Class(XII)[SPJ-2023 Module-I] Characteristics of f x sin1 x 1. Df 1, 1 2. Rf , 2 2 3. It is not a periodic funciton 4. It is an odd function since, sin1 x sin1 x 5. It is a strictly increasing function 6. It is a one one function 7. For 0 x , sin x x sin1 x 2 101
Class(XII)[SPJ-2023 Module-I] Characteristics of f x cos1 x 1. Df 1, 1 2. Rf 0, 3. It is not a periodic funciton 4. It is neither even nor odd function since, cos1 x cos1 x 5. It is a strictly decreasing function 6. It is a one one function 7. For 0 x , cos1 x x cos x 2 Characteristics of f x tan1 x 1. Df R 2. Rf , 2 2 3. It is not a periodic funciton 4. It is an odd function since, tan1 x tan1x 5. It is a strictly increasing function 6. It is a one one function 7. For 0 x , tan1 x x tan x 2 102
Class(XII)[SPJ-2023 Module-I] Characteristics of f x cot1 x 1. Df R 2. Rf 0, 3. It is not a periodic funciton 4.It is neither even nor odd function since, cot1 x cot1 x 5. It is a strictly decreasing function 6. It is a one one function 7. For 0 x , cot x x cot1 x 2 Characteristics of f x cosec1x Domain Range y cos ec1x x 1or , 0 2 2 R 1,1 or , 11, 1. Df , 1 1, 2. Rf , 0 2 2 3. It is not an odd function, since cos ec1 x cos ec1 x 4. It is a non periodic function 5. It is a one one function 6. It is a strictly decreasing function with respect to its domain Characteristics of f x sec1 x Domain Range y sec1 x x 1 or 0, 2 R 1,1 or , 1 1, 103
Class(XII)[SPJ-2023 Module-I] 1. Df 11, 2. Rf 0, 2 3. It is neither an even function nor an odd odd function, since sec1 x sec1 x 4. It is a non periodic function 5. It is a one one function 6. It is strictly increasing function with respect to its domain 7. For 0 x , sex1 x x sec x 2 II I) sin1 x sin1 x, x 1,1 cos1 x cos1 x, x 1,1 tan1 x tan1 x, x R sec1 x sec1 x, x 1 cos ec1 x cos ec1x, x 1 cot1 x cot1 x, x R II) cos ec1x sin 1 1 ; x 1 cos ec1 f (x) sin1 1 f (x) 1 x f (x) sec1 x cos1 1 ; x 1 sec1 f (x) cos1 1 f(x) 1 x f (x) tan 1 1 x0 tan 1 1 f (x) 0 x x0 f (x) cot 1 x 1 cot1 f (x) x tan1 tan1 f (x) f (x) 0 Conversion property I) Conversions of one inverse trigonometric function into another one. a) For x (0,1) sin1 x cos1 1 x2 cos1 x sin1 1 x2 sin1 x tan1 x cos1 x tan1 1 x2 sin1 x sec1 1 x2 x 1 cos1 x cot1 x 1 x2 1 x2 sin1 x cot1 1 x2 cos1 x sec1 1 x x sin 1 x cos ec1 1 cos1 x cos ec1 1 x 1 x2 104
Class(XII)[SPJ-2023 Module-I] b) For x (0, ) tan1 x sin1 x cot1 x sin1 1 1 x2 x2 1 tan1 x cos1 1 cot1 x cos1 x 1 x2 x2 1 tan1 x cot 1 1 , x cot 1 x tan 1 1 x x tan1 x cos ec1 1 x2 cot1 x sec1 x2 1 x x tan1 x sec1 1 x2 cot1 x cos ec1 x2 1 sin 1 x 1 y2 y 1 x2 ; if x, y 1,1 and x2 y2 1 or if x, y 1,1, xy 0 and x2 y2 1 sin 1x sin 1y sin 1 x 1 y2 y 1 x2 if 0 x, y 1 and x2 y2 1 sin1 x 1 y2 y 1 x2 if 1 x, y 0 and x2 y2 1 sin 1 x 1 y2 x 1 x2 if x, y 1,1 and x2 y2 1 or if xy 0 x2 y2 1 sin 1x sin1y sin1 x 1 y2 y 1 x2 ; if 0 x 1, 1 y 0 and x2 y2 1 sin 1 x 1 y2 y 1 x 2 if 1 x 0, 0 y 1 and x2 y2 1 cos1 cos1 xy 1 x2 1 y2 ; if x, y 1,1 and x y 0 x cos1 y 2 cos1 xy 1 x2 1 y2 ; if x, y 1,1and x y 0 cos1 cos1 xy 1 x2 1 y2 ; if x, y 1,1 and x y x cos1 y cos1 xy 1 x2 1 y2 ; if x 0,1and y 1,0 tan 1 xy if xy 1, x 0, y 0 1 xy tan 1 x tan 1 y tan 1 xy if xy 1, x 0, y 0 1 xy tan 1 xy if xy 1, x 0, y 0 1 xy 105
Class(XII)[SPJ-2023 Module-I] tan 1 xy ; if xy 1 1 xy tan 1 x tan 1 y tan 1 xy ; if xy 1, x 0, y 0 1 xy tan 1 xy ; if xy 1, x 0, y 0 1 xy III 106
Class(XII)[SPJ-2023 Module-I] y sin1 sin , R sin1 sin m 1n m n ; 2n 1 2n 1 2m 2m 107
Class(XII)[SPJ-2023 Module-I] m n, n n 1 , n is even m , n is ood cos1 cos m m n 1 m; n n 1 m m 108
Class(XII)[SPJ-2023 Module-I] 109
Class(XII)[SPJ-2023 Module-I] 2sin1 x, if 1 x 1 2 sin1 2x 1 x2 2sin1 x, 1 x 1 2 2 1 x 1 2sin1 x, 2 3 sin1 x; 1 x 1 sin 1 2 1 1 2 sin 1 (3x 4x 3 ) 3 x; 2 x 1 2 3 sin 1 x; x 1 cos1 2 2cos1 x 1 x 0 2x2 1 2cos1 x 0 x 1 2 3cos1x; 1 x 1 cos1 1 2 4x3 3x 2 3cos1 x; 2 x 1 2 3cos1 x; 1 x 1 2 Note: Need not be duscuss all graph. But few of them must be disussed A 110
Class(XII)[SPJ-2023 Module-I] QUESTIONS HOME WORK 1. tan 1 3 tan 1 5 cot 1 4 7 A) B) C) D) E) 4 3 8 2 6 2. The value of tan 2 tan 1 1 is 5 4 A) 1 B) 0 C) 7 D) 7 17 17 3. tan sin 1 3 cos1 4 5 5 24 B) 24 7 D) 7 1 A) 7 7 C) 24 24 E) 24 E) 3 4. If sin 1 x cos ec1 5 then x = 5 4 2 3 E) 4 A) 4 B) 5 C) 1 D) 6 5. sin 1 sin 5 4 5 3 A) 4 B) 4 C) 4 D) 4 6. cos 1 cos 7 6 A) 7 B) C) 5 D) 3 E) None 6 6 6 6 7. The value of cot cos1 1 3 1 1 C) 2 D) 1 E) 1 A) 2 2 B) 2 22 2 111
Class(XII)[SPJ-2023 Module-I] 8. tan 1 3 tan 1 1 2 3 A) tan 1 5 B) tan 1 2 C) tan 1 1 D) tan 1 1 E) tan 1 5 3 3 2 3 3 2 3 9. sin cot1 tan cos1 x A) x B) 1 x 1 E) 1 x2 x C) 1 x2 D) 1 x2 10. If A tan1 x then sin 2A = 2x B) 2x 2x D) 2x E) 2 A) 1 x2 1 x2 C) 1 x2 1 x2 1 x2 11. If two angles of a triangle are cot1 2 and cot1 3 then the third angle is A) cot-14 B) 3 C) D) E) 4 6 3 4 12. sec2 (tan–1 2) + cosec2 (cot–1 3) = A) 5 B) 10 C) 15 D) 20 E) 25 13. tan-1 (-2) + tan-1 (-3) = A) B) 3 C) 5 D) 3 E) 4 4 4 4 4 14. If cos1 x cos1 y cos1 z then A) x2 + y2 + z2 + xyz = 0 B) x2 + y2 + z2 + 2xyz = 0 C) x2 + y2 + z2 + xyz = 1 D) x2 + y2 + z2 + 2xyz = 1 E) x2 + y2 + z2 + 2xyz + 1 = 0 15. sin 1 2 2 sin 1 1 3 3 A) B) C) D) 2 E) 0 6 4 2 3 16. 1 1 1 sin 1 2 cos1 2 tan 1 3 cot 1 3 A) 17 B) 11 C) 5 D) E) 7 12 12 12 12 12 112
Class(XII)[SPJ-2023 Module-I] 17. cos1 cos 5 sin 1 sin 5 = 3 3 A) 10 B) C) 0 D) 2 E) 3 2 3 3 18. If cot1 7 cot 1 8 cot118 then cot = A) 2 B) 3 C) 4 D) 5 1 E) 3 19. cos1 1 2 sin 1 1 2 2 A) B) C) D) E) 2 4 6 3 8 3 20. Number of solutions of sin 1 x sin 1 2x is 3 A) 0 B) 1 C) 2 D) 3 E) Infinite 21. If sin1 x cos1 x then x = 6 1 B) 1 C) 3 D) – 3 1 A) 2 2 2 2 E) 3 22. sin 1 cos1 4 2 5 1 1 C) 1 D) 1 E) 1 A) 10 B) 10 10 10 5 23. If sin 1 x cot 1 1 then x = 2 2 A) 0 21 D) 3 1 B) 5 C) 5 2 E) 5 24. If sec1 x cosec1y then cos1 1 cos1 1 x y A) B) C) D) E) 4 4 2 2 113
Class(XII)[SPJ-2023 Module-I] 25. tan1 2 tan1 3 tan1 4 is equal to A) tan 1 3 B) tan 1 5 5 3 C) tan 1 5 D) tan 1 3 E) 3 3 5 4 26. If sin 1 x sin 1 y 2 then cos1 x cos1 y 3 A) 2 B) C) D) E) 3 3 6 4 27. tan 1 2x tan 1 3x then x = 2 1 B) 1 1 1 E) 1 A) 6 6 C) 3 D) 2 3 28. If cos–1p + cos–1q + cos–1r = 3 then pq + qr + rp = A) –3 B) 0 C) 3 D) 1 E) –1 29. If cot–1 (cos) 12 tan1 cos 12 = x then sinx = A) tan 2 B) cot 2 C) tan D) cot E) cot 2 2 2 30. sin1 cos 4095o A) B) C) D) E) 3 6 4 4 2 31. If sin1 x sin1 y sin1 z then x2 + y2 + z2 + 2xyz = 2 A) 0 B) 1 C) 2 D) 3 E) –1 32. If tan 1 a tan 1 b then x = x x 2 A) ab B) 2ab C) ab D) 2ab E) 2 ab 33. Sin Sin 1 1 Cos1 1 2 2 A) 0 11 E) 2 B) 1 C) 2 D) 2 114
Class(XII)[SPJ-2023 Module-I] 34. tan 1 1 tan 1 2 4 9 A) 1 cos1 3 B) 1 sin 1 3 C) 1 tan 1 3 D) tan 1 1 E) 1 tan 1 5 2 5 2 5 2 5 2 2 3 35. In a ABC, if A = tan–1 2 and B = tan–1 3, then C = A) B) C) D) E) None of these 3 4 6 2 36. If sin 1 1 sin 1 2 sin 1 x , then the value of x is 3 3 A) 0 B) 54 2 C) 54 2 D) E) 5 4 2 9 9 2 37. If tan1 x tan1 y tan1 z or , then 2 A) x + y + z = 3xyz B) x + y + z = 2xyz C) xy + zx + yz = 1 D) xy – zx + yz = 1 E) None of these 38. If sin1 x sin1 y sin1 z 3 , then value of x100 y100 z100 9 is 2 x101 y101 z101 A) 0 B) 1 C) 2 D) 3 E) 4 39. The principal value of cos1 ½ is: A) /5 B) 2 /3 C) D) /2 E) 0 40. If sin1 x cos1 x tan 1 y ; 0 x 1, then the value of cos c is a b c ab 1 y2 B) 1 y2 1 y2 1 y2 A) y y C) 1 y2 D) 2y One or more than one correct answer type 41. If y2 xy 2x 3 for x, y R then which among the following are not true? A) sec1 x cos1 1 B) cot 1 x tan 1 1 x x C) cos1 x sec1 1 D) tan 1 x cot 1 1 x x 115
Class(XII)[SPJ-2023 Module-I] 42. Let cos1 t tan 2 x . Then which of the following statement is / are true? tan 2 2 f x x 2 1 A) Range of f(x) is 0, B) f x has no real solution C) y = f(x) is identical with y cos1 cos x D) y = f(x) has period 2 43. If 3 sin 1 6 and 3 cos1 4 , where the inverse trigonometric functions take only the principal values, 11 9 then the correct options is/are A) cos 0 B) sin 0 C) cos 0 D) sin 0 2 3 44. The values of x satisfying tan1 1 tan1 1 tan1 2 is..... 2x 1 4x 1 x2 A) 0 B) 2 C) 3 D) 3 45. If cot 1 ax 4 x x 3 tan 1 ax 2 1 1 x 2 then integral values of ‘a’ can be x A) 2 B) 3 C) 4 D) 8 Numerical type 46. If tan 1 1 tan 1 1 tan 1 1 .......... 2 then the value of '' is 3 7 13 47. The number of real solution of tan1 x(x 1) sin1 x2 x 1 is 2 48. The number of real solution of cos1 cos x cot x ,0 x 2 2 49. Let f :0, 4 0, bedefined by f (x) cos1(cos x) . The numberof points x 0, 4 satisfyingthe equation 10f x x 10 is 116
Class(XII)[SPJ-2023 Module-I] 50. Let f () cos 2 0 . Then the value of d ) f () is sin cot 1 sin 4 d(tan , where LEVEL 1 1. Find the principal value of sin 1 sin 5 4 A) B) C) 5 D) 4 4 4 3 2. The value of tan cos1 4 tan 1 2 5 3 A) 17 B) 17 C) 6 D) 3 16 6 17 4 3. The value of tan 1 2 cos 2 sin1 1 2 A) B) C) D) 6 4 4 3 4. tan 1 1 tan 1 2 4 9 A) 1 cos 1 3 B) 1 sin 1 3 C) 1 tan 1 3 D) tan 1 1 2 5 2 5 2 5 2 5. Domain of f x sin 1 x 2 cos 1 1 x is 3 4 A) 1,1 B) 1,5 C) 5,5 D) 1,5 6. Find the value of cos 2 cos1 1 cos 2 tan 1 1 3 3 A) 1 B) 3 C) 2 D) 7 45 61 83 61 FGH KIJ HFG JKI7. 1 1 If 2 tan1 3 tan1 7 x , then Sin x is equal to: A) 1 B) 3 C) 1 D) 1 2 2 2 117
Class(XII)[SPJ-2023 Module-I] 8. sin sin 1 1 cos1 1 equals: 2 2 A) 0 B) 1 C) 1/2 D) 1/ 2 9. If sin 1 3 sin 1 1 and cos1 3 cos1 1 then, 2 3 2 3 A) B) 2 C) D) 2 10. tan 1 1 tan 1 1 7 13 A) tan 2 B) tan 1 2 C) tan 9 D) tan 1 9 9 9 2 2 LEVEL 1I GHF IKJ11. The value of x which satisfiestheequation tan-1x = sin1 3 is: 10 A) 3 B) -3 C) 1/3 D) -1/3 HF IK12.Ifsin 1 3 cos1 12 sin1 c, then c = 5 13 A) 65 B) 65 C) 24 D) 56 66 56 65 65 13. HFGcos1 2 IKJ tan1FHG 13IJK 5 A) tan 1 2 B) C) tan 1 GHF 1 IKJ D) p/2 35 4 7 14. The principal value of tan 1 cot 3 is 4 A) 3 B) 3 C) D) 4 4 4 4 15. The value of cos tan1 x is A) 1 x2 B) x C) 1 x2 3/2 D) 1 x2 1/2 16. The value of sin1 sin 3 is A) 3 B) 3 C) 3 D) 3 2 2 118
Class(XII)[SPJ-2023 Module-I] 17. tan 1 x tan 1 x y is: y x y A) /2 B) /3 C) /4 D) /4 or 3 /4 18. If cos-1x = cot-1(4/3) + tan-1(1/7) then x = A) 1 B) 3 C) 1 D) 3 2 2 2 5 19. If 4 sin-1 x + cos-1 x , then x = A) 1 B) 1 C) 2 D) 1 2 3 13 13 20. For x 0, tan cos1 x is equal to: A) 1 x2 B) x C) 1 x2 D) 1 x2 1 x2 x x LEVEL 1II 21. of 23 1 n is The value cot n 1 cot 1 k 1 2k A) 23 B) 25 C) 23 D) 24 25 23 24 23 22. cot 1 22 1 cot 1 23 1 cot 1 24 1 ...... 2 22 23 A) tan12 B) cot 1 1 C) tan 1 1 D) 2 2 4 23. If S tan 1 1 tan 1 1 ...... tan 1 1 then tan S = n 3n 19)(n n 2 1 n 2 3 1 ( n 20) A) 20 B) n2 n C) 20 D) n 401 20n 20n 1 n2 20n 1 401 20n One or more than correct answer type 24. If 2 tan1 , 3 sin 1 1 sin1 1 1 1 2 1 2 2 and cos 3 then A) B) C) D) 25. If and are two real values of x satisfy the equation sin1 x sin1 1 x cos1 x . then 1 B) 0 1 1 A) 2 C) 2 D) 2 119
Class(XII)[SPJ-2023 Module-I] 26. The positive integral values of ‘a’,which satisfy the relation cot1 1 x2 a 2x 1 tan1 x2 a x 1 for all x R 0 2 A) 2 B) 3 C) 4 D) 5 27. The values of x satisfying tan1 1 tan 1 1 tan1 2 are x x 1 x2 2 1 4 A) –3 2 C) 3 D) 2 B) 3 3 Numerical Type 28. tan cos1 5 1 sin 1 4 2 17 is 29. sin 1 x x2 x3 ..... cos 1 x 2 x4 x6 ....... for 0 x 2, then x equals 2 4 2 4 2 30. sec2 tan1 2 cos ec2 cot1 3 ..... 31. Find the smallest +ve integer x so that tan tan 1 x tan 1 1 tan 12 4 x 1 Matrix match Column I Column II 32. (A) The value of tan cos1 4 tan 1 2 is p) 17 5 3 6 (B) The value of 2 tan1 1 is q) 1 4 3 7 (C) The value of cos 1 cos1 1 is r) 3 2 8 4 (D)The value of cos tan 1 sin cot 1 1 is s) 5 2 3 A) A q; B p;C r; D s B) A p; B q;C r; D s C) A p; B r;C q; D s D) A q; B r;C s; D q 120
Class(XII)[SPJ-2023 Module-I] CHAPTER -03 MATRICES & DETERMINANTS A rectangular array of mn numbers in the form of horizontal lines (rows) and n vertical lines (columns) is called a matrix of order mby n ( mn) such an array in enclosed by [ ] or ( ) or || || or { }. An m n a11 a12...... a1n a22..... . a21 a 2n matrix is usually written as A ........... ........................ .................... or A aij mn . A matrix A aij mn over a m1 am2 ...... amn the field of complex numbers is said to be 1) a rectangular matrix if m n 2) a square matrix if m = n 3) a row matrix if m = 1 4) a column matrix if n = 1 5) a null (zero) matrix if aij = 0, for all i and j 6) a diagonal matrix if aij = 0 for i j , m = n 7) a scalar matrix if m = n, aij = 0 for all i j and a11 = a22 = a33 = ........ = ann 8) Unit (identity) matrix if m = n, aij = 0 for all i j and aii = 1 9) Comparable matrix means same order 10) Equal matrices same order and all the corresponding elements are equal Addition: Let A and B be two matrices of same order then A + B is defined A + B = [aij + bij] m n where A aij mn , B bij mn Scalar multiplication If A a b then KA ka kb c d kc kd 121
Class(XII)[SPJ-2023 Module-I] Properties of addition 1) A B B A (commutative) 2) A B C A B C (Associative) 3) A 0 0 A 0 (Zero matrix is the additive identity) Subtraction of matrices A - B = A+( -B) Multiplication of matrices Let A and B be two matrices such that the number of columns of A is same as the number of rows of B ie, bij n np A aijmn , B . Then AB Cijmp , where Cij aik bkj k 1 Properties ABC A BC A B CC AB AC A B C AC BC A B2 A2 AB BA B2 A B2 A2 AB BA B2 A BA B A2 AB BA B2 AI = IA=A where I is the identity matrix A is square matrix. A2 A A, A3 A2.A If A cos sin , then An cos n sin n sin cos sin n cos n and A A A cos sin 0 cos If A sin 0 then A A A . 0 0 1 Idempotent matrix (A): If A2 = A where A is a square matrix. Involuntory matrix if A2 = I Nilpotent matrix : Am = 0, m is called the index of the nilpotent matrix If AB= A and BA= B then both A and B are idempotent. 122
Class(XII)[SPJ-2023 Module-I] If A 1 1 1 1 then An 2n1A If A 1 k , then An 1 kn 0 0 1 1 Properties is transpose 1) ATT A . Let A a b , AT A a c c d b d 2) A BT AT BT 3) KAT KAT 4) ABT BTAT Orthogonal matrix A. sin cos sin 0 cos cos cos 0 , sin 1 If A.AT AT.A I , then A is orthogonal , example, sin 0 Symmetric matrix A: if AT A aij aji 0 skew symmetric A : if AT A aij aji If A is symmetric then A AT is symmetrix, An , AT , A and AAT are also symmetric . A AT is skew symmetric. If A and B are symmetric matrixes of same order than AB + BA is symmetric and AB-BA is skew symmetric. If A is skew symmetric matrix than An is skew symmetrix when n is odd and symmetric when n is even. Determinant A A det A a b ad bc c d Determinant of a matrix otherthan squarematrix does not exist Properties of Determinant a1 b1 c1 a1 a2 a3 1) A AT , a2 b2 c2 b1 b2 b3 a3 b3 c3 c1 c2 c3 a1 b1 c1 a2 b2 c2 2) a 2 b2 c2 a1 b1 c1 a3 b3 c3 a3 b3 c3 123
Class(XII)[SPJ-2023 Module-I] a1 a2 a3 a1 a2 a3 3) b1 b2 b3 b1 b2 b3 c1 c2 c3 c1 c2 c3 4) KA Kn A where n is the order of A 5) A skew symmetric matrix of odd order has determinant value zero and that even odder is a perfect square a1 b1 c1 6) a2 b2 c2 0 R1 R3 ka1 kb1 kc1 a1 b1 a2 b2 a3 b3 a1 a2 a3 b1 b2 b3 7) c1 c2 c3 c1 c2 c2 d2 d3 d1 d2 c3 c1 d2 c3 d1 d3 d1 d3 a1 b1 c1 a1 a2 b1 b2 c1 c2 8) a2 b2 c2 a 2 b2 c2 R1 R1 R2 a3 b3 c3 a3 b3 c3 9) AB A B where A and B are square matrices of the same order. d f x gx fx gx f x gx 10) dx h x f x hx x hx x nn n f r gr hr n r1 r1 r1 f r gr hr r a1 a2 a3 a3 11) r1 b1 b2 b3 b3 where r a1 a2 b1 b2 Cramer’s Rule (Solution of Linear equation by determinant) Let a1x b1y c1z d1 , a2x b2y c2z d2 and a3x b2y c3z d3 and a1 b1 c1 d1 b1 c1 a1 d1 c1 a1 b1 d1 D a2 b2 c2 D1 d2 b2 c2 ; D2 a 2 d2 c2 and D3 a2 b2 d2 a3 b3 c3 d3 b3 c3 a3 d3 c3 a3 b3 d3 124
Class(XII)[SPJ-2023 Module-I] Test for consistency by Cramer’s Rule (Non Homogeneous) x D1 ;y D2 ; z D3 D D D Homogeneous (d1 =d2 = d3 = 0) If D 0 then the system is consistent and Trial solution only. If D = 0, then the system is consistent and infinite number of solutions. Singular matrix A : if A 0 ; for non singular A 0 . a11 a12 a13 a 22 a 23 a 22 a 23 a 32 a 33 Minor of a11 in a 21 a 32 a 33 is M11 a 31 cofactor of aij = (-1)i+jmij = Aij or Cij A11 A12 A13 T Adjoint is the transpose of cofactor matrix , adjA A21 A 22 A 23 A31 A32 A33 A(adj A) A I adjA A adjAB adjBadjA adjadjA A n2 A adj adj A A n2 A A n1 2 Inverse of A = A 1 adj A A 0 A A1 1 A AB 1 B1A1 adj A1 adjA1 125
Class(XII)[SPJ-2023 Module-I] If A is an orthogonal matrix and B is any square matrix of the same order of A then ABAT n ABnAT and ABA1 n ABnA1 adj A A n1 where n is the order of A . A 1 1 , (kA)1 1 A1 A k Solution of linear equations by matrix method Let a1x1 b1y c 1z d1 , a2x b2y c2z d2 and a3x b3y c3z d3 a1 b1 c1 d1 d2 Let A a2 b2 c2 , B a3 b3 c3 d3 x y AX B where B z Test for consistency Special Determinants 111 (i). a b c = (a-b) (b-c) (c-a) a2 b2 c2 111 (ii) a b c = (a-b) (b-c) (c-a) (a + b + c) a3 b3 c3 111 (iii) a2 b2 c2 = (a-b) (b-c) (c-a) (ab+bc+ca) a3 b3 c3 126
Class(XII)[SPJ-2023 Module-I] 1 a 1 1 FGH KIJ(iv). 1 1 b 1 = abc 1 1 1 1 1 1 1 c a b c 12 22 32 42 (v) 22 32 42 52 0 32 42 52 62 42 52 62 72 12 22 32 (vi). 22 32 42 8 32 42 52 abc (vii). b c a = -(a3+b3+c3-3abc) = -(a+b+c) (a2+b2+c2-ab-bc-ac) cab 1b g b g b g b g b gd id i= 2 abc ab 2 bc 2 ca 2 = a b c a bw cw2 a bw2 cw a2 ab ac (viii) ba b2 bc 4a2b2c2 ac bc c2 b c2 a2 a2 (ix) b2 c a 2 b2 2abca b c3 c2 c2 a b2 a b 2c a b (x) c b c 2a b 2a b c3 c a c a 2b a b c 2a 2a (xi) 2b b c a 2b a b c3 2c 2c c a b ab bc ca a b c (xii) b c c a a b 2 b c a ca ab bc c a b 127
Class(XII)[SPJ-2023 Module-I] QUESTIONS: [HOMEWORK] 1. If A cos sin , then A20 is equal to sin cos cos20 sin20 cos 20 sin 20 A) sin20 B) sin 20 cos 20 cos20 cos 20 sin 20 cos 20 sin 20 cos sin C) sin 20 cos 20 D) sin 20 E) sin cos cos 20 2. If A x 1 and A2 is the unit matrix then the value of x3 x 2 is equal to 1 0 A) –8 B) –2 C) 0 D) 1 E) 187. If A 1 1 , D) 99A 1 1 then A100 is equal to D) 99A A) 2100A B) 294A C) 100A E) A 3. If A 1 1 , then A100 is equal to 1 1 A) 2100A B) 294A C) 100A E) A 1 2 2 4. If A 2 1 2 is a matrix satisfying AAT = 9I3, then the value of a and b respectively a 2 b A) 1,2 B) –1,2 C) –1, –2 D) 2,1 E) –2,–1 1 0 0 If A 0 1 5. 0 and I is the unit matrix of order 3, then A2 2A4 4A6 a b 1 A) 7A8 B) 7A7 C) 8I D) 6I E) I 6. If A i i and B 1 1 , then A8 = i i 1 1 A) 32B B) 128 B C) 16B D) 64B E) 4B 128
Class(XII)[SPJ-2023 Module-I] 2 2 4 If A 1 3 7. 4 , then A is 1 2 3 A) Idempotent B) Involutory C) diagonal D) nilpotent with index 2 E) Nilpotent with index 3 3 13 2 5 5 8. 15 26 5 10 3 65 15 5 A) 5 3 6 5 B) 5 3 C) 6 5 D) 3 6 5 E) 5 6 5 loga 1 loga b log a c 9. If a,b,c are non-zero and different from 1, then the value of log a 1 logb 1 log a 1 is b c log a 1 log a c logc 1 c A) 0 B) 1 loga a b c C) loga ab bc ca D) 1 E) loga a b c 10. Let A be any 3×3 invertible matrix. Then which one of the following is not always true A) adjA | A | A1 B) adjadjA | A | A C) adjadjA | A |2 adjA 1 D) adjadjA | A | adj(A)1 11. If the system of linear equations x ay z 3, x 2y 2z 6, x 5y 3z b has no solution, then A) a 1, b 9 B) a 1, b 9 C) a 1, b 9 D) a 1, b 9 3 1 f 1 1 f 2 12. If , 0 and f n n n and 1 f 1 1 f 2 1 f 3 k 1 2 1 2 2 , then k is equal 1 f 2 1 f 3 1 f 4 to C) 1 A) 1 B) –1 D) 129
Class(XII)[SPJ-2023 Module-I] x 4 2x 2x 13. If 2x x 4 2x A Bx x A2 then the ordered pair (A,B) is equal to 2x 2x x 4 A) 4, 5 B) 4,3 C) 4,5 D) 4,5 14. If the system of linear equations x ky 3z 0, 3x ky 2z 0 and 2x 4y 3z 0 has a non-zero xz solution x, y, z , then y2 is equal to A) –10 B) 10 C) –30 D) 30 x2 x x 1 x 2 15. If 2x2 3x 1 3x 3x 3 ax 12, then a = x2 2x 3 2x 1 2x 1 A) 12 B) 24 C) –32 D) –24 16. If B is a 3×3 matrix such that B2 = 0, then det I B 50 50B is equal to A) 1 B) 2 C) 3 D) 50 17. Let for i 1, 2, 3 Pi (x) be a polynomial of degree 2 in x, Pi/ x and Pi x be the first and second p1 x p1 x p1 x p2 x order derivatives of pi x respectively. Let Ax p2 x p2 x and p3 x p3 x p3 (x ) Bx A xT A x . Then determinant of B(x) is A) is a polynomial of degree 6 in x B) is a polynomial of degree 3 in x C) is a polynomial of degree 2 in x D) does not depend on x a2 b2 c2 a2 b2 c2 18. If a 2 b 2 c 2 k a b c , 0 then k is equal to a 2 b 2 c 2 111 A) 4 abc B) 4abc C) 42 D) 42 130
Class(XII)[SPJ-2023 Module-I] 19. Let a1, a2, a3......, a10 be in G.P. with ai 0 for i 1, 2,.....10 and S be the set of pairs r, k , r, k N for which log a1r a k log a 2r a k log a 3r a k 2 3 4 log a 4r a k log a 5r a k log a 6r a k 0 Then the number elements in S, is 5 6 7 log a 7r a k log a 8r a k log a ar k 8 9 9 10 A) Infinitely many B) 4 C) 10 D) 2 20. If the system of linear equations 2x 2y 3z 9, 3x y 5z b x 3y 2z c where a,b,c are non- zero real numbers, has more than one solution, then A) b c a 0 B) a b c 0 C) b c a 0 D) b c a 0 21. If A a b and A2 , then b a A) a2 b2, ab B) a2 b2, 2ab C) a2 b2, a2 b2 D) 2ab, a2 b2 1 2 x y 6 3 1 2 x 8 22. If A and B 1 be such that AB , then A) y=2x B) y=-2x C) y = x D) y = -x 23. If A 0 1 , then which one of the following statements is not correct 1 0 A) A4 I A2 I B) A3 I A A I C) A2 I A A2 I D) A3 I A A3 I 1 2 2 24. If A 2 1 2 is a matrix satisfying the equation AAT 9I, where I is 3×3 identify matrix, then the a 2 b ordered pair (a,b) is equal to A) (-1,1) B) (2,1) C) (-2,-1) D) (2,-1) 131
Class(XII)[SPJ-2023 Module-I] 25. 2 3 If A 4 1 , then adj 3A2 12A is equal to 51 63 51 84 72 63 72 84 A) 84 72 B) 63 72 C) 84 D) 63 51 51 6i 3i 1 26. If 4 3i 1 x iy, then 20 3 i A) x 3, y 1 B) x 1,y 3 C) x 0, y 3 D) x 0, y 0 1 w2 w2n 27. If I,W,W2 are the cube roots of unity then wn w2n 1 is equal to w2n 1 wn A) 0 B) 1 C) W D) W2 a a2 1 a3 28. If b b2 1 b3 0 and vectors 1,a,a2 , 1,b,b2 and 1,c,c2 are non coplanar, the the product abc c c2 1 c3 equals A) 2 B) -1 C) 1 D) 0 5 5 29. Let A 0 5 . If A2 25, then equals 00 5 1) 52 B) 1 1 D) 5 C) 5 A 4 1 30. If 3 1 , then the determinant of the matrix A2016 2A2015 A 2014 is A) -175 B) 2014 C) 2016 D) -25 132
Class(XII)[SPJ-2023 Module-I] 31. Let W be a complex number such that 2w 1 z, where z 1 1 1 3. If 1 1 w2 w 2 3k then k w7 1 w2 A) -Z B) Z C) -1 D) 1 r 2r 1 3r 2 n1 32. If r n (n 1)2 n1 2 a , then the value of r is n(n 1) r 1 2 (n 1)(3n 4) 2 A) independent of both a and n B) depends only on a C) depends only on n D) depends both on a and n b1 b2 33. Let S be the set of all column matrices such that b1,b2,b3 R and the system of equations (in b3 real variables) x 2y 5z b1, 2x 4y 3z b2 and x 2y 2z b3 has at least one solution. Then which of the following system (s) (in real variables) has (have) at least one solution for each b1 b2 s b3 A) x 2y 3z b1,4y 5z b2 and x 2y 6z b3 B) x y 3z b1,5x 2y 6z b2 and 2x y 3z b3 C) – x 2y 5z b1,2x 4y 10z b2 and x 2y 5z b3 D) x 2y 5z b1, 2x 3z b2 and x 4y 5z b3 133
Class(XII)[SPJ-2023 Module-I] 0 1 a 1 1 1 Let M 1 3 34. 2 and adj M 8 6 2 where a and b are real numbers. Which of the following options 3 b 1 5 3 1 is/are correct A) a b 3 B) det adj M2 81 1 2 , C) adj M 1 adj M1 M D) If M then 3 3 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 P1 I 0 0 1,P3 1 0 1,P5 1 0,P6 0 0 35. 1 0 ,P2 0 0 0 ;P4 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 X 6 2 1 3 P T T and Pk 1 0 2 k k k1 3 2 1 where P denotes the transpose of the matrix Pk. Then which of the following options is/are correct B) The sum of diogonal entries of X is 18 A) X -30 I is an invertible matrix 1 1 D) X is a symmetric matrix C) If X 1 1,then 30 1 1 1 1 1 2 x x 36. Let x R and let P 0 2 2 Q 0 4 0 and R PQP1. Then which of the following options is 0 0 3 x x 6 /are correct 0 0 A) For x =1, there exists a unit vector i j rk for which R 0 B) There exists a real number x such that PQ QP 2 x x C) det R det 0 4 0 8, for all x R x x 5 1 1 D) For x=0, if R a 6 a,then a b 5 b b 134
Class(XII)[SPJ-2023 Module-I] 37. M sin4 1 sin2 I M1, where () and () are real numbers, and I is the 1 cos2 cos4 2×2 identify matrix if * is the minimum of the set () : ,2 * is the minimum of the set : ,2 , then the values of * and * are A) * 1 B) * 1 C) * 37 D) * 37 2 2 16 16 Integer type x x2 1 x3 38. The total number of distinct x R for which 2x 4x2 1 8x3 10 is 3x 9x2 1 27x3 39. Let z 1 3i where i 1 and r,s 1, 2, 3. Let P z r z2s and I be the identity matrix 2 z2s zr of order 2. Then the total number of ordered pairs (r,s) where p2 =-1 is 1 0 0 1 0 and I be the identity matrix of order 3. If Q= [qij] is a matrix such that 40. Let P 4 16 4 1 P50 Q I 0, then q31 q32 equals q21 1 0 0 41. Let A 1 1 0 and B A20. Then the sum of the elements of the first column of B is 1 1 1 42. Howmany 3×3 matrices M with entries from 0,1,2 are there, for which the sum of the diagonal entries of MT M is 5 1 a b 1 43. Let W 1 be a cube root of unity and s be the set of all non-singular matrices of the form w w c w 2 1 where each of a,b and c is either w or w2. Then the number of distinct matrices in the set S is 44. Let P be a matrix of order 3×3 such that all the entries in P are from the set 1,0,1 . Then the maximum possible value of the determinant of P is 135
Class(XII)[SPJ-2023 Module-I] 1 2 x 1 y 1 45. For a real number , if the system 1 of linear equations, has infinitely many 2 1 z 1 solutions, then 1 2 46. cos x sin x sin x 0 is the interval , is cos x sin x 4 4 The number of distinct real roots of the equation sin x sin x cos x sin x 47. If S is the set of distinct values of b for which the following system of linear equations x y z 1,x ay z 1 and ax by z 0 has no solution then the number of elements in S is 48. If the product 1 0 1 0 1 0 1 0 ..... 1 0 1 0 1 1 2 1 3 1 4 1 n 1 210 1 then n is equal to 49. If the system of linear equations 2x 2y 3z a, 3x y 5z b amd x 3y 2z c where a,b,c are non zero real numbers, has more than one solution, then b-c-a is equal to Matrix match Column I Column II 50. A) The system of linear equations x 2y 2z 5, 2x 3y 5z 8 and 4x y 6z 10 has no solution Then P) 8 1 1 2 B) If the matrices A 1 3 4 , B adjA and c = 3A, then 1 1 3 adjB R) 10 c is equal to x a x 2 x 1 S) 1 C) Let a 2b c 1. If f x x b x 3 x 2 then f(50) xc x4 x3 D) Let A x 1 , x R and A4 aij T) 0 1 0 If a11 109, then a22 is equal to B) A Q, B S, C P, D R A) A Q, B P, C S, D R C) A Q, B S, C R, D P D) A Q, B P, C T, D R 136
Class(XII)[SPJ-2023 Module-I] LEVEL - I i 0 i i i 1. If A 0 i i and B 0 0 , then AB = i i 0 i i 2 2 2 2 2 2 1 0 0 1 0 1 B) 1 C) 1 1 D) 0 1 0 E) 0 1 A) 1 1 1 1 0 0 1 1 1 3 2 2. If U 2 3 4, X 0 2 3 V 2 and Y 2 , then UV + XY = 1 4 A) 20 B) 20 C) –20 D) 20 E) 10 1 2 3 1 3. The value of x for which the maxtrix product 1 x 1 4 5 6 2 0 is 3 2 5 3 1 1 C) 9 9 8 A) 2 B) 3 8 D) 8 E) 9 4. If A –AT , then x y x 3 2 , where A 3 y 7 A) 2 B) –1 2 7 0 C) 12 D) -2 E) 0 3 3 3 5. If A 3 3 3 , then A4 = 3 3 3 A) 27A B) 81A C) 243A D) 729A E) 3A 7 10 17 1 18 0 6 31 6 , then B= 6. If 3A 4BT , 2B 3AT 4 7 5 1 3 1 3 1 2 3 1 4 1 2 A) 1 B) 1 0 C) 4 2 5 D) 2 E) 1 0 4 3 2 0 2 2 2 4 5 5 137
Class(XII)[SPJ-2023 Module-I] Ai ai bi 7. bi If ai and | a | 1,| b | 1. Then the value of Det Ai is equal to i 1 a2 b2 a2 b2 A) 1 a2 1 b2 B) 1 a 2 1 b2 a2 b2 a2 b2 a2 b2 C) 1 a2 1 b2 D) 1 a2 1 b2 E) 1 a 2 1 b2 cos2 54o cos2 36o cot135 8. The value of the determinant sin2 53o cot135 sin2 37 is equal to cot135 cos2 25 cos2 65 A) –2 B) –1 C) 0 D) 1 E) 2 x2 x 3x 1 x 3 9. If 2x 1 2 x2 x3 3 a0 a1x a2x2 ..... a7x7 , then ao = x 3 x2 4 3x A) 25 B) 24 C) 23 D) 22 E) 21 of linear 10. The number of values of k for which the system equations k 2 x 10y k, kx k 3 y k 1 has no solution, is A) 1 B) 2 C) 3 D) infinitely many LEVEL - II 1 1 i 3 2 A 11. Let 1 i 3 1 then A100 = 2 A) 2100A B) 299A C) 298A D) A E) A2 t5 t10 t25 12. If t5 , t10 , t25 are 5th, 10th and 25th terms of an A.P respectively, then the value of 5 10 25 is equal to 1 1 1 A) 0 B) 1 C) –1 D) –40 E) 40 138
Class(XII)[SPJ-2023 Module-I] e e2 e3 1 13. If ,, are the cube roots of unity then the value of the determinant e e2 e3 1 = e e2 e3 1 A) –2 B) –1 C) 0 D) 1 E) 2 14. If ax y z 0, x by z 0, x y cz 0 where a, b, c 1 has a non zero solution, then the value of 1 1 a 1 1 b 1 1 c is A) –1 B) 1 C) 3 D) –3 E) 0 x b b and 2 x b x b a x then 15. If 1 a a x a A) 1 32 B) d 1 3 2 dx C) 1 3d 2 D) 1 3d 2 E) 1 d2 dx dx dx 1x x 1 16. If f (x) 2x x x 1 x 1 x , then f(100) = 3x x 1 x x 1x 2 x 1 x x 1 A) 0 B) 1 C) 100 D) –100 E) 10 10C4 10C5 11Cm is zero, when m is 17. The value of 11c6 11C7 12Cm2 12C9 13Cm4 12C8 A) 6 B) 4 C) 5 D) 3 E) 2 18. Let S be the set of all real values of k for which the system of linear equations x y z 2, 2x y z 3, 3x 2y kz 4 has a unique solution. Then S is A) an empty set B) equal to R C) equal to R 0 D) equal to 0 139
Class(XII)[SPJ-2023 Module-I] x 2x 19. If x2 x 6 ax4 bx3 cx2 dx e , then 5a 4b 3c 2d e is equal to x x6 A) 11 B) –11 C) 12 D) –12 1 cos 1 1 cos and A and B are respectively the maximum and the minimum values 20. If f sin sin 1 1 of f then (A, B) is equal to A) 3, 1 B) 4, 2 2 C) 2 2, 2 2 D) 2 2, 1 LEVEL - III More than one correct answer type 21. The system of equations x y cos z cos 2 0, x cos y z cos 0 and x cos 2 y cos z 0 has non-trivial solutions for equals A) B) C) 2 D) 3 6 3 12 b c b c 22. The determinant c d c d c d 0 , If b c a3 3c A) b,c, d are in A.P. B) b,c, d are in G.P. C) b,c,d are in A.P. D) is a root of ax3 bx2 cx d 0 23. If A and B are invertible square matrices of the same order, then which of the following are correct A) adjAB adjBadjA B) adjA adjA C) adjA A n1 , where n is the order of matrix A D) adjadjB B n2 B, where n is the order of B 140
Class(XII)[SPJ-2023 Module-I] 24. The values of lying between 0, and satisfying the equation 2 1 sin2 cos2 4sin 4 sin2 1 cos2 4sin 4 0 are sin2 1 4sin 4 cos2 A) 7 B) 5 C) 11 D) 24 24 24 24 25. System of equation x 3y 2z 6, x y 2z 7 , x 3y 2z has A) unique solution if 2, 6 B) Infinitely many solution if 4, 6 C) no solution if 5, 7 D) no solution if 3, 5 Integer type a2 1 a2w a2w2 26. Find the value of a2w a2w2 1 a2w3 , where w is a non-real cube root of unity a2w4 1 a2w2 a2w3 2r 1 mCr 1 27. Let m be a positive integer and r m2 2m m sin2 m2 sin2 m sin m2 2k 1 2 k 2 k 28. Let k be a positive real number and let A 2 k 1 2k and 2 k 2k 1 0 2k 1 k 0 B 1 2k 2 k if det adjA det adjB 106 then k is equal to . GIV 2 k k 0 10 141
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141