BBrilliant STUDY CENTRE                                                                                      REPEATERS JEEMAIN LECTURE NOTE                                                 COMPLEX NUMBERS    1. Imaginary number - square root of a –ve number               i4n 1  in  ir,                 where r is                                   i4n1  i  i4n3        i  n   i4r  the remainder    2.                                                            i4n2    1   i4n2                    obtained when        i4n3  i  i4n1                     n is divided by 4    3. Complex number        A number of the form a  ib , where a,bR         Real part of z, Rez  a &          Imaginary part of z, Im(z) = b         Note : Rez  0  is purely imaginary CN          Im(z) = 0  z is purely real CN  4 Argand plane (Complex plane)                                                                    1
BBrilliant STUDY CENTRE                                                REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES)    5. Set of complex numbers (C)         C  x  iy / x.y R, 1  i & C  R    6. Geometrical interpretation of complex addtion & subtraction    7. Conjugate of a complex number          Congugate of z  x  iy is z  x  iy , which is obtained by replacing i by –i. Geometrically conjugate        represents the refleciton of z about real axis  Properties of conjugate        1. z   z     2. z  z  z is purely real CN     3. z  z  z is purely imaginary CN    4. z  z  2 Re z    5. z  z  2i 1m z    6. z1  z2  z1  z2    7. nz  nz    8. z1z2  z1.z2     9.                        n       zn                            z    10.    z1             z1         z2              z2                   11. zz Rez2 1mz2    12. az1  bz2  az1  bz2 where a, b  R                                                                      2
BBrilliant STUDY CENTRE                                                REPEATERS JEEMAIN LECTURE NOTE    8. Modulus of a complex number (Magnitude)          Let z  x  iy, then z  x2  y2 , which is a non-negative real value. Geometrically, it represents the        distance taken form origin  Properties of modulus        1. zz  z 2          2. z  0  z  0         3. z  z          4. z1  z2 2  z1 2  z2 2  2 Re z1 z2        5. z1  z2 2  z1 2  z2 2  2 Re z1 z2         6.   z1  z2  2    z1  z2  2    2    z1  2    z2  2                                                                       7. z1z2  z1 . z2         8. zn  z n         9.   z1    z1   , z2  0            z2     z2         10. z1  z2  z1  z2  z1  z2         11. z1  z1  z1  z2  z1  z2         12.  1     z            z      z2          13. If z 1 1  z                           Z    9. Distance formula        Distance between two complex numbers z1 & z2 in complex plane is z1  z2    10. z  z1  r , represents a circle with centre z1 & radius r  11. z  z1  r , represents the interior and the circumference of a circle with centre z1 and radius r  12. z  z1  r, represents the exterior and the circumference of a circle with centre z1 and radius r    13.  z  z1    1,    here locus of z represents the            r  bisector of the line joining the 2 fixed points z1 & z2       z  z2                                                                        3
BBrilliant STUDY CENTRE                                         REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES)    14.  Locus of z of     z  z1    , where   0,1 is a circle                         z  z2    15. General equation of a circle is zz  z  z  c  0 where centre is '  ' and radius is  2  c    16. Locus of z of z  z1 2  z  z2 2  z1  z2 2 is a circle    17. Locus of z of z  z1  z  z2  2a          1) Where z1  z2  2a , is an ellipse with foci z1 & z2 and length of major axis 2a        2) Where z1  z2  2a, is a line segment joining z1 & z2        3) Where z1  z2  2a , represents no locus    18. Locus of z of z  z1  z  z2  2a          1) Where z1  z2  2a is a hyperbola with foci z1 & z2 and length of transverse axis 2a        2) Where z1  z2  2a , represents two opposite open rays with end points z1 & z2        3) Where z1  z2  2a , represents no locus  19. Argument or amplitude of a complex number z is the angle made by ray z in anticlockwise direction        about the origin from the +ve direction of real axis and it is denoted by arg(z) or amp (z)  20. arg z is +ve if the rotation is in anti-clockwise direction and it is –ve if the rotation is in clockwise        direction    21. Principal argument of z lies in , is,   arg Z      22. Argument of a complex number z is          , if z in Istquadarnt            , if z in 2nd quadrant            if z in 3rd quadrant             if z in 4th quadrant         where      tan       1m  z                            1  re  z                                   23. Argument of z is          0, if z lies on +ve real axis        , if z lies on –ve real axis           if z lies on +ve imaginary axis         2           if z lies on –ve imaginary axis          2                                                4
BBrilliant STUDY CENTRE                                  REPEATERS JEEMAIN LECTURE NOTE    24. Arg z is not defined when z = 0    25. Polar form of complex number z  r cos   i sin , where r  z &   arg z    26. Polar form of a complex numbers z in the product of a non negative real number and a unimodular        complex number cos   i sin     27. Eules function is ei  cos   sin     28. Eulerian form of a complex number z is z  rei , where r  z &  arg z    29. ei  cos   isin     ei  cos   isin     ei 2     o  eiz           o  ei0   1,  ei   1            1,            1,    30. Properties of arguments    1) arg z1z2   arg z1   arg z2     2)  arg     z1       argz1   arg z2               z2                            3) arg zn   argz    4) arg z   argz    5)  arg     1       arg  z              z     31. Circular Rotation in complex plane about origin                                                          5
BBrilliant STUDY CENTRE                                                     REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES)    When z1  rei rotates an angle  about the origin in anticlockwise direction, then z2  z1ei and if the  rotation is in clockwise direction then z2  z1ei    Some particular cases    Let z  rei    1) kz  kr ei , where k is +ve, then z streches k times in the direction of z.          2) kz  kr ei , where k is –ve, the z streches k times in the direction opposite to z.  3. Multiplying by i         iz  irei  rei .ei2  rei2    ie;  z  rotates         an  angle                    in  anticlockwise  direction  about  the  origin.                                                     2    4. Division by i (Multiplying by –i)    z  rei  irei  rei .ei2  ii    ie; z  rei2        i                                               ie; z rotates an angle in clockwise direction about the origion                                       z  5. Multiplication by             rei     i  2     rei      2                         3                   3     z           .e                                               2        ie; Z rotates an angle in anticlockwise direction about the origin.                                        3  6. Division by  (Multiplication by 2 )    Z      rei   2rei               rei        i  2                                                         3                                               .e      z     z2     rei    2                                     3                                       2  ie; z rotates an angle in clockwise direction about the origin.                                  3                                                                             6
BBrilliant STUDY CENTRE                                        REPEATERS JEEMAIN LECTURE NOTE    32. Circular rotation about z         z2  z  z1  z ei      When z1  z rotates an angle  about z in anticlockwise direction, then z2  z  z1  z ei    33. Complex division        Let z1  r1ei1 and z2  r2.ei2 be two complex numbers then    z1  r1 e i12  z1  0  z1  0 ei  z2 r2              z2  0 z2  0    where 1  2      The division geometrically represents the rotation of z2 an angle  about the origin in anticlock wise  direction and reaches z2 , if  in positive.    34. Rotation about z        Let z, z1, z2 be complex number in complex plane, then    z1  z    z1  z  ei ,  where    in the angle of rotation.  z2  z     z2  z                                              7
BBrilliant STUDY CENTRE                                                    REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES)    35.    Let z1, z2, z3, z4 be 4 complex numbers in complex plane, then                            z2  z4    z2  z4   ei , which represents                                                                                            z1  z3     z2  z3    the rotation of z1  z3 an angle  (positive) and reaches z1- z4 in anticlockwise direction.    36. Locus related to argument    1)  Arg    z    z1               locus     of  z  represents  2  open      opposite  rays with  end    points  z1 and  z2.             z    z2  0                           2)  Arg    z    z1               Locus of      z   represnets a line segment         with  end points z1 and    z2             z    z2                             3)  Arg    z    z1        ,      Locus      of    z  represents  a  circle  with  diameters  joining  z1  &  z2             z    z2      2                           4)  Arg    z    z1      an  acute     angle      ,       Locus of z represents a major arc with end points          z1 & z2             z    z2                             5)  Arg    z    z1           obtuse        angle,         Locus   of  z  represents  a   minor  arc  with  end  points    z1 &  z2             z    z2    an                           37. Cube roots of unity    1. 3 1  1, , 2 , when   1  i 3 2  1  i 3                                                    22                22    2.       3 1  1, , 2 ,             when         1  i  3  2  1  i   3                                                              2    22               2                              3m  1    3.  3         1         3m 1                                                                 3m    2    2                                                               1    2    4.  1    2  0 1  2                           2  1                                                                           8
BBrilliant STUDY CENTRE                                                                                      REPEATERS JEEMAIN LECTURE NOTE    5.         1      n       2n     0, n     3m                                        3, n    3m    6.   2  1                                 2                   4 or 2                                  , arg   7.                                     2             arg              3 33               arg    3 arg 2    3    8.               ei23 , 2          i 2         ei3 , 2        ei3                                          e 3 ,           9.                     2 &              2   ,           2,                2                                                                                             2  2                      2   10.                          &     2                                                 11.        1   2 &         1                                  2     12. x2  x  1  x   x  2        x2  x  1   x   x  2    13. x3 1   x 1x  x  2        x3  1  x  1x  x  2     14. 1,  , 2 lies on a unit circle z  1    15. 1,  , 2 divides the circumference of z  1 into 3 equal segments.          16. 1,  , 2 are the vertices of an equilateral triangle  38. nth roots of unity    1)   n  1      i  2 k  ,k    0,1,  2, 3......(n   1)    1, ,  2  , 3....n1,  where        i  2                      n                                                                                    n                e                                                                                     e    2) 1   2  .....  n1  0  3) n 1       4) xn 1   x 1 x   x  2 ..... x  n1           xn 1   x   x  x2 ..... x  n1        x 1                                                                                       9
BBrilliant STUDY CENTRE                                                                                      REPEATERS JEEMAIN MATHS -2021 (ONLINE CLASS NOTES)       5)  x   x  2 ........ x  n1  1  x  x2  x3  .....  xn2  xn1    6) nth roots of unity divides the circumferene of z  1 into n equal segments.  7) nth roots of unity are the vertices of an n- sided regular polygon.    8)  r      1   or  nr     1           nr             r    9)   1  n1                                                                                                                    2    10) n 1  1, , 2.......,n1 where    ei n       11) xn 1   x  1 x   x  2 ............ x  n1                                                                                                             10
                                
                                
                                Search
                            
                            Read the Text Version
- 1 - 10
Pages:
                                             
                    