Paper Code : 1001CT103516011 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE (PHASE : III, IV & V) ANSWER KEY : PAPER-1 TEST DATE : 18-12-2016 Test Type : MINOR PART-1 : PHYSICS Test Pattern : JEE-Advanced Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. A,B,C A,B,C A,B A,B,D A,C B,C,D A,D B,C,D A or D A Q. 11 12 13 14 A. A A A B ABCD SECTION-II Q.1 Q,R P,T P,Q,R,S T or P,T SECTION-IV Q. 1 2 3 4 5 A. 3 5 6 5 4 PART-2 : CHEMISTRY Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. B,D B,D B,C,D A,B,D B,D B,C,D A,B A,B B B Q. 11 12 13 14 A. C C A C SECTION-II Q.1 A B C D S,T P,T T P,T SECTION-IV Q. 1 2 3 4 5 A. 6 5 3 4 2 PART-3 : MATHEMATICS Q. 1 2 3 4 5 6 7 8 9 10 SECTION-I A. A,C Bonus B,C,D B,D A,B,C C,D B,C A,C C A Q. 11 12 13 14 A. B C D B SECTION-II Q.1 A B C D S R,T Q,T P,S SECTION-IV Q. 1 2 3 4 5 A. 2 2 1 1 5 Paper Code : 1001CT103516012 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE (PHASE : III, IV & V) ANSWER KEY : PAPER-2 TEST DATE : 18-12-2016 Test Type : MINOR Test Pattern : JEE-Main Que. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Ans. 3 2 Bonus 3 3 3 2 1 1 3 2 4 4 1 2 2 2 3 2 1 Que. 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Ans. 2 3 1 4 4214222432344414 Que. 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Ans. 2 4 1 or 4 3 2 3 3 4 4 1 4 2 3 3 4 4 4 3 4 4 Que. 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 Ans. 2 4 3 1 4334222313122143 Que. 81 82 83 84 85 86 87 88 89 90 Ans. 3 3 3 Bonus 2 2 1 4 1 4
Paper Code : 1001C T103516011 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE Test Type : MINOR PHASE : III, IV & V Test Pattern : JEE-Advanced TEST DATE : 18 - 12 - 2016 PAPER-1 PART-1 : PHYSICS SOLUTION SECTION-I t 2 1. Ans. (A,B,C) = 10 sin ; Sol. Since the elevator may have an acceleration e 1 d 1 t R R dt R 22 even though the block may remain Now i = × 10 cos stationary w.r.t. the elevator. 2. Ans. (A,B,C) = 5 cos t 22 3. Ans. (A,B) Sol. (A) mg – T = ma d dt is zero (from fig.) at t = 1, 3, 5 sec T.R = MR2 i = zero at t = 1, 3, 5 sec 2 a = R b 6 5 cos t 0R 2 (C) angular momentum about centre of mass Total charge Q = idt = 0 not conserve because tension force provide 0 torque 6. Ans. (B,C,D) dL Sol. Taking torque about R.H. side of loop (D) dt torque = r F 2 T1 about centre of mass mg ibB 0 r iˆ 7. Ans. (A,D) F ˆj (tension force) L 1 ML2 Sol. Mg 2 2 3 02 kˆ iˆ ˆj 3g 4. Ans. (A,B, D) 2L Sol. For equilibrium m2 ( sin ) sin = mg cos v L r e L r 0 1 1 g cos COAM, ML2 0 ML2 mv L r = sin 3 3 Due to stable equilibrium, it will execute 8. Ans. (B,C,D) SHM. 5. Ans. (A,C) 9. Ans. (A or D) Sol. From figure = 10 sin t, ˆj Bˆi MB Sol. = ni r 2 where = 2 = n i r2Bkˆ 4 2 Corporate Office : CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 HS-1/13 +91-744-5156100 [email protected] www.allen.ac.in
Target : JEE (Main + Advanced) 2017/18-12-2016/Paper-1 10. Ans. (A) 1. Ans. 3 SECTION-IV Sol. M.P. Sol. d 5 niB cos 2 5 niB sin x d 7 m 2 7m 2kx 11. Ans. (A) +Q F B a Sol. F A FC F –Q +Q +Q f F D –Q 2kx + f = Ma ....(1) Q Q0 (2kx – f)R = MR 2 ....(2) A 0 ....(3) 2 acm = F QQ0 a = R 5m 5m 5 0 mA 2kx QQ0 f= 3 A 0 F.R F.R 2FR 2 R 8kx I I I 3 Fnet = (2kx f) 4mR2 T 2x 3M 3M 8k 2k QQ0 2mAR 0 2. Ans. 5 12. Ans. (A) I mg Sol. Acceleration of point Sol. T 2 , I = m2 + m(2)2 = 5m2 QQ0 i QQ0R aR 5 0 mA 2mAR 0 A= j 5m2 5 2mg 3 3g 2 2 Leq 5 3 = QQ0 i QQ0 j acm 5 0 mA 2mA 0 2 13. Ans. (A) 3. Ans. 6 B y Sol. E. d A. dB dt Sol. t a sin t As B = 17 + (0.2) sin (t + ) 2 E (2r) = –r2 (0.2) cos (t + ) From the diagram flux through the given E = – r (0.2). cos (t + ) 2 loop is same as the flux through a r rectangular loop having width a sin t in Magnitude of the amplitude = 2 (0.2). xy frame. w = 240 mN/C a sin f B0 y a dy B0 a2 sin2 t 4. Ans. 5 0a 2 Sol. For vmin to reach the origin it must cross the point x = 2L. E B0a2 sin 2t By work energytheorem 2 KE = W (or area) 14. Ans. (B) 0– 1 mv2 =– 1LE Sol. Input power = Out put power ( is constant) 2 2 2 v LE0 v = 5 m/s = m R 5. Ans. 4 = B02a4 sin2 2t Sol. For solid sphere under pure rolling motion 4R SECTION-II KE =translational 5 1 KXm2 ax 7 KEtotal 2 1.Ans. (A)-(Q,R); (B)-(P,T); (C)-(P,Q,R,S); (D)-(T or P,T) Xmax = 4 cm HS-2/13 1001CT103516011
Leader Course/Phase-III, IV & V/18-12-2016/Paper-1 PART–2 : CHEMISTRY SOLUTION SECTION-I 12. Ans.(C) 1. Ans. (B,D) 13. Ans. (A) 2. Ans.(B, D) 14. Ans. (C) 3. Ans.(B, C, D) SECTION-II 4. Ans.(A, B, D) 5. Ans.(B, D) 1. Ans. (A)-(S,T); (B)-(P,T); (C)-(T); (D)-(P,T) (A) RNH2 (0.01M) kb = 10–10 M 6. Ans. (B,C,D) [OH–] = kb c 10–10 102 106 7. Ans. (A,B) 8. Ans. (A,B) pOH = 6 9. Ans.(B) pH = 8 AgCl Ag+ + Cl– (B) H2A (0.1 M) ka1 ka2 (s+0.1) [H+] from 1st dissociation of H2A is considered. 10–10 = s(s + 0.1) s = 10–9 mol/L s = 10–11 mol/10 mL [H+] = ka1 c = 143.5 10 –11 10 3 = 1.43 × 10–6 mg [H+] = 107 0.1 104 10. Ans.(B) AgCl(s) Ag+ + Cl– pH = 4 10–2 = 10 4 (D) 0.1 107 102 106 x2 22 x2 = 10–2 SECTION-IV 1. Ans. 2.4 [OMR Ans. 6] x = 0.1 2. Ans. 5 3. Ans. 3 k × k [0.01] 2 4. Ans. 4 sp f = [NH3 ]2 [NH ]2 = 10 4 3 10 2 [NH ] = 0.1 5. Ans. 2 3 To dissolve 0.1 M Ag+ 0.02 M NH is required, 3 [NH ] = 0.1 + 0.02 = 0.12 M 3 11. Ans.(C) 1001CT103516011 HS-3/13
Target : JEE (Main + Advanced) 2017/18-12-2016/Paper-1 PART-3 : MATHEMATICS SOLUTION SECTION-I 2 2 sin2 2 2 1. Ans. (A,C) 2 0 sin2 1 Let centre be (,) p.d = radius 2 4 3 5 2 15,5 B C2 n ;n Z 5 C1 4 C1(15,15), C2(–5,–5) AB 800 16 A ƒ 32 4 2 AB = 28 2 C1C2 = 20 2 (2 + 2) (2sin2 – 3) = 0 = –2 4. Ans. (B,D) 1 P(x) = (x – 1)2Q1(x) + 1 Area of ABC1 = .28.2 28 and P(x) = (x + 1)2Q2(x) + 3 2 P(1) = 1, P(–1) = 3, P'(1) = 0 = P'(–1) P'(x) = (x2 – 1) Area of AC2BC1 = 56 2. Ans. (Bonus) sec2 x 3 dx sec2 xdx 3 cos x dx Px x3 4 3 sin2 x 3 x sec2 x 3 4 tan2 x dt 3 d Px x3 3 x 2 4 t2 4 2 22 n t 4 t2 3 sin1 C 2 y=ƒ(x) n tan x 4 tan2 x 3 sin1 3 sin x C –4 1x 2 –1 ƒ(x) = tanx, g(x) = sinx, k 3 5. Ans. (A,B,C) 3. Ans. (B,C,D) ƒ x lim ƒ x 2x3 ƒ() = 2sin2 – cos2 + 1 lim 1 ex0 x4 e3 x0 2x3 (2 + 2)sin2 + 1 – ƒ x 2x3 at sin2 = 0 ƒ() = 1 – lim 2x4 3 ƒ x 6x4 2x3 x0 at sin2 = 1 ƒ() = ƒ x 6x4 2x3 ƒ 1 8,ƒ ' 1 30 for > 0 ƒx range of ƒ() = [1 – , 2 + + 1] lim x4 6 x [0,1] ƒ()|max = 3 6. Ans. (C,D) ƒ 2 2 2 3 n 2 3 ..... n Let 2 2 sin2 1 2 2 P e1/ n 2 e1/ n e1/ n e1/ n 2 e1/nP = 2 3 e1 / n 2 e1/ n (n – 1)(e1/n)n + ....+ n(e1/n)n HS-4/13 1001CT103516011
Leader Course/Phase-III, IV & V/18-12-2016/Paper-1 on subtraction 9. Ans. (C) n 1 t2 3 a 4t b 1 e1/n e1/ n e1 / n 3a b n1 P n e1/ n e1/ n 1 t 3b 2 a put in eq. (1) 3 e1/n e 1 n e1/ n n1 4a2 9b2 36 P e1/ n 1 2 e1/n 1 x2 y2 1 94 P(3,4) R now lim P lim e 1 e e1 / n n2 e1/ n n n e1/ n 12 1 1/n 1/ n Q (3,0) e 1 e 1 1 12 equation of tangent from P 7. Ans. (B,C) y mx 9m2 4 Given x 1 y y xy ' x 4 3m 9m2 4 2 dy 2 y 2 P(x,y) m ,m 1 dx x x x 2 (0,y–xy') 0 x = 3, x – 2y + 5 = 0 1 point of contact Q(3,0) x2 i.f. 9 8 8 5 R , y. 1 2 dx x 2 C x2 x3 P(3,4) y 1 x2 8. Ans. (A,C) R(–9/5,8/5) Q(3,0) 1 6 perpendicular bisector of PQ : y = 2 For concurrency 2 1 3 0 perpendicular bisector of RQ : y4 3 x 3 2 5 5 5 32 + 16 – 35 = 0 ( + 7) (3 – 5) = 0 circumcentre (1,2) + 3 = 7 7, 5 m 2 10. Ans. (A) 3 P for not forming triangles either lines are RA parallel or concurrant 1 2, 2 1 4 n 6 RQ = 2ae 2 1 2 2 PR + RQ = 2a 1 2 2 e RQ 2 10 2 PR RQ 5 3 5 1001CT103516011 HS-5/13
Target : JEE (Main + Advanced) 2017/18-12-2016/Paper-1 Solutions for Question 11 & 12 put m t 1 2y cosec2x. dx + ncotydx t + ntanx.dy – 2xcosec2ydy = 0 (2y cosec2xdx + ntanxdy) (t – 1)3 + (2 – h) (t – 1)t2 + kt3 = 0 + (–2xcosec2ydy + ncoty dx) = 0 d(y ntanx) + d(xncoty) = 0 has three roots 1 ,1 ,1 y ntanx + xncoty = c 1 m1 1 m2 1 m3 (tanx)y.(coty)x = k summation of roots 89 22 ƒ , 0 k 0 5 h 89 67h 89k 157 4 2 k h 3 22 ƒ(x,y) = (tanx)y(coty)x SECTION – II 1. Ans. (A)(S); (B)(R,T); (C)(Q,T); 11. Ans. (B) (D)(P,S) 12. Ans. (C) (A) a2 = 2 + 2, b2 = 2 + 1 cos x dx 2 e2 1 0x 2 + 1 = (2 + 2) (1 – e2) 2 2 cos3 x dx 3 cos x dx cos3x dx e 1 1 LR 2.2 4 0x 04 x 0 4x 3 33 = 3 2 = 6 0 3 . cos t dt (B) ||x| n|x|| 1 4 2 4. t 3 k 1 3 ƒ(x) = xnx e ||x|n|x|| 3. 1. – 1 42 42 2 01 1 e ke Paragraph for Question 13 & 14 13. Ans. (D) 1 e m1,m2,m3 = –k m3 k 2 k3 k k>e 8 3 2 h k 0 y2 4x C and C1 are same least prime k is 3. infinite common tangents 14. Ans. (B) (C) centroid cos sin 2 , sin cos 1 y = mx – 2m – m3 3 3 m3 + m(2 – h) + k = 0 3h 2 cos sin eliminate ' ' 3k 1 sin cos (m1 ) 0 89 x2 y2 4 x 2 y 1 0 22 333 (m2 ) (m3 ) +=1 0 0 (D) yxnx = nx – ny 1 1 1 89 1 m1 1 m2 1 m3 22 m1 exny. 1 ex.ny ny x .y ' .nx 1 1 y' y x y m3 2 h m k 0 m2 x m3 1 e.y ' 1 y ' x e,y 1 HS-6/13 ee y' = 0 1001CT103516011
Leader Course/Phase-III, IV & V/18-12-2016/Paper-1 SECTION – IV x 1. Ans. 2 xƒ x ƒ tdt 1 x ƒ x ex 0 (cos5x) + (sinx) (cos4x) – (sin4x) + (sin3x) + (cosx) (sin2x) – (cos2x + sin4x) = 0 d.w.r. to x ƒ(x) + ƒ'(x) = e–x (cos4x + sin2x) (cosx + sinx) – (cos4x + sin2x) I.f. = ex ƒ(x) = (x – 1)e–x =0 |ƒ(0) = 1| (cos4x + sin2x) (cosx + sinx – 1) = 0 sin x 1 2 solutions 4. Ans. 1 4 2 2k – 1 = sin–1x + tan–1x – sin–1(sinx) x 0, 2k 1 3 1, 3 1 4 4 2. Ans. 2 A k 3 1, 3 P 8 8 x2 + y2 = 1 B [/2,] k 0.2,1.2 k 0,1 1 1 < r < 2 5. Ans. 5 Let x = rcos, y = rsin S1 : x2 + y2 = 1 r2 r2 sin 2 1 S2: x2 + y2 = 2 2 AB : x2 + y2 = 2 OP 1 2 1 r2 2 2 r2 2 ,2 2 h2 k2 sin 2 3 13 2 2 x3y + xy3 + 7 xy(x2 + y2) + 7 h2 k2 4 R 2 r2sincosr2 + 7 (1 – r2)r2 + 7 3. Ans. 1 –(r2)2 + r2 + 7 xx minimum value occur on r2 = 2 ƒ(t)dt (x t)ƒ t ex 1 5 00 d.w.r. to x 1001CT103516011 HS-7/13
Paper Code : 1001C T103516012 CLASSROOM CONTACT PROGRAMME (Academic Session : 2016 - 2017) JEE (Main + Advanced) : LEADER COURSE Test Type : MINOR PHASE : III, IV & V Test Pattern : JEE-Main TEST DATE : 18 - 12 - 2016 PAPER-2 SOLUTION 1. Ans. (3) 6. Ans. (3) Sol. Component of velocity of A along common Sol. Dielectric will don't exert any effect on the normal is v cos 60° and this velocity outside electric field so potential at B KQ B= vcos60° b A 60° 7. Ans. (2) v vsin60° Sol. B0et a2 ; B.A 2 of A after collision with B is interchanged. Hence A moves along v sin 60° which d B0eta2 & I is normal to common normal. dt 2 3R 2. Ans. (2) Sol. 4m x = m(3 – x) 8. Ans. (1) 9. Ans. (1) 3 x = 5 = 0.6m × C× 3. Ans. (Bonus) ×× ×× Sol. × ×× × iB Sol. × × mg × a × × HGF IJK FGH JKIdeflection y = 1 2 2 at2 = 1 eE v0 × 2 m ×× ×× y = 1 HFG e JIK FHG KJI2 ×× ×× 2 md v0 = 400 16. 10 19 100 10 4 = 1.76 mm mg – ilB = ma ...(i) 2 2 10 2 91. 10 31 10 16 4. Ans. (3) q Vv dq i Bc dv ...(ii) c dt dt V Sol. Electric field at P and P' = D 5. Ans. (3) mg From (i) & (ii), a = m B22c HS-8/13 Corporate Office : CAREER INSTITUTE, “SANKALP”, CP-6, Indra Vihar, Kota (Rajasthan)-324005 +91-744-5156100 [email protected] www.allen.ac.in
Leader Course/Phase-III, IV & V/18-12-2016/Paper-2 10. Ans. (3) 15. Ans. (2) Sol. I BV Sol. By applying condition for circular motion net 15 force toward centre at point C should be I equal to mv2/R By applying work energy theoram at point I1 = I2 = 2 A and C 11. Ans. (2) P 1 mv2 – 1 mu2 = work done by all the forces Sol. B 2 2 M Q v R 45° 1 mv2 – 1 mRg = Welectric field + Wgravity 2 2 2 1 mv2 – 1 mRg = 0 – 2mgh 2 2 Projection of PQ perpendicular to velocity v 5Rg 5 1 10 50 m/s 16. Ans. (2) R is PM = R – 2 KQ 2 KQ2 KQ .Q KQ 2 KQ2 R Sol. Ei = 2a 4a 2a = a 4a emf across PQ = Bv R 2 = 5KQ2 4a 12. Ans. (4) Ef = K (2Q)2 = KQ2 KQ2 4a Ei – Ef = H = 4a a Sol. A 17. Ans. (2) Sol. Energy = 1 0 E2 volume 2 BC 8.85 × 10–6 = 1 8.851012 E2 106 AB BC EA R2 2 E.d E.d Ed 4 E = 2 106 V / m R2 flux () = EA 0 + + 0 = = 2 106 104 100 2 V m 4 18. Ans. (3) 19. Ans. (2) 13. Ans. (4) Sol. Magnetic field can do no work KEf = KEi Sol. I ML2 sin2 0.6 ML2 sin ML 2 7.2 v = v0 12 12 2 14. Ans. (1) Sol. X1 X2 I ML2 sin2 , vB – vA = 1 B X 2 X12 3 2 2 ,I ML2 3 ML2 7.2 at 3 3 4 4 4 1.8 kg-m2 = C X 2 X12 [where C B ] 2 2 v = C [12 – 02], C[22 – 1], C[32 – 22], C C(1), C(3) , C(5), C(7) POtential difference is in A.P of comoon HS-9/13 difference 2 1001CT103516012
Target : JEE (Main + Advanced) 2017/18-12-2016/Paper-2 20. Ans. (1) 3kx1 + kx2 = keqx 21. Ans. (2) T 2 m k eq 22. Ans. (3) 31. Ans. (2) 23. Ans. (1) 32. Ans. (4) 33. Ans. (3) 24. Ans. (4) 34. Ans. (2) Sol. Volume of domain H2C2O4 NaHC2O4 1 2 10 = 10 100 100 X 1 = Y.5 1 × 2 = X. 1 1 × 2 = Y. 5 mass = 7.87 × 10 = 78.7 gm N 78.7 2 6.0231023 7 55.87 X5 Y1 Magnetic moment = N × 1.8 × 10–23 35. Ans.(3) 25. Ans. (4) Sol. 0I1 0I2 1 kw 1 C2 2R k b .C1 2 C1 22R Sol. 26. Ans. (2) q v B e B v kw 0.01 0.4 2 Sol. Force on electron = k b .C2 2 0.1 27. Ans. (1) Sol. Torque due to magnetic force 0.01 = 2 = 0.005 L = iL2B 36. Ans. (4) | d | (idrB)r 02 37. Ans. (4) 38. Ans. (4) dr 39. Ans. (1) ir 40. Ans. (4) 41. Ans. (2) In equilibrium iL2B (kx) L sin 30 42. Ans. (4) 2 43. Ans. (1 or 4) 5iLB or x = 44. Ans. (3) 8k 45. Ans. (2) 28. Ans. (4) 46. Ans. (3) Sol. Mq 47. Ans. (3) 48. Ans. (4) L 2m M q mr 2 M B q r 2B sin clockwise 49. Ans. (4) 2m 2 4 50. Ans. (1) 29. Ans. (2) 51. Ans. (4) v02 3 107 m qE0 2 4v02 52. Ans. (2) qE0 m Sol. 53. Ans. (3) v0 = 107 m/s 54. Ans. (3) 30. Ans. (2) 55. Ans. (4) Sol. Let the elongation in spring are x1 & x2 56. Ans. (4) x1 + x2 = 2x 57. Ans. (4) 3kx1 = kx2 58. Ans. (3) HS-10/13 1001CT103516012
Leader Course/Phase-III, IV & V/18-12-2016/Paper-2 59. Ans. (4) let 3x8 + 8x3 + 24x = t 60. Ans. (4) 61. Ans. (2) 1 dt 1 . 3 t2/3 C 24 24 2 adding all we have 6(a + b + c + d + e) = 6.31 t1/ 3 a = 31 c = –7 62. Ans. (4) 1 3x8 8x3 24x 2/3 C n(m sinx + 4) > 0 m sinx + 4 > 1 16 msinx > –3 m [–3,3] 7 possible integral values. 69. Ans. (2) 63. Ans. (3) (x3 + 1)dy + 3x2ydx = xdx P(x,y) P y(x3 + 1) x2 C OP = 3PM O y=2x 2 x2 y2 3 2x y y x2 5 2 x3 1 5(x2 + y2) = 9 (4x2 + y2 – 4xy) lim 2 x3 1 2 31x2 + 4y2 – 36xy = 0 pair of st. line Aliter focus is (0,0) and y = 2x directrix, x 0 e=3 64. Ans. (1) focus lies on directrix therefore locus is pair of st. line. (2,3) 70. Ans. (2) 24 3 3 74 tan A 24 3 117 , 7 51 65. Ans. (4) 1 24 4 .3 74 lim 1 r2 r 1 n2 sin n 0 x2 sin xdx 3 3 n n 4 1 9 9 x2 cos x 2x sin x 2 cos x10 tan B 13 = (–cos1 + 2sin1 + 2cos1) – 2 4 = cos1 + 2sin1 – 2 3 24 7 66. Ans. (3) tan C 45 9 1 3. 24 65 x x2 4 ƒ 'x 1 x2 3/2 , – 13 + 7 0 71. Ans. (2) 67. Ans. (3) 3 Using L' Hopitals rule ex2 x 42 x 42 dx 0 H'x x3 ' 3 sin t3dt 1 x 1 ex216x dx 8ex2 lim H ' 1 x2 3 x 1 8 e3 1 00 x3 72. Ans. (3) H'x sin t3dt x 1 3x2 sin x9 2x sin x6 bc ac ab (b3 )(c3 ) (a3 )(c3 ) (a3 )(b3 ) x2 at x = 1 H'(1) = 2sin1 68. Ans. (4) a2 b2 c2 (a b c)2 2ab a2b2c2 x7 x2 1 (abc)2 3x8 8x3 24x 1/3 dx , 0 16 16 (1)2 1001CT103516012 HS-11/13
Target : JEE (Main + Advanced) 2017/18-12-2016/Paper-2 73. Ans. (1) 79. Ans. (4) (x) Aex x 5 r,r 12 1 A et Aet t dt 0 A e2t tet et 1 2 13 r r 20 r 240 0 12 80. Ans. (3) A (e2 1) (e 0) (e 1) 2 A A (e2 1) 1 3x 4y 2 1 4x 3y 2 32 42 5 42 32 A e2 1 1 A 2 LR 1 1 e2 5 2 3 ( x ) 2 ex x 81. Ans. (3) e2 3 Qt2 (n(e2 3)) 2 n e2 3 t1 P 74. Ans. (3) S 11 2 12 2 13 2 .... R 7 7 t4 7 T t3 1 (11)2 122 ......212 t1t3 = t2t4 = –1 72 PQ : y(t1 + t2) = 2x + 4t1t2 1 21.22.43 10.11.21 72 6 6 3(t1 + t2) = – 4 + 4t1t2 ......(1) 1 . 21 .1186 10 11 .76 11 .38 TR : y(t3 + t4) = 2x + 4t3t4 ......(2) 49 6 14 7 from (1) 3 1 1 4 4 t3 t4 t3t4 75. Ans. (1) (xy 1)2 2x(xy 1) 2x2 3(t3 + t4) = 4t3t4 – 4 ......(3) using (2) and (3) we can say that TR x(xy 1) passes through (–2, 3) xy 1 2x 2 2 2 2 x (xy 1) 82. Ans. (3) 76. Ans. (2) X2 = 4Y, X2 Y2 1 2 x2 5x 17 x2 4x 2 8 y = mx – m2 2x2 x 1 0 x 1 y mx m2 2 84 m2 m2 2 P1 and P2 touches each other m4 – m2 – 2 = 0 77. Ans. (2) m2 = 2, –1 m 2x + 3y = 26 m12 m22 4 78. Ans. (1) 83. Ans. (3) a – 2, a + 2 y = x2, z = y3 z = x6 a–2<1&a+2>6 logxz = 6 a < 3 & a > 4 not possible HS-12/13 1001CT103516012
Leader Course/Phase-III, IV & V/18-12-2016/Paper-2 84. Ans. (Bonus) 87. Ans. (1) 3y2y' + 2y + 2xy' + 3x2 = 3(x – 1)2 2 cos ec2x 2 cos2 x at (1, –1) 1 cos4 x 1 1 + cos2x = cos2x No solution 3y' – 2 + 2y' + 3 = 0 y' = 5 Normal (y + 1) = 5(x – 1) m = 0. 5x – y = 6. 85. Ans. (2) 88. Ans. (4) y=cos–1x ƒ' = 2x(x2 – 1)(x2 – 4)(x2 – 9) /4 /4 ++ + + (cos y sin y)dy –3 –2 –1 0 1 2 3 ƒ(x) have 7 critical points and ƒ'' = 0 have 3 0 siny cos y / 4 2 1 1/2 0 y=sin–1x positive and 3 negative solutions 89. Ans. (1) ƒ' is odd function there for ƒ\"' is also and b2 1 e2 and a2e2 = b2(1 – e12) odd function so ƒ\"'(0) = 0 a2 as there are 5 roots of ƒ\"'(x) = 0 there for it 1 e12 1 e2 e12 1 1 e2 will have 2 positive and 2 negative roots. e2 e2 86. Ans. (2) 1 2e2 1 e2 a sin b 1 e1 a cos b 1 a2 2 a 2 90. Ans. (4) I-Case : a 2 sin b 1 b 3 axsec – bycosec = a2 – b2 cos b 2 4 axsec – bycosec = –(a2 – b2) 1 L 2(a2 b2 ) 2 a2 sec2 b2 cosec 2 a2sec2 + b2cosec2 > (a + b)2 II-Case : a 2 sin b 1 b 7 cos b 4 L 2(a b) 2 1 2 2, 3 2, 7 4 4 1001CT103516012 HS-13/13
Search
Read the Text Version
- 1 - 14
Pages: