BBrilliant STUDY CENTRE REPEATERS JEEMAIN LECTURE NOTE COMPLEX NUMBERS 1. Imaginary number - square root of a –ve number i4n 1 in ir, where r is i4n1 i i4n3 i n i4r the remainder 2. i4n2 1 i4n2 obtained when i4n3 i i4n1 n is divided by 4 3. Complex number A number of the form a ib , where a,bR Real part of z, Rez a & Imaginary part of z, Im(z) = b Note : Rez 0 is purely imaginary CN Im(z) = 0 z is purely real CN 4 Argand plane (Complex plane) 1
BBrilliant STUDY CENTRE REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES) 5. Set of complex numbers (C) C x iy / x.y R, 1 i & C R 6. Geometrical interpretation of complex addtion & subtraction 7. Conjugate of a complex number Congugate of z x iy is z x iy , which is obtained by replacing i by –i. Geometrically conjugate represents the refleciton of z about real axis Properties of conjugate 1. z z 2. z z z is purely real CN 3. z z z is purely imaginary CN 4. z z 2 Re z 5. z z 2i 1m z 6. z1 z2 z1 z2 7. nz nz 8. z1z2 z1.z2 9. n zn z 10. z1 z1 z2 z2 11. zz Rez2 1mz2 12. az1 bz2 az1 bz2 where a, b R 2
BBrilliant STUDY CENTRE REPEATERS JEEMAIN LECTURE NOTE 8. Modulus of a complex number (Magnitude) Let z x iy, then z x2 y2 , which is a non-negative real value. Geometrically, it represents the distance taken form origin Properties of modulus 1. zz z 2 2. z 0 z 0 3. z z 4. z1 z2 2 z1 2 z2 2 2 Re z1 z2 5. z1 z2 2 z1 2 z2 2 2 Re z1 z2 6. z1 z2 2 z1 z2 2 2 z1 2 z2 2 7. z1z2 z1 . z2 8. zn z n 9. z1 z1 , z2 0 z2 z2 10. z1 z2 z1 z2 z1 z2 11. z1 z1 z1 z2 z1 z2 12. 1 z z z2 13. If z 1 1 z Z 9. Distance formula Distance between two complex numbers z1 & z2 in complex plane is z1 z2 10. z z1 r , represents a circle with centre z1 & radius r 11. z z1 r , represents the interior and the circumference of a circle with centre z1 and radius r 12. z z1 r, represents the exterior and the circumference of a circle with centre z1 and radius r 13. z z1 1, here locus of z represents the r bisector of the line joining the 2 fixed points z1 & z2 z z2 3
BBrilliant STUDY CENTRE REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES) 14. Locus of z of z z1 , where 0,1 is a circle z z2 15. General equation of a circle is zz z z c 0 where centre is ' ' and radius is 2 c 16. Locus of z of z z1 2 z z2 2 z1 z2 2 is a circle 17. Locus of z of z z1 z z2 2a 1) Where z1 z2 2a , is an ellipse with foci z1 & z2 and length of major axis 2a 2) Where z1 z2 2a, is a line segment joining z1 & z2 3) Where z1 z2 2a , represents no locus 18. Locus of z of z z1 z z2 2a 1) Where z1 z2 2a is a hyperbola with foci z1 & z2 and length of transverse axis 2a 2) Where z1 z2 2a , represents two opposite open rays with end points z1 & z2 3) Where z1 z2 2a , represents no locus 19. Argument or amplitude of a complex number z is the angle made by ray z in anticlockwise direction about the origin from the +ve direction of real axis and it is denoted by arg(z) or amp (z) 20. arg z is +ve if the rotation is in anti-clockwise direction and it is –ve if the rotation is in clockwise direction 21. Principal argument of z lies in , is, arg Z 22. Argument of a complex number z is , if z in Istquadarnt , if z in 2nd quadrant if z in 3rd quadrant if z in 4th quadrant where tan 1m z 1 re z 23. Argument of z is 0, if z lies on +ve real axis , if z lies on –ve real axis if z lies on +ve imaginary axis 2 if z lies on –ve imaginary axis 2 4
BBrilliant STUDY CENTRE REPEATERS JEEMAIN LECTURE NOTE 24. Arg z is not defined when z = 0 25. Polar form of complex number z r cos i sin , where r z & arg z 26. Polar form of a complex numbers z in the product of a non negative real number and a unimodular complex number cos i sin 27. Eules function is ei cos sin 28. Eulerian form of a complex number z is z rei , where r z & arg z 29. ei cos isin ei cos isin ei 2 o eiz o ei0 1, ei 1 1, 1, 30. Properties of arguments 1) arg z1z2 arg z1 arg z2 2) arg z1 argz1 arg z2 z2 3) arg zn argz 4) arg z argz 5) arg 1 arg z z 31. Circular Rotation in complex plane about origin 5
BBrilliant STUDY CENTRE REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES) When z1 rei rotates an angle about the origin in anticlockwise direction, then z2 z1ei and if the rotation is in clockwise direction then z2 z1ei Some particular cases Let z rei 1) kz kr ei , where k is +ve, then z streches k times in the direction of z. 2) kz kr ei , where k is –ve, the z streches k times in the direction opposite to z. 3. Multiplying by i iz irei rei .ei2 rei2 ie; z rotates an angle in anticlockwise direction about the origin. 2 4. Division by i (Multiplying by –i) z rei irei rei .ei2 ii ie; z rei2 i ie; z rotates an angle in clockwise direction about the origion z 5. Multiplication by rei i 2 rei 2 3 3 z .e 2 ie; Z rotates an angle in anticlockwise direction about the origin. 3 6. Division by (Multiplication by 2 ) Z rei 2rei rei i 2 3 .e z z2 rei 2 3 2 ie; z rotates an angle in clockwise direction about the origin. 3 6
BBrilliant STUDY CENTRE REPEATERS JEEMAIN LECTURE NOTE 32. Circular rotation about z z2 z z1 z ei When z1 z rotates an angle about z in anticlockwise direction, then z2 z z1 z ei 33. Complex division Let z1 r1ei1 and z2 r2.ei2 be two complex numbers then z1 r1 e i12 z1 0 z1 0 ei z2 r2 z2 0 z2 0 where 1 2 The division geometrically represents the rotation of z2 an angle about the origin in anticlock wise direction and reaches z2 , if in positive. 34. Rotation about z Let z, z1, z2 be complex number in complex plane, then z1 z z1 z ei , where in the angle of rotation. z2 z z2 z 7
BBrilliant STUDY CENTRE REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES) 35. Let z1, z2, z3, z4 be 4 complex numbers in complex plane, then z2 z4 z2 z4 ei , which represents z1 z3 z2 z3 the rotation of z1 z3 an angle (positive) and reaches z1- z4 in anticlockwise direction. 36. Locus related to argument 1) Arg z z1 locus of z represents 2 open opposite rays with end points z1 and z2. z z2 0 2) Arg z z1 Locus of z represnets a line segment with end points z1 and z2 z z2 3) Arg z z1 , Locus of z represents a circle with diameters joining z1 & z2 z z2 2 4) Arg z z1 an acute angle , Locus of z represents a major arc with end points z1 & z2 z z2 5) Arg z z1 obtuse angle, Locus of z represents a minor arc with end points z1 & z2 z z2 an 37. Cube roots of unity 1. 3 1 1, , 2 , when 1 i 3 2 1 i 3 22 22 2. 3 1 1, , 2 , when 1 i 3 2 1 i 3 2 22 2 3m 1 3. 3 1 3m 1 3m 2 2 1 2 4. 1 2 0 1 2 2 1 8
BBrilliant STUDY CENTRE REPEATERS JEEMAIN LECTURE NOTE 5. 1 n 2n 0, n 3m 3, n 3m 6. 2 1 2 4 or 2 , arg 7. 2 arg 3 33 arg 3 arg 2 3 8. ei23 , 2 i 2 ei3 , 2 ei3 e 3 , 9. 2 & 2 , 2, 2 2 2 2 10. & 2 11. 1 2 & 1 2 12. x2 x 1 x x 2 x2 x 1 x x 2 13. x3 1 x 1x x 2 x3 1 x 1x x 2 14. 1, , 2 lies on a unit circle z 1 15. 1, , 2 divides the circumference of z 1 into 3 equal segments. 16. 1, , 2 are the vertices of an equilateral triangle 38. nth roots of unity 1) n 1 i 2 k ,k 0,1, 2, 3......(n 1) 1, , 2 , 3....n1, where i 2 n n e e 2) 1 2 ..... n1 0 3) n 1 4) xn 1 x 1 x x 2 ..... x n1 xn 1 x x x2 ..... x n1 x 1 9
BBrilliant STUDY CENTRE REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES) 5) x x 2 ........ x n1 1 x x2 x3 ..... xn2 xn1 6) nth roots of unity divides the circumferene of z 1 into n equal segments. 7) nth roots of unity are the vertices of an n- sided regular polygon. 8) r 1 or nr 1 nr r 9) 1 n1 2 10) n 1 1, , 2.......,n1 where ei n 11) xn 1 x 1 x x 2 ............ x n1 10
Search
Read the Text Version
- 1 - 10
Pages: