ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 76. p q q ~ p is- 76. p q q ~ p (1) equivalent to p q (1) p q (2) Tautology (2) (3) Fallacy (3) (4) Neither tautology nor fallacy (4) 77. Minimum distance between parabola 77. y2 = 8x x+y + 4 = 0 y2 = 8x and its image with respect to line x + y + 4 = 0 is- (1) 2 2 (2) 3 2 (1) 2 2 (2) 3 2 (3) 4 2 (4) 5 2 (3) 4 2 (4) 5 2 78. Two numbers x and y are chosen at random 78. {1,2,3,4......15} from the set of integers {1,2,3,4......15}. The xy(x,y) probability that point (x,y) lies on a line (0,0) 2 2 through (0,0) having slope 3 is- 3 1 1 1 1 1 1 1 1 (1) 3 (2) 15 (3) 21 (4) 42 (1) 3 (2) 15 (3) 21 (4) 42 79. The value of 79. 1 tan 1 tan 1 tan ..... 1 tan 1 tan 1 tan ..... terms 4 8 8 16 16 32 4 8 8 16 16 32 is equal to- 51 31 (1) (2) 51 31 (2) 2 2 2 (1) 41 2 (4) 21 4 21 41 (3) (3) (4) 2 4 2 0000CT103116004 H-31/35
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 80. Tangent to a non linear curve y = ƒ(x), at any 80. y = ƒ(x) P point P intersects x-axis and y-axis at A and x-y- AB B respectively. If normal to the curve y=ƒ(x) P y = ƒ(x) at P intersects y-axis at C such that y-C AC = BC, ƒ(2) = 3, then equation of curve is- AC= BC, ƒ(2) = 3 6 - x (1) y (2) x2 + y2 = 13 (1) y 6 (2) x2 + y2 = 13 (4) 2y = 3x x (4) 2y = 3x (3) 2y2 = 9x (3) 2y2 = 9x n n pm n n pm 81. If r3 1 80 , then possible value 81. r3 1 80 n r1 p1 m1 r1 r1 p1 m1 r1 of n can be- - (1) 3 (2) 4 (3) 5 (4) 6 (1) 3 (2) 4 (3) 5 (4) 6 82. If in ABC, AB = 4, BC = 6 and AC = 5, 82. ABC , AB = 4, BC = 6 AC = 5, h1,h2,h3 be the length of altitude of from A,B,C h1,h2,h3 vertices A,B,C respectively, then value of 1 1 1 h1 - 1 1 1 h2 h3 is equal to- h1 h2 h3 7 27 47 87 (1) 7 (2) 2 7 (3) 4 7 (4) 8 7 (1) (2) (3) (4) 15 15 15 15 15 15 15 15 4 x2 6 2 4 x2 6 2 83. 6 9 x2 3 ; (x 0) is not divisible 83. 6 9 x2 3 ; (x 0) 2 3 1 x2 2 3 1 x2 by- - (1) x (2) x3 (3) 14+ x2 (4) x5 (1) x (2) x3 (3) 14+ x2 (4) x5 H-32/35 0000CT103116004
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 84. Two parallel towers A and B of different 84. heights are at some distance on same level ABA 10 ground. If angle of elevation of a point P at QB 20 20m height on tower B from a point Q at P B P 10m height on tower A is and is equal to A 50 R half the angle of elevation of point R at 50m height on A from point P on B, then is- (1) 30º (2) 45º (1) 30º (2) 45º (3) 15º (4) 60º (3) 15º (4) 60º 85. Radius of circle touching y-axis at point 85. y-P(0,2) P(0,2) and circle x2 + y2 = 16 internally- x2 + y2 = 16 - 5 3 5 (4) 2 5 3 5 (4) 2 (1) 2 (2) (3) (1) 2 (2) 2 (3) 4 2 4 86. AB,BC are diagonals of adjacent faces of a 86. AB,BC rectangular box with its centre at the origin, its edges parallel to the co-ordiantes axes. BOC, COA AOB If the angles BOC, COA and AOB are and cos + cos + cos respectively, then cos + cos + cos is- - (1) –1 (2) 0 (1) –1 (2) 0 3 3 (4) (3) 2 (3) (4) data insufficient 2 x 87. Number of solutions of the equation 87. 6 t2 1 nt dt 5|x|, x R0 x0 6 t2 1 nt dt 5|x|, x R0 is- - 0 (1) 5 (2) 4 (3) 2 (4) 3 (1) 5 (2) 4 (3) 2 (4) 3 0000CT103116004 H-33/35
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 88. The shaded region in given figure is- 88. - AA BC BC (1) A B C (2) C A B (1) A B C (2) C A B (3) C B C (4) C A B (3) C B C (4) C A B 89. The number of numbers between 1 and 1010 89. 1 1010 1 which contains digit 1, is- - (1) 1010 – 910 (2) 1010 – 910 + 1 (1) 1010 – 910 (2) 1010 – 910 + 1 (3) 109 10 (3) 109 10 (4) 10Cr 9r (4) 10Cr 9r r0 r0 90. If r 3iˆ 2ˆj 5kˆ , a 2ˆi ˆj kˆ , ˆi 3ˆj 2kˆ 90. r 3iˆ 2ˆj 5kˆ , a 2iˆ ˆj kˆ , ˆi 3ˆj 2kˆ b b and 2ˆi ˆj 3kˆ such that r a c , c 2iˆ ˆj 3kˆ r a c c b b then - (1) , , are in A.P (1) , , 2 2 (2) 2 are in A.P (2) 2 (3) are in A.P (3) (4) , , are in G.P (4) , , 3 3 H-34/35 0000CT103116004
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 0000CT103116004 H-35/35
Search