Paper Code : 0000CT103116004 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) LEADER & ENTHUSIAST COURSE TARGET : JEE (MAIN) 2017 Test Type : ALL INDIA OPEN TEST Test Pattern : JEE-Main TEST DATE : 19 - 03 - 2017 ANSWER KEY Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Ans. 3 1 3 1 1 1 4 3 4 2 3 3 2 2 2 1 3 1 1 2 Que. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ans. 4 3 2 3 4 1 4 1 1 4 1 2 3 3 1 2 4 3 2 1 Que. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Ans. 4 2 2 2 4 3 3 2 2 3 4 4 4 3 3 3 4 3 2 3 Que. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Ans. 2 3 2 3 3 1 4 4 1 2 1 1 3 3 4 2 1 4 3 1 Que. 81 82 83 84 85 86 87 88 89 90 Ans. 2 2 4 1 2 1 2 3 2 1 1. Ans. (3) HINT – SHEET 2. Ans. (1) Sol. i dQ 3 12t dt v0 qE0 = max t= 1 sec Sol. 4 R H – 1/4 3 12t2 Rdt 0 = mv0 0 0 v = 2v0 3 12t3 1/4 2 = 3 12 R 0 v2x v 2 4v20 = 1 27 3R 0 36 4 vx = 3v0 = qE0 t m0 Corporate Office : CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 HS-1/8 +91-744-5156100 [email protected] www.allen.ac.in
3. Ans. (3) ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 8. Ans. (3) R Rsin t ×2 Sol. 345 × 106 × 2 × 10–2 × 2 × 10–2 = F = mg 2 13800 kg = m t 9. Ans. (4) Sol. R R Sol. p = gdy p0 r 10 = 10 × 100 6R2 dh 105 0 S = 2R sin t = 104 + 2 × 104 + 105 = 1.3 × 105 Pa 2 10. Ans. (2) Sol. Jc = E0 sin (t – kx) 4. Ans. (1) E0 + id 0 dE = 0 A dE + dt dt – + Sol. – B = 0 × A E0 cos(t– kx) – Jd = 0E0 A 5. Ans. (1) Jc Jd 0 3GMm 11. Ans. (3) Sol. Ui = 2R Sol. + x = 2.12 GMm 2 + x = 4.10 Uf = R x = 0.14 12. Ans. (3) GMm mgh 13. Ans. (2) 2R 2 U = Sol. dH AT4 dt = 4 10 6.4 106 1.28 108 J dH 5.67 108 4004 2 dt / A 6. Ans. (1) vrelx 2v m = 5.67 × 64 × 64 > 2000 W/m2 Sol. vx = v 14. Ans. (2) Sol. When magnet is divided into two equal vy tan 45 m parts, the magnetic dipole moment 2v smooth vy = 2v 45° M' = pole strength × 1 M 22 Rmax = v2y 2v2 2g (pole strength remains same) Also, the mass magnet becomes half, ie, g 7. Ans. (4) m Sol. px = 3NS m' = py = 4NS 2 pz = –5NS Moment of inertia of magnet p = 32 42 52 5 2NS m2 I= 12 HS-2/8 0000CT103116004
New moment of inertia ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 23. Ans. (2) I' 1 m 2 m2 12 2 2 12 8 Sol. 1 I' = 8 T = 2 I 5 sin 1 4 Now, MBH = 53° T' 2 I' 2 I/8 P 2 1 cos 53 1 2 1 20% M 'BH MBH / 2 PT 4 2 5 5 T T' 1 24. Ans. (3) 2 T2 T' = Sol. N1 N e1t 01 15. Ans. (2) N e2t 02 16. Ans. (1) N2 17. Ans. (3) N1 2 e1 2 t N2 1 A 1 P 1 q 2r 3 s Sol. A 2P 2q r s 1t = 3n2 = 0.5 + 1.5 + 1 + 1 = 4% 2t = 3n2 × 3 2n2 18. Ans. (1) 4.5 N1 2 en2 1 N2 10 10 Sol. 25. Ans. (4) A 20 C 26. Ans. (1) Req = 20 2R2 42 1 2 20 dH 100 5units Sol. h = = 0.02m dt 20 19. Ans. (1) 2g 20 Sol. y = 2x – x2 = 0 27. Ans. (4) x=0 x=2 Sol. n v 275 F = Bi 2 1.95 = B0i × 2 20. Ans. (2) n 1 v 330 21. Ans. (4) 22. Ans. (3) 2 1.95 0000CT103116004 v 55 2 1.95 v = 55 × 3.9 = 214.5 m/s HS-3/8
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 28. Ans. (1) 37. Ans.(4) Sol. Equation of motion Sol particles are positively charged and T T hence, coagulation occur at cathode. a2 a1 38. Ans.(3) mg f Formula based. mg – T = ma2 T + f =ma1 39. Ans.(2) Angular acceleration (T f)R L.E. : 1 H2 HCOO– HCOOH + e– mR 2 2 vm = vc + R ; a2 = a1 + R + e– 1 2 also a2 = 2R ( a1 = R) R.E. : CH COOH CH COO– + H2 3 3 29. Ans. (1) Net reaction : CH COOH + HCOO– 3 30. Ans. (4) 31. Ans.(1) CH COO– + HCOOH 3 Z.A d = NA.V Keq = Ka (CH 3COOH) 1.8 105 3 K a (HCOOH) 2.4 104 40 or, 5 = 6A 2 1010 ) A 6 1023 24 2 (100 = 48. 0.06 .log 3 0.0672V Eº = 1 40 32. Ans.(2) cell [HA] = 20 0.4 0.08M 40. Ans.(1) final 100 11 C H (g) + O (g) 4CO (g) + 3H O(l) 46 22 22 [H+] = Ka.C H = [4 × (–94) + 3 × (–68)] – [–30] + = 4 107 0.08 32 109 10 – 4 × 20 – 3 × 10 and pH = – log (32 × 10–9)1/2 = 3.75 = –650 kcal/mol 33. Ans.(3) 41. Ans. (4) 34. Ans.(3) 42. Ans. (2) As T = T –T = 0, U = 0, H = 0, 43. Ans. (2) fi 44. Ans. (2) but S 0 because volume of gas is increased. 35. Ans.(1) 45. Ans. (4) ln K2 Ea 1 1 46. Ans. (3) K1 R T2 47. Ans. (3) T1 48. Ans. (2) or, ln 0.08 Ea 1 1 49. Ans. (2) 0.04 2 300 310 50. Ans. (3) E = 13020 cal / mol = 13.02 kcal/mol 51. Ans. (4) a 52. Ans. (4) 53. Ans. (4) 36. Ans.(2) 54. Ans. (3) 55. Ans. (3) 2FeS + 11 O2 Fe O + 4SO 2 2 23 2 1 mole 20 1 mole 3 120 6 SO + 2NaOH Na SO + H O 56. Ans. (3) 2 23 2 57. Ans. (4) 58. Ans. (3) 1 mole 2 mole 59. Ans. (2) 3 3 60. Ans. (3) 2 = 1 400 M M= 10 3 2 1000 3 HS-4/8 0000CT103116004
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 61. Ans. (2) 66. Ans. (1) S = (1 – )(1 – 2)+.....+(2017 – )(2017 – 2) ae, b2 ends of L.R a 2017 2017 S = (n )(n 2) (n2 n 1) tan gents are e x 1 y 1 n1 n1 aa Area 2a2 a2e2 2017.2018.4035 2017.2018 2017 e 62 e3 2 S. 2018.4035 10091 62. Ans. (3) 2017 6 even x y 1 = (odd + even) = odd × y=x+1 0 1 cos S cos oddx 1 2017 1 67. Ans. (4) x 1 x2 1dx 0 1 Reflexive, symmetric but not transitive. 68. Ans. (4) 6 63. Ans. (2) dy x sin2 y sin y cos y 2017C0 + 2017C1 + ..... 2017C1008 = 22016 = 2 dx = 21008 8.32201 = 8(33 1)201 = –8 = 25 cosec2y dy x cot y 69. Ans. (1) dx Fixed point of family is (1,–1) Let – coty = v other bisector is L1 (2,3) B1 dv v x y 1 1 x 1 dx 4 cot y.ex xexdx x + 4y + 3 = 0 P(1,–1) L2 coty = (x – 1) + Ce–x 70. Ans. (2) 64. Ans. (3) b cos x2 a x x 2 lim 2 x x 0 x 2,2 x 2 x x2a x2 a sin x2 a Let x2 – a = t n = 2 (n) = 0 lim b cos t 65. Ans. (3) t0 t sin(c(t a) a) D(0,,0) b 1 b=1 0 A(2,1,–1) C(2,–1,3) lim 1 cos t lim 2sin2 t 2 t0 t sin(ct a(c 1) t0 t sin(ct a(c 1)) B(3,0,1) sin t 0 c=1 lim 2 sin a(c 1) 2 1 1 1 3 1 5 t0 sin ct a(c 1) 6 sin t 1 L1 2 1 3 lim 2 2 = 8, –7 t0 sin t 2 Sum = 1 0000CT103116004 HS-5/8
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 71. Ans. (1) 2 3 24 1 0 3 1 1 x put in P2 : 16 + 2 sin 2 x 2 sin cos x cos 2x cos 3x cos 4x 0 2 2 1 1 9x x 5 5 0 1 2 2 sin 2 2 3 sin sin 0 3 x () = (3, 1, –2) it also satisfy P1 = 2 2 sin 9x 76. Ans. (2) 2 0 x 2n ,n 9m m I p ~p q pq q ~p (pq) (q ~p) x 9 sin 2 T FT T T T T FF F F T 72. Ans. (1) F TT T T T tan1 tan1 tan 1 1 F TF T T T 2 x 2 x 2 77. Ans. (1) tan1 1 x 2 x 2 2 tan1 1 2 x 2x P(2t2,4t) x = 1, –5(reject) Q 73. Ans. (3) x+y+4=0 34 terms so mean of 17th and 18th term is for minimum distance dy 1 median dx P x10+n = 148 + (n–1) (–2) = x17 = 136, x18 = 134 t = –1 hence median = 135 min distance = PQ = 2 2 74. Ans. (3) 78. Ans. (4) B(0,4) Total cases 15C2.2! = 15.14 2x = 3y (3, 2),(6, 4),(9, 6),(12, 8),(15,10) Fovourable cases = 5 A(–5cos,–4sin) C(5cos,–4sin) 51 Probability = 15.14 = 42 Area 1 10 cos 4 4 sin 79. Ans. (3) 2 cot x 1 cot x tan x dA 0 2 2 2 d 6 A max 15 3 cot x 1 1 cot x tan x tan x 2 4 4 2 2 75. Ans. (4) 1 cot x 1 tan x 1 tan x 4 44 42 2 8 1 Let point be 3 , 3,6 which also 1 cot x tan x 1 tan x 1 tan x 8 8 8 4 4 2 2 satisfies both the plane P1 = 0 = P2 HS-6/8 0000CT103116004
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 1 x 1 x .... 83. Ans. (4) 2n 2n 2n1 2n 1 cot x cot tan 1 tan x 1 tan x 1 tan x 4 x2 6 2 8 8 4 4 2 2 6 9 x2 2 3 x x3 14 x2 3 1 x2 1 tan x 1 tan x 1 tan x ...... 1 cot x cot x 2 2 4 2 8 8 2n 2n 84. Ans. (1) 1 tan x 1 tan x ..... terms A B 2 24 4 lim 1 cot x cot x 1 cot x 2n 2n x n P Q 10 put x 10 10 2 d 80. Ans. (1) d = 10cot; d = 30cot2 B 10cot = 3cot2 P(x,y) y=ƒ(x) = 30º 85. Ans. (2) 4 r2 4 r (0,2) (r,2) A r3 0 2 C AC = BC 86. Ans. (1) P is mid point of AB Let lengths of sides are 2a, 2b, 2c A(2x.0) & B(0, 2y) = B(a,b,–c), A(–a, b, c), C(–a, –b, –c) dy y OB.OC cos c2 a2 b2 a2 b2 c2 dx x |OB||OC| xy = c xy = 6 Similarly 81. Ans. (2) cos 1 2 n 87. Ans.(2) p1 n(n 1) m(m 1) 2 2 80 t3 |x| |x|1 t3 5|x| 3 3 t dt 6 nt t 0t n2(n 1)2 n(n 1)(2n 1) n(n 1) 80 0 4 12 4 n|x||x3|3 |x|2 |x| 5|x| n=4 |x| 6 82. Ans. (2) 3 11 1 n|x||x3|2 |x| 1 5 2 ah1 2 bh2 2 ch3 1 6 3 h1 2 and h2 2 and h3 2 n|x||x3|2 |x| 1 a b 1 3 6 c 1 1 1 1 a b c = 27 n|x|(|x|2 3) 2|x|1 h1 h2 h3 2 15 2 0000CT103116004 HS-7/8
ALL INDIA OPEN TEST/LEADER & ENTHUSIAST COURSE/JEE (Main)/19-03-2017 n|x| 2|x|1 Total number of numbers = 1 2(|x|2 1) (when we use only 0) |x| = t = t > 0 Ans. = 1010– 910 – 1 90. Ans. (1) nt 2t 1 2(t2 1) 3ˆi 2ˆj 5kˆ (2 µ 2)ˆi ( 3µ )ˆj 2µ 3)kˆ 2 solutions for |x| 4 solutions. 88. Ans. (3) 2 + µ – 2 = 3 – + 3µ + = 2 C B C – 2µ – 3 = –5 = 1, = 4, = 5 89. Ans. (2) I II III IX X Total number of numbers = 1010 (without any restriction) Total number of numbers = 910 (when we do not use 1) HS-8/8 0000CT103116004
Search
Read the Text Version
- 1 - 8
Pages: