 0.972 100× 103 74 162 1 1 1 0 3 0.972 111 120 w = 162 × 74 = 0.444 gm 100 4 1 . Bleaching powder + Mohr salt excess product. 36. 1000 106 = 1.734 ppm (+ ) Mohr salt ()+ KMnO4 product (. 3 7 . 0.001 100 106 =100 ppm 42. Meq. of SeO 2 = Meq. of B rO used 1000 3 3 3 8 . Meq. of H2O2 = Meq. of KMnO4 w 2 1000 = 20 1 5 5 1 2 x 0.632 M 60 25 34 / 2 = 158 / 5 w = 0.084 gm = 84 mg % Purity ()= x 100 = 85% 43. 1 0.552 × 1000 = 100 × 17 × 0.0167 × n 0.4 M 25 3 9 . 5 × x = 5.5 × N 28 n = 6 = No. of electron taken up by oxidant. = 5.6 × N ( ) 5.5 5 × x = 5.5 × 0.909 N = 0.909 x=1 REDOX REACTION EXERCISE # 4[B] 1. meq. of Hypo = 5 = meq. of I2 3. Let H2C2O4 . 2H2O x g in 100 mL (=5=I2 ) (H2C2O4 . 2H2O 100 mL x g ) moles of I2 = 2.5 m moles On reaction with NaOH with phenolphthalein (I2 = 2.5 m moles) (N aOH ) 2CuSO4 + 4KI Cu2I2 + 2K2SO4 + I2 g Eq. of acid in 50 mL (50 mL ) from reaction moles of CuSO4 ( CuSO4 x2 ) = 2.5 × 2 = 5 m moles = Mw of hydrated CuSO4 ( CuSO4 Mw) 2 126 = 159.5 + 18x g Eq. of NaOH (NaOH ) so () 1.2475 = 5 × 10–3 x = 5. = 1 0.11905 10 159.5 18x x 2 0.11905 1 so = x = 1.5 g 2 . meq. of Hypo = 100 × 10 = 10 = meq. of I2 2 126 10 so mass of Na C O = 2.5 – 1.5 = 1 g () (I2 ) 22 4 meq of ClO3– (ClO3– )=10 Now, Na2C2O4 in 0.5g m of same mixture( , 0.5g) – (ClO3– m moles of ClO 3 moles) = 2 H2C2O4 . 2H2O 0.3 g 6H2O + 6Cl2 10Cl– + 2ClO3 + 12H+ Na2C2O4 0.2 g 2 m moles g Eq. of H2C2O4.2H2O(H2C2O4.2H2O ) so moles of Cl = 6 m moles 2 0.3 2 ( Cl2 = 6 m moles) = 6e– + 14H+ + C r 2O – 2 2Cr+3 + 7H2O 126 7 (2Cl– Cl2 + 2e–) 3 ) =0.2 2 14H+ + Cr2O7–2 + 6Cl– 3Cl2 + 2Cr+3 + 7H2O g Eq. of Na2C2O4 (Na2C2O4 134 6 m moles g Eq. of KMnO4 (KMnO4 ) =V10–3 m moles of Cr 2O –2 = 2 m moles 10 7 – 2 10–3 × wt. of C r 2O 7 = 2 × 294 = 0.588 g 0.3 2 0.2 2 V 103 so + = V = 77.46 mL (Cr2O7–2 ) % purity ()= 58.8 % 126 134 10
4 . First HCl will react with KIO3 to from I2 & Cl2 then 6 . 4OH– + 2H2O + SO2 SO42– + 4H2O + 2e– this Cl2 produced will again react with KI to form 4OH– + SO2 S O 2– + 2H2O + 2e– ...(1) 4 I2. (HCl, KIO3 I2 Cl2 Cl2KI I2 2H2O + H2O2 + 2e– 2H2O + 2OH– ) H2O2 + 2e– 2OH– ...(2) Eq. () (1) + (2) Let initially x moles of KIO3 were mixed with y 2OH– + H2O2 + SO2 S O 2– + 2H2O ...(3) 4 moles of HCl then( KIO3x NaOH + HC l NaCl + H2O H Cl y ) Meq. 30 × 0.04 0.024 × 22.48 – 10Cl– I2 2IO 3 + + 5Cl2 1.2 ~ 0.53952 xy 0.66048 × 10–3 – yy – From equation (3) ((3) ) 10 2 Cl2 + 2KI I2 + 2KCl 2OH– + H2O2 + SO2 S O 2– + 2H2O y 4 0.66048× 10–3 0.33024 × 10–3 2 moles of SO = 0.33024 × 10–3 2 y – (SO2 ) 2 wt. ()= 0.33024 × 10–3 × 32=10.5676×10–3 Total moles of I2 formed (I2 )= y y 3y % of S sample(S %)= 10.5676 103 ×100 =1.76% += 0.6 10 2 5 3 y 0.021 24 10 3 7. (Mn2+ Mn3+ + e–) ... (1) so = y = 0.00042 mole 4e– + 8H+ + M n O – Mn3+ + 4H2O ... (2) 52 4 so concentration of HCl (HCl ) equation() (1) × 4 + equation() (2) 0.00042 8H+ + 4Mn2+ + MnO – 4Mn3+ + Mn3+ + 4H O = = 0.0168 M = 0.0168 N 4 2 0.025 or 8H+ + 4Mn2+ + MnO4– 5Mn3+ + 4H2O ...(1) moles of KIO consumed (KIO ) 2e– + 8H+ + Mn3O4 3Mn2+ + 4H2O ...(2) 33 0.00042 from equation (1) milli equivalent of MnO4– =N×V = ((1) MnO4– ) 5 = M × V.f. × V = 31.1 × 11.7 × 5 = 0.72774 volume of KIO consumed (KIO ) 33 0.00042 5 = = 0.00042 L = 0.42 mL milli equivalent of Mn2+ = milli equivalent of 5 – 5 . As2O3 + 6HCl 2AsCl3 + 3H2O M n O 4 ×4 AsCl3 + 2H2O HAsO2 + 3H+ + 3Cl– (Mn2+ = MnO4– × 4) gram equivalent of I2 = gram Eq. of HAsO2 = 0.72774 × 4 = 2.91096 I2 =HAsO2 1 = gram Eq. of AsCl3 from equation (3) milli eq. of Mn3O4 = milli 3 (AsCl3 ) equivalent of Mn2+ = gram Eq. of As2O3 ((3) Mn3O4 =1 Mn2+ (As2O3 ) 3 gram equivalent of As2O3 = 2 × 0.04134 × 23.04 )=1 × 2.91096 = 0.97032 × 10–3 = 0.9524 × 10–3 × 2 3 (As2O3 ) equivalent of Mn3O4 = 0.97032 × 10–3 gram equivalent of KMnO4 = 0.9524 × 10–3 × 2 (Mn3O4 ) (KMnO4 ) W = 0.97 × 10–3 229 Let amount of KMnO4 used = w g then W = 222.20 × 10–3 ( KMnO4 =w g ) w 5 = 0.9524 × 10–3 × 2 % of Mn3O4 in the sample (Mn3O4 %) 158.5 w = 0.06 g = 222.20 103 × 100 = 40.77% 0.545
8 . H2S + SO2 1 0 . BaCrO4 0.0549 g xy Cr 0.0549 × 52 × 25 = 0.282 g S–2 2 – = 6) ((n-= 6)) 253 4 S O (n -factor % of Cr (Cr %) = 0.282 × 100 = 2.82% for H2S (H2S ) x 6 = 0.534975 × 10 34 10–3 =(20 × 0.0066× 6 – 7.45 × 0.0345) × 10–3 Cr2O7–2 0.282 = 0.002711 mole 52 2 x = 3.031525 × 10–3 g Eq. of MnO4– (MnO4– ) =15.95 × 10–3 × 0.075 × 25 – 0.002711 × 6 = 0.01364 SO2 SO42– (n -factor = 2) (n- = 2) wt. ()= 0.01364 × 158.5 0.432388 = 5 y 2 for SO (SO ) 64 wt. of Mn (Mn ) = 0.01364 55 = 0.15 g 22 5 2y = (25 × 0.396 – 12.44 × 0.0345) × 10–3 % of Mn (Mn %) = 0.15 × 100 1.5% 64 10 2y = 0.56082 × 10–3 1 1 . CH3(CH2)nCOOH + O2 (n + 2)CO2 + H2O 64 y = 17.94624 g a (n + 2)a CO2 + 2NaOH Na2CO3 (n + 2)a b – b – 2(n + 2)a (n + 2)a concentration of H2S(H2S ) solution has ( )= 3.031525 × 10–3 = 0.1212mg NaOH b – 2(n + 2)a = 25 Na2CO3 (n + 2)a On dividing in equal part moles get halfed. concentration of SO2 (SO2 ) () 17.94624 Part - I ( -I) : = 25 = 0.7178 mg SO2/L b 2(n 2)a (n 2)a ... (i) 9 . Let mass of KClO3 (KClO3 ) xg + = 0.05 ... (ii) Let mass of KCl (KCl ) yg 22 ... (iii) ... (iv) Part - II ( -II) : b 2(n 2)a +2× (n 2)a = 0.08 KClO3 x/122.5 AgCl = 108 + 35.5 22 KCl y/74.5 = 143.5 (ii) – (i) 6e– + 6H+ + C l O – Cl– + 3H2O (n 2)a 0.03 3 2 x y 0.1435 (n + 2)a = 0.06 1225 745 143.5 = = 0.001 ... (i) 1.16 and = a for complete oxidation of an oxidizing agent = reacted FeSO4 solution – unreacted FeSO4 60 14n from equation (iii) & (iv) ( (iii) (iv) ) ( = 1.16 0.06 FeSO – FeSO ) 60 14n = (n 2) 19.33n + 38.66 = 60 + 14 n 44 5.33n = 21.33 n = 4 = N1V1 – N2V2 = 30 × 0.6 – 37.5 × 0.8 N = 3 milli eq.() from equation (iii) ((iii) ) x 0.003 6a = 0.06 = = 0.0005 a = 0.01 1225 6 from equation (i) ((i) ) put above value in eq. (i) ( (i) b ) – 0.06 + 0.03 = 0.05 2 y ... (ii) b = 0.08 moles of NaOH (NaOH 0.08 ) 745 = 0.0005 2 moisture()=1–(1225+745) × 0.0005 = 0.015g b = 0.16 mass () = 0.16 × 40 = 6.4 g
1 2 . Total m mol of AgCl from 20 mL solution mass % of NaOH (original) (NaOH = 0.4305 1000 3 %) = 20 40 100 80 143.5 1000 (20 mL AgCl m mol) Now, let us assume that in 20 mL, x m mol of m moles of AgCl from HCl = 0.8 m moles of NaOH has got converted to Na2CO3 AgCl from CaCl = 2.2 ( , 20 mL , x m mol NaOH, Na2CO3 2 ) (HCl AgCl m mol = 0.8 CaCl2 AgCl m = 2.2) In 20 mL, m mol of NaOH = 4 – x 1.1 m mole of CaCl2 was consumed for m of Na2CO3 x precipitation of oxalate from 20 mL solution. mol = 2 (20 mL In 2nd titration, HCl used in titration of NaOH + 1.1 m CaCl2 ) Na2CO3 = 5 × 0.1 – 9 × 0.2 = 3.2 Hence, total m mol of oxalic acid in 250 mL (2nd ,NaOH + Na CO 23 1.1 solution = × 250 = 13.75 HCl) 20 upto phenolphthalein end point, m mol of HCl (, 250 mL m xx required = 4 – x + = 4 – = 3.2 22 ) m % of oxalic acid ( %) (, HCl m mol) = 13.75 103 90 100 = 82.5 x = 1.6 1.5 13 In presence of methyl orange, the whole NaOH Total Na CO formed ( Na CO ) = x × 5 and Na2CO3 are neutralized 23 232 (NaOHNa2CO3 5x ) = =4 2 m mol of NaOH left unreacted (NaO H m mol) = 20 – 4 × 2 = 12 meq of HCl = 16 × 0.25 = 4 = meq of (NaOH + Na2CO3) = meq. of NaOH original weight of 1.0 g of exposed sample = 1 – (HCl = 16 × 0.25 = 4 = (NaOH + 8 40 4 (106 18) + = 1.176 g Na2CO3) =NaOH 1000 1000 ) (1.0g ) Total meq of NaOH in origi nal 1.0 g sample weight % of Na2CO3 in exposed sample = = 4 × 5 = 20 4 106 1000 1.176 × 100 = 36.05 % (1.0 g NaOH ) ( Na2CO3 %)
REDOX REACTION EXERCISE # 5[A] 1 . (i) 7 – 2 = 5 3 . In this oxidation number of N is changing (ii) 7 – 6 = 1 4 . +4 + x – 6 = 0 x = 2 (iii) 7 – 4 = 3 5 . x + 4(0) – 2 = +1 (iv) 7 – 3 = 4 x=3 O–Cl+1 6 . Final product will be Cr2O3 in this oxidation state 2 . Ca of Cr is +3 Cl–1 REDOX REACTION EXERCISE # 5[B] 1 . 2 + 2(2 + x – 4) = 0 [ Ba(H2PO2) is neutral 1 7 . TIPS/Formulae : molecule] or 2x – 2 = 0 x = +1 The highest O.S. of an element is equal to the 4 . TIPS/Formulae : number of its valence electrons (i) Write balance chemical equation for given (i) [Fe(CN)6]3–, O.N. of Fe = +3 change. oxidation state. [Co(CN)6]3–, O.N. Of Co = +3 (ii) CrO2Cl2, O.N. of Cr = +6, (ii) Identify most electronegative element in the (Highest O.S. of Cr) reaction and has the oxidation states of –1 (in H2O2) [MnO4]– O.N. of Mn = +7, and –2(in BaSO4). In H2O2, peroxide ion is present. (Highest O.S. of Mn) 5 . TIPS/formulae : (iii) TiO3, O.N. of Ti = +6, Balanced the reaction by ion electron method MnO2 O.N. of Mn = +4 Oxidat ion react ion : C2O4–2 2CO2 +2e–1] × 5 (iv) [Co(CN)6]3–, O.N. of Co = +3 Reduction reaction : MnO3, O.N. of Mn = +6 M nO – + 8H+ + 5e– Mn2+ + 4H2O] × 2 2 4 . TIPS/formulae : 4 Use molarity equation to find volume of H2SO4 Net reaction : solutions. 2 Mn O – + 16H+ + 5 C O 2 – 4 4 2 2Mn2+ + 10CO2 + 8H2O 1 1 . TIPS/Formulae : CuCO3 H2SO4 CuSO4 + H2O + CO2 (i) In an ion sum of oxidation states of all atoms 63.5 12 48.98 98 g is equal to charge on ion and in a compound 123.5 g sum of oxidation states of all atoms is always For 123.5 gms of Cu(II) carbonate 98 g of H2SO4 are required. For 0.5 gms of Cu(II) carbonate weight zero. Oxidation state of Min in MnO4– = +7 98 0.5 Oxidation state of Cr in C r( C N ) 3 – = +3 of H SO reqd. = g = 0.39676 g H SO 6 24 123.5 24 Oxidation state of Ni in NiF62– = +4 Oxidation state of Cr in CrO2Cl2 = +6 Weight of required H2SO4 = 0.39676 g Weight of solution in grams 1 4 . TIPS/Formulae : (i) Mass of one electron = 9.108 × 10–31 mol. wt. Molarity Volume in mL = (ii) 1 mole of electron = 6.023 × 1023 electrons 1000 weight of 1 mole of electron 98 0.5 V 0.39676 = = Mass of one electron × Avogadra number 1000 = 9.108 × 10–31 × 6.023 × 1023 × 1023 kg or V = 0.39676 1000 ml 90 0.5 No. of moles of electrons in 1 kg Volume of H2SO4 solution = 8.097 ml
THERMO CHEMISTRY EXERCISE # 1 9 . Heat evolve ( )=1939.1 12 = 581.73 3 . Hr = [(Hf)TiO2 + 4(Hf)HCl – (Hf)TiCl4 – 2(Hf)H2O] Hr = – 944.7 – (4 × 92.3) + 763.2 + (2 × 241.8) 40 Hr = – 67.1 kJ/mole PV 1 2 . nC2H4 RT 4 . Hr = [3(Hf)CO2 + 4(Hf)H2O – (HC)C3H8] VC 2 H 4 2 VC H 4 1 3.67 3.67 3 3 –2221.6 = 3 × (–394) – 4(285.8) – (HC)C3H8 ( H ) C3 H8 = – 103.6 kJ/mole n C2H 4 1 2 3.67 3.67 C 0.082 3 298 nCH4 3 0.082 298 5 . Hr = [4(Hf)CO2 + 2(Hf)H2O – 2(HC)C2H2] Heat evolve = 2 3.67 (1400) 3 0.082 298 –2601 = – 4(394) – 2(285.8) – 2(HC)C2H2 (HC)C2H2 = 226.7 Heat evolve = 3.67 900 6 . Hr = [2(Hf)NaOH – 2(Hf)H2O] 3 0.082 298 total heat evolve from mixture() 281.9 = 140 + 45 = 185 kJ 2 = (Hf)NaOH + 285.8 11 (Hf)NaOH = – 426.8 Kg 1 3 . 2 H2 2 Cl2 HCl (Hf)HCl = 52 + 24 – 1039 = – 22 kcal THERMOCHEMISTRY EXERCISE # 2 9 6. Hr = 1 (H f )C2H2 2(H f )CO2 1 ( H f ) H 2 O 1 . C3H6 + 2 O2 3CO2 + 3H2O 2 2 3C + 3H2 C3H6 H = 20.6 kJ/mole 11 C + O2 CO2 H = –394 kJ/mole Hr = 2 (–1300) + 2(–390) × 572 2 1 7. Hr = 234 H2 + 2 O2 H2O H = –285.8 kJ/mole Hr = 2(H f )CO2 3(H f )H2O (H f )C2H5OH (H C )C3H6 [3 H CO2 3 H f(H2O ) H f (C3H6 ) ] Hr = 2(393.5) 3(241.8) 277.7 = [3 × (–394) – 3(285.8) – 20.6] (H C )C3H6 2060 kJ / mole Hr = –1234.7 kJ/mole 8 . Applying Hess's law, 2 . HC = [57(–285.8) – 52(393.5) + 7.870] Hr = [2(–414) + 2(86) + 571.6] HC = 34117.4 kJ/mole Hr = –84.4 kJ Applying Hess's law, energy liberated for 1 gm fat(1 9. ) = 34117.4 = 38.4 kJ/mole Hr = [3(110.5) – 28.9 + 2(–285.8) + 3(–74.8)] 887 = –747.5 3 . Hr = [4(90.2) – 6(241.8) + 4(46.1)] heat realeased for 3 gm = 905.6 3 = 39.9 13 4 17 2 N 2 2 Cl2 NCl3 (3 ) Hr = H1 H 2 3 H 3 2 2 4 . Heat lost copper = heat gain by gold 1 2 . Hr = 30 × 0.385(318 – T) = 15 × 0.129 (T – 298) 2 final temperature T = 315.1 K H f 4 H f 4 H 5 H f P4 O1 0 N2O5 HPO3 HNO3 T = 42.1°C H r 2 43.1 4 948.5 4 174.1 2984.0 5 . Applying Hess's law. = – 199.8
1 4 . Hr° = 2 2 . C2H5OH C2H4 + H2O ... (i) H = 45.54 8a 8a 4 HCH 4 H ClCl 4 H CCl 4 H CCl C2H5OH CH3CHO + H2 ...(ii) H = 68.91 aa = 8a + a = 1 1 4 414 4 243 4 331 – 4 4313 a= 9 Hr° = 420 energy involve in (i) reaction 1 5 . For Hg = 0, H = E ((i) ) = 45.54 × 8 Hg 0, H E 9 energy involve in (ii) reaction 1 8 . Heat evolve = mCVt = 100 × 4.2 × 10 = 4.2 kJ ((ii) ) = 68.91 × 1 for 0.1 mole the enthalpy change = 4.2 kJ 9 for 1 mole the enthalpy change = 42 kJ total involve in (i) + (ii) are 48.137 Kg 2 3 . HAuBr4 + 4HCl HAuCl4 + 4HBrH = 8.8 1 9 . HCl + NaOH NaCl + H2O enthalpy change = mC dT = 100 × 4.2 × 3 % conversion ()= 0.44 100 5% V 8.8 = 1.26 kJ EXERCISE # 3 enthalpy change for 5 millimole = 1.26 kJ 1.26 enthalpy change for 1 mole 5 10–3 2.52 × 102 kJ THERMOCHEMISTRY COMPREHENSION # 1 COMPREHENSION # 3 1 . Hr = (H f )C2F4 2(H f )HCl 2(H f )CHClF2 1 . (i) H = (v + w + x + y + z) = [–658.3 + 2(–92.3) + 2(485.2)] = 127.5 kJ/mole w (ii) (Hf)K+ = 2 2 . Add eq. (i), (ii) and (iii) y (iii) (H)EA for H = 2 CX4(g) C(g) + 4X z H = –H1 + 718 + 2D(X – X) (iv) (H)lattice for KH = 2 X=F 2.(i) electron affinity is exothermic () H = +679.6 + 718 + 2 × 154.7 (ii) ionization is endothermic ( ) H = 1707 3 . (H)r=2× 90 + 2 × 418 + 436 – 2 × 78 – 2 × 710 Average bond energy of C – F bond (H)r = – 124 kJ/mole = 1707 426.75 4. ( H) = – 124 –62 kJ/mole 4 f KH 2 (C – F ) X = Cl 6 . Meq. of KH = Meq. of HCl H = 106.6 + 718 + 2(246.7) = 1318 0.1 Average bond energy of C – Cl bond = 329.5 Kg 1000 3 . C – Cl bond energy = 329.5 E KH = 25 × 0.1 C – H bond energy = 416.1 C – F bond energy = 426.75 Valency factor ( )of K is 1 hence Order of reactivity C – Cl > C – H > C – F EK = MK MK = 39 EKH = 40 EKH =EK = EH 40 = E + 1 E 39 K K
THERMOCHEMISTRY EXERCISE # 4[A] 1 . 2 C2H6 + O2 2 CO2 + 3 H2O 19. Cs(s) + 1 Cl2(g) –388.6 CsCl(s) 2 mol 2 (H) / mole = – 01560 kJ 81.2 1 (243) 2 = 2 (–345) + 3(286) – (H°f)C2H6 H°f = – 790 – 858 + 15 – 98 kJ Cs (g) Cl x = –88 kJ/mol 375.7 –348.3 Cs + Cl(g) 5 . CuSO4 + 5H2O H CuSO4 . 5H2O 81.2 + 375.7 + 121.5 – 348.3 + x = –388.5 15.9 kcal 2.8 578.4 – 348.3 + 388.5 = –x – x = 966.9 – 348.3 CuSO4(aq.) x = – 618.6 20. 2C(g) + 6H(g) 2839.2 CH 26 Applying Hess's law H + 2.8 = –15.9 2C(g) + 4H(g) 2275.2 CH 24 H = –15.9 – 2.8 H = 18.7 9 . C H COOH(s) + 15/2 O 7CO + 3H O 6C(g) + 6H(g) 5 50 6 CH 66 65 2 22 H = qp = 7 × (–393) + 3 (–286) + 408 (C – C) + 6(C – H) = –2839.2 C – C = 373.98 = – 2751 – 858 + 408 = –3201 (C = C) + 4(C – H) = –2275.2 C = C = 637.72 H = U + n R T –6(410.87)+3(373.98) + 3(631.72) + RE = –5506 g U = – 3201 –8.3 × 300 × 0.5 = –3201 + 1.247 –5482.3 + RE = 0.5506 RE = –23.68 kJ/mol = –3199.75 11. 1 H2 1 Cl2 92.3 HCl (g) 21. q = 0 U = w 2 2 x –167.44 nRTf nRTi n Cv T =P Pi H+ (eq.) Cl–(aq.) avg. Pf –92.30 + x = –167.44 n5 n R Tf n R Ti 2 Pf Pi x = –75.14 kJ/mol R T Pavg 13. C H O (s) + O (g) 6CO (g) + 6H2O () 6 12 6 6 2 Tf 300 1.0 g 5/2 (T – 300) = – 2 5 U = m Cv dt 5/2 T – 750 – Tf 60 2 U = –10 kJ × 1.56 = 15.6 kJ for 1 mole = 15.6 × 180 = –2808 kJ 3T = 810 T = 270 K 13 5 R (300) = – 150R 14. PH P+ 2 H2 U = w=2 × 2 = –1247.1J 3 22 954 = 3 (P – H) H= –150 R + 2 R(–30)= –210R = – 1745.9J P H P + 2H 2 2 . 2Al(s) + Fe2O3(s) Al2O3(s) + 2Fe(s) 24 22 0.2mole 1485 = 4 (P–H) + (P–P) 0.1mole 0.1mole 0.2mole 1485 = 4 × 954 + (P–P) 0.254 kg ice melted 3 254 1.436 H = 18 = 20.26 kcal (P–P) = – 1272 +1485 = 213 kJ/mol Heat liberated for 0.1 mole = 20.26 kcal 16. 2C (g) + 6H (g) –676 C2H6(g) Heat liberated for 1 mole = –202.6 kcal 2× 171.8 3(104.1) Hf 2 4 . CH2=O H (CH2O) 2C (s) + 3H2(g) –134 –122 rH=–676+343.6+312.3 = –676 + 655.9 = 20.1 nCO2+nH2O 4 (C – H) = 396 (C–C) + 6(99) = 676 applying Hess law C – H = 99 K (C–C) = 676 –594 = 84 H – 122 = – 134 H = 12 Kcal
THERMOCHEMISTRY EXERCISE # 4[B] 1 . Given 4. Ca(s)C a(g)C a+1(g)Ca +2 CH3 HC = CH CH3 (g) CaC2(s) HC = CH CH3 C(s)C(g)C2(g)C2–(g)C –2 2(g) CH3 –60=[179+590+1143+718×2–614–315+410+ L.E.] cal kcal ...(i) L.E. = – 2889 kJ/mole H1 = –950 mole = –0.95 mole 5 . O2 consumed by body in 1 hr. = 20 × 60 × 200 (0.2 – 0.1) = 24000 mL. CH3 HC = CH CH3 CH2 = CH – CH – CH 2 3 H2 = cal kcal ...(ii) so volume of O2 at 273K is let V then +1771 = 1.771 V 24000 mole mole = CH2 = CH – CH2 – CH3 + 6O2 4CO2 + 4H2O 273 310 kcal ...(iii) V = 21135.48 mL moles of O2 = 0.9435 H3 = –649.8 mole (ii) + (iii) – (i) C6H12O6 + 6O2 6CO2 + 6H2O HC = CH CH3+ 6O2 4CO2 + 4H2O() H = –2880 kJ/mol CH3 kcal 0.9435 moles of glucose H = –647.079 ...(iv) mole 6 H2O() H2O(g) Heat released = 2880 0.9435 = 452.9 kJ 6 kcal ...(v) Heat used for muscular work H4 = 11 mole = 452.9 × 0.25 = 113.22 kJ (iv) + 4 × (v) HC = CH CH3 so distance = 1.132 km CH3 +6CO2 4CO2 + 4H2O(g) 6 . Given : H = –603.079 31 H = 88 ...(i) 2C(s)+ 2 H2(g)+ 2 N2(g)CH3CN(g) [2 BC – C + BC = C + 8 BC – H] H = –84 ...(ii) + 6BO = O–8 BC = O–8BO – H = –603.079 2C(s) +3H2(g) C2H6(g) H = 717 BC = C = 192.921 kcal/mole H = 946 2 . Given C(s) C(g) H = 436 n(CH2=CH2)(–CH2–CH2–)n H = –72 N 2N 2(g) (g) i.e., BC = C – 2 BC – C = –72 ...(i) H2(g) 2H(g) 6C(s) + 3H2(g) C6H6() H = 49 ...(ii) BC – H = 410 C6H6() C6H6(g) H = 30 from equation (i) R.E. of C6H6 = – 152 (2×717+1.5×436+0.5× 946)–(3× 410+BC – C+BC N) = 88 1 H = 218 BC – C + BC N = 1243 ...(iii) 2 H2 H C(s) C(g) H = 715 from equation (ii) BC–H = 415 for equation (2) (2 × 717 + 3 × 436) – (BC – C + 6 × 410) = –84 (6×715+6× 218)–(3BC–C+3BC=C+6×415 – RE) = 79 BC – C = 366 kJ/mole from equation (iii) BC–C + BC=C = 959 ...(iii) from equation (i) and (iii) BC N = 877 kJ/mole BC–C = 343.66 BC = C = 615.33 7 . Given : 3 . Given NaCl(s)+aq N a + + C l – H = –2 kJ/mole 6C(s) + 3H2(g) C6H6()H = 49 (aq) (aq) C6H6() C6H6(g) H = 45 Na+ +Cl– NaCl(s) H = –772 kJ/moles (g) (g) so 6C(s) + 3H2(g) C6H6(g)H = 94 .........(i) so N a + + C l –(g)+ a q . Na + + Cl – q.) H = –774 (g) (g) (a 2C(s) + H2(g) C2H2(g) H = 75 .........(ii) & Na+(g) + aq. N a + H = –390 (g) (i) – 3 × (ii) 3C2H2(g) C6H6(g) = 131 so enthalpy of hydration of Cl– = –384 3[BC C+2BC–H]–[3BC–C+3BC=C + 6BC – H – RE]=–131 similarly enthalpy of hydration of I– = –307 3[BC C – BC – C– BC = C] + RE = – 131 RE = – 131 + 99 = –32
UNIT # 08 (PART - I) CHEMICAL KINETICS EXERCISE # 1 2 . r = 1 d[H2 ] 16. d[a x] K 1 [a x] K 2 [a x] 3 dt dt d[H2 ] = 3 × 2.5 × 10–4 =7.5× 10–4 mol L–1 S–1 2 0 . r = K[X][C] dt [X] K' = [ A ][B ] 3 . d[O2 ] 1 d[SO3 ] r = K'[A] [B] [C] dt 2 dt 2 1 . r = K[NO] [Cl ] 22 d[SO3 ] = 2 × 2.5 × 10–4 = 5 × 10–4 mol L–1 S–1 K' = [NO ]2 dt [NO ]2 4 . 1 d[H2 ] 1 d[NH3 ] r = KK' [NO]2 [Cl ] 3 dt 2 dt 2 d[NH3 ] 2 0.3 104 35 0 dt 3 2 3 . K × 15 = ln 35 9 = 2 × 10–5 = 0.2 × 10–4 43. K × 32 = ln 100 ... (i) 6 . r = k[A]2 [B] 1 ... (ii) r = k[x]2 [y] 100 r' = k[3x]2 [3y] K × t = ln 0.1 r' = 27 r eq. (ii)/(i) 8 . r = 1 d[C] = 1 × 1 = 0.5 mol L–1 S–1 t 3 ln10 2 dt 2 32 2 ln10 t = 48 min 2.303 a0 44. Given t 1 t a 10. K = log 1 a 2 2 t1 1 1 2 a n 1 = 2.303 log 10 n–1=2 500 1 K n=3 100 t 1 200 1 n 1 100 0.5 45. 1 a n 1 2 = 2.303 log10 = 4.606 × 10–3 sec–1 2 = 2n–1 n–1=1 n=2 500 5 1 . K AeEa / RT 1 2 . r = K[A] = 5 × 10–5 [1] = 5 × 10–5 M s–1 Ea ln K = ln A – 1 3 . r = K [N O ] [O ] ....(i) 2 22 2 RT K1 [N2O2 ] or [N O ] = K1 [NO ]2 from eq. (i) 2.303 log K = – Ea + 2.303 log A K 1 [N O ]2 22 K 1 RT r = K K1 [NO]2 [O2 ] log K = – Ea + log A 2 K 1 = K [NO]2 [O 2.303RT compair r ] slope Ea = 5000 2 2.303R K = K K1 Ea = 5000 × 8.31 × 2.303 = 95.7KJ k–1 mol–1 2 K 1 5 2 . – Ea = –40000 15. r = 1 d[N2O5 ] = 1 d[NO2 ] = d[O2 ] K[N2O5 ] R – 4 dt dt 2 dt Ea = 40000 × 2 = 8 × 104 cal K = 2K 53. K AeEa / RT AeEa / RT 1 3 2 1 Ae RT K = 4K = 2K 21 a = E + E – E= 60 + 10 – 30 = 40 kJ 1 3 2 K = K = K /2 31
CHEMICAL KINETICS EXERCISE # 2 1 . A (g) 2B (g) 1 1 1 t(n 1) 10–5 mole 100 mole 10. k C n 1 n 1 0 Kf = 1.5 × 10–3 s–1 C [1 0 0 ]2 Kf 1 2n1 1 K = 10 –5 10 Kb k(n 1) t= C o n 1 C on 1 ... (1) 1/2 Kb = 1.5 103 10 –7 104 1 4 n1 1 k(n 1) Kb = 1.5 × 10–11 L mol–1 s–1 t= C o n 1 C on 1 ... (2) 3/4 2 . A + B C + D equ. (2) equ. (1) rate = k [A]1/2[B]1/2 t3 / 4 4 n1 1 22 (n1) 1 (2n1 1)(2n1 1) t1 / 2 1 (2n1 1) (2n1 1) dx k (a x)(a – x) 2 n 1 = = dt dx k(a x) t = t [2n–1 + 1] dt 3/4 1/2 11. Fraction of reactant consume f= C 1 C0 2.303 log10 a t= k a x for a reaction : df k(1 f) (Remaining amount). dt 2.303 1 t= 2.31 10–3 log10 0.25 1 2 . 2 A + B K C + D t = 600 sec. rate = k [A] [B]2 t=0C 2C 00 3 . X k1 A + B and Y k2 C + D t = 30 min, C0 7C0 Rate at that time 24 k1 log(2) k1 log 2 k2 log(100 / 4) 2 k1 k2 2 log10 – 2 log 2 Rate = k C0 7C0 = 4 9 C 3 k2 = 4.06 2 4 0 5 . P(mmHg) 500 32 250 14. A B K = 1015 e–2000/T CD A K = 1014 e–1000/T At T (K = K ) C AC t (in min.) 235 950 C105 e–2000/T = 1014 e–1000/T 1/2 1 10 e–2000/T = e–1000/T 10 = e1000/T a n1 t1 / 2 1000 2.303 log 10 = 1000/T T = 1000 T = k e loge 10 ( t1 / 2 )1 a2 n 1 235 250 n 1 (t1/ 2 )2 a1 950 500 log10 k2 = 2.303 Ea T2 T1 22 = (2)n–1 n–1 = 2 n = 3 15. k1 R T1 T2 6 . t1k1 = t2k2 20 × k1 = 5 × k2 k1 = 4 Now Arrhenius equation R log 2 280 290 k2 = Ea 2.303 10 k2 Ea T2 – T1 log k4 = 2 .3 0 3 R log 2 280 290 10 k1 2.30 R T1 .T2 k3 2.303 10 R 0 300 log = 2 9 10 Ea 20 log10 k4 280 log 2 k4 =1.91 log10(4) = 8.314 2.3 300 320 k3 300 k3 Ea = 55.332 kJ/mole 1 6 . A + 2 B products 7 . k = 3.0 × 10–4 s–1 ; Ea = 104.4 kJ mol–1 a–x 2a – 2x A = 6.0 × 1014 s–1 k2= Ae–Ea/RT d[A] k [A] [B] But when T e– 1 dt k = A k = 6.0 × 1014 s–1 Reactant are in their stoichiometric proportion
d(a x) k (a x) 2(a x) dt dt 2 8 . = – N, dx 2 k(a x) 0.693 dt t1/2= 2k dt For max. no of nuclei dN 0 dt d[A ] = k[A] = N N = / 1 7 . 2A +B products dt 2 9 . Let n is the moles of reagent 'R' when R is reacted when t l/k A = A e–kt with A at time t = 0 0 2 A B + C A = A e–1 A = A /e 0 0 2 4 . Rate = K [A] [B ] t=0 n 0 0 2 [A ]2 at t n–x 2x 3x K = [A 2 ] [A] = {K[A2]}1/2 at t 0 2n 3n order = 1 1 5n = n n = n2 2 2 5 r = K' [A2]1/2 [B2] n + 4x = n x = n1 n 1 4 100 2 6 . For A K × t = ln ...(1) 2.303 n k = t log n – x 1 100 – 94 For B 100 ...(1) K × t = ln 4n2 2 100 – 50 5(n2 – Eq. (1) and (2) so k = 1 ln t n1 ) 100 3 0 . Overall rate constant =k=k +k +k = 6.93 × 10–3 ln 123 K1 6 K2 K1 4.058 t= 0.693 ln 100 K2 1/2 6.93 10–3 =100 sec; 50 After half-life, P + P + P = 4 atm BCD 2 7 . % B = K1 100 = 76.83% PB = k1 200 K1 K2 PB PC PD k1 k 2 k 3 693 %C = 100 – B% = 23.17% P =4× 200 = 1.154 atm B 693 CHEMICAL KINETICS EXERCISE # 4[A] 1.(a) N + 3H 2NH3 3 . 2A + B + C D + E 2 2 dx Rate = [NH 3 ] = 2 × 10–4 mol L–1 s–1 dt 1 = K [A] [B]2 [C]0 t 1 dH 2 = 1 dH2 = 1 dNH 3 if increases conc. 2 time dt 3 dt 2 dt dx K [2A] [2B]2 [2C]0 = dx dt 2 = 1 8 dt 1 dN2 = 1 × 10–4 rate increase by 8 time dt 4. 2 A + B 2 AB dx K[A ]2 [B 2 ] (b) dH2 = – 3 2 10–1 2 dt 1 dt 2 = –3 × 10–4 V if V is decrease to 1 3 2. NO (g) 2 NO (g) + O (g) dx [3A ]3 [3B] dx 27 dx 25 2 22 dt 2 dt 2 dt 1 –d [N O ] / dt = k [N O ] reaction increase by 27 times 25 1 25 d [NO2] / dt = k2[N2O5] 5 . 2H O 2H O + O dO2 = 3.6 M min–1 d [O ] / dt = k [N O ] 22 22 dt 2 3 25 d N2O5 1 d NO2 2 d O2 (a) Rate of formation of H O 2 dt 2 dt dt dH2O = 2 × 3.6 = 7.2 M min–1 dt K = K 2 = 2K 12 3 dH2O2 = 7.2 M min–1 2K = K = 4K dt 12 3
6 . A B K = 1.2 × 10–2 M s–1 46. (i) A product (ii) B product initially = 10 M from the unit of rate constant we find that reaction is of zero order X = kt log k2 = Ea 10 1 k1 2.303R 310 300 remainng = 10 – 1.2 × 10–2 × 10 × 60 = 10 – 7.2 [Remaining mole = 2.8 M] log 2 × 2.303 × 8.314 × 31 × 300 = Ea Ea = 53.6 kJ/mole If 10 = 1.2 × 10–2 t 1000 =t 0.693 1.2 t = 1000 ddd t = 13.88 min k= 30 60 1.2 A2 28. HO + O Ea 2 HO° H = 72kJ 0.693 min –1 2 Eb k= B2 T = 500 K 15 Ea = 77 kJ/mole H = Ea – Eb Ea = 26.8 kJ/mole 72 = 77 – Eb Eb = 77 – 72 log k2 Ea –10 kB 2.303 310 300 Eb = 5 kJ 33. 2 NO + Br 2NOBr 2 (i) NO + Br NOBr (East) 22 k2 –26.8 1000 kB 2.303 8.314 30 (ii) NOBr + NO Slow 2NOBr log 3.10 2 Rate is determined by the solwest step Rate = k [NOBr ] [NO] 2 = k But NOBr2 is a visible of Intermediate log k 2 –0.151 B [NOBr2 ] 10 [NO][Br2 ] k= Rate = k1 [NO]2 [Br ] –1 2 2 sec 3rd order RxN k = 0 .7 06 .69 3 2 4 5 . A B Ea = 70 kJ/mole t = 40 min 15 60 1/2 k =0.0327 min–1 0.693 k=2.8875× 10–4 2 k = 40 min 47. 2H O 2 H O + O 22 2 2 log k2 Ea T2 – T1 ml. eq of H O in 10 ml diluted 10 k1 = T1 T2 22 2.303R = M eq. of KMnO titrated = 25× .025 × 5 = 3.125 14 ml. eq in 100 ml solu. = 31.25 = 70 103 15 but 22400 ml O = 68 gm H O 2.303 8.314 298 313 2 22 k2 = 5.88 × 10–4 × 103 = 100.588 68 k1 1 ml = 22400 k2 = 3.87 20 ml = 68 20 ln 1 ml H O k1 22400 22 k2 log a / a – x 68 20 10 = in 10 ml H O k1 = log10 (a / 3ka) 22400 22 log a / a – x No. of Meq. in 10 ml of 20%kg ml H O 22 3.87= log(4 / 3) 68 20 10 1000 Initialy = 17 22400 = 35.71 a 10.4835= a – x 2.30 3 log 35.71 6 31.25 a =10–.4835 a k= – a – x ×100=32.84% a x % decomposition = 100 – 82.84 = 67.16% k = 0.022 hr–1
CHEMICAL KINETICS EXERCISE # 4[B] 1. Initial m mol of cyclobutene (k31 40 k3 = 8.317 .....(iii) = ln m )= 10 6 10 Let after 20 min, x m mol cyclobutene isomerized. k1 = Ae–80,000/RT (20 ,x m mol k = A eEa1 / RT E a1 Act ivat ion energy in 2 ) presence of 1st catalyst m mol of cyclobutene left = 10 – x and m mol of (1st ) diene formed = x ln k2 = 80,000 E a1 1.3862 k1 RT = ln (mmol=10– x 0.2231 m mol = x) E a1 = 75443.8 J = 75.44 kJ m mol of Br2 required after 20 min = 10 – x + 2x = 10 + x = 16 k 3 Ae Ea2 / RT E a2 Activation energy in (20 Br2 m mol = 10 – x presence of 2nd catalyst + 2x = 10 + x = 16) (2nd ) 10 .........(i) ln k3 = 80,000 E a2 8.317 x = 6 20K = ln = ln k1 RT 0.2231 4 If y m mol of cyclobutene isomerized after 30 min. Ea2 = 70974.9 J = 70.975 J ( 30 ymmol ka ka ) 4. NO NO + NO 25 23 10 ........(ii) NO2 + NO3 kb NO2 + O2 + NO 30 K = ln NO + NO kc 2NO 10 y 32 From Eqs. (i) and (ii) ((i) (ii) ) y = 7.47 d[N2O5 ] dt m mol of Br2 required (Br2 m mol) = ka [N2O5] – k–a [NO2] [NO3] ........(i) = 10 + y = 17.47 d[NO3 ] dt Vol. of bromine solution required ( = ka [N2O5] – k–a [NO2] [NO3] – kb [NO2] ) = 17.47 mL [NO3] – kc [NO] [NO3] = 0 ..........(ii) 14000 20000 d[NO] =k [NO ][NO ]–k [NO] [NO ] = 0 .......(iii) RT 2. 102 e RT = 103 e Solving ( ), dt b2 3c 3 T = 313.42 K From equation (iii) ((iii) ) Rate constant ( )K1 = K2 = 0.464 hr–1 [NO] = kb [NO2] kc n0 (A2 ) putting this in equation(ii)((ii)) K1t = ln n0 (A2 ) n1 n1 = 0.37 k [N O ] = [NO ] {k [NO ] + 2k [NO ] a 25 3a 2 a2 K2t = ln n0 (B3 ) n2 = 0.37 [NO3] = ka [N2O5 ] n0 (B3 ) n2 ka [NO2 ] 2kb[NO2 ] Total moles of gases after 1.0 hr. (1.0 putting this in equation (i)((i) ) ) =1.37 + 1.74 = 2.11 d[N2O5 ] = ka [N2O5] – kak a [N2O5 ] dt ka 2kb P = 5.42 atm 3 . Let rate constant in absence of catalyst is k1 d[N2O5 ] = 2kakb [N2O5 ] dt ka 2kb ( k1) Let rate constant in presence of first catalyst is k 2 ( k2) r = 1 d[N2O5 ] = kak b [N2O5 ] Let rate constant in presence of second catalyst is k3 2 dt ka 2kb ( k3)5 . 2 t+ k1 × 1 = ln k1 = 0.2231 hr–1 .......(i) 2 d d = ()1 ......(ii) dt dt 2 2 k2 × 0.5 = ln 80 k2 = 1.3862 40 order () = –1
6 . Given ( ) : r = k' [complex]a [[]a ] 10. A B + C t=0 & since ( ) t = 2t t = 20 a 3/4 1/2 so () a=1 min. a–x xx ln 2 ln 2 t= – a a t1/2 = k ' = k[H ]b On doubling concentration of [H+] ion t1/2 gets half 60(a – x) + 40x – 80x = 5 so b = 1 40a – 80a = – 20 ([H+] t on solving ( ) a = 0.5, x = 0.25 1/2 b = 1) so t1/2 = 20 min. 7 . Let at 20°C rate constant(20°C ) =k Average life = 1/k = 1.443 t1/2 = 28.86 min. then at 3°C rate constant (3°C )=k/3 1 1 . At t = when equilibrium is established ln k = Ea 1 1 Ea = 43.45 kJ (t = ) k/3 R 276 293 Let at 40°C rate constant is k1 then k = [P] 7 2.33 [A] 3 ln k1 43.45 103 1 1 k = 293 313 k1 k 1 8.314 & = 2.33 k1 = 2.33 k–1 (40°C k1 ) k1 = 3.125 k [A] = k 2 [A ]0 [1 e (k1 k2 )t ] k1 k2 so time required for juice to get spoil at 40°C = 64 0.725 = 1 [1 2.33 e 3.33 k13600 ] = 20.47 hr. 3.33 3.125 (4 0°C ) 8 . Given : k–1 = 4.16 × 10–5 sec–1 k1 1 , k1 = 1.3 × 10–5 k1 = 2.33 k–1 = 9.7 × 10–5 sec–1 k2 k2 = 9k1 1 3 . CH3OCH3 CH4 + CO + H2 9 [A] = [A]0 e (k1 k2 )t t=0 0.4 k 2 [A ]0 [1 e (k1 k2 )t ] t = 4.5hr. 0.11 0.29 0.29 0.29 k1 k2 [C] = P0 0.4 ln kt = ln 4.78 × 10–3 × 4.5 × 60 = PP [C ] k2 9k1 [A] k1 k2 [e (k1 k2 )t 1] = 10k1 [e10 k1t 1] = 0.537 P = 0.11 atm 9 . k = 0.16, k = 3.3 × 10–4 at t = 0 P0 = 0.4 1 M0 = 46 so k2 = k1/k = 2.0625 × 10–3 k1 + k2 = 0.0023925 at t = 4.5 hr. P = 0.11 + 0.29 × 3 = 0.98 atm [B]eq. = k1 [A]eq. = k1[A]0 0.11 46 0.29(16 28 2) k2 k1 k2 M = 0.98 = 18.77 given [B] = [B]eq. k1 [A ]0 r0 P0 M 0.4 18.77 2 2(k1 k2 ) = 0.26 r P M0 0.98 46 & [B] = k1 [A ]0 1 e (k1 k2 )t 1 4 . k1 B k = k1 + k2 k1 k2 so 1 1 – e(k1k2 )t A 0.693 0.693 + 0.693 2 90 (k1 + k2) t = ln2 k2 C t1/ 2 60 t = 289.71 sec. = 4.82 min. t1/2 = 36 min.
1 6 . A + B k1 C, C k3 D 2 0 . For reaction 1 (1 ) k2 r = k1[A] [B] – k2[C] k e =E a / R 1 1 10–3 e 6000 1 1 d[C] T1 T 509 T dt = k1 [A] [B] – k2 [C] – k3 [C] = 0 k2 = 2.79 × 1 [C] = k1[A ][B] For reaction 2 2 k2 k3 d[D] k1[A ][B] k2 = 1.52 × 10–4 e1 2250 1 1 = r = k [A] [B] – k 510 T × dt 1 2 k2 k3 r = k1k3[A ][B] For given condition ( ) k2 k3 1 1 50 1 1 since k2 >> k3 509 T 510 T e =600 0 122 10–3 10 e–4 k = k1 k3 2.79 × 1.52 × net k2 18.355 = e1 2250 1 1 6000 1 1 510 T 509 T A1 A3 so Anet = A2 (E ) = E + E – E ln 18.355 = 12.33 – 6250 2.9 a net a1 a3 a2 T 18. 2P(g) 4Q(g) + R(g) + S() T = 670.6 K = 397.6 °C t=0 P P/2 0 P /2 t = 30 min. P0–P 2P 0 2B k1 t= – 2P 21. k2 C [A] = [A] e (k1 k2 )t 0 0 A so P0 – P + 2P + P/2 = 317 – 32.5 i.e. P + 1.5 P = 284.5 .........(i) 2k1 [A ]0 [1 e (k1 k2 )t ] 0 k1 k2 & 2.5 P0 = 617 – 32.5 = 584.5 [B] = so P = 233.8 0 P = 33.8 k 2 [A ]0 [1 e (k1 k2 )t ] k1 k2 k × 30 = ln 233.8 k = 0.0052 [C] = 200 since V & T are constant (V T )P At t = 75 min 233.8 moles 0.0052 × 75 = ln at t = 0, P = 1 atm so P P P° – P = 158.23 P = 75.57 PT = 32.5 + P0 + 1.5 P = 347.155 + 32.5 [A]0 = 1 PT = 379.65 mm Hg t = 10 sec. P = 1.4 atm so (ii) 0.0052 × t = ln 8 t = 399.89 min. at t = 10, [A] + [B] + [C] = 1.4 ....(2) t = P = 1.5 atm...(3) 19. Bn+ B(n+4)+ t=0 a t=10 min. a – x at t = , [B] + [C] = 1.5 v.f. of Bn+ = 2 from equation ((3) ) (3) v.f. of B(n+4)+ = 5 Let normality of reducing agent =N 2k1 k2 1.5 k1 k2 k1 k2 so 2a = 25 N 2(a –x) + 5x = 32 N 7 2k1 k2 1.5 2a + 3x = 32 N x= N k1 k2 3 k× 10 = ln a a x ln 12.5N 1 + k1 1.5 .5N – 7 k1 k2 12 N 3 k1 = k2 ... (4) k = 0.02 min–1.
from equation (2) & (4) 25. Po218 1 Pb214 2 Bi214 84 82 83 2k1 k 2 (1 e (k1 k2 ) t ) Number of nuclei of Pb214 at time t are N k1 k2 k1 k2 2 + + = 1.4e (k1 k2 )t 1 e (k1 k2 )t = 1N 0 t = 10 sec & k1 = k2 so e e1t 2 t (2 1 ) e 20k1 1 – e 20k1 0.5 – 0.5e 20k1 1.4 ( t Pb214 N2) 0.1 = 0.5 e 20k1 For max. value of N2 (N2 ) 0.2 = e 20k1 dN2 0 20k1 = 1.6094 dt 23. k1 = 0.0804 = k2 82Pb208 + 6 2He4 + 4 –10 so t = 1 ln 2 90Th232 (2 1 ) 1 t=0 a 6x when 2 = 0.693 , 1 = 0.693 time t a – x 2.68 , 3.05 given : on putting these values ( ) a – x 5 10 7 = 2.155 × 10–9 mole = 232 3.05 t = 31.87 ln = 4.12 min 2.68 8 10 5 6x = x = 5.9523 × 10–10 mole 22400 2 6 . Let the mass of sample in a g & initial mass of U238 so a = 2.75 × 10–9 is w g the 0.693 (gU238 k = 1.39 1010 w g ) k × t = ln a U238 Pb206 ax 0.693 2.75 10 9 t=0 w 1.39 1010 = ln 2.155 10 9 = 0.2438 t = 4.89 × 109 year t w-x 206x given w – x = 0.5 a 2.68 0.693 24. k = 8 kt = ln A 0 0.693 4 = ln A 0 206x = 2.425 a 0.93 = 0.0225525 a A8 A 238 100 x = 0.026 a A A0 = 0.707 Total activity is 70.7% of the original activity but so w = 0.526 a only 67.7% found in the thysoid so mass of stable iodide ion had migrated to the thyroid gland is w t = ln w x (70.7% 67.7% 0.526 a 0.5 a ) 1.52 × 10–10 × t= ln = 67 .7 0 .1 = 0.09575 mg t = 3.33 × 108 year. 70 .7
CHEMICAL KINETICS EXERCISE # 5[A] 1 d[HI] 12. N = N 1 n where n is number of half life periods. 1 . rate of appearance of HI = t 0 2 2 dt rate of formation of H = d[H2 ] n total time 24 6 2 dt half life 4 = d[I2 ] N = 2 0 0 1 6 3.125g dt t 2 rate of formation of I 2 1 3 . Enthalpy of reaction (H) = Ea(f) – Ea(b) hence d[H2 ] d[I2 ] 1 d[HI] for an endothermic reaction H = +ve hence for dt dt 2 dt H to be negative. or 2d[H2 ] 2d[I2 ] d[HI] Ea(b) < Ea(f) dt dt dt 1 4 . The molecularity of a reaction is the number of reactant molecules taking part in a single step of the reaction. 2 . Order is the sum of the power of the Note : The reaction involving two different concentrations terms in rate law expression. reactant can never be unimolecular. hence the order of reaction is = 1 + 2 = 3 2.303 1 2.303 4 log log 15. t1/4 = K 3/4 K 3 3 . For a zero order reaction. rate = k [A]° i.e., rate = k = 2.303 (log 4 log 3) 2.303 (2 log 2 log 3) hence unit of k = M.sec–1 KK For a first order reaction = 2.303 (2 0.301 0.4771) 0.29 KK rate = k [A] k = M.sec–1/ M = sec–1 1 6 . Since the reaction is 2nd order w.r.t. CO. Thus, rate law is given as 4 . Rt = log C – log C 0t r = k [CO]2 It is clear from the equation that if we plot a graph Let initial concentration of CO is a i.e. [CO] = a between log C and time, a straight line with a r1 = k(a)2 = ka2 when concentration becomes doubled,i.e., t [CO] = 2a slope equal to k and intercept equal to 2.303 r2 = k(2a)2 = 4ka2 r2 = 4r1 log[A ] will be obtained. So, the rate of reaction becomes 4 times. 0 1 7 . In Arrhenius equation K = Ae–E/RT, E is the energy 6 . It is zero order reaction of activation , which is required by the colliding Note : Adsorption of gas on metal surface is of molecules to react resulting in the formation of zero order. products. 7 . In equation K = Ae–Ea/Rt ; A = Frequency factor 1 8 . (i) NO(g) + Br (g) NOBr (g) K = velocity constant, 2 2 R = gas constant and Ea = energy of activation (ii) NOBr (g) + NO(g) 2NOBr(g) 8 . r = k[O ][NO]2. When the volume is reduced to 2 2 Rate law equation = K[NOBr2] [NO] 1/2, the conc. will double. But NOBr is intermediate and must not appear New rate = k[2O2][2NO]2 = 8 k [O2] [NO]2 2 The new rate increases to eight times of its initial. in the rate law equation 9. Rate2 k[2A ]n [12 B]m [2]n [1 2]m 2n.2 m 2nm from Ist step KC = [NOBr2 ] Rate1 k[A ]n [B]m [NO][Br2 ] 1 0 . As the concentration of reactant decreases from [NOBr2] = KC [NO] [Br2] 0.8 to 0.4 in minutes hence the t is 15 inutes. Rate law equation = k.KC [NO]2 [Br2] 1/2 To fall the concentration from 0.1 to 0.025 we need two half lives i.e., 30 minutes. hence order of reaction is 2 w.r.t. NO. 1 1 . The velocity constant depends on temperature only. It is independent of concentration of reactants.
19. HR = E – E = 180 – 200 = – 20 kJ/mol k[H2S] k ' [Cl2 ][H2 S] f b H [H ] Rate = k[Cl2] K The nearest correct answer given in choices may be obtained by neglecting sign. hence only, mechanism (i) is consistent with the given rate equation. 0.693 2 4 . For the reaction 2 0 . For a first order reaction t1/2 = K i.e., for a A Product first order reaction t does not depend up on the given t1/2 = 1 hour 1/2 for a zero order reaction concentration. From the given data, we can say tcompletion = [A0] initial conc. k rate constant that order of reaction with respect to B = 1 because change in concentration of B does not change half life. Order of reaction with respect to A = 1 because t1/2 = [A0] rate of reaction doubles when concentration of B 2k is double keeping concentration of A constant. Order of reaction = 1 + 1 = 2 and units of o r k = [A 0 ] 2 1 mol lit1 hr 1 second order reaction are L mol–1 sec–1. 2t1/2 2 1 2 1 . The rates of reactions for the reaction Further for a zero order reaction dx change in concentration 1 A 2B 2 k= can be written either as dt time –2 d [A ] with respect to 'A' 0.50 0.25 dt 1= 1d tim e or [B] with respect to 'B' time = 0.25 hr. 2 dt 2 5 . Since for every 10°C rise in temperature rate from the above, we have doubles for 50°C rise in temp increase in reaction rate = 25 = 32 times. –2 d [A] 1 d [B] dt 2 dt 26. k1 A eEa1 / RT .......(i) 1 dA 1 dB or – = A eEa2 / RT dt 4 dt k2 2 .......(ii) 2 2 . For first order reaction On dividing eq. (i) from eq. (ii) k = 2.303 log 100 k1 A1 (Ea2 Ea1 ) / RT ....(iii) t 100 99 k2 A2 0.693 2.303 log 100 693 t 1 Given Ea2 = 2Ea, 0.693 2.303 2 693 t On substituting this value in eqn. (iii) t = 46.06 minutes k1 = k2A × eEa /RT 1 2 3 . Since the slow step is the rate determining step 2 7 . For a first order reaction hence if we consider option (1) we find 2.303 a 2.303 0.1 k log log Rate = k[Cl2] [H2S] Now if we consider option (2) we find t a x 40 0.025 Rate = k[Cl2] [HS–] ..........(i) = 2.303 log 4 2.303 0.6020 3.47 107 From equation (i) 40 40 [H ][HS ] or [HS] k[H2S] R = K(A)1 = 3.47 × 10–2 × 0.01 = 3.47× 10–4 = H2S H k Substituting this value in eqution (i) we find
UNIT # 02 PERIODIC TABLE EXERCISE # 1 7 . 4d35s2 1 5 . The difference of IP4 and IP5 is maximum Block – d Valency = 4 Period – 5 Group – number electrons + (n–1) d electrons = Group = IVA or 14th 2 + 3 = 5 or (VB) Family = Carbon family 8. Z N–3 O–2 F– es– 7 8 9 2 4 . EN of P and H is almost same = 2.1 z/e 0.7 0.8 0.9 3 3 . For A particular atom successive I. P is are always 1 increase. So E1 < E2 < E3 Radius (z / e) 4 0 . Vanderwall's Radii > Covalent radil Order of radius = N–3 > O–2 > F– PERIODIC TABLE EXERCISE # 2 2 . P–3 S–2 Cl– 1 51. M(g) M+ M+(g2) Size negative (g) 100 ev IP2 Zeff IP1 Order of size = P–3 > S–2 > Cl– H = IP1 + IP2 9 . Al – 1s2, 2s22p6, 3s2 3p1 Al+ – 1s2, 2s22p6, 3s2 IP2 = 250 – 100 = 150 ev Al2+ – 1s2, 2s22p6, 3s1 Al+3 – 1s2, 2s22p6 6 8 . IP1 Be B 1s2, 2s2 1s2, 2s2,2p1 Stability = Al+3 > Al+ > Al+2 Be > B 7 1 . IP1 (more stable) 28. 5B – 1s2, 2s22p1 N Two electrons of 1s and 2s subshells IP1 3 2 . Size number of shell 83. 1. B C O 3 5 . 2nd pd. NO 2. [He]2s2, 2p1 [He]2s2, 2p2 [He]2s2, 2p3 [He]2s2, 2p4 3rd pd. S Cl (More stable) (Half filled) B<C<O<N EA3rdpd > EA2ndpd M(s) M(g) (More repulsion of electrons) Cl > S > O > N 1 M(s) M 2 + 2e– 4 0 . Size negative charge positive charge (g) IP EA 3. M(g) M ) 41. X = (g 2 4. M M 2 + 2e– 2 X – IP – EA = 0 (g (g) He Istpd ) 48. Be N Ne IIndpd 5. M(g) M 2 + 2e– (g) 1 M(g) M+ (4)=IP2 M+(g2) Group – Ionization energy size (g) (3)=IP1 Period – Ionization energy zeff I.P. – He > Ne > N > Be (5) = IP2 I.P. = IP1 + IP2 (5) = (3) + (4) (5) = I.P – IP1 or (5) – (3)
CHEMICAL BONDING EXERCISE # 1 1 . (i) Vapour pressure of (B) is higher than (A) due to intra molecular H-bonding present in (B). Cl Cl– (B) (A) I H- Cl Cl 5 . Tetracyanoethylene 1 6 . NC CN (B.P. – L.P.) repulsion at 90° = 8 C=C 2 8 . A+3 B–2 NC CN A2B3 compound 9, 9 29. Valency of x = 2 x+2 Valency of y = 1 dy+2 8. Bond strength Direction of orbital x+2 y–1 xy2 P–P > P–S > S–S observer dipole moment 3 0 . Polarisability Size of anions 1 1 . % Ionic character = Theortical dipole moment 1.03 10–18 esu cm O = O H/O —O / H +1 = 1.275 10–8 cm – 4.8 10–10 esu ×100=16.83.% O O–1/2 1/2O– 1 3 . Ionic character EN 3 1 . Bond order 2 1 1.5 1 4 . Due to presence of vacant d-orbital in P atom but 1 not in N atom. P d-Bond order Bond length N Order of Bond length = H2O2 > O3 > O2 CHEMICAL BONDING EXERCISE # 2 4 . According to M.O.T. 38. N –+ – CO2 3 N NN 1s2 *1s1 H 2 16 outer electrons Total electron – 22 total electron – 22 Bond order = 2 –1 1 = 22 44. MgO BaO L.P. MgO > BaO 7 . Cl– M.P. MgO > BaO I Cl–Be–Cl Ionic character EN sp, linear, lone pair = 0 4 9 . BF3 has number lone pair and planar Cl dipole moment µ = 0 sp3d, lone pair = 3 NF3 has polar bond and pyramidal µ O Linear 1 5 0 . Bond length size of central atom 1 2 . sp3 – 109° 28' 5 2 . Pyrophosphoric acid H4P2O7 Px and Py – 90° H–O–H – 104'.5° OO sp – 180° H—O— P— P—O—H 1 9 . Hydrolysis Covalent character OO NCl3 > PCl3 > AsCl3 > SbCl3 > BiCl3 HH 21. Ca+2 C 2 2 Tetra basic acid Ionic bond
CHEMICAL BONDING EXERCISE # 4[A] 1. (a) K+ HF2 Cl—Be—Cl F——H---------F– 5. 180° H-bonding sp, hybridisation Cl BeCl2(s), hybridisation is sp3 H–bonding present in KHF2 so it exist but there is no H–bonding in KHCl2 due to less polarity in Cl Cl between HCl and Cl– Be Be Be Be KHF2 Cl Cl Cl KHCl2 HCl Cl– H- BeCl2 BeCl2 (s) sp hybridisation sp3 hybrisiation (b) In (CH3)3 N, hybridisation is sp3 and pyramidal 6 . Due to the properly oriented tetrahedral structure of ice, H+ ions are free and hence move more shape but in (SiH3)3 N, due to present of vacant rapidly in ice than in water where molecular asso- d-orbital in Si atom, lone pair of N shifted in vacant orbital so its hybridisation is sp2 with tirgonal pla- ciations are not so well organized. nar geometry. (CH3)3N(SiH,3s)3p3NSid-H+H+ d- 7.BCl3 exist in monomer form sp2 (i) Cl— B —Cl (c) Due to presence of vanderwaal's force in between CO2 molecule it is gas but SiO2 is a 3-d network Cl structure so it is solid in nature. sp2, trigonal planar CO2 exist in dimer form – Al2Cl6 SiO23-d AlCl3 Cl Cl Dimer form Cl Al Al 2.(a) N2O3ONsp3, tetrahedral NO Cl C l Cl O P2O3 exist in P4O6 (Ring structure) (ii) BaSO4 (Barium sulphate) BeSO4 H.E > L.E. H.E < L.E. (iii) In O2 (O=O) due to small size of oxygen strong p- P OO P OP p bonding is possible but in S2 due to larger size OOO of sulphur there is not strong p-p bonding. So bond is weak and break down. P O2 (O=O) p-p S2 p-p (b) H–Cl, H–Br, H–I Due to increase in size of I, the difference between electronegativity of H and I is less, so bond length is more and but bond strength is weak. 8 . (i) 1s (ii) *2py (iii) 2pz (v) 2px HI (iv) 2s 9 . According to M.O.T. O2 is paramagnetic in nature. M.O.T. O2
10.(a) In graphite sp2 hybridisation and due to presence (ii) HH of free electron they are good conductor of elec- N=N tricity in a layer but not so good in between two HH layers. (iii) P4O10 sp2 O (b) In solid states position of ions are fixed. P O OO P (iv) POCl3 O P OP O Cl 1 2 . Due to H-bonding in NH3 molecule. It is liquid but OOO Cl Cl there is presence of vanderwaal force in between P HCl molecules instead of H-bonding so it is gas. NH3 H- HCl(v)XeOF4 O O FF 1 4 . 1.4 Å (vi) C3O2 O=C=C=C=O Xe 1 5 . 84.35 % F F 16. 21 , 3 F 2 FF (vii) Br F F 17.(i) S8, Crown structure CHEMICAL BONDING EXERCISE # 4[B] 1.(i) Na[B O (OH) ] O R [B O (OH) ]– OO 33 4 33 4 S HO – O OOO B—O OH SS OB (v) S O O OO 39 HO B—O OH Trimeric metaborate ion cyclic timer of SO3 (vi) (CN) NC–CN (ii) Na [B O (OH) ] · 8H O (Borax) 2 45 4 2 2 3. H S O 2n 6 OH OO Na2 HO—B O—B–—O HO— S —S- - -S —–—S—OH O B—OH · 8H2O (n–2) O—B–—O OO OH
UNIT # 04 S-BLOCK EXERCISE # 1 1 2 2 . Hydration energy 1 7 . Solubility size of ions L.E 15. KO2 O 2 2 5 . Reducing agent negative S & P value. 1s2, *1s2, 2s2, *2p2, 2 p 2x , 2 p 2 = 3 3 . Al4C3 + 12H2O 4Al(OH)3 + 3CH4 y 2 p 2 , *2 p 2 , * 2 p 1z z y n = 1, Paramagnetic S-BLOCK 2HNO3 Mg(NO3)2 + H2 EXERCISE # 2 5. Mg + 2 9 . CaC2, Al4Cl3 and Be2C are ionic carbides but SiC are covalent. very dilute MNH2 1 — Si—C—Si— 12. M + NH3 + H2 —C—Si—C— 2 —Si—C—Si— Alkali metals Liquid Metal amide 17 . Li + Dry Air Li2O + Li3N (O2 + N2) Na + Dry Air Na2O 3 4 . 2BeCl2 + LiAlH4 2BeH2 + LiCl + AlCl3 (X) (O2) 1 8 . NaH + H2O NaOH + H2 3 8 . 3Mg N2 , Mg3N2 H2O Mg(OH)2 + NH3 (Colourless glass) CuSO4 CuSO4·4NH3(Blue (Aq) colour) OR (X) (Y) (Z) (T) H– + H+OH– OH– + H2 44. 2 Na + Al2O3 High temperaturte 2NaAlO2 CwOa2terin Na2CO3 + Al(OH)3 4 7 . CsBr3 is an ionic compound so exist as Cs Br3– P-BLOCK EXERCISE # 1 1 . H3BO3 SHtreoantegdly B2O3 7 . BCl3 + 3H2O H3BO3 + 3HCl 1 2 . (SiH3)3 N (trisilyl amine) H3BO3 100°C BO2 160°C H2B4O7 Meta boric acid tetra boric acid pd 4. Al2O3 Al3+ + A lO 3 SiH3 SiH3 SiH3 N SiH3 3 SiH3 SiH3 N Al3+ + 3e– AlO 3 Al (at cathode) 3 p-d bonding A lO 3 2Al2O3 + 3O2 + 12e– (at anode) 3 1 7 . CO2 + H2O H2CO3 The overall chemical reaction taking place during Acidic oxide electrolysis H2CO3 H+ + H C O 2Al2O3 4Al + 3O2 3 6 . B2H6 + 3O2 B2O3 + 3H2O + Heat weak acid B2H6 + 6H2O H3BO3 + 6H2 H C O H+ + C O 2 2NaH + B2H6 ether NaBH4 3 3
1 9 . P2O5 + 3H2O 2H3PO4 HNO2 oxidation number = +3 ortho phosphoric It reduces as well as oxidise, act both oxidising and reducing agent. P2O5 + H2O2HPO3 H2O H4P2O7 H2O 2H3PO3 H2SO4 oxidation number = +6 Meta phosphoric Pyrophosphoric Highest O.N., only reduces, act only oxidising agent. acid acid 2 4 . 2Pb(NO3)2 2PbO + 4NO2 + O2 2 5 . 2NO + O2 2NO2 2 2 . 2HNO2 N2O3 + H2O Anhydride Brown fumes 3 1 . HCOOH H2SO4 CO + H2O Removal of H2O from HNO2 is called anhydride. 3 4 . Higher the I.E, higher the acidic strength of 2 3 . HNO3 oxidation number of N is = +5 hypohalus acid (hydroxides) Highest O.N., only reduces, acid only oxidising 3 9 . I2 + 2Na2S2O3 2I2 + Na2S4O6 + 2NaI agent. EXERCISE # 2 P-BLOCK 1 8 . 2NaNO3 2NaNO2 + O2 1 . H3BO3 + 3C2H5OH B(OC2H5)3 + 3H2O 2Pb(NO3)2 2PbO + 4NO2 + O2 2 . AlCl3 + 3H2O Al(OH)3 + 3HCl 2Cu(NO3)2 2CuO + 4NO2 + O2 5 . 4B + 3O2 B2O3 2B+N2 2BN NH4NO3 N2O + 2H2O Mixture of oxide and nitride 2 0 . PbS + 4O3 PbSO4 + 4O2 (Black) 6 . Due to higher EN of B it attract lone pair of elec- tron with faster rate. 2 1 . AgCl + 2NH4OH [Ag(NH3)2]Cl + 2H2O AgCl + 2Na2S2O3 NaCl + Na3[Ag(S2O3)2] 7 . Due to back bonding BF3, BCl3 and BBr3 are exist AgCl + NH3 [Ag(NH3)2]Cl in free form. But BH3 is not. 2 2 . 2KMnO4 + 5H2S H+ K2SO4 + 2MnSO4 + 9 . Na2B4O7 + 7H2O 2Na[B(OH)4] + 2H3BO3 8H2O + 5S + 3H2SO4 Aqueous solution of borax acts as a buffer because it contains weak acid and its salt with strong base. 2 9 . CuSO4 + 2KI CuI2 + K2SO4 2CuI2 Cu2I2 + I2 1 2 . 2HNO3 – H2O N2O5 Anhydride 3 1 . PI3 + 3H2O H3PO3 + 3HI OO H2 + I2 Pt 2HI I2 + H2S 2HI + S N—O—N 3 2 . I2 can not dissplace Br2, Cl2, F2 from KBr, KCl, OO KF, because it weakest oxidising agent. 1 3 . (NH2)2CO Molecular mass = 60 3 9 . White or yellow P 470K Black-P Urea mass of nitrogen = 28 (A) (B) 28 % of N = × 100 = 47% 60 570K Red-P CO2-atom
4 0 . Ca3P2 + 6H2O 2PH3 + 3Ca(OH)2 4 1 . Ca + C2 CaC2 N2 Ca(CN)2 59. O 4 6 . P4O10 + 4HNO3 4HPO3 + 2N2O5 P OO 4 9 . B2H6 + 2NH3 B2H6·2NH3 OP O PO O When the addition product is heated at 200°C a O volatile compound borazole or inorganic benzene O is formed. P 3B2H6·2NH3 2B3N3H6 + 12H2 O P4O10 5 7 . CH2 COOH P4O10 C3O2 + 2H2O COOH 150°C (carbon suboxide) HYDROGEN COMPOUND EXERCISE # 1 n2 11. NaCl Na+ + Cl– 4. rn = 0.529 Å At cathode 2 Na+ + e– Na for protium, deuterium and tritium the n and 1 z are 1, 1 and 1 respectively. Na + H2O NaOH + 2 H2 At anode 8 . Laboratory method of formation of H2 gas Cl– Cl + e– granulan zinc + dil H2SO4 H2 Cl– + Cl Cl2 BaO2 + 2HCl BaCl2 + H2O2 1 0 . Be+2NaOH+2H2O Na2B3O2·2H2O + H2 (sodium beryllate) 17. HYDROGEN COMPOUND EXERCISE # 2 1 . Zn + 2NaOH Na2ZnO2 + H2 1 4 . D2O + CO2 D2CO3 sodium zincate D2O + SO2 D2SO4 2Al + 2NaOH + 2H2O 2NaAlO2 + 3H2 D2O + P2O5 2D3PO4 sodium meta aluminate D2O + N2O5 2DNO3 1 3 . 3Fe + 4D2O Fe2O4 + 4D2 1 9 . Na2O2 + 2H2O H2O2 + 2NaOH Magnetic oxide
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124