BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 CHAPTER - 00 CONTINUITY, DIFFERENTIABILITY AND DERIVATIVES Revision Lt f x k Graph of f(x) meets line x = a at the point (a, k) where limiting point (a k) need not be xa on the graph. x= 0 x = a f x x2 x 0 f x x2 x 1 x 0 1 a , a 1 e 0 e 0 1 a 0, a 1 log 0 log e 1 0 log1 0 log10 2.303 1 0 a 0 0 a 1 a log 1 0 Revise Important Methods of evaluating limits. 1
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Continuity at a point The function y = f(x) is continuous at x = a if i) f(x) is defined at x = a ii) Lt f (x) Lt f x f a xa xa Lt ie n a f(x) exists and is finite If these two conditions are satisfied at every point in an intervel [a b], then f(x) is continuous in the interval [a b] eg : 1) f(x) = x2 f(x) is defined at x=0 and f(0) = 0 is finit f 0 f (x) x2 Lt f (x) Lt f x 0 is x0 x0 continuous at x = 0. 2) f (x) 1 x f (0) 1 is not finite (not defined) 0 f (x) 1 is not continuous at n= 0 x ex x 0 f x x 2 0 x 1 1 x 1 x i) f 0 eo 1finite L t x 0 f x Lt f x Not continuous at x = 0 x0 ii) Lt f x Lt f x 1 continuous at x = 1 x 1 x 1 Note 1: If f(x) is continuous at x = a then graph can be drawn through (around) ‘a’ without lifting the pen from the plane of the paper. Note 2: If f(x) is discontinuous at x = a there is a break at x = a so that the graph can not be drawn around ‘a’ without lifting the pen from the plane of the paper. 2
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Questions 1. x x4x x x0 2x2 f k x 0 2 is continuous at x = 0. Find k Types of Discontinuities i) Removable Discontinuity (RD) y = f(x) has a removable discontinuity at x = a if Lt f x Lt f x f x xa xa ie; Lt f x exists f x xa Removable discontinuity fx x21 x 1 x 1 1 x 1 fx x sin 1 x 0 x 1) Ex: 1 x 0 Given f(0) = 1 3
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Lt f x Lt x sin 1 0 sand wich Theorem xx0 x0 Lt f xexists f 0 RD at x0 x0 2) f x x2 x 0 1 x0 Lt n 0f x 0 f 0 At RD the limiting point is not on the graph. It is hole. Dirchlet function f x 1, x rational 0, x irrational Defined at every real number and discontinuous at every real number. 1) f x x x rational x Irrational sin gle po int continuous function 0 2) Single point function 1 x x 1 f x sin gle po int function 3) f x x1x1 Pointfunction Non Removable Discontinuity (NRD) y = f(x) has a Non- Removable Discontinuity at x = a. If Lt f x Lt f x xa xa ie ; Lt f x xa x does not exist. If both Lt f and Lt f x are finite, but unequal, then the xa xa NRD is called Jump Discontinuity (JD). 4
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Ex : f x sigx 1 x 0 0 x0 1 x 0 RHL at x = 0 is 1 LHL at x = 0 is -1 RHL and LHL are finite, but not equal f x = sigx has jump discontinuity at x = 0 Special causes 1)DIRICHLET Function : f x 1, x rational 0, x Irrational 2)Single point function : 1 x x 1 Continuous 3)Single po int continuous fx f x x , x rational : x Irrational 0, (continuous at x 0 only) 4) f x x 1 Defined only at int egers x 1 1) f x 1 ex 1 x0 1 ex 1 1 x 0 check whether continuous at x = 0 2) f x x 1 cot x when x 0 is continuous at x = 0. Find f(0) 3) f x ex 1 2 x 0 f 0 12. Find ‘a’ if(x) is continuous at x = 0 sin x log 1 x a a 5
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 4) f x ex 0 x 1 2 e x 1 1 x 2 check continuity at x 1 and x 2 xe 2x3 5) f x 5 x 1 a bx 1 x 3 b 5x 3 x 5 30 x 5 For what value of ‘a’ and ‘b’ f(x) is continuous 6) f x x x 1 x 2 Find the points of discontinuities of f(x) A lg ebra of Continuous function Let f(x) and g(x) be continuous at x=a i) k f(x) is continouus at x = a ii) f x g x is continuous at x = a iii) f x g x is continuous at x =a f x iv) g x is continuous at x = a v) f(x) and g(x) s.t. f [g(x)] is defined at x = a Let g(x) is continuous at x = a and f(x) is continuous at g(a) then f[g(x)] is continuous at x =a. Right hand derivatives at x =a (RHD) Rf ' a Lt f a h f a where h 0 x0 h Left hand derivative (LHD) at x = a Lf ' a Lt f a h f a where h 0 x0 h Ex: i) f x x f 0 0 0, f h h h, f h h h 6
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Rf ' 0 Lt f h f 0 Lt h 0 1 x0 h x0 h Lf ' 0 Lt f h f 0 Lt h 0 1 x0 h x0 h f x x Rf ' 0 1, Lf 1 0 1 Ex 2: Let f x sign 1 x 0 0 x0 1 x0 Rf ' 0 Lt f h f 0 Lt 1 0 Lt h0 h h0 h h0 Lf ' 0 Lt f h f 0 Lt 1 0 Lt 1 h0 h h0 h h0 h f x si gx Rf ' 0 and Lf ' 0 Rf ' 0 Lf ' 0 Result: If f(x) is continuous at x = a then Rf 'a and Lf 'a are respectively the derivatives of the Right and Left branches of f(x) at x = a Ex: f x x2 x 0 Rf '0 0 Lf '0 1 sin x x0 7
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Geometrical Meaning of Rf 'a and L f 'a C (a-h f(a-h)) (a+h f(a+h)) B A (a, f(a)) a-h a a+ h Slope of secant AB = f a h) f (a) f a hf a aha h Slope of tangent at x a h Lt 0 f a h f a Rf 'a to the right of x a h Slope of secant AC = f a hf a f a hf a aha h Slope of tan gent at x a h Lt 0 f a hf a Lf 'a to the left of x a h Differentiability at x = a The functions y = f(x) is differentiable at x =a if the following conditions are satisfied. i) f(x) is continuous at x = a ii) Rf 'a Lf 'a In geometrical sense if f(x) is differentiable at x = a then these exist a unique tangent at x = a. Relation between continuity and Differentiability All differentiable functions are continuous, but all continuous functions need not be differentiable Differentiable Continuous Continuous Differentiable f(x) =|x| is continuous, but not differentiable at x = 0 SHARP POINT A point of which a function is continuous, but not differentiable having finite RHD and LHD is called a sharp point. For ex : f(x) = |x| has a sharp point at x = 0. Ex:(2) f(x) = Min: (x x2) Sharp points at x = 0 and x = 1 Not differentiable at x = 0 and x = 1 8
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 f x x 1 x 1 .Find RHD and LHD at sharp po int s f x is continuous at x a Is the function and aq Need not be unique tangent at x a Different at x Ex : f x x 1 3 Lt h 1 3 0 Lt 1 1 h Rf '0 h 0 h0 2 0 Lt h3 y axis is the unique tan gent Lf '0 h 0 1 h 3 0 Lt 1 1 h h 0 0 2 h3 1 is continuous at x = 0 and there exist a unique tangent at x = 0 without being differentiable f (x) x 3 at x = 0 Results 1) Rf 'a and Lf 'a are finite and equal f(x) is continuous and different at x = 0 Ex: f (x) x2 sin 1 x 0 and f x 0, x 0 x h2 sin 1 0 x 0.AlsoLf '0 0 Rf '(0) Lt h0 h Continuous and different at x = 0 9
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 2) Rf '(0) and Lf '0 are finite and unequal continuous, but f x x 1 1 , x 0 not different at x 0 x x e 0 , x0 3) 1 If either Rf 'a or Lf 'a or both are infinite then the function may be continuous f x x 3 or may not be continuous. (Ex: f(x) = sigx) 4) If the value of a derivative at a point is finite then function is continuous and differentiable at that point Ex: f x x x x 1 f x x 1 2 1 1 x x 1 x x x x 1 2x x 22 x 1 f '0 0 0 0 1 1(Finite) f (x) is continuous and differentiable at x = 0 Question: f x x x2 0 x 1 g x Maxi f t 0 t x, 0 x 1 sin x x 1 Find Non Differentiable points of f(x) f t t t2 downward parabola f 't 1 2t 0 t 1 at maximum 2 Also f 1 1 2 4 Graph of f(t) 0t 1 2 Maxi f t f x 1 x 1 2 Maxi f t 1 4 10
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 g x f x x x2 0 x 1 2 1 , 1 x1 4 2 sin x x 1 y = x-x2 y = 1 4 1 2 y x x2 dy 1 2x dx dy 1 Differentiable at x 1 4 2 dx x12 Methods of Differentiation Derivative or Differential coefficient at x = a Let y = f(x) be a differentiable function. The derivative or differential coefficient at x = a is defined as f 'a Lt f a h f a h 0 h0 h In general the derivative of y = f(x) w.r.t x is given by f ' x dy Lt f x h f x h 0 dx h0 h When h n f ' x dy Lt f x x f x 1 dx x0 x Let y f x y y f x x y y y y f x x f x From (1) dy Lt y x 0 dx x 11
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 dy dy In Geometrical sense is the slope of tangent and inphysical sense is the rate of change of y dx dx w.r.t x. Process of finding the derivative is called Differentiation. Have a quick revision of i) Product Rule ii) Quotient Rule Re fer 1st year notes on iii) Power Rule L im its and Derivatives iv) Re ciprocal Rule v) Chain Rule Extension of Chain Rule d f g h x f ' g h x g ' h x h ' x dx Ex: 1) d sin log x cos log x 1 1 dx x 2 x 2) y = sec tan ex ; dy sec e tan ex tan tan ex sec2 ex ex dx 3) sin log cos x = y dy cos log cos x 1 sin x dx cos x Exercise 5.2 NCERT Text Page 166 Implicit and Explict Functions Functions of the form y f (x) or x y are called explicit functions Ex : y sin x or x 2y 1 2x y cos y ey Functions which are not explicit are implicit functons Ex : x2 y2 sin xy k 12
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Derivative of Explicit Functions a) y f x standard results can be used directly. b) x y . The procedure is given below dx Step 1 : Differentiable with respect to y and get dy dy 1 Step 2 : dx dx dy Ex: 1) x sin y ey Different w.r.t x dx cos y ey dy cos 1 ey dy dx y 2) x 2sin y y log y x 2sin y Different w.r.t y y log y dx y log y 2 cos y 2sin y 1 1 dy y log y2 y dx 2y cos y y log y 2sin y 1 y dy y y log y2 dy 1 Now dx dx dy Derivative of Implicit functions Method 1 : If possible convert the impicit function in to explicit and differentiate . Ex : xy = x+ y - implicit xy y x yx 1 x y x ; dy x 1 x 1 x 1 dx x 12 x 12 13
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 (Answer in x only) x 1y y 1x 0 2) 2x2 3y 7 Im plicit s.t dy 1 2x2 7 3y ; y 1 2x2 7 3 dx 1x2 dy 1 4x 4 x dx 3 3 (Answer in x only) 3) dy If sin y x sin a y Find dx sin y x sin a y Im plicit x sin y y exp licit sin a Different w.r.t x dx sin(a y) cos y sin y cos a y dy sin 2 a y dx sin a y y dy sin2 a y dx sin a dy 1 sin2 a y dy dx dx sin2 a y ; sin a dy (Answer in y only) 14
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Questions: 1) x 1 If 2x 2y 4e2x2y then 1 log1x 2 dy dx 1) log2 x 2) x log2 x log2 3)x log2 x x x log2 x log2 4) x [Option in x only convert in to y f x ] 2) x 1 y y 1 x 0 show that dy 1 dx 1 x2 x 1 y y 1 x ; x2 1 y y2 1 x x2 x2y y2 y2x ; x2 y2 y2x x2y x yx y xy y x ; x y xy ; x xy y x y1 x ; y x exp licit 1 x dy 11xxx2 1 dx 1 x2 Derivative of Implicit Functions dy In case of implicit function we differentiate term by term w.r.t x and arrange the terms of dx 1) x2 y2 sin xy k Different w.r.t x 2x 2y dy cos xy x dy y 0 ; dy 2y x cos xy 2x y cos xy dx dx dx dy 2x y cos xy dx 2y x cos xy 15
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 2) Find dy If x3 x2y xy2 y3 81 dx 3x2 x2 dy y2x x 2y dy y2 3y2 dy 0 dx dx dx dy x 2 2xy 3y2 3x 2 2xy y2 dx dy 3x2 2xy y2 dx x2 2xy 3y2 Exercise 5.3 Page 169 NCERT TEXT Derivative of inverse Trignometric functions 1) f x sin1 x ; y sin1 x x sin y dx cos y dy 1 1 dy dx cos y x sin y x2 sin2 y 1 x2 1 sin2 y 1 x2 cos2 y cos y 1 x2 ; dy 1 1 dx cos y 1 x2 d sin1 x 1 where 1 x2 0 dx 1 x2 x2 1 1 x 1 2) f x cos1 x y cos1 x x cos y dx sin y dy dy 1 y ; x2 cos2 y 1 x2 1 cos2 y sin2 y ; sin y 1 x2 dx sin 16
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 dy 1 1 1 x 1 dx sin y 1 x2 3) Derivative of f x tan1 x y tan1 x x tan y ; dx sec2 y dy 1 1 dy dx sec2 y x tan y 1 tan2 y sec2 y 1 x2 sec2 x dy 1 d tan1 x 1 x R dx 1 x2 dx 1 x2 4) Derivative of f(x) = sec x y sec x x sec y dx sec y tan y dy dy 1 1 1 tan2 x sec2x dx sec y tan y x sec y 1 tan2 y sec2 y ; tan2 y sec2 y 1 1 tan2 y x2 1 tan y x2 1 ; dy 1 1 x 1 dx sec y tan y x2 1 x y sec x is a S fx dy 0 f x sec x is s dx d sec x 1 dx x x2 1 5) Derivative of f(x) = cosec-1x y cos ec1x x cos ec y dx cos ec y cot y dy 1 1 dy dx cos ec y cot y x cos ec y 1 cot2 y cos ec2y ; 1 cot2 y x2 cot2 y x2 1 cot y x2 1 17
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 dy 1 But f x cos ec1x is S dx x x2 1 dy 0 dy 1 dx dx x x2 1 6) Derivative of f(x) = cot x y cot1 x x cot y dx cos ec2y dy dy 1 dx cos ec2y 1 cot2 y cos ec2y 2 x2 cos ec2y dy 1 xR ; d cot1 x 1 xR dx 1 x2 dx 1 x2 d sin1 x 1 1 x 1 dx 1 x2 d cos1 x 1 1 x 1 dx 1 x2 d tan1 x 1 xR ; d sec1 x 1 x 1 or x 1 dx 1 x2 dx x x2 1 d cos ec1x 1 x 1 or x 1 ; d cot 1 x 1 xR dx x x2 1 dx x 1 2 1) y sin 1 2x Find dy ; Put x tan 1 x2 dx y sin 1 2 tan sin 1 sin 2 2 ; y 2 tan1 x dy 2 tan 2a dx 1 x2 1 2) f x sin1 2x 1 x2 Find dy ; Put x sin 1 x2 cos ; dx f x sin1 2sin cos sin1 sin 2 2 ; f x 2sin1 x f 'x 2 1 x2 18
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 3) Find the Derivative of tan1 sin x 4) d sin1 2 3cos x 1 (3sin x) dx 1 2 3cos x 2 Exponential and logarithmic functions f x ax , x R, a base 0, a 1 y 10x : Common exp onential function e y ex : Natural exp onential function e 0 Logarithmic Function A function defined by f x log ax where x 0 and a 0 and a 1.It is the inverse of exponential f u n c t io n f( x ) = x. a a>1 O<a<1 log ax y=x y = ax 1 y = log a 2 log a x y= log ax a 10 common log and a e Natural log 19
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 d Results ( dx of exponential and logarithmic function) i) d ax ax log a ii) d ex ex dx dx iii) d amx mamx log a iv) d a m x m e m x dx dx v) d log x 1 v) d log10x 1 dx x dx x log10 d af x af x log a d f x dx dx d ef x ef x f ' x dx d log f x f 1 f ' x dx x 1) Find derivative of y sin1 ex ; dy 1 xex Exercise 5.4 dx 1 e2x Page 174 2) dy 2sin xex 2sin xex cos x ex dx dy i) y e x 2 log x 2 y 3) Find d x 4) d e x 1 d e x 1 e x 1 Q uestion dx 2 e x dx 2x 2 ex e xy log xy cos xy 5 0 x0 y0 Find dy dx Logarithmic Differentiation When the functions are in the form afx ,f xgx ,f xg x and f x g x 0, before finding the g x Derivative we take logarithms and it is called logarithmic differentiation. 20
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Find the Derivative of 1) y ax 2) y 3sin x 3) y xx 4) y xx 5) 1 6) y x 1x 7) y xxx 8) y log x x xlogx yx x 9) y log x x xlogx 10) y sin x x xsin x 11) y ex cos3 x sin2 x 12) y x x 1x 2 5 x 1, 2, 3, 4 3x 4x 13) f x 1 x 1 x2 1 x 4 1 x8 find f '1 Ans : 120 Find dy if yx xy xx ab ; u yx v xy z xx u v z ab dx du dv dz 0; du u x dy log , dv v y log x dy , dz xx 1 log x dx dx dx dx y dx y dx x dx dx dy yx log y xy y xx log 1 x x dx x y x y x y log x Important Results d f x gx f x gx f 'x g x g ' x log f x dx f x d af xgx d dx dx af xgx log a f x gx 1) y sin x ex 2) log x sin x 3) y 2x3 1 xex 1 4) y 2x 1 dy at x 1 3x2 2 log x dx find and 21
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Find derivative of 2) y 10 x2 1 sin x 3) y exex dy at x 1 dx 21) sin xx1 4) y x xxx 5) y 10x10x Find dy at x 1 dx 6) y xxx dy xxx 1 x x xx 1 log x 1 dx x Derivative of Parametric functions If the relation between two variables x and y is expressed via a third variable ‘t’ then the function y = f(x) is called a parametric function.’t’ is called the parameter. ie; If x f t and y g t Then y f x is called a parametric function in parameter ‘t’ Ex : x a cos y a sin i) x2 y2 a2 . Hence x a cos y a sin is the parametric form (equation) of the circle x2 y2 a2 2) x a cos y b sin a x 2 y 2 1 is the parametric equation of the ellipse x2 y2 1 a b a2 b2 3) x at2 y 2at ; y2 4a2t2 4a2 x 4ax a x at2 y 2at is the parametric equation of parabola y2 4ax Parametric differentiation Method 1 : In case of a parameteric function if possible eliminate the parameter and then differentiate Ex : 1) x a cos y a sin ; x2 y2 a2 dy x dx y 2) Find dy if x a xsin1 and y a xcos1 dx xy asin1 x cos1 x xy cons tan t 22
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 dy y x 1 t2 y 1 t2 1 t2 dx x 1 t2 1 t2 1 t2 y 1 x 1 x 3) x 1 y 1 y2 x2 1 2 1 2 4 ; y2 x2 4 ; 2y dy 2x 0 dy x dx dx y 4) x at2 y 2at ; y2 4a2t2 4a2 x 4ax a y2 4ax dy 2y 4a dy 4a dx dx 2y Parametric Differentiation : Method 2 In case of parametric function the derivative can also be obtained by dy dy dt dx dx dt Ex : 1 x at2 y 2at dy dy 2a 1 dx 2at dy 2a dx dt 2at t dx dt dt dt Ex : 2 x 1 y 1 ; dx 1 1 dy 1 1 d 2 d 2 dy dy 2 1 1 x d dx dx 2 1 1 y d 23
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Ex: 3 x a cos t log tan t y a sin t s.t dy tan t 2 dx dx a sin t 1 t sec2 t 1 a sin t 1 t a sin t 1 t dt tan 2 2 t cos sin 2 sin 2 2 2 1 sin2 t a cos2 t dy a cos t sin t cos t tan t ; dx cos2 t a cos2 t sin t sin t a sin t x a t sin t y a 1 cos t. dy dy a 1 cos t dy a sin t dx t dx dt 2 dy a a sin t t sin t t dx 1 cos 1 cos x a cos2 y a sin3 dy 1 1 Find 1 dy 2 1 3a sin2 cos 2 dx t 1 dx 3a cos2 sin a 2 1 tan 2 1 tan2 sec2 Derivative of special type Functions Containing an infinite expression 1) y x x x .... Find dy dx y xy y2 x y ; 2y dy 1 dy dy 2y 1 1 dx dx dx dy 1 dx 2y 1 2) y sin x sin x ...... 24
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 y sin x y y2 sin x y 2y dy cos x dy dx dx dy cos x dx 2y 1 3) y ax ax ax ..... y ax y y2 ax y ; 2y dt ax log a dy ; dy ax log a dx dx dx 2y 1 Result y f x f x f x ..... dy f 'x dx 2y 1 y x2 1 x2 1 x2 1 ..... ; dy 2x dx 2y 1 y sin x sin xsin x Find dy dx y sin xy log y y log sin x ; 1 dy y cos x log sin x dy y dx sin x dx dy 1 log sin x y cot x ; dy y2 cot x y2 cot x dx y dx 1 y log sin x 1 log y y cos x cos x... Find dy y cos x y dx log y y log cos x 1 dy y sin x log cos x dy y dx cos x dx dy t1 log cos x y tan x ; dy y tan x y2 tan x dx dx 1 y log cos x log y 1 25
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 In General y f x f xfx... dy y2 f 'x f x ; where log y = y log f(x) dx 1 log y y ax axax... ; dy y2 ax log a y2 log a y2 log a dx ax 1 y log ax 1 xy log a 1 log y y xx xx xx ; dy dx 1) y y y.... x x x .... Find dy dx Let y y y ..... x x x .... t yt xt t y t2 t and x t2 t y t t2 and x t t2 ; dy 2t 1 y x 1 y t2 t dt 2t 1 y x 1 x t2 t y x 2t 2) yyyy... log x log x .... Find dy at x e2 2 y 2 dx 3) xm xm xm ... yn yn yn ... Find dy dx Put xm u and yn u uuuu... vvv... t 26
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 u t vt tu 1 and 1 tt v t t u v nm yn mnm1 nyn1 dy dx dy my sin ce xm yn dx nx Differentiation by substitution 1) tan y 2t sin x 2t put t tan 1 t2 1 t2 R e sult xy K dy y dx x x K dy y y dx x 2) y sin2 cot 1 1 x put x cos2 1 x 3) y tan 1 4x tan 1 2 3x 1 5x2 3 2x Hint: 4x 5x x and 5x2 5x.x 2 3x 2x 3 3 2x 1 2 x 3 Put 5x tan A x tan B and 2 tan C 3 Result When ; sinf x Kcosf x K etc Take inverse Diff. Ex : sec x2 y2 ea.Find dy x2 y2 dx 27
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 4) 1 x2 1 y2 a x y x sin A y sin B cos A cos B 2 cos A B cos A B 22 sin A sin B 2 cos A B sin A B 22 5. Y tan1 5ax tan1 5x tan1 3x 2x 6x2 a aa a2 16 x2 1 3x 2x ax a a 6. x2 y2 ea find dy sec x2 y2 dx 7. sin1 x sin1 y find dy 2 dx sin1 x cos1 x 2 sin1 y cos1 x x cos sin1 y , y sin cos1 x 1 y2 1 sin2 cos1 x cos2 cos1 x x2 . Now differentiate 8. 3sin xy 4 cos xy 5 3, 4,5 (3, 4,5) is a pythagorian triple 32 42 52 Put 3 sin A and 4 cos A 55 9. y tan 1 6x 8x3 1 12x 2 2x tan 28
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 y cos1 3x 4 1 x2 dy 5 find dx 10. x cos y cos1 3 cos 4 sin 5 5 Put 3 cos A and 4 sin A 5 5 y cos1 cos A A ex 1 ex 1 1 ex 1 ex y tan1 tan 1 11. 1 1 ex ex Put ex 1 1 1 1 cos 2 sin2 tan 2 cos cos 1 cos 2 cos2 2 2 1 1 cos 2 y tan1 tan2 x tan1 tan 2 22 cos ex cos1 ex 1 1 x ex 1 1 2 1 e2x 2 1 e2x y 1 cos1 ex dy ex 2 dx dy 1 ex 1 exex 1 dx 2 e2x 1 2 e2x 1 2 e2x 1 e2x 12. y x a x2 a2 x4 a4 x8 a8 , x a find dy dx 29
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 Derivative at a particular point Differentiate directly and substitute the point 1) f x tan1 1 x2 x find f 0 2) tan 1 5ax y then dy at x 0 a2 6x2 dx 3) y cot1 cos2 x dy at x dx 6 f x cot 1 xx xx find f 'x 2 4) In f ' x direct differentiation is used. Otherwise Put t1 xx t xx 1 t 1 t2 1 tan2 Put t tan t2 2t 2 tan f x cot 1 1 tan2 tan 1 1 2 tan 2 tan tan2 tan1 tan 2 2 xx 2tan1 t 2tan1 xx Successive Differentiation (Higher order Derivation) d dy d2y or f \"x or y2 is the second order derivative. dx dx dx 2 d d2y d3y or f ''' x is the third order derivative dx dx 2 dx3 dn y nth order Derivative dx n dy n nth Degree Derivative dx 1) f x x4 f 'x 4x3 f II x 12x2 f III x 24x f IV x 24 30
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 2) y 2x 32 d2y Find dx2 dy 2x 32 42x 3 ; d2y 42 8 dx dx 2 nth Derivatives of some Functions 1) dn xm m! x mn dxn mn ! 2) dn xn n! dx n 3) dn ax bm m! a n ax b mn dx n mn ! 4) dn ax bn n !a n dx n 5) d emn mnemn dx 6) dn sin ax b an sin ax b n dx n 2 7) dn sin x sin x n dx n 2 8) dn cos ax b an cos ax b n dx n 2 9) dn cos x cos x n dx n 2 10) dn log ax b 1n1 n 1!an dx n ax bn 11) dn log x 1n1 n 1! dx n xn 31
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 12) dn 1 1n n!an dx n ax b ax bn1 13) dn 1 1n n! dx n n x n1 14) dn xex ex x n dx n 1) y aemx bemx Find y10 Find y10 a m10 emx b m10 emx y10 m10 aemx bemx m10y 2) d 20 2 cos x cos 3x d 20 cos 4x cos 2x 2 cos AcosB cos(A B) cos(A B) dx 20 dx 2 d20 cos 4x d20 cos 2x dx 20 dx 20 Now use nth derivatives 3) d5 log 2x 3 dx log ax b) dx5 use dxn 4) f x tan1 x Find d5 atx 0 dx5 f 'x 1 1 A B 1 x2 1 ix 1 ix 1 ix1 ix 1 A 1 ix B1 ix A B 1 A1 2 A B 0 B 1 2 d5 d4 1 1 1 1 dx5 dx4 2 1 ix 2 1 ix 32
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 dn 1 d5 1 14 i4 4! 14 i4 4! 1 24 24 24 dx n dx5 2 1 ix5 1 ix 5 2 Now use ax b ; Relation between y, y1 and y2 1) Find y1 2) Square and cross multiply y1 3) Get back function y 4) Differentiate once again w.r.t x 5) Divide by 2y1 1) y cos m sin1 x cos m sin1 x s.t 1 x2 2 xy1 x2y 0 1) m y1 sin m sin1 x 1 x2 2) y12 1 x2 m2 sin2 m sin1 x 3) y12 1 x2 m2 1 y2 4) y12 2x 1 x2 2y1y2 m2 2y y1 5) xy1 1 x2 y2 m2y ; 1 x2 y2 xy1 m2y 0 2) y ea sin 1x a 1 x 2 ; y12 1 x2 a 2y2 y1 ea sin 1x y12 2x 1 x2 2 y1y2 a2 2yy1 xy1 1 x2 y2 a2y 0 y x 2 m 3) 1 x n y x 1 x2 Find relation y, y1 and y2 y1 n x 1 x2 n 1 2x y1 n x 1 x2 n 1 x 1 x2 1 1 x2 ; 1 x2 2 33
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 y12 1 x2 x2y2 ; y12 2x1 1 x2 2y1y2 x2yy1 xy1 1 x2 y2 x2y 4) y sin log x Find relation y y1 and y2 y1 cos log x 1 y12x 2 cos log x 2 x y12x2 1 sin2 log x y12x2 1 y2 y12 2x x2 2y1y2 2yy1 ; xy1 x2 y2 y x2y2 xy1 y 0 d2yx dyx y x f cos 3cos1 x . Find 1 x2 1 dx2 x dx yx TheQn is 1 x2 1 y2 xy1 Ans.9 y 3 1 x2 ; y12 1 x2 y1 sin 3cos1 x x 9 1 y2 y12 1 x2 9 1 y2 ; y12 2x 1 x2 2y1y2 9 2yy1 1 x2 1 x2 y2 xy1 9 y2 xy1 9y y 1 Partial Differentiation If a dependent variable u depends on two independent variable x and y, it is denoted by u f xy and is called a Bivariate function. Let u f x y) be a bivariate funtion. The derivative u w.r.t x when y remains a constant is called the y partial derivative of u w.r.t x and is denoted by x . Thus u Lt f x, yyf x, y f x, y x x0 y u y is the rate of change of u w.r.t. y when x remains constant. 34
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 u 3x2 3x2y 4xy2 3y3 u 6x 6xy 4y2 x u 3x2 8xy 9y2 y u 4x7 3x5y2 5y7 x u y u x 28x6 15x4y2 y 6x5y 35y6 x y 28x7 15x5y2 6x5y2 35y7 28x7 21x5y2 35y7 7 4x7 3x5y2 5y7 7u Euler’ Theorem u f x, y is a bivariate homogenous function in degree n . Then x u y u nu x y Derivative of implicit function Consider the implicit function u f x, y 0 u dy x Then dx u y Ex:1) Let x2 x2y3 y2 0 dy y 2x 2xy3 dx x 3x 2 y2 2y u y 35
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 2) Sin x y log x y Find dy dx sin x y log x y 0 y dy y cos x y x 1 y 1 dx cos x y x y x 1 x y 3) x2 y2 2 sin xy ; x2 y2 sin xy 2 0 dy u 2x cos xy y dx x 2y cos xy x x y 4) exy log xy cos xy 5 0 Find dy dx dy yexy y 1 sin xy.y y exy 1 sin xy y xy xy dx 1 x 1 x xexy x xy sin xy x exy xy sin xy 5) ax2 2hxy by2 2gx 2fy c 0 dy y 2ax 2by 2g dx x 2bx 2by 2f x y Leibnitz Theorem Let u f x be a bivariable function. d gx x t dt gx f x, t dt g 'xf x g x 'xf x x dx x f x x 36
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 d ex ex sin x log t dt cos xdt ex sin x x ex sin x 2 log x Ex: dx x2 x2 cos x xx x2 ex x sin x ex sin x 2 log x Particular cases 1) d gx f t dt g '(x)f g(x) ' x f x dx x 2) d x f t dt ' x f x dx k 3) d k f t dt ' x f x dx x Questions gx d x3 1) log t dt Find g ' e dx x2 g x 3x2 3log x 2x 2log x g'x x2 2x log x 4 x log x 9 x x g 'e 9e 2e 42 27e 8 2) y 1 dt find d2y 1 4t2 dx 2 x 0 3) 1 x x x2 4 4t2 2f 't thenf '4 f dt x 4) f x is a continuous different function such that f t dt f x . Find log f(5) 0 37
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 5) f x is a non- negative fx defined in [0 1] s.t xx 1 f ' t 2 dt f t dt . Given f(0) = 0 . Then 00 A) f11 1 1 1 1 D) f 1 2 2 B) f 2 2 C) f 3 3 2 Inportant Result When f 'x f x f 'x 1 f x f 'x dx 1dx f x log f x x cf x ecex ; f 0 ec f 0 0 f x 0 f 0 1 f x ex f 0 2 f x 2ex f 0 k f x kex Derivative of a function w.r.t another function Derivative of f x d f x f 'x gx g'x w.r.t g x dx d dx 1) Derivative of sin x d sin x cot x w.r.t cos x dx d cos x dx 2) Derivative of ax ax log a w.r.t xa ax a 1 38
BBrilliant STUDY CENTRE MATHEMATICS (ONLINE) -2022 3) Derivative of xx xx 1 log x x2x w.r.t cos xx xx 1 log x 4) Derivative of sin x3 w.r.t x3 5) Derivative of asin1 x w.r.t sin1 x 6) Derivative of sin2 x w.r.t log x 2 Derivative of a Determinant d f1 x f2 x f1 ' x f2 'x f1 x f2 x dx g1 x g2 x g1 x g2 x g11 x g 2 x 2 xbb x b S.T d 1) 1 a x b 2 a x dx 1 32 aax 100 xbb xbb d 1 0 dx a x b 1 0a x b x2 ab x2 ab x2 ab 32 aax aax 001 cos x cos x cos x 2) f x sin x sin x sin x si sin sin 20 f x 5 Find f x r 1 39
Search
Read the Text Version
- 1 - 39
Pages: