ﺍﻟﺠﻤﻬﻭﺭﻴﺔ ﺍﻟﺠﺯﺍﺌﺭﻴﺔ ﺍﻟﺩﻴﻤﻘﺭﺍﻁﻴﺔ ﺍﻟﺸﻌﺒﻴﺔ ﻭﺯﺍﺭﺓ ﺍﻟﺘﺭﺒﻴﺔ ﺍﻟﻭﻁﻨﻴﺔﺍﻟﺩﻴﻭﺍﻥ ﺍﻟﻭﻁﻨﻲ ﻟﻠﺘﻌﻠﻴﻡ ﻭﺍﻟﺘﻜﻭﻴﻥ ﻋﻥ ﺒﻌﺩ ﺍﻟﻤﺴﺘﻭﻯ ﻭﺍﻟﺸﻌﺒﺔ 3 :ﺜﺎ /ﺁ ﻓﻠﺴﻔﺔ ﺍﻤﺘﺤﺎﻥ ﺍﻟﻤﺴﺘﻭﻯ – ﺩﻭﺭﺓ ﻤﺎﻱ 2010 ﺍﻟﻤﺎﺩﺓ :ﺭﻴﺎﻀﻴﺎﺕ ﺍﻟﺘﻭﻗﻴﺕ 10:ﺴﺎ 15ﺩ 12-ﺴﺎ 15ﺩ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻷﻭل 5 ) :ﻨﻘﺎﻁ (ﻨﻌﺘﺒﺭ ﺍﻟﻌﺩﺩﻴﻥ ﺍﻟﻁﺒﻴﻌﻴﻴﻥ . b = 1954 ، a = 2010 (1ﺘﺤﹼﻘﻕ ﺃﻥ . a − b ≡ 0[7] : (2ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ ﺍﻟﻌﺩﺩ 3a² - 26²ﻋﻠﻰ 7؟ (3ﺒﻴﻥ ﺃﻥ 4a + 56 ≡ 2[7] : (4ﻤﺎ ﻫﻭ ﺒﺎﻗﻲ ﻗﺴﻤﺔ a1430ﻭ b1962ﻋﻠﻰ 7؟ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻨﻲ 5 ) :ﻨﻘﺎﻁ ( ) (Unﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒﺤﺩﻫﺎ ﺍﻷﻭل U0 = 4ﻭﺒﺎﻟﻌﺒﺎﺭﺓ Un+1 = 2Un – 3ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﻁﺒﻴﻌﻲ . n ﻭ ) (Vnﻤﺘﺘﺎﻟﻴﺔ ﻤﻌﺭﻓﺔ ﺒـ Vn = Un – 3 : (1ﺒﺭﻫﻥ ﺃﻥ ) (Vnﻤﺘﺘﺎﻟﻴﺔ ﻫﻨﺩﺴﻴﺔ ﻤﻌﻴﻨﺎ ﺃﺴﺎﺴﻬﺎ ﻭﺤﺩﻫﺎ ﺍﻷﻭل. (2ﺍﻜﺘﺏ Vnﺒﺩﻻﻟﺔ nﺜﻡ ﺍﺴﺘﻨﺘﺞ Unﺒﺩﻻﻟﺔ . n (3ﺍﺤﺴﺏ ﻜﻼ ﻤﻥ ﺍﻟﻤﺠﻤﻭﻋﻴﻥ S = V0 + V1 + … + Vn :ﻭ . S’ = V2 + V3 + … + V10 ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺜﺎﻟﺙ 10 ) :ﻨﻘﺎﻁ ( ﻟﺘﻜﻥ fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﺒﺎﻟﻌﺒﺎﺭﺓ . f(x) = -2x3 + 6x – 4 : GG ﻭ ) (Cfﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﺘﺠﺎﻨﺱ ) .( O; i , j (1ﺍﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ . f (2ﺒﻴﻥ ﺃﻥ ﺍﻟﻨﻘﻁﺔ ) A ( 0 ; - 4ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻰ ).(Cf (3ﺍﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ ) (Cfﻋﻨﺩ . A (4ﺒﻴﻥ ﺃﻨﻪ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ) f(xﻋﻠﻰ ﺍﻟﺸﻜل f(x) = (x – 1)2 ( –2x – 4) :ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ ﺤﻘﻴﻘﻲ . x (5ﻋﻴﻥ ﻨﻘﻁﺔ ﺘﻘﺎﻁﻊ ) (Cfﻤﻊ ﺤﺎﻤﻠﻲ ﺍﻟﻤﺤﻭﺭﻴﻥ. (6ﺃﻨﺸﺊ ).(Cf 1/1
Search
Read the Text Version
- 1 - 1
Pages: