Paper Code : 1001CT103516013                             CLASSROOM CONTACT PROGRAMME                                   (Academic Session : 2016 - 2017)    JEE (Main + Advanced) : LEADER COURSE (PHASE : III, IV & V)    ANSWER KEY : PAPER-1                            TEST DATE : 14-01-2017    Test Type : MINOR           PART-1 : PHYSICS                          Test Pattern : JEE-Advanced               Q. 1 2 3 4 5 6 7 8 9 10    SECTION-I  A.      D  B  D  A  DDCBBB               Q. 11 12 13 14 15               A. B,D A,C A,B A,C  C    SECTION-IV Q.      1  2  3  4  5               A. 5 3 2 5 1                                PART-2 : CHEMISTRY             Q. 1 2 3 4 5 6 7 8 9 10    SECTION-I  A.      C  C  B  D  DCBDCD               Q. 11 12 13 14 15               A. Bonus C,D A,B,D A,B,C A,C,D                           Q. 1 2 3 4 5  SECTION-IV                           A. 7 3 4 8 7                                                 PART-3 : MATHEMATICS             Q. 1 2 3 4 5 6 7 8 9 10    SECTION-I  A. B C B         C  Bonus                               C  B  A  C  C               Q. 11 12 13 14 15               A. A,B,C A,C,D A,B,C A,B,D A,D    SECTION-IV Q.      1  2  3  4  5               A. 6 2 2 2 5                                                                                                       Paper Code : 1001CT103516014                            CLASSROOM CONTACT PROGRAMME                                                                                   (Academic Session : 2016 - 2017)    JEE (Main + Advanced) : LEADER COURSE (PHASE : III, IV & V)    ANSWER KEY : PAPER-2                            TEST DATE : 14-01-2017    Test Type : MINOR           PART-1 : PHYSICS                          Test Pattern : JEE-Advanced               Q. 1 2 3 4 5 6 7 8 9 10                          A. D C B A C B B A C B  SECTION-I                          Q. 11 12 13 14 15 16 17 18 19 20               A. C B D A A B B C C D                                PART-2 : CHEMISTRY             Q. 1 2 3 4 5 6 7 8 9 10                          A. B D C D C B C B C B  SECTION-I                          Q. 11 12 13 14 15 16 17 18 19 20               A. A C C D C A B C D B                                           PART-3 : MATHEMATICS               Q. 1 2 3 4 5 6 7 8 9 10                          A. A C C D A C C B C D  SECTION-I                          Q. 11 12 13 14 15 16 17 18 19 20               A. C D B A Bonus A D A D C
Paper Code : 100 1CT103516013                                                                    CLASSROOM CONTACT PROGRAMME                                                                                        (Academic Session : 2016 - 2017)              JEE (Main + Advanced) : LEADER COURSE    Test Type : MINOR                                       PHASE : III, IV & V                                                                                  Test Pattern : JEE-Advanced                                                        TEST DATE : 14 - 01 - 2017                                                                            PAPER-1    PART-1 : PHYSICS                                                                                                                 SOLUTION                            SECTION-I                                               8. Ans. (B)  1. Ans. (D)                                                                     Sol.  Sol. Taking m & M in the system,                                                                                            phase .         Fnet horizontal = 0 compression in spring = 0    2. Ans. (B)          P /2                                                                   9. Ans. (B)    Sol.            C                                                               Sol.            Biˆ     Bˆj    Bkˆ    Bnet    3B         30i                                                                                        Bnet                                                      2R                                                                                    10. Ans. (B)          P    1     C     1     v                                                                   P1 P2               2              2    r      3. Ans. (D)    Sol.  Pt =   1 mv2      v is doubled  t is 4 times                                                 2             2                           19               2                                                                                                     Blv                                                                                  Sol. 4 cm Blv    4. Ans. (A)    Sol. Let they will be in phase after time 't' then          t  t  1  t  21 s                                                                              Q1 Q2                    B = 1 Te s la        37 2                     8    5.    Ans. (D)          p                                                            Blv  0.1mA  Sol.                          E                                   p2                  20        Torque                    then torque on                  0    due to  11. Ans. (B, D)                                                                               Sol. At this point particle will lie on the y-axis           =  p2  E1    but                  E1    so                               and moving in horizontal direction.        p1                           p2                   21    6. Ans. (D)    Sol. Internal loss = i2r                i                                                                 12. Ans. (A,C)                   rR                                     Battery cap.                                             v     COM v                                                                                                             2m         battery life time = Current                                              Sol. m  7. Ans. (C)                                                                                        VCM        2m      v  m(v)         v                                                                                                             3m                 3               E                        1           ER1         2            R1  R2 , E1 =              2         R1  R2       Sol.  I=                                  C1                     ,                  The blocks will come to rest in COM frame                                                                                          at maximum extension.                 1          ER2         2   E1        R12C1                              They both will have speed v/3 i.e. same               2        R1  R2           E2        R22C2        E2  =     C2                                                                 as that of COM.    Corporate Office :  CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005                                    HS-1/12                                   +91-744-5156100                     [email protected] www.allen.ac.in
During this motion they both will sometime                Target : JEE (Main + Advanced) 2017/14-01-2017/Paper-1                                                                                      SECTION-IV                           v        have velocity in COM frame and at that                 1. Ans. 5                              3                                  Sol. The force required to keep the double        time their individual absolute velocity will                  pulley system in equilibrium can be                                                                      determined from the torque balancing.        be zero.    13. Ans. (A, B)                                                             P                        P                                                                              2                        2  14. Ans. (A,C)                                                                  r2     F      r1    Sol.  For given situation                  q  L di  0                 F          P r1      r2    =  10g 0.1  5N                                             C dt                                                                                           2                    2 1              d2q        q               d2q             dt2      LC       0     dt2    2q       0  2. Ans. 3           q = q0 cos t & i = –q0sint                                                     h    2        According to given conditions                                                                                                                                                               Sol. K  P2                                                                                   2m 2m        q2  1 Li2        2C 2                                                         K         h2          9                                                                               8L2m              q0  cos2     t     1                  2C            2   Lq022  sin2      t                                                               3. Ans. 2           cot2t = 1                                           Sol. Initially let no. of molecules of A = NA and                                                                      that of B = NB                          3     5     7        t      =  4  ,  4   ,  4   ,  4   .........                         N A              25             t   LC , 3 LC , 5 LC , 7 LC s .....                 NA  2NB 100                      44 4 4                                                                       100         NA      =  25NA        +  50NB   NA    =  2  N  B  15. Ans. (C)                                                                                                                     3  Sol. t =                                                                                   N 'A     NAet          2  NBet                                                                     Now,                                    3                                                                       N'B         N    e2t                                                                                        B                                                                                            2  N     et               75    3                                                                                          3                                                                                                                                  B                                                                                                                      100    4                           E                                                  2  NBet              2N B e2t                                                                               3              E         2E                                                                                    3R        3R        i                           2                                                               13                                                                      1  3et  4 1 = 9 e t  e t  9          v YZ     R       2E    2E                                 So, t     =     n 9 hr           2n 3   hr    2hr                           3R     3                                                                       n 3                                                                                               t=0                                                               4. Ans. 5              RR                                                                 Sol. By Kepler's law, T2R3                                                                 5. Ans. 1          i E                                                         n  2     1    n            2R                                                               2                E                                              Sol.                                                                                                             1        vXY = 2                                                                          1     n                                                                                                                                                       2     HS-2/12                                                                                                               1001CT103516013
Leader Course/Phase-III, IV & V/14-01-2017/Paper-1    PART–2 : CHEMISTRY                                                                                         SOLUTION                           SECTION-I                                           7. Ans. (B)    1. Ans. (C)                                                                8. Ans. (D)                                                                             9. Ans. (C)  2. Ans. (C)                                                                10. Ans. (D)    Ni2+ + 2e–  Ni(s)                                                         11. Ans. (Bonus)                                                                             12. Ans. (C,D)  nF = 2 nNi+2                                                               13. Ans. (A, B, D)    nF =  (126.5)(60)(5.15)                             =      2  M  225     14. Ans. (A,B,C)               96500                                                  1000   15. Ans. (A,C,D)           (7590)(5.15)(1000)                                                                         SECTION-IV  M = (96500)(450)                                                           1. Ans. (7)                                                                             2. Ans. (3)     (759)(51.5)                                                             3. Ans. (4)  = (965)(45)                                                                4. Ans. (8)                                                                             5. Ans. (7)  = 0.9 M    3. Ans. (B)    4. Ans. (D)    5. Ans. (D)    6. Ans. (C)    PART-3 : MATHEMATICS                                                                                                     SOLUTION                            SECTION-I                                              I =  + I1  1. Ans. (B)                                                                                 I1 x2    (1  cos x           dx         x+y+1>0&y–x+2>0                                                            0                                                                                                                           s in x)2             Squaring x  1                                                                 I                             2                                                                        II                                                                                     I1 x2          s in  x)              x          dx                                                                                             (1                                                                                                                                        2                                                                                                                0 0 (1  s in x)                          A                                     B                                                                 (2,0)                   (0,0)       1  ,0                                            2              dx                                2                                              I1          0        s in                                                                                                (1          x)                                   C                                                                  /2      dx                         /2      dx                                                                                                         (1  s in x)                         (1  cos                               1      3                                         2       2                           2     2                                2      2                                                                                                       0                                    0                                    ,                                            I1                                                                                                                                                                                                    x)                            133                                9                                    /2         x dx                           x     /2                                                                                                            2                             2  0  Area  (ABC)                                                                  2       s in2                    2     2      tan                                                                                                    0                          222 8                                                  I1                                              2. Ans. (C)                                                                    I1 = –2 + 2     RHL = sgn cot1 h  cot1 h2  sgn(ve)  1                            4.  Ans. (C)                        h > h2  cot–1h < cot–1h2                                                            iˆ ˆj kˆ         LHL = sgn(cot–1(–h) – cot–1h2) = sgn(+ve) = 1                           Line has direction 2 3 1  iˆ  ˆj  kˆ  3. Ans. (B)                                                                                                                   3 5 2    LetI     x2 (1  cos x)dx                                                                              A(2,–3,)           0    (1  s in x)2                   x2dx                         x  2  .      cos x       dx           0   (1  s in x)2                0                 s in x)2                                                     (1                                                                                                                  B(3µ+2,1–5µ,2µ–2)    1001CT103516013                                                                                                                             HS-3/12
Target : JEE (Main + Advanced) 2017/14-01-2017/Paper-1    2 – 3µ – 2 = 5 – 3 – 1 =  + 2 – 2µ                       9. Ans. (C)    Solving          31              &      19                   xx1     yy1      1  &      xx2     yy2    1                                                           a2       b2                  a2       b2                     3                       3    Point    B  is     21,            92 ,  32                m1      b2 x1    & m2         b2x2                                    3     3                         a2y1                   a2y2    5. Ans. (Bonus)                                              m1m2 = –1      a  b  c                                                x1x2         a4  b  c (c  a) (a  b)                                        y1y2         b4    a = (b – c)                        .........(1)             10. Ans. (C)    b = (c – a)                        .........(2)             x, y & x  y are linearly independent    c = (a – b)                        .........(3)                   a2 + b + c = 0                                                                     a2 + b + c = 0  (1) + (2) + (3)  a + b + c = 0                                    a2 + b + c = 0                                                               Quadratic becomes ax2 + bx + c = 0  | |                          a2  b2  c2    || 2(a2  b2  c2 )  2(ab  bc  ca)                       which is an identity and a + b + c = 0    By squaring a + b + c = 0                                    11. Ans. (A,B,C)                                                                            (a2  b2  c2 )  2 ab  bc  ca                   21a     41b        54c       a(x1    x2    x3 )                                                                                                                | |= 1                                                      b(2x1  3x2  x3 )  c(3x1  4x2  x3 )         || 3  6. Ans. (C)                                                         By comparison x1 + x2 + x3 = 21         (z – 1)(x – i)(z + 2i) = 0                                                      2x1 + 3x2 + x3 = 41                                                                                         3x1 + 4x2 + x3 = 54         z1 = 1, z2 = i, z3 = –2i         Re(z1) + Re(z2) + Re(z3) = 1                                 By solving x1 = 6, x2 = 7, x3 = 8  7. Ans. (B)                                                  12. Ans. (A,C,D)                                                                 a    k  ;  b    k   ,   c    k                                                                                m             n             (1,1)                                                        1        k4       1           1        1          k2                                                               Area = 2                2m2      m2n2       n22       2mn                                 One solution                                x=2                               2  m2  n2                          1                                                                                                       3  8. Ans. (A)                                                                               2m2n2    (A) Let integral root is , where,  > 0                              3        432                                                               mn  1           3 = positive or zero                                 33              &  = (3 – a2 – b – c)                     1         3   3                                                               mn           So  >  cotradicts    (B) Let  < 0 and  = –µ                          ......(1)            k2 3 3k2        µ4 + µ3 – µ2 + µ –  = 0                                    2mn  2        µ4 + µ2(µ – b) + (µ – ) = 0                         13. Ans. (A,B,C)                                                                      (y – 2)2 = 4(x – 1)           Since µ is positive                                        y2 = 4x                                                                      a=1           µ –  > 0 & µ –  > 0             equation (1) is not possible.    HS-4/12                                                                                                      1001CT103516013
Leader Course/Phase-III, IV & V/14-01-2017/Paper-1           (B) Direction is x – 1 = –1                         3.  Ans. 2                x=0                                                                 Let lines for first equation is         (C) Cir cle x2 + y2 = 4 cuts at two different                points.                                          (y – m1x – c1)(y – m2x – c2) = 0                                                                 y2 – x(m1 + m2)xy + m1m2x2 + x(m1c2 + c1m2)         (D) (y – 2)2 = –4(x – 1)                                – y(c1 + c2) + c1c2 = 0                y2 = –4x                common tangent is one.                           By comparison             m1m2        a  ,  m1    m2      2h                                                                                                        b                     14. Ans. (A,B,D)                                                                                                                               b                                                                   and    c1c2        c                                                                                                                             (t2,2t)                                                                                    b                     (–5,2)                                        tan   2( h2  ab ) ; sin   2( h2  ab )    Middle point is h  t2  5 & k  t  1                                          (a  b)                     (a  b)2  4h2                                 2                                                                 Another pair has lines  2h = (k – 1)2 – 5  2h + 4 = k2 – 2k                                               y – m1x + c1 = 0 & y – m2x + c2 = 0    (B)  Put k = 1                      h5                      Area =        P1P2       4|C1C2 | (a  b)2  4h2                                              2                                sin        1  m12 1  m22 (2 h2  ab )    (C) When x = 0, y2 – 2y – 4 = 0                            4.  Ans. 2                                                             5.       D>0                                                        b  4  b  8a                                                                   2a  (D) When y = 0, x = –2                                                                 4ac  b2  2  c  2  b2  15. Ans. (A,D)                                                     4a 4a    (A) ƒ(x) > 0, ƒ'(x) > 0 & ƒ''(x) > 0                           c = 2 + 16a    (B) ƒ(x) > 0, ƒ'(x) < 0 & ƒ''(x) > 0    (C) ƒ(x) < 0, ƒ'(x) < 0 & ƒ''(x) < 0    (D) ƒ(x) < 0, ƒ'(x) > 0 & ƒ''(x) < 0                           ƒ(a) = abc = –8a2(2 + 16a)                     SECTION – IV                                  ƒ(a) = –16a2 – 128a3    1. Ans. 6                                                      d  ƒ '(a)  0 when a  (1,3]                                                                 da  x2 + y2 + z2 = x2 + y2 + 4                                     ƒ(1) = –144                                     xy            x2  y2  1  1  1  1  6                            ƒ(3) = –3600                        xy xy xy xy                                                                 Difference = 3456  2. Ans. 2                                                                 Ans. 5         Case-I : when y < 0, then 3x 1  0                                                x(3x  2)        x.10 cos   y.10 sin   1                                                                       49                               – +– +                                   0 1/3 2/3                     y cos   y sin   1                                                                 (1 / 5) (9 /10)         Case-II : when y > 0, then (3x  1)  0                                                 x(3x  2)       4      2      9   2  (1   e2 )                                                                  10                                                                                                                                                                 10     x   ( 1, 0)         1  ,  2                               1  e2  16                        3     3                                        81                                                        1/3                                       –1           0 2/3    1 1 32                                                      e2  65      3                                                                81    1001CT103516013                                                                                                        HS-5/12
Paper Code : 100 1CT103516014                                        CLASSROOM CONTACT PROGRAMME                                                             (Academic Session : 2016 - 2017)                JEE (Main + Advanced) : LEADER COURSE    Test Type : MINOR                   PHASE : III, IV & V                                                              Test Pattern : JEE-Advanced                                        TEST DATE : 14 - 01 - 2017                                              PAPER-2    PART-1 : PHYSICS                                                                       SOLUTION                           SECTION-I                     4. Ans. (A)    1. Ans. (D)                                          5. Ans. (C)    Sol. Choosing an element of width dx of the          Sol. Increasing frequency increases the energy         triangular conductor at a distance of x from         of the incident radiation whereas increasing         its vertex, area of strip                            intensity increases the no. of radiations                                                              incident on the surface.              dA       bx     dx                       h                           6. Ans. (B)                                                       Sol. J = E, i = JA = EA        Writing d = Bda = {µ0Ibx/2h (a + x)}dx        Intergrating between zero and h, we get                              q                                                              Now, E         M    0b {h – a ln| (a + h)/a|}              I 2h                                                        K0A                                                               i  q        = 1.2 × 10–8 H                                                                       K0  2. Ans. (C)                                                 At, t = 0, i = 1 A, K = 4.26                                                       7. Ans. (B)                 E                       W1    Sol.        W2                                                                           Sol.              W3 E          W3 will be maximum because charge moves          opposite to electric field                     Since Enet = 0 inside cavity  Eind has to be        W1 will be minimum because charge moves        downwards.          along electric field                           8. Ans. (A)           So W3 > W2 > W1                               Sol. Since TP = 0  3. Ans. (B)                                                             =  constant                                                            P    Sol.  I    10  4         4 104                  103          but 4104  120 ; 4 × 10–4 x + 4 = 120;                          x  104          x  116 104 ; x = 290 k                      f3 N              4          HS-6/12                  Corporate Office :  CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005                                        +91-744-5156100  [email protected] www.allen.ac.in
Leader Course/Phase-III, IV & V/14-01-2017/Paper-2    9. Ans. (C)                                                                                          k        e      a0    r             a  4           k      e    a0  Sol. Due to rotation of disc in M.F.,                                                           r           v                             0          a30        v           E.M.F will be induced between centre and                                                 a0         2                               a0  r       3         rim of discs.                                                                                                       k                        e              a0                                                                                                                  r       e  v  a0               v  r    a0  r                                                                                                                                                                                                                                                                        a0         2                             Magnetic field at centre B  N0I                                                              k                        1                   1      r                                                    2a                                                                v                                                a0                                                                                                                                                                                              Bb2                       b2N0I                                                           e     a0                      r                                2                                                                                                                           v                                                2 2a                                              a0     r 2          E.M.F.    between                     1     &  4          =  2  =  N    0 b2 I        1                                                                                   2a                                                                                                                                                                                                     a0 v    10. Ans. (B)                                                                                    a0      v                                                                                                                                             R                                                                      Sol. C          4                                    G                                       13. Ans. (D)                     D                                 1                                      Sol. For nuclei having N  1 , nucleus regains                                                         D'                                                                                                                                 Z                                                                      C'                              its stability by                                           I           If no current flows through G                                                                      p  n + e+ + v         then IR = D + D'                                                                    14. Ans. (A)          IR  N0b2I                                                                         Sol. Equation for k-capture is given by                       2a                                                                               p+ + e–  n° + v  11. Ans. (C)                                                                                 15. Ans. (A)                                                                                               16. Ans. (B)                1                                                                              17. Ans. (B)  Sol. F  r2 and                                                                              18. Ans. (C)                                                                                               19. Ans. (C)         F e –t                                                                              Sol. P   = 2 × 10–6 × 2 × 106 = 4 sec.                     –. r                                                                              Q   = 2 × 3 = 6 sec          F e V                             –  .r           F  e v          so  F  =  k.         1       r                             r2                                   ev    12. Ans. (B)          m02a0           k        e    a0                          a20          v  Sol.                                                         ... (i)                                                                                               R  = 1                                 1  100        When radius is changed to a0 + r (r << a0)                                                            LC                       3L  2L                                                                                                                                        23        ma020  m a0  r 2  (conserva tion of                                                   I0                                                                                               S  I  1.33        angular momentum) ... (ii)                          k                     e      a0    r     m2                     a0  r                         v             Fnet                                         2                                 a0  r                 k             e        a0  r                             a40 02           20. Ans. (D)            a0  r                 v                                        a0  r 4           Sol. (P) U  6Kq2                                             m            a0  r                          2                                                                                       R    1001CT103516014                                                                                                                                                                HS-7/12
q                                    q  Target : JEE (Main + Advanced) 2017/14-01-2017/Paper-2                   2R                                  R  (Q)                                                                12  5 10 Kq2  27 Kq2                                 4R                                               20R 20 R                                                                         54 Kq2           U = Uself + Uinteraction                                                                                                            40 R           U     Kq 2       Kq 2        Kq     q                              2R          4R                     6 Kq2 9                 2  2R                                                                          40 R           U  Kq2  Kq2  Kq2                 2R 2R R                                                         4R                                                                    (S) R                  6Kq2                                           Wext = Uf – Ui           U                                                                3 Kq2  3 Kq2                 6R                                              5 R 5 4R    (R)      U    3  Kq 2      Kq 2        Kq2                 5   R                      2R                              2  2R     PART–2 : CHEMISTRY                                           5. Ans. (C)      SOLUTION                                                               6. Ans. (B)                         SECTION - I                           7. Ans. (C)          1001CT103516014                                                               8. Ans. (B)  1. Ans.(B)                                                   9. Ans.(C)                                                               10. Ans.(B)  2. Ans.(D)                                                   11. Ans.(A)                                                               12. Ans.(C)  3. Ans.(C)                                                   13. Ans. (C)                                                               14. Ans. (D)  n  2nNa2S2O3     NaOCl                                      15. Ans. (C)                                                               16. Ans. (A)  n NaOCl     =     0.1 1.95  =        192 105              17. Ans.(B)                    2 1000              2                     18. Ans. (C)                                                               19. Ans. (D)  = 97.5 × 10–5                                                20. Ans. (B)  WNaOCl = 97.5 × 10–5 × 74.5  mass % = 97.5 105  74.5 100                         1.356       975  745 102  =              1356    4. Ans. (D)    HS-8/12
Leader Course/Phase-III, IV & V/14-01-2017/Paper-2    PART–3 : MATHEMATICS                                                                                 SOLUTION                             SECTION-I            4. Ans. (D)                                                  1. Ans. (A)                                   BA              1  iˆ    ˆj                        =    ^i  +  ^j   +  2^k                               x1                                                                   P         x3 + x2 + 1 = 0 x2                   BC                                                        iˆ    ˆj    3kˆ                      A(,1,1)              B(1,2,1)                             x3         x1x2x3 = –1.                                                                                 C(2,3,4)          g(–1) = 0.                           BA BC P  0         Also y = x2 – 1 = g(x)                                                     1 1 0                                                 1 1 3 0                                                        1 12     x  y 1                                     ( – 1) (2 – 3) + 1(2 – 3) = 0     Equation with roots as g(x1), g(x2), g(x3)  –( – 1) – 1 = 0    will be                                       =0       3 2                                    5. Ans. (A)     y 1  y 1 1  0                                     g x1        0 12 3                                               Min. no.of roots of ƒ(x) = 0 is 3.    y3    2y2    y    3    0  g  x2                                       g x3      g(x1).g(x2).g(x3) = 3.                      03   3 + 17g(–1) = 3.    2. Ans. (C)                                   Min. no.of roots of g(x) = 0 is 2.    x2 + (1 – 2)x +  – 3 = 0                   Given equation is (ƒ'(x).g(x))' = 0                                                ƒ'(x) = 0 has minimum 2 roots          x  2  1  1  8                         2                       ƒ'(x).g(x) = 0 has minimum 4 roots.                  k k 1                        ƒ'(x).g(x) = 0 has minimum 3 roots.           put                                  6. Ans. (C)                         2                                                aˆ  bˆ  aˆ  c                     ...(i)              2 1  2k 12                                                aˆ  bˆ  c  aˆ          x                              2                 Dot   with                v        aˆ  bˆ  c     c2     aˆ .cˆ  ...(ii)                                                                    c          Roots will necessarily be rational.  3. Ans. (C)                                   for (i) : dot with bˆ                                                 0  aˆ.bˆ  bˆ.c  0  aˆ.bˆ  0         at x = 1 : y = 2         also y2 – x2y – 2x = 0                  aˆ  bˆ                             ...(iii)          2yy' – 2xy – x2y' – 2 = 0  y' = 2                y  x2                            for (i) : squaring         x2  y y2  x                           ƒy  C       aˆ  bˆ 2  1  2 0  c2 (by (iii))                                                   c2  1 1  2                                ...(iv)            y  x2              ƒ 'y dy        for (i) : dot with aˆ :aˆ 2  c.aˆ     x2  y y2  x                                  dx                                                                          ...(v)         at x = 1; y = 2; dy  2  ƒ 'y  1 .   put (iv) & (v) in (ii) :                                                v=2–1=1                              dx 30  1001CT103516014                                                                                                             HS-9/12
7. Ans. (C)                                                                                       Target : JEE (Main + Advanced) 2017/14-01-2017/Paper-2                                                                                                11. Ans. (C)    ƒx                 1  x2                                                                       ƒ 3  3                        2  x2                                                                                       6                                                                                                12. Ans. (D)  range            1   ,1                      2                                                                                                        A  3 tan1 x dx   n3    8. Ans. (B)                                                                                   1/3 x                   2           a,b,c are in A.P.                                                                      Solution for Question 13 & 14           2 = ab                                                                                For minimum area A',B' and C' must be mid         2 = bc          ab, b2, bc will be in AP.                                                            points of QR, PR & PQ respectively.  Solution for Question 9 to 10                                                                                                 A'(0,3,4), Q(0,6,0),R(0,0,8), C'(2,3,0)                  5                     7                                                                                 P(4,0,0), B(0,3,0)                7                   mL1               mL2                                                                       13. Ans. (B)                                      5                                                                                                     Volume  1 4  6  8  32  Let       L2  :       7x  +    5y       =  c       C      c  ,0     ;D      0,    c                                                              7                     5                           6                                                                                                14. Ans. (A)           equation         of   AD : x             5y        1;                                                                                                      Shortest distance is OB i.e. 3                                              7c                                                Solution for Question 15 & 16    equation              of   BC : 7x            y     1                                    c                                                                                                         x(x2 + (y–2)2 – 1) < 0                                                5    eliminating c, we get locus :    x2 + y2 – 7x + 5y = 0                                                                         (–1,2)     S x2 + y2 – 7x + 5y = 0                                                                      /4                                                                         7        5                           A                                                                      2        2    This is           a   circle        with center                          ,              and                37                                                                                        0  radius 2             Area         .37        sq. units.                                                15. Ans. (Bonus)                            2                                                                                                zA has min amplitude  Also circle passes through origin     farthest point : (7,–5)                                                                     OA  4 1  3    9. Ans. (C)                                                                                   16. Ans. (A)    10. Ans. (D)                                                                                         Only point of intersection is (0,1)                                                                                                17. Ans. (D)  Solution for Question 11 to 12                                                                                                       (Q) The line makes equal angle with planes  tan       y         sec2   y        dy      y        0  put          y   =     vx                   and hence with normals.            x                x      dx       x                               dv                                                                          2a  2  36  a  4  36   tanv =–sec2v.x dx                                                                                         14 14         dx sec2 v                                                                                       a = 74; a = –2                                                                                                (R) DC at x = 4.    x   tan v dv     nx  n tan v  nc             v y        and at x =1,               y            c = 1.                                                    x                 x                                      4                                                                                                (S) ƒ x  x2   et ƒ x  t dt           nx  n tan y                                                                                                  0                              x                                                                                                      apply king property,             tan y         1   y  x tan1 1                                                                        x                 x                            x                                                                                                ƒ x  x2   etx ƒ tdt                          x                                                                                         0    HS-10/12                                                                                                                     1001CT103516014
x                         Leader Course/Phase-III, IV & V/14-01-2017/Paper-2                                                            (Q) y2 = 4ax + b  2yy' = 4a      ƒ x  x2  ex. et ƒ t dt                                     0     ...(i)                   y '  2a  1  y  2a                                                                          y                                                                                                                          x          (2a)2 = 4ax + b  x  4a2  b                                                                                                        4a  ƒ ' x  2x  ex .ex.ƒ x  ex. et ƒ t dt ...(ii)                                                         0       by (i) & (ii)       ƒ'(x) = 2x + ƒ(x) – (ƒ(x) – x2)                                                                  4a2   b  ,  2a                                                                                                         4a               ƒ'(x) = x2 + 2x                                                point       of  contact    :     ƒ x  x3  x2  C                                           2a  4a2  b  2  b  8a  4a2                                                                              4a                  3   ƒ(0) = 0  C = 0                                              k = 4.     ƒ x  x3  x2                                                (–4,7)                                                                       P                  3                                                           Q  (P) Let   r;  = r2                                                            (R)        (  are in G.P)       2..r  12  r  6 1  r ....(i)         r           16  r  r2  32                                  Least distance occur along PQ & PQ     23                             3                            is normal to parabola at Q.                                                                 y = mx – 2m – m3      r 1  r  32                     ...(ii)               7 = –4m –2m – m3                                                                  m3 + 6m + 7 = 0  m = –1.                        3                                         Q(1(–1)2,–2(1)(–1))  Q(1,2)                                         16                         PQ  25  25  5 2    5 .  by (i) and (ii) : (1 + r)2 =                                          9      r  1;r  7   (reject)         33      = 24                                                                   )                                                                      B(x  2y  2           reqd GM  3 .r.r2  r                                                             A(x1y1)         =8  18. Ans. (A)                                              (S)              C       B                                            mT at A =         b2  .  x1                                                                                    a2     y1  (P)                                                                   mT at B =         b2  .  x2                                                                                    a2     y2                             A(0,–b)                                                                 mA.mB = –1               A lies on director circle of hyperbola                A lies on x2 + y2 = a2 – b2                       b4   .  x1x2     1      x1x2       a4      10.                0 + b2 = a2 – b2                                   a4      y1y2               y1y2      b4                2b2 = a2  1001CT103516014                                                                                                   HS-11/12
19. Ans. (D)                                                             Target : JEE (Main + Advanced) 2017/14-01-2017/Paper-2         (P) 2ƒ(x).ƒ(y) = ƒ(x + y) + ƒ(x – y)                                (R) cos7x = 1 –sin4x               at x = y = 0 : 2(ƒ(0))2 = 2ƒ(0)  ƒ(0)=1               x = 0 : 2ƒ(y) = ƒ(y) + ƒ(–y)                                          cos7x = cos2x(1 + sin2x)                ƒ(y) = ƒ(–y)                                                        cosx = 0; cos5x = 1 + sin2x                ƒ(x) = ƒ(–x)                ƒ'(x) = ƒ'(–x) = 0.                                         cos x                  1                                                                              sin x                 0                                                                               x    ,0,                                                                                      22                            dx                                              (S) 3  i  ac  bd  i bc  ad                    x2 1 x5 1    (Q)I                                          ...(i)                   0                                                                              ac  bd  3; bc  ad  1                 1                  0         t5dt                           tan1            a        tan1     c                   1     ad    bc                                                                                             b                d                        bd    ac                                                x    I                                                                                                  tan               t  t2 1 t5 1                                 x5                                               tan        1      1               5                                                                                                              3              6     6            I                                   dx    ...(ii)                                                                      0 x2  1 x5 1                                                                           20. Ans. (C)                                  2I         dx        tan1   x       ƒ\"(x) = 6(x – 2)            (i)                         0  x2                    0    2            +       (ii)                         1                        ƒ'(x) = 3(x – 2)2 – 27              I                                                           ƒ(x) = (x– 2)3 – 27x +                     4                                                                           = x3 – 6x2 – 15x +  – 8    HS-12/12                                                                                                                        1001CT103516014
                                
                                
                                Search
                            
                            Read the Text Version
- 1 - 13
 
Pages: