Practice: Adding and Subtracting with Teen NumbersAdd or subtract. 3. 4. 5. 6. Add or subtract. 3. 4. 1. 2. + 45 +154 + 32 +132 1. 2. + 34 +134 14 + 2 = __ 16 + 2 = __ 15 + 4 = __ 12 + 7 = __7. 8. 9. 10. 11. 12.– 38 –138 – 46 –164 – 67 –176 5. 6. 7. 8.Write the number sentence that will help you solve the problem. 13 + 5 = __ 12 + 4 = __ 11 + 1 = __ 18 – 6 = __Solve.13. 15 + 4 = 14. 11 + 5 = 9. 10. 11. 12. += += Student Workbook page15 – 3 = __ 16 – 3 = __ 14 – 3 = __ 18 –1 = __ Student Workbook page15. 18 – 4 = 16. 19 – 6 =Copyright © 2012 by SPOTS Educational Resources. All rights reserved. Write the number sentence to find the missing number. –= –= 13. 17 14. 15. 19 Whole Whole17. 18 – 7 = 18. 17 – 5 = 2? ? ?1 Part Part Part Part Whole –= –= 117 117 whole = = 118 14 4Chapter 4 Lesson 6 CCSS 1.OA.6 Add and subtract within 20. 118 part part whole part part Part Part = part part wholeUsing the Book: Pages 117-118Page 117: Examples 1-12: Read the directions. Have the students complete the section on their own while you offer help asneeded.Examples 13-18: Read the directions. Solve example 13 together. Ask students to tell what number sentence helps solve theequation and why. Have the students fill in the answer in their books and complete the section on their own while you offerhelp as needed.Review the page together.Page 118: Examples 1-12: Read the directions. Point out that in this section we will count on or think of a number sentenceto help, but we will not write the helping number sentence. Have the students complete thesection on their own while you circulate to offer help as needed. Closing Statement:Review the section together.Examples 13-15: Read the directions. Remind students that when we know the whole and Who can tell us what we learned today? [Accept relevantone part, we subtract to find the other part. When we know both parts, we add them together answers.] Today we reviewed adding and subtracting withto find the whole. Complete the section together. teen numbers. Tomorrow we will learn an easy way to addDisplay the 8 – 3 and 8 – 6 Dot Cards and their when one of the addends is ten.number sentences on the Math Window poster. 147
4.7 Chapter 4 Lesson 7: Adding to TenCCSS 1.OA.6 Add and subtract Concept Development: Copyright © 2012 by SPOTS Educational Resources. All rights reserved.within 20.CCSS 1.OA.3 Apply properties of I. Using counters to add to tenoperations. Place the 10+ Dot Board on the board. Write the equation 10 + 8 = ___ and ask:NYS CCLS 1.MD.3 Recognize and How can we show this equation on the Teen Dot Card? [Have students direct youidentify coins, their names, and to place eight white counters on the card.] What number does this look like? [18]their value. [Write the sum, show the class Dot Card 18, and compare.]Goal: In a similar way, write, show, and solve other addition equations that have ten asStudents will solve addition an addend.equations in which one addend isten. Say: A teen number is a ten and some more. When we add to ten, it’s easy to see theMaterials needed: Drop-It form sum, which is a teen number.#2 II. Adding in any orderLESSON WARM-UP: Write 5 + 10 on the board. Ask: How can we solve this problem? [Elicit that thisDrop-It: Hand out Drop-It form problem can be solved in the same way as the previous problem.] Why? [because#2. Flash 10-12 Subtraction Dot the order of the addends does not change the sum] So this problem can be solvedCards. Have the students write each in the same way as 10 + 5. What is the sum? [15]equation on their papers. Check thestudents’ work. Write 3 + 10 on the board. Have students explain, as above, that this problem can be solved in the same way as 10 + 3. Solve.Introductory Statement:We’ve already learned to add with III. Writing equations for story problemsteen numbers. Today we will learn Now I will tell a math story. I have ten crayons and my friend has five crayons. Howhow to add ten plus a number. many do we have in all? What is the number sentence? [Write 10 + 5 = ___ on the board.] What is the answer? [15] [Fill in the sum.] tHINKING tRIGGER:Write the equation 10 + 9 = ___ on In the same way, tell other story problems that have ten as an addend.the board. Read the equation andask: What do you think the sum is? Clear the board.How did you figure that out? Student Teacher: Write 10 + 7 on the board. Ask two students to come up to the board. Have one student tell a math story with the equation. Have the other student solve it using an open number line. Conclusion: We learned to add two numbers when one of those numbers is ten. When we add to ten, it’s easy to find the sum, which is a teen number.148
Adding to TenWrite the number sentence. Add. 2. 3.1. 2. 1. 10 + 7 = 10 + 3 = += = 10 + 9 = 5. 6.3. 4. 4. 10 + 5 = 10 + 2 = 10 + 8 = 8. 9. 7. 10 + 6 = 10 + 1 = 10 + 4 = 11. 12. 10. 3 + 10 = 5 + 10 = 2 + 10 = == Write the number sentence and solve. 13. Molly has 1 dime.5. 6. She gets 1 nickel. How much money does she have now? ¢+ ¢= ¢ Can she buy a snack for 14¢? Yes No 14. Tom has 6 pennies. He gets 1 dime. How much money does he have now? ¢+ ¢= ¢ Can he buy a drink for 17¢? Yes No 120 Student Workbook page==119 119120 Student Workbook page LET’S THINKCopyright © 2012 by SPOTS Educational Resources. All rights reserved. When adding to ten, what pattern do you see?Chapter 4 Lesson 7 CCSS 1.OA.3, CCSS 1.OA.6, NYS CCLS 1.MD.3Using the Book: Pages 119-120Page 119: Examples 1-6: Read the directions. Review example 1 together. Have the students complete the section on theirown while you offer help as needed. Review the section with the class.Let’s Think: Read and discuss the question.Page 120: Examples 1-12: Read the directions and have the students complete the section on their own while you offer help.Review together.Examples 13-14: Read the directions, and read each story problem. Have the students fill in the answers on their own, anddiscuss. Closing Statement: Who can tell us what we learned today? [Accept relevant answers.] Today we learned number sentences that have ten plus another number. Tomorrow we will add with the number line. 149
4.8 Chapter 4 Lesson 8: Using the Number LineCCSS 1.OA.6 Add and subtract Concept Development:within 20.CCSS.1.OA.8 Determine the I. Adding on an open number line - with Dot Cardsunknown number in an equation. Display the toy rabbit. Say: This is Bunny. Remember our frog that jumped along the number line? Bunny will help us with a new type of number line. Instead of jumpingGoal: each number, Bunny likes to jump the whole number that we add.Students will use an open numberline to add a single-digit number to Show 10 + 4 with a Dot Card. Ask a student to tell you the number sentenceten. (10 + 4 = 14), and write it under the Dot Card. Draw an open number line (aMaterials needed: toy rabbit or number line with no numbers or dots – see page 119). Say: Bunny will show us what he likes to do. [Write 10 at the beginning of the number line.] We start withrabbit cutout; handout #8 ten, just as in the number sentence. Now Bunny is checking how many he needs to jump. [Act out the process with Bunny.] Bunny sees that he needs to jump +4.LESSON WARM-UP: [Have Bunny make a large jump that would cover about four spaces. Draw theFlash some 10+ addition flash cards. jump and write in +4.] Bunny started at ten and jumped four more. What numberHave the class identify the number did Bunny get to? [14] Our sum is 14. [Write 14 at the end of the jump, and writesentence of each card in unison. the sum in the equation.]Introductory Statement: In the same way, use Bunny to show 10 + 8 and 10 + 7.Yesterday we added to the number tenwith Dot Cards. Today we will show II. Adding to the number ten on an open number linethis on a different kind of number line. Write 10 + 5 on the board, and draw an open number line. Say: Let’s help Bunny show 10 + 5 without using Dot Cards. With what number should we start the number tHINKING tRIGGER: line? [10] [Write in 10.] How much does Bunny need to jump? [5] [Draw the jumpWhen we add any number to the and label it +5.] To what number did he get? He started at ten and jumped five more.number ten, with what number will [15] [Write 15 at the end of the jump.] The sum is 15. [Write 15 in the equation.]we start the number line? With whatnumber will the number line end? In the same way, solve 10 + 3 and 10 + 6. III. Practicing the skill Copyright © 2012 by SPOTS Educational Resources. All rights reserved. Now let’s do this on our own, without Bunny. [Write 10 + 8 on the board, and draw an open number line. Have the students tell you how to show and solve the equation on the number line.] In the same way, show and solve 10 + 2 and 10 + 9. Student Teacher: Divide the class into pairs. Pass out handout #8 to each student. Have your students cut out Bunny and attach it to a pencil or crayon. Have one partner fill in a 10+ number sentence, and have the other partner use Bunny to show it on the number line and fill in the number line. Then have the partners switch roles. Conclusion: Today we used a new kind of number line. We added to a ten by making one big jump.150
10 + 7 = 17 Using the Number LIne Complete the number line. Write the sum. +7 weWmheagnkeetwtoeonjteuhmebipgsufjrmuom.mp1a0n,d 1. 10 10 + 5 = +5Complete the number line. Write the sum. 101. 2. 10 + 8 = 10 + 7 = +7 +8 10 10 3.2. 10 + 9 = 10 + 9 = Student Workbook page Student Workbook page+9 10Copyright © 2012 by SPOTS Educational Resources. All rights reserved. 4. Write the missing addend. 6. = 10 = 103. 9+ 5. 7+ 10 + 6 = 7. = 10 5 + = 10 +6 6+ 8. 9. 10 122 = 10 1 + = 10 8 +Chapter 4 Lesson 8 CCSS 1.OA.6, CCSS 1.OA.8 121 121 122Using the Book: Pages 121-122Page 121: Read and discuss the demonstration at the top of the page. Read the directions, and have the class complete thepage independently while you offer help as needed. Review the page together.Page 122: Examples 1-3: Read the directions. Point out that in example 3 the students need to fill in the number line ontheir own. Have the class complete the exercises independently while you offer help as needed. Review the section together.Examples 4-9: Read the directions. This is a review of missing addends for sums of ten. Do the first two examples together, andthen have the class complete the section independently while you offer help as needed.Review the section together.Note: Knowing the sums of 10 fluently will help students when solving addition problems with teen sums. Closing Statement: Who can tell us what we learned today? [Accept relevant answers.] Today we showed adding to ten on a number line by making one big jump. Tomorrow we will learn to add three numbers. 151
4.9 Chapter 4 Lesson 9: Adding Three NumbersCCSS 1.OA.2 Solve addition Concept Development:word problems with three wholenumbers. I. Adding three numbers using manipulatives (pretzels) Give each student six round pretzels. Count the pretzels together. Then give eachGoal: student four figure-8 (heart)-shaped pretzels. Ask a student to tell how many pretzels he/she has altogether. Write the equation on the board (6 + 4 = 10).Students will solve equations with Say: Now I will give each of you two pretzel sticks. How many pretzels will you havethree addends, two of which make in all? [12] How did you figure that out? [Accept answers.] I would like to write aten. number sentence that shows what we just did. How can we show it all in one numberMaterials needed: addition sentence? [Accept suggestions. Write a number-sentence format with spaces forflash cards for sums of 10; three three addends. Under each space, draw the shape of the pretzels it will show.different shapes of pretzels for the Have the students tell you the numbers to write to fill in the number sentence:students; blank sheets of paper 6 + 4 + 2 = 12.]LESSON WARM-UP: Let’s write a number sentence using a different order to show how many pretzels we have. [Draw a number-sentence format with three spaces. Draw the pretzelFlash the addition flash cards with shapes in a different order. Have the students tell how many of each shape theresums of 10. Have the class identify are. Then have them arrange the pretzels to show the new number sentence.the number sentence of each card Count how many there are in all, and fill in the sum.] We got the same sum, evenin unison. though we added the pretzels in a different order. Do the exercise once more, ordering the pretzels in a third way. Say: We can add numbers in any order and get the same sum. Now eat the pretzels!Introductory Statement: II. Exploring finding the addends that make tenUntil now, when we added, we added Now I will tell a story of a girl named Sal, and you will try to solve this problemtwo numbers together. Today we will with your partner. [Hand out a blank sheet of paper to each student. Allow theadd three numbers! students to work in pairs to solve the problem.] Sal went to the store. She bought five oranges, two lemons, and eight apples. How can you find how many fruits she tHINKING tRIGGER: bought in all? What number sentence could we write? [5 + 2 + 8 = ___] [RemindCan you think of number sentences students that we can add numbers in any order.]that show adding three numberstogether? [Write the students’ As the students work, circulate and notice how they are grouping the numberssuggestions on the board.] How to solve the problem. How many fruits did Sal buy? [15]would you solve these? Ask some students how they found the answer. Be sure to include that we can put together 2 and 8 to form a ten and then add the rest. Say: We’ve Copyright © 2012 by SPOTS Educational Resources. All rights reserved. been practicing adding to ten. We just make a teen number. When we add three numbers, it’s always best to try to find numbers that make a ten first, and then add the third number.III. Adding three numbers by first finding addends that equal tenLet’s talk about the pretzels again. [Point to the last equation with three addends that you wrote for the pretzels. Have thestudents find the numbers that make ten (6 and 4) and circle them.] 6 + 4 equals ten. Now let’s write a 10+ number sentence forthe number we still need to add. [Write 10 + ___ = ___.] How many more do we still need to add? [2] [Fill in 2 and solve.] We have10 plus 2 more. That’s 12 in all.How many pretzels would you have if I gave you 5 round pretzels, 1 heart-shaped pretzel, and 5 stick pretzels? [Draw the shapes onthe board.] What number sentence should we write? [5 + 1 + 5 = ___] How can we figure this out? [Accept suggestions. Focus ona suggestion (or suggest) that the two fives make ten, and then it is simple to add one more. Circle the two fives.] Now we have152
Adding Three Numbers ++ First we add to make a ten. Make a simple math drawing to show the story problem. Then we add the rest to the ten Write the number sentence.5 + 5 + 3 = 13 Circle the numbers that make ten and solve. 10 + 3 = 13 to get the sum. 1. Paul went to the store.Write the number sentence. Circle the numbers that make ten. He bought 2 oranges, 8 apples, and 5 pears.Complete the 10 + number sentence. Solve. How many fruits did he buy? ___ fruits1. + + 2. + + ++= 10 + =++= ++= 2. Steve bought some treats. He bought 7 boxes of raisins, 4 bags of popcorn, 10 + = 10 + = and 3 small bags of pretzels.3. + + 4. + + How many treats did he buy? ___ treats++= ++= ++= 10 + = 124 Student Workbook page10 + =10 + = Student Workbook pageCircle the numbers that make ten.Copyright © 2012 by SPOTS Educational Resources. All rights reserved.Complete the 10 + number sentence. Solve.5. 7 + 5 + 3 = 6. 8 + 5 + 5 = 10 + = 10 + =7. 9 + 1 + 7 = 8. 9 + 7 + 1 =10 + = 10 + = 123 123 124Chapter 4 Lesson 9 CCSS 1.OA.2 Solve addition word problems with three whole numbers.10 plus how much? [1] [Write 10 + 1.] How much is 10 + 1? [11] [Write in the sum.]How many pretzels would you have in all if you got 9 sticks, 3 circles, and 1 heart-shaped pretzel? [Together, write a numbersentence.] Do we have numbers that equal ten? [yes: 9 and 1] Let’s add those first. [Circle the 9 and 1.] Now we have 10 plus howmuch? [3] [Write 10 + 3 and solve.]Write 2 + 8 + 8 = ___ on the board. Ask: How would you solve this? [Accept answers.] Do we have numbers that equal ten? [yes: 8and 2] [As above, circle those numbers, write a 10+ number sentence, and solve.] In the same way, solve 7 + 5 + 3.Student Teacher:Have the students work in pairs. Have each student write a number sentence with three addends, two of which add up to ten.Then have partners switch and solve each other’s problems by circling the numbers that add up to ten. Choose some pairs ofstudents to share and explain their work.Conclusion:Today we learned to add three numbers together! When we add three numbers, it’s always best to try to find numbers that make aten first, and then add the third number.Using the Book: Pages 123-124 Closing Statement: Who can tell us what we learnedPage 123: Read the demonstration at the top of the page. today? [Accept relevant answers.] Today we learned to add threeExamples 1-4: Read the directions. Solve example 1 together. Have the class complete numbers. Tomorrow we will learn tothe section independently while you offer help as needed. show this on a number line.Examples 5-8: Read the directions. Solve example 5 together. Have the class complete 153the section independently while you offer help as neededPage 124: Read the directions. Read and discuss each story problem. Have the studentsmake a math drawing for each problem and fill in the equations on their own. Circulateto offer help as needed.
4.10 Chapter 4 Lesson 10: Using the Number LineCCSS 1.OA.3 Apply properties of Concept Development: Copyright © 2012 by SPOTS Educational Resources. All rights reserved.operations. I. Reviewing adding three numbersGoal: Write 9 + 5 + 1 = ___ on the board. Have the class tell you the numbers that equalStudents will use one jump on ten, circle them, write a 10+ number sentence, and solve the equations.the number line to show addingnumbers that equal ten, and a II. Reviewing adding to ten with one jumpsecond jump to add a third addend. Display the toy rabbit. Say: This is Bunny. Remember Bunny? How does he jump?Materials needed: Drop-It form [he makes one big jump for the number that we add]#2; toy rabbit or rabbit cutout; blanksheets of paper Write 10 + 6 = ___ on the board, and draw an open number line next to it. Say: Let’s help Bunny solve this number sentence. What number goes at the beginningLESSON WARM-UP: of the number line? [10] [Write 10.] How many does Bunny need to jump? [6] [Have Bunny make a large jump that would cover about six spaces. Draw the jump andDrop-It: Hand out Drop-It form #2. write in +6.] What number did Bunny get to? [16] Our sum is 16. [Write 16 at theFlash the Addition Dot Cards that end of the jump, and fill in the sum in the equation.]equal ten. Have the students writeeach equation on their papers. In the same way, use Bunny to show 10 + 3.Check the students’ work. III. Adding numbers that equal ten with one jumpIntroductory Statement: Write 5 + 5 = ___ on the board, and draw an open number line. Say: Now BunnyYesterday we added three numbers wants to solve this on the number line. This number line is a different kind for Bunny.together. We found the numbers that It does not start with ten. With which number does it start? [5] [Fill in 5.] How manyequal ten, and then we added the does Bunny need to jump? [5 more] Remember that Bunny likes to jump the wholerest. Today we will learn another way number at once? Let’s help him make one big jump for the whole five more. [Havewe can add three numbers: We will Bunny make a jump of five. Draw the jump and say:] Bunny jumped five. Whatuse a number line. number should I write in the jump? [+5] To what number did he get? How much is 5 and 5 more? [10] [Write in 10.] Now our number line shows 5 + 5 = 10. [Read the tHINKING tRIGGER: equation and fill in the sum.]Write 8 + 2 + 3 on the board. Ask:How many jumps will we make when Do the same with 8 + 2.we add three numbers? What arethe jumps for? [Allow students time IV. Adding three numbers on the number lineto make suggestions. Accept and Write 5 + 5 + 3 = ___ on the board, and draw an open number line. Say: Nowdiscuss all relevant ideas.] Bunny is ready for something new. Now there are three numbers to add together. Let’s help Bunny add all three together. Can you find the numbers that equal 10? [5, 5] First Bunny will add those. With what number should we start the number line? [5] How many jumps will Bunny jump for that? [one jump of 5] [Have Bunny make a large jump that would cover about five spaces, draw the jump, and fill in +5.] To what number did he get? [10] [Write in 10.] Is Bunny done? [no; he needs to add another three] [Have bunny make a jump of about three spaces, draw the jump, and fill in +3.] On what number did Bunny land? [13] [Write 13 on the number line and in the equation.] 5 plus 5 equals ten, plus 3 equals 13. In the same way, solve 8 + 2 + 6 on the number line.V. Practicing the skillWrite 6 + 4 + 2 on the board. Say: Bunny is tired. Let’s give him a break. Let’s solve this on our own using the number line. [Draw anumber line, and have the students tell you how to fill it in using two jumps. Fill in the sum in the equation.]Do the same with 8 + 2 + 9 and 7 + 3 + 2.154
6+4+3= Using the Number Line Circle the numbers that make ten. Complete the 10 + number sentence. Solve. +4 Waenmdtoaagkbeeitgatojbutimhgepjusfmruompm.to1010, 1. 2. 6 +3 8+6+2= 9+4+1=Complete the number line. Write the sum. 10 + = 10 + =1. 3. 4. 9+7+3= 6+4+8= +3 +2 10 + = 10 + = 7+3+2= 7 5. 6.2. 5+9+1= 8+5+2= +4 +4 10 + = 10 + = 6+4+4= 63. 8+2+5= Student Workbook page+2 +57. 8Subtract. Student Workbook page–1 8 8. 7 9. 8 10. 5 11. 7 12. 6Copyright © 2012 by SPOTS Educational Resources. All rights reserved. –1 –2 –2 –3 –14. +3 +4 7+3+4= 7 13. 6 14. 9 15. 5 16. 5 17. 6 18. 7 –3 –1 –1 –4 –2 –25. 126 8+2+4= 125 125 126Chapter 4 Lesson 10 CCSS 1.OA.3 Apply properties of operations.Student Teacher:Have the students work in pairs or in small groups. Hand out a blank sheet of paper to each student. Ask them to think ofaddition sentences that have two addends that equal ten, and to solve them using number lines, by making one big jump.Conclusion:Today we added three numbers on a number line. First we made a big jump to ten, and then we made another big jump to the sum.Using the Book: Pages 125-126Page 125: Read and discuss the demonstration at the top of the page. Read the directions. Point out that in example 5 thestudents need to fill in the number line on their own. Have the class complete the page Closing Statement:independently while you offer help as needed. Review the page together.Page 126: Explain that this is a review page. Read each set of directions, and have the Who can tell us what we learnedstudents complete the sections on their own while you offer help as needed. Review today? [Accept relevant answers.]the page together. Today we added three numbers on a number line. First we added to get to ten with one big jump, then we added another number with another big jump. Tomorrow we will learn to add to nine. 155
4.11 Chapter 4 Lesson 11: Adding to NineCCSS 1.OA.6 Add and subtract Concept Development:within 20. Use the making tenstrategy. I. Exploring making a ten Show the class a pencil case with nine crayons and five markers. Count the crayonsGoal: as you remove them, one at a time, from the pencil case. Do the same with the markers. Ask: What number sentence can we write to find how many in all? [9 + 5 = ___]Students will add to nine by Hand out counters and say: Use these counters to show our story. Use black to showcompleting the ten. the crayons and white to show the markers. [Model this on the board, and wait forMaterials needed: pencil case the students to arrange their counters.] How can we find out how many there are inwith crayons and markers; First- all? [count all the counters] [Count on together: nine … 10, 11, 12, 13, 14] [Fill in theAddend Dot Boards; students’ blank sum.]Teen Dot Boards; student counters Can you make a ten with the counters we have? Think about it, and try it. [CirculateLESSON WARM-UP: while the students work. Choose a student who took a white counter and added it to the group of black counters. Ask that student to describe what he/she did.] WeFlash the addition flash cards with can make a ten by moving a white counter over to the group of black counters. Do thissums of 10 and some 10+ cards. with your counters. [Model on the board.] Now that we’ve made a ten we can easilyHave the class identify the number see how many there are in all. How many crayons and markers are in the pencil casesentence of each card in unison. altogether? [14]Introductory Statement: Place nine crayons and three markers in the pencil case. In the same way as above,We already know how to solve use counters to solve 9 + 3.examples with 10+. That is prettyeasy for us! Today we are going to use II. Using Dot Boards to make a tenwhat we know to solve examples with Distribute a Teen Dot Board to each student. Place the 9+-Dot Board on the board,9+. and put six white counters on the right side of the Dot Board. Instruct the class to do the same on their Dot Boards (nine black counters on the ten side and six white tHINKING tRIGGER: counters on the ones side). Ask: What number sentence does this show? [9 + 6] [WriteWrite the equation 9 + 7 = ___ on the equation on the board.] We have 9 black counters and 6 white counters. Try tothe board. Ask: How can we show make a ten on your Dot Board to solve this equation. [Allow students time to do so.this on a Teen Dot Board? [Accept Ask some of them to tell what they did. Move a white counter over to the ten sideanswers.] of the Dot Board, and have the class do the same.] How many counters are there on each side? How many are there altogether? [15] Now that we’ve filled the ten side of the board, it’s easy to see how many there are in all. How much is 9 + 6? [15] [Fill in the sum.] Repeat this activity with 9 + 8, and stress that when you make a ten first, you can easily see how many there are in all.III. Adding to nine without moving counters Copyright © 2012 by SPOTS Educational Resources. All rights reserved.Write the equation 9 + 7 = ___ on the board. Place seven white counters on the right side of the 9+-Dot Board. Have the studentsdo the same on their Dot Boards (put nine black counters on the ten side and seven white counters on the ones side). Ask: Whatnumber sentence does this show? [9 + 7] How many more counters does nine need to make ten? [1] Let’s do something different. Let’sthink of how we can show this without moving any counters to another place. How can we leave the counters in their places and make aten? Think about it and try some ideas. [Allow the students some time to work.] How did you make a ten without moving the countersaround? [Accept suggestions.]On the board, turn over the last counter and say: I can turn this counter over to the black side to show that we need it to make the ten,and draw an arrow to show that it’s “flying over” to make the ten. [Draw an arrow from the turned-over counter to the empty spaceon the ten side of the Dot Board.] Now I don’t need to move the counter over. I can leave it in its place, turn it over to the black side, andimagine that it is “flying over” to make a ten. [Have the students similarly turn a white counter to its black side and draw an arrow toshow it “flying over” to make the ten.] Can you see how many counters stayed white? [6] How many do we have altogether? [16] [Writethe sum.]156
Adding to Nine When we add to 9, we color Color one dot and draw an arrow to make a ten. one dot black and imagine that it is Write the sum. 1. 2. 3. flying over to make a ten. Then we add the rest to the ten 9+6= to get the sum. Color one dot and draw an arrow to make a ten. 9+5= 9+8= 9+3= Write the sum. 1. 2. 3. 4. 5. 6. 9+9= 9+8= 9+5= 9+7= 9+2= 9+9= 4. 5. 6. Student Workbook pageAdd or subtract. Student Workbook page 7. 8. 9. 10. 11. 12. + 36 +163 + 24 +142 + 53 +135 9+6= 9+7= 9+4= 13. 14. 15. 16. 17. 18. 9 19 6 16 8 18 LET’S THINK –7 –7 –3 –3 –3 –3 What pattern do you see when adding to nine? 127 127 128 128 Chapter 4 Lesson 11 CCSS 1.OA.6 Add and subtract within 20. Use the making ten strategy. Review the process briefly: We had nine black counters and seven white counters. We made one counter black and imagined that it flew over to make a ten. Then we added the rest to get 16. In the same way, solve 9 + 5 while the students follow along using their own Dot Boards and counters. IV. Introducing the Dot Cards Show the 9+ Teen Addition Dot Cards. Together with the class, read and solve the number sentence for each card. Student Teacher: Write three equations with 9+ on the board. For each, have a student solve the equation using counters and Dot Boards. Help them explain the process as they solve. Be sure they include imagining a counter flying over to make a ten. Conclusion: Today we learned to add to nine. We learned to find the sum by first making a ten and then adding the rest to the ten. Using the Book: Pages 127-128 Page 127: Look at the demonstration at the top of the page with the class. Ask: How many counters do we need to make a ten? [1] How does the book show this? We’re not working with real counters here, so we can’t turn it over. Instead, we need to color the counter in. [Read the text in the box and the equation.]Copyright © 2012 by SPOTS Educational Resources. All rights reserved. Examples 1-6: Read the directions. Model example 1 on the board while the students fill in the answers in their books. Complete the section together. Let’s Think: Read and discuss the question. Page 128: Examples 1-6: Read the directions. Have the class complete the section Closing Statement: independently. Examples 7-18: Read the directions. Say: This section is a review of what we’ve learned earlier Who can tell us what we learned in this chapter. today? [Accept relevant answers.] Have the class complete the section independently. Review the page together. Today we learned to add to nine. Tomorrow we will learn to add to Display the 9 + 9 Dot Card and its number eight. sentence on the Math Window poster. 157
4.12 Chapter 4 Lesson 12: Adding to EightCCSS 1.OA.6 Add and subtract Concept Development:within 20. Use the making tenstrategy. I. Adding to eight with counters Show the class a pencil case with eight crayons and five markers. Count theGoal: crayons as you remove them, one at a time, from the pencil case. Do the sameStudents will add to eight by with the markers. Ask: What number sentence can we write to find how many in all?completing the ten. [8 + 5 = ___]Materials needed: pencil casewith crayons and markers; First- Hand out counters and say: Use these counters to show our story. Use black to showAddend Dot Boards; students’ blank the crayons and white to show the markers. [Model this on the board, and wait forTeen Dot Boards; student counters the students to arrange their counters.] How can we find out how many there are in all? [count all the counters] [Count on together: eight … 9, 10, 11, 12, 13.] [FillLESSON WARM-UP: in the sum.]Flash the 9+ Dot Cards. Have the Can you make a ten with the counters we have? Think about it, and try it. [Circulateclass identify the number sentence while the students work. Choose a student who took two white counters andof each card in unison. added them to the group of black counters. Ask that student to describe what he/she did.] We can make a ten by moving two white counters to the group of black counters. Do this with your counters. [Model on the board.] Now that we’ve made a ten we can easily see how many there are in all. How many crayons and markers are in the pencil case altogether? [13]Introductory Statement: Write the equation 8 + 7 = ___ on the board. Distribute the blank Teen Dot BoardsYesterday we learned to add to nine. and counters. Place seven white counters on the right side of the 8+ Dot Board.Today we will learn to add to eight. Have the students do the same on their Dot Boards (eight black counters on the ten side and seven white counters on the ones side). tHINKING tRIGGER:When we showed adding to a nine on How many counters do we need to make a ten? [2] How can we show this? [Acceptthe Dot Cards, we colored in one of suggestions.] [Emphasize the connection to the previous lesson, explaining thatthe white dots. How do you think we we will use the same strategy here.] We can turn over these two counters [turn overwill show adding to eight? the last two counters] to the black side to show that we need them for the ten, and draw an arrow to show that they are “flying over” to make a ten. [Draw an arrow from these counters to the empty spaces on the ten side of the Dot Board.] Now we don’t need to move the counters over. We can leave them in their places, turn them over to their black sides, and imagine that they are “flying over” to make a ten. [Have the students similarly turn two white counters to their black sides.] Can you see how many counters stay white after we make a ten? [5] How many do we have altogether? [15] [Write in the sum.]II. Adding to eight with Dot Cards Copyright © 2012 by SPOTS Educational Resources. All rights reserved.Place the 8 + 6 Dot Card on the board. Ask the class to tell you the number sentence, and write it on the board. Say: Now let’sadd these two numbers together without turning over our counters. Look at the Dot Card. How many do we need to make a ten? [2]We will just imagine that two of the white dots are flying over to make a ten. How many white dots would stay after we make a ten?[4] What is the sum? [14] How do you know that? [Elicit responses that two dots are used to make a ten, and the remaining 4 dotsare added to the ten that is filled, so the sum is 14.]Repeat this activity with 8 + 8. Have students imagine that the dots that are needed to make a ten are flying over to the tenside. Clear the board.III. Comparing 8+ to 9+Display the 8 + 5 Dot Card, and solve as above. Repeat with 9 + 5. Ask: How is adding 8 + 5 similar to adding 9 + 5? [we added 5 inboth equations] How is adding 8 + 5 different from adding 9 + 5? [when we add 9 + 5, we need one counter to make a ten; whenwe add 8 + 5, we need two counters to make a ten]158
Adding to Eight When we add to 8, we color Add. 3.two dots black and imagine that they 1. 2. are flying over to make a ten. 8+6= Then we add the rest to the ten to get the sum.Color 2 dots and draw an arrow to make a ten. 9+6= 8+7= 9+9=Write the sum. 1. 2. 3. 4. 5. 6. 8+6= 9+8= 8+5= 7. 8. 9. 8+8= 8+7= 8+4= 8+4= 8+8= 9+4= 74. 5. 6. Student Workbook page Student Workbook pageChallenge. Fill in the magic squares.Copyright © 2012 by SPOTS Educational Resources. All rights reserved. 10. 11. 96 8 8+6= 8+5= 8+3= 5 28 4 LET’S THINK 3 3 Why do we first make a ten when we add? 129 129 130 130Chapter 4 Lesson 12 CCSS 1.OA.6 Add and subtract within 20. Use the making ten strategy.How is adding to 9 different from adding to 8? [when you add to 9 you need just one counter to make a ten; when you add to 8you need two counters to make a ten]Student Teacher:Write two equation pairs - 9 + 6 and 8 + 6; 9 + 8 and 8 + 8 – and display the corresponding Dot Cards on the board. Have twostudents solve each pair using the Dot Cards. Help them explain the process as they solve the problem. For each pair, comparethe number of dots that fly over to make a ten and the number of dots that stay.Conclusion:Today we practiced adding to eight. We found the sum by first making a ten and then adding the rest to the ten. First we turned overthe counters, and then we imagined the dots flying over. When we add to eight, we need two dots to make a ten.Using the Book: Pages 129-130Page 129: Discuss the demonstration at the top of the page.Examples 1-6: Read the directions. Model the first example on the board, and have the class complete the section independentlywhile you offer help as needed. Review the section together. Closing Statement:Let’s Think: Read and discuss the question. Who can tell us what we learned today? [Accept relevant answers.]Page 130: Examples 1-9: Read the directions. Model the first example on the board. Have Today we learned to add to eight.the class complete the section independently while you offer help as needed.Examples 10-11: Read the directions. Review how the magic square is filled in so that all Tomorrow we will learn to writethe equations around the square are true. Have students complete the section in pairs. break-apart numbers to show how we add.Review the page together. 159
4.13 Chapter 4 Lesson 13: Writing Break-Apart NumbersCCSS 1.OA.6 Add and subtract Concept Development: Copyright © 2012 by SPOTS Educational Resources. All rights reserved.within 20. Use the making tenstrategy. I. Reviewing adding to 8 and to 9 Write 9 + 9 = ___ and 8 + 4 = ___ on the board, and ask the students to tell youGoal: how to solve these number sentences.Students will learn how to breakapart a number to solve addition II. Writing “break-apart numbers”equations that equal more than ten. Write 8 + 5 on the board and show it on a Dot Board with counters. Say: I seeMaterials needed: number- that this equals more than ten. First we need to make a ten. How many more do wesentence wipe-off boards need to make a ten? [2] We will break apart the 5 to get those two more. [Turn two counters to their black sides.] Three counters stayed white. We broke apart the 5LESSON WARM-UP: into 2 and 3. [Under the 5, draw two spaces for the break-apart numbers (see p.Flash some 9+ and 8+ Dot Cards. 131 in the Student’s Edition), and write in 2 and 3.] 2 and 3 are our break-apartHave the class identify the number numbers. What is the sum? How much is 8 + 5? [13] We have 13 in all. [Fill in the sumsentence of each card in unison. and repeat, pointing to the numbers on the board as you speak:] We had 8 + 5. We needed to make a ten. We broke apart the 5 into 2 and 3. 8 plus 2 equals 10, andIntroductory Statement: 3 more equals 13 – 13 in all.We already know how to add numbersthat equal ten, and we know how to Repeat the process with 8 + 6 and 9 + 7.add to 8 and 9: First we add to makea ten, and then we add the rest. Today III. Writing a two-step number sentencewe will learn how to write break- Write 9 + 6 on the board and draw spaces for the break-apart numbers and solveapart numbers to show how we add. as above using the 9+ Dot Board and counters. Say: We have 9, and we need to make a ten. How many do we need to make a ten? [1] We used 1 from the 6 to make tHINKING tRIGGER: a ten. How much is left to add to the ten? [5] Our break-apart numbers are 1 and 5.Why do we want to make a ten first [Fill them in.] Now let’s solve this: 9 + 1 = …? [10] + 5 = …? [15] 15 in all. [Fill in thewhen we add numbers that equal sum.] Now let’s write a two-step number sentence to show that we added in twomore than ten? steps. [Under the equation write 9 + 1 + 5 = 15, and read it to the class.] Why did we need to break apart the 6? [because we needed part of the six to make a ten] In the same way, solve 9 + 8 and 8 + 7. Student Teacher: Hand out the number-sentence wipe-off boards. Present the 9 + 5 Dot Card. Have the students fill in the equation 9 + 5 while you model on the board. Say: We will need to beak apart the 5 to make a ten. How many dots do we need to make a ten? [1] We need 1 from the 5 to make a ten. How much is left to add to the ten? [4] What are the break-apart numbers? [1, 4] Let’s draw spaces for the break-apart numbers and fill them in. [Have the students draw spaces under the second addend and fill them in.] How many do we have in all? [14] [Fill in the sum. Ask the students to show their work by raising their wipe-off boards above their heads.] Repeat this activity with 8 + 6 and 8 + 4. Conclusion: Today we learned to write break-apart numbers.160
Writing Break-Apart Numbers Fill in the break-apart numbers. Write the two-step number sentence and fill in the sum.When the sum will be more than 10, 1. 2. we add in two steps: 8+7= 9+5= First we add to make a ten. 2 1 Then we add the rest to the ten to make ten the rest to make ten the rest to get the sum. To add 8 + 6, we break apart the 6. 8 + 6 = 14 8+ + = 9+ + = 2 and 4 are the break-apart numbers. 24 3. 4.Color dots and draw an arrow to make a ten. to make ten the restFill in the break-apart numbers and the sum. 8+6= 8+8=1. 2. 2 2 to make ten the rest to make ten the rest 8+ + = 8+ + = 5. 6. 9+7= 8+5= 1 to make ten the rest to make ten the rest 9+7= Student Workbook page8+5= Student Workbook page 9+ + = 8+ + = to make ten the rest to make ten the restCopyright © 2012 by SPOTS Educational Resources. All rights reserved. Solve the story problem.3. 4. Fill in the break-apart numbers and the sum. 7. Sara has 9 buttons for her snowman.8+8= 9+6= 9+8= Miriam brings 8 more buttons. How many buttons do they have altogether? buttons to make ten the rest to make ten the rest 131 131 132 132Chapter 4 Lesson 13 CCSS 1.OA.6 Add and subtract within 20. Use the making ten strategy.Using the Book: Pages 131-132Page 131: Read and discuss the demonstration at the top of the page. Read the directions. Model example 1 on the board.Have the students complete the page on their own, and review it together.Page 132: Examples 1-6: Read the directions. Complete the section together.Example 7: Read the directions. Read the story to the class, and solve it together.Display the 8 + 8 Dot Card and its number Closing Statement:sentence on the Math Window poster. Who can tell us what we learned today?[Accept relevant answers.] Today we learned to write break- apart numbers. Tomorrow we will add to six and seven. 161
4.14 Chapter 4 Lesson 14: Adding to Seven and SixCCSS 1.OA.6 Add and subtract Concept Development:within 20. Use the making tenstrategy. I. Adding using counters Write the equation 7 + 5 = ___ on the board. Place five white counters on theGoal: right side of the 7+ Dot Board. Ask: How many counters do we need to make a ten?Students will add to seven and six [3] How can we show this? [Emphasize the connection to the previous lesson,by completing the “ten.” explaining that we will use the same strategy here. Accept suggestions.] We canMaterials needed: Drop-It form turn over these three counters [Turn over the last three counters.] to the black side#5 to show that we need them for the ten, and draw an arrow to show that they are “flying over” to make a ten. [Draw an arrow from these counters to the emptyLESSON WARM-UP: spaces on the ten side of the Dot Board.]Drop-It: Hand out Drop-It form #5.Flash three to five 9+ and 8+ Dot In the same way, solve 6 + 7.Cards. Have the students write eachequation, including the break-apart II. Adding with Dot Cards and break-apart numbersnumbers, on their papers. Check the Write 7 + 7 = ___ on the board. Place seven white counters on the right side ofstudents’ work. the 7+ Dot Board. Say: Now let’s add these two numbers together without turning over our counters. Look at the Dot Card. How many do we need to make a ten? [3]Introductory Statement: We can imagine that three of the seven white dots are flying over to make a ten. HowWe already know how to add to nine many dots stay white after we make a ten? [4] What are the break-apart numbers?and eight. Today we will learn to add [3, 4] [Draw spaces for the break-apart numbers, and fill them in.] What is theto seven and six. sum? [14] How did you know that? [Elicit responses that three dots are used to make a ten, and the remaining four dots are added to the ten. Altogether, the tHINKING tRIGGER: sum is 14.]How do you think we will add toseven? To six? Repeat with 6 + 5. Have students imagine that the dots that are needed to make a ten are flying over to the ten side. Fill in the break-apart numbers and the sum. Copyright © 2012 by SPOTS Educational Resources. All rights reserved. III. Writing a two-step number sentence Refer to 6 + 5 = 11. Say: Now let’s write a two-step number sentence to show what we did. [Draw a two-step number-sentence format on the board. Fill it in as you go along.] With what number did we start? [6] How many did we add first, to make ten? [4] How many more do we need to add? [1] What is the sum? [11] Write 7 + 6 = ___, and draw spaces for the break-apart numbers. Place the corresponding Dot Card on the board. Fill in the break-apart numbers and solve the equation. Draw a two-step equation format and fill it in together. Student Teacher: Choose an activity from the list of suggested activities found on page 16. Conclusion: Today we learned to add to six and to seven by first making a ten and then adding the rest of the second addend to the ten.162
Adding to Seven and SixWhen the sum will be more than 10, Fill in the break-apart numbers. we add in two steps: Write the two-step number sentence and fill in the sum. 1. 2. First we add to make a ten. Then we add the rest to the ten 7+6= 8+7= 3 2 to get the sum. to make ten the rest to make ten the rest To add 7 + 5, we break apart the 5. 7 + 5 = 12 7+ + = 8+ + = 3 and 2 are the break-apart numbers. 32 3. 4.Color dots and draw an arrow to make a ten.Fill in the break-apart numbers and the sum. to make ten the rest 6+6= 7+5= 1. 2. 4 3 to make ten the rest to make ten the rest 6+ + = 7+ + = 5. 6. 7+7= 7+6= 8+5= = 7+7= = 2 to make ten the rest to make ten the rest to make ten the rest to make ten the rest3. 4. 7+ + 8+ + Student Workbook page Student Workbook page 7. + 14 Add. 9. + 73 10. + 44 11. + 54Copyright © 2012 by SPOTS Educational Resources. All rights reserved. 8. + 626+6= 6+5= 12. 6 13. 5 14. 0 15. 6 16. 9 +4 +3 +8 +3 +1to make ten the rest to make ten the rest 133 133 134 134Chapter 4 Lesson 14 CCSS 1.OA.6 Add and subtract within 20. Use the making ten strategy.Using the Book: Pages 133-134Page 133: Read the demonstration a the top of the page. Read the directions. Model the first example on the board, and havethe class complete the page independently while you offer help as needed. Remind the class to notice how many dots theyneed in order to make a ten. Review the page together.Page 134: Examples 1-6: Read the directions. Review the first example together. Point out that in example 6 the students needto fill in both break-apart numbers on their own. Have the class complete the section independently while you offer help asneeded. Review the section together.Examples 7-16: Read the directions. Have the class complete the section independently while you offer help as needed.Review the section together. Closing Statement: Who can tell us what we learned today? [Accept relevant answers.] Today we learned to add to six and seven. Tomorrow we will practice this, and we will also review adding to eight and nine. 163
4.15 Chapter 4 Lesson 15: Practice: Addition with Teen SumsCCSS 1.OA.6 Add and subtract Concept Development: Copyright © 2012 by SPOTS Educational Resources. All rights reserved.within 20. Use the making tenstrategy. I. Adding with Dot Cards Place several Teen Addition Dot Cards on the board. Point to each card in turn,Goal: and ask the class how many dots are needed to make a ten, and how many dotsStudents will review adding to six, will stay white and will be added to the ten.seven, eight, and nine.Materials needed: Drop-It form II. Adding with break-apart numbers#5 Write the equations 6 + 5 and 7 + 5 on the board. Solve them as a class, using the 6+ and 7+ Dot Boards and turning over counters. For each equation writeLESSON WARM-UP: the break-apart numbers and the sum. Compare the Dot Boards and the break-Drop-It: Hand out Drop-It form #5. apart numbers, and point out that for each one we broke apart the 5 differently.Flash three to five 6+ and 7+ Dot Discuss why this is so.Cards. Have the students write eachequation, including the break-apart Write 8 + 5 on the board and present the 8+ Dot Board. Solve as above, andnumbers, on their papers. Check the compare it to the previous equations. Do the same for 9 + 5.students’ work. III. Reviewing the two-step number sentenceIntroductory Statement:Today we will practice adding to six, Let’s practice writing two-step number sentences. What does a two-step numberseven, eight, and nine. sentence show us? [how we are adding] tHINKING tRIGGER: Write 8 + 5 on the board, and place the corresponding Dot Card next to thePlace the 6 + 6 and 7 + 6 Dot Cards equation. Fill in the break-apart numbers and solve. Draw a two-step number-on the board. Ask: After we make a sentence format and ask the students to tell you how to fill it in.ten, will the number of white dots thatstay be the same for each of these Repeat this for 7 + 4.Dot Cards? [no] Explain your answer.[because for each Dot Card we need Student Teacher:a different number of white dots tomake a ten] Write several teen equations on the board, and place the First-Addend Dot Boards on the board under the equations in random order. Explain: We’re not going to use Teen Addition Dot Cards that show us the number sentence. We will use these First-Addend Dot Boards to help us, but without counters. Instead, we will pretend. First we need to find the Dot Board that shows the first addend, then we need to pretend to see the number of white dots that we are adding. Next, we need to think of how many counters we would need to turn over to make a ten, and how many would stay. Have some students, in turn, come up to the board and draw a line to match a number sentence to the card they can use to help solve the equation. Then have other students solve the equations. Offer help as needed. Conclusion: Today we reviewed adding to six, seven, eight, and nine. We saw that for each addend we needed a different amount to make a ten, and we had a different amount of counters that stayed white.164
Practice: Addition with Teen Sums Add. Color. 11 Blue 12 Brown 13 Green 14 Pink 15 Red 16 PurpleColor the dots and draw an arrow to make a ten.Fill in the break-apart numbers. Write the two-step numbersentence and fill in the sum. 1. 2. 9 + 2 = __ 8 + 3 = __ 9+6= 8+6= _+8_8 _+7_9 _+94_ _+6_8 7 + 4 = __ 9+ to make ten the rest 8+ to make ten the rest 6 + 5 = __ 8 + 4 = __ 8 + 5 = __ += += 7 + 6 = __3. 4. 6 + 6 = __ Student Workbook page9 + 3 = ___+_787 + 5 = __ Student Workbook page _+6_9 7+6= 6+6=Copyright © 2012 by SPOTS Educational Resources. All rights reserved. 7+ to make ten the rest 6+ to make ten the rest += += LET’S THINK 135 135 136 136 Why does each Dot Card have a different number of dots colored in?Chapter 4 Lesson 15 CCSS 1.OA.6 Add and subtract within 20. Use the making ten strategy.Using the Book: Pages 135-136Page 135: Example 1-4: Read the directions. Have the students complete the section on their own. Review it together.Let’s Think: Compare the number sentences and Dot Cards. (They all have 6 as the second addend, but they have different firstaddends. Therefore, the 6 is split differently for each example.)Page 136: Read the directions. Say: On this page there are no addition Teen Dot Cards that show us the number sentence. Whatcan we use to help us? [Accept suggestions.] We can use the Dot Cards on the bottom of the page. Find the Dot Card with the firstaddend, and imagine the number of white dots you need to add. Then see how many dots you need to make a ten, and how manyare left. Lets’s do some examples together.Refer to the First-Addend Dot Boards on the board. Write 9 + 2 = ___ on the board and ask: What is the first addend? [9] We willuse the 9+ Dot Card to solve this. We need to add two. How many do we need to make a ten? [1] If we make one counter black to makea ten, how many are left white? [1] What is our sum? How many are there altogether? [11] [Have Closing Statement:the students write the sum in their books.]In the same way, write and solve the next few equations on the board while referring to the Dot Who can tell us what weCards. Have the students write the sums in their books. Then explain: Here we have a special learned today? [Acceptcolor-by-number sheet. We will need to check the sum to choose the correct color for that section. relevant answers.] Today[Have the class complete the page independently while you offer help as needed. Check we practiced adding tostudents’ work.] six, seven, eight, and nine. Tomorrow we will practice Display the 7 + 7 Dot Card and its number adding numbers in any order. sentence on the Math Window poster. 165
4.16 Chapter 4 Lesson 16: Adding in Any Order CCSS 1.OA.3 Apply properties of Concept Development: Copyright © 2012 by SPOTS Educational Resources. All rights reserved. operations. Tell a story about two children who have marbles: Shana has nine red marbles and Goal: four blue marbles. How many marbles does Shana have? What number sentence Students will apply the commutative can we write for the story? [On the board, write 9 + 4 and solve.] Dan has four red property to addition with teen marbles and nine blue marbles. How many marbles does Dan have? What number sums. sentence cam we write for the story? [4 + 9] Does Dan have the same number of marbles as Shana? [yes] Why? [because the order of the numbers you are adding LESSON WARM-UP: doesn’t change the amount they have] If I know that 9 + 4 is 13, can I know the sum Flash 10-12 Teen Addition Dot of 4 + 9? [yes] What is it? [13] If I want to know the sum for 4 + 9, I can think of 9 + 4 Cards. Have the class identify the to help me. number sentence of each card in unison. Draw two columns on the board. In the left column write three number sentences: 4 + 7, 3 + 9, and 4 + 8. In the right column write their matching number sentences: Introductory Statement: 9 + 3, 8 + 4, and 7 + 4. Under the columns place the corresponding Teen Addition In Chapter 2 we learned that we can Dot Cards. Say: Let’s look at the first number sentence: 4 + 7. Is the first addend more add numbers in any order. When the or less than the second addend? [less] It’s easier to add when the first addend is first addend is less than the second greater. Let’s change the order of the addends to help us solve this number sentence. addend, we can switch around Which number sentence on the other side of the board shows the same addends but the number sentence to match an in a different order? [7 + 4] [Draw a line to match the number sentences. Place the Addition Dot Card and to solve it. 7 + 4 Dot Card next to the equation 7 + 4, and solve the equation with the class.] Today we will practice this with Now that we know the sum of 7 + 4, we also know the sum of 4 + 7. [Fill in the sum number sentences whose sums are for 4 + 7. This Dot card also matches the number sentence 4 + 7; the dots and the teen numbers. numbers are just in a different order. The sums are the same. [Continue in the same way with the equations 3 + 9 and 4 + 8.] tHINKING tRIGGER: Write the equation 3 + 8 on the Place three Teen Addition Dot Cards on the board. Ask the class to tell you two board. Ask: How do you think we number sentences for each card, and write them under the cards. After writing should solve this number sentence? each pair of equations, say: These number sentences are almost the same. They each Why? have the same numbers, but in a different order. [Point to the second equation.] We turned around the numbers to get this number sentence. This is the “turnaround”166 number sentence. Present a few Teen Addition Dot Cards, and have the students write two number sentences for each card on their number-sentence boards. Student Teacher: Hand out the students’ number-sentence boards. On the board, write some addition equations in which the first addend is less than the second addend. Have students write a “turnaround” number sentence for each equation, and solve by referring to the First-Addend banner in the front of the class. Have the students raise their number-sentence boards above their heads to show their work. Conclusion: Today we practiced a rule that we’ve already learned, but this time we worked with teen numbers: We can add numbers in any order and get the same sum. When we add, we think of the greater number first.
Draw a line to the mitten with the Adding in Any Order Add. 4. 3 + 8 = 7. 7 + 9 =matching number sentence. 5. 6 + 8 = 8. 8 + 9 =Color each set the same as its When we add, we can 1. 6 + 9 = 6. 7 + 8 = 9. 4 + 9 =matching Dot Card. think of the greater 2. 5 + 9 =Write the sums. number first. 3. 3 + 9 =1. + 38 + 842. + 74 + 92 10. 5 + 7 = 13. 5 + 6 = 16. 5 + 8 = 11. 6 + 7 = 14. 4 + 6 = 17. 4 + 8 =3. + 39 + 83 12. 4 + 7 = 15. 6 + 6 = 18. 8 + 8 =4. + 48 + 93 Student Workbook pageWrite the number sentence and solve. Student Workbook page5. + 92+ 47 hats 19. There are 5 green hats.Copyright © 2012 by SPOTS Educational Resources. All rights reserved. There are 7 blue hats. How many hats are there in all? ____ =Green Yellow Red Blue Purple 137 137 138Chapter 4 Lesson 16 CCSS 1.OA.3 Apply properties of operations. 138Using the Book: Pages 137-138Page 137: Read the directions and the comment cloud. Review the first example together. Have the students complete thepage on their own while you offer help as needed. Review the page together.Page 138: Examples 1-18: Read the directions. Model examples 1-3 on the board. Point out that it is easier to add when theythink of the “turnaround” number sentences.Example 19: Read the directions and the story. Have the students solve it on their own.Review the page together. Closing Statement: Who can tell us what we learned today? [Accept relevant answers.] Today we practiced adding numbers in any order. We think of the greater number first and use the same Dot Card for number sentences that have the same addends in a different order. Tomorrow we will learn something different: We will learn something new about story problems. 167
4.17 Chapter 4 Lesson 17: Story Problems with Extra Information CCSS 1.OA.1 Use addition and Note: This is a short lesson. Provide additional practice for addition facts as Copyright © 2012 by SPOTS Educational Resources. All rights reserved. subtraction to solve word problems. needed. See page 16 for suggested activities. Goal: Concept Development: Students will learn to identify irrelevant information in a story I. Finding items that do not belong problem. Refer to the basket with the fruits and yogurt from the Thinking Trigger. Say: I Materials needed: Drop-It want to know how many fruits there are here. What don’t I need in order to answer form #2; basket with an apple, an that question? What thing here is extra? [the yogurt] [Remove the yogurt from the orange, a pear (or any three fruits), basket and say:] I have 3 fruits here. and a yogurt; large sheet of paper In a similar way, refer to the drawings on the board, ask how many are in each LESSON WARM-UP: group, and have students tell you which item to erase in each group. Drop-It: Hand out Drop-It form #2. Flash 10-12 Subtraction Dot II. Solving story problems with extra information Cards. Have the students write each Now we will tell stories in which there is information that we don’t need. Listen equation on their papers. Check the carefully, and see if you can figure out what is extra. [See samples below. Tell each students’ work. story twice, and then ask:] What was extra? What didn’t I need to tell you so that you could find the answer? [You may want to draw the items from the first few Introductory Statement: stories in order to make the exercise clearer.] We’ve learned so much addition in this chapter! Today we will learn Tell two or three simple stories that are easy to follow and that have an extra detail. something different: We will learn something new about story problems. Daniel went for a walk. He saw three squirrels on a tree and two squirrels running around. He also saw four birds. How many squirrels did he see? Who can figure out tHINKING tRIGGER: what was extra? What don’t we need to know in order to find the answer? [He saw Display a basket with an apple, an four birds.] [Write a number sentence and solve.] orange, a pear, and a yogurt. Ask: Which item doesn’t belong? [the For snack one day, Sheina drank a cup of juice and ate seven red grapes. Then she ate yogurt] Why? [the rest are fruits; the six purple grapes. How many grapes did Sheina eat? [Draw the items in the story, yogurt is not a fruit.] Who can think repeat the story, and ask:] What is extra in the story that we don’t need to know of other examples of a group of things in order to figure out the answer? [Sheina drank a cup of juice] [Write a number that go together and one that doesn’t sentence and solve.] belong with that group? [Draw the class’s suggestions on the board.] Tell other, similar story problems, discuss what information is extra, write their number-sentences, and solve them.168 III. Review: Adding three numbers on a number line Now let’s review something we already learned. [Draw a number line on the board and write 5 + 5 + 6=___ next to it.] How many jumps do we need to make? [2] With which number should we start? [5] [Continue to fill in the number line with the class, to show the equation.] In the same way, show 7 + 3 + 2 and 6 + 4 + 6 on number lines. Student Teacher: Divide the class into groups. Give each group a large sheet of paper. Ask each group to make up a math story in which there is extra information and to draw it on their papers. Have the students cross out the part that is extra and write a number sentence to match the story. Ask each group to share their work with the class.
Story Problems with Extra Information Sometimes there is extra Complete the number line. Write the sum. information in a story problem.Cross out the extra information. 1.Write the number sentence and solve. 7+3+4= +3 +41. There are 7 blue coats on the hooks. There are 6 pink coats on the hooks. 7 10 There are 8 gray sweaters. How many coats altogether? coats 2. +2 +3 = 8+2+3= 8 102. There are 6 girls making an igloo. 3. +4 +2 There are 6 big boys sledding. There are 5 little boys sledding. 6+4+2= 6 10 How many children are sledding? 4. = children 8+2+5= Student Workbook page3. Ed used 7 buttons to make a smile on a big snowmanAdd or subtract. Student Workbook pageand 5 buttons for a small snowman. 6. 11 7. 15 8. 12Copyright © 2012 by SPOTS Educational Resources. All rights reserved. +3 +4 +6He used 1 carrot for the nose. 5. 16 9. 16 10. 13 +2 +3 +4How many buttons did he use in all? buttons =Chapter 4 Lesson 17 CCSS 1.OA.1 Use addition and subtraction to solve word problems. 139 139 11. 14 12. 18 13. 16 14. 19 15. 15 16. 17 140 –2 –4 –1 –8 –4 –3 140Conclusion:Today we practiced something new: We practiced finding the extra information that we don’t need to know to solve story problems.Using the Book: Pages 139-140Page 139: Read the text at the top of the page. Read the directions. Read each story, decide which information is extra, cross itoff, and write the equation on the board. Have the class fill in the example in their math books. Read the next examples to theclass and have the students complete them on their own. Point out that they can use the Dot Cards at the bottom of the pagefor help. Review the page together.Page 140: Explain that this is a practice page. Read each set of directions to the class and have them complete the page ontheir own while you offer help as needed. Review the page together. Closing Statement: Who can tell us what we learned today? [Accept relevant answers.] Today we practiced finding the extra information that we don’t need to know in order to solve story problems. Tomorrow we will work with the number line. 169
4.18 Chapter 4 Lesson 18: Using the Number Line CCSS 11..OOAA..61 UAsded aadndditiosunbtarancdt Note to teacher: The goal of this lesson is to strengthen students’ understanding Copyright © 2012 by SPOTS Educational Resources. All rights reserved. swuibthtrinac2t0io. n to solve word problems. of adding by teaching them to first make a ten. Students need not achieve independence in the skill at this point. Goal: Students will use an open number Concept Development: line to add numbers whose sum is a teen number. I. Adding numbers that equal ten with one jump Materials needed: small blank Display the toy rabbit or the rabbit cutout. Ask: Remember Bunny? How does he jump? [he jumps a few numbers at a time] cards; dice Write 5 + 5 = ___ on the board, and draw an open number line. Begin the number LESSON WARM-UP: line with 5, and place Bunny at that point. Say: Now Bunny wants to solve this on Flash 10-12 Teen Addition Dot the number line. How many does Bunny need to jump? [5 more] Remember that Cards. Have the class identify the Bunny likes to jump the whole number at once? Let’s help him make one big jump number sentence of each card in for the whole amount. [Have Bunny make one long jump that would cover about unison. five spaces. Draw the jump and write in +5.] Bunny jumped five. On what number did he land? How much is 5 plus 5 more? [10] [Write in 10.] Now our number line Introductory Statement: shows 5 + 5 = 10. [Read the equation and fill in the sum.] We’ve learned how to add number sentences that equal more than 10 II Adding to ten with one jump and how to write the break-apart On the board, write 10 + 6 = ___, and draw an open number line next to it. Say: numbers – when we break apart a Let’s help Bunny solve this number sentence. What number should we fill in at the number to make a ten. Today we beginning of the number line? [10] [Write 10.] How many does Bunny need to jump? will use a number line to show [6] [Have Bunny make a jump of 6. Draw the jump, and write in +6.] On what how we add when the sum is more number did Bunny land? [16] Our sum is 16. [Write 16 at the end of the jump, and than 10. fill in the sum in the equation.] tHINKING tRIGGER: III. Making two jumps Write 8 + 7 on the board. Ask: How On the board, write 8 + 7 = ___, and place the 8 + 7 Dot Card next to it. Discuss many jumps do you think we will the process of making a ten and then adding the rest to the ten. Draw spaces for need to show this on a number line? the break-apart numbers, and ask the class help you fill them in. Say: Now Bunny will show this on a number line.170 Draw an open number line, and begin the number line with 8, Say: Here we will start with 8, because it is the first addend. [Refer to the Dot Card and the break- apart numbers as you continue.] How did we solve this number sentence? [in two steps; first we added to ten, and then we added the rest to the ten] Bunny will also make two jumps to show the two steps. First he will jump to 10, then he will jump the rest, to the sum. How many white counters did we need to make a ten? [2] Bunny will make a jump of 2 to get to ten. [Show a +2 jump on the number line.] On what number did we land? [10] [Write in the number ten.] Now Bunny will make a jump of 5 to get to the sum. [Draw the second jump and label it +5.] On what number did we land? [15] [Write the sum (15) at the end of the second jump.] First we made a jump of 2 to get to ten, and then we made a jump of 5 to get to the sum, 15. When we first add to ten, and then add the rest of the number, it’s easy to find the sum. How many jumps did we make? [2] Bunny jumped 7 in two jumps: a jump of 2 and a jump of 5 – the same as the break-apart numbers.
Using the Number Line Complete the number line. Write the sum. 1. When we add in two steps, we make two jumps:8+6= First we make a jump to get to ten. 8+8= +8 Then we make another jump to add the rest. 2. 8 +6 +2 +4 8 10Complete the number line. Write the sum. +6 1. 7 +7 7+6= 9+7= 9 3.2. Student Workbook page+57+5=+5 Student Workbook page 8 4. 7Copyright © 2012 by SPOTS Educational Resources. All rights reserved. 8+5=3. +69+6= 9 141 141 8+7= 142Chapter 4 Lesson 18 CCSS 1.OA.6 Add and subtract within 20. 142Repeat the process with 7 + 5 and 9 + 7. For each, first solve with Dot Cards and break-apart numbers. Then have Bunny showit on the number line, and summarize as above.Student Teacher:Play “Make a ten”: Divide the class into pairs or small groups. Give each student ten cards. Have the students label each cardwith a number between 4 and 9 (some numbers will be written more than once), and place all the cards face-up in the centerof the group. Give each group one die. Have each student in turn roll the die, find the card with the number that, together withthe number shown on the die, makes a ten, and turn that number-card over. Play until all the cards are turned over.Conclusion:Today we showed addition with sums that are teen numbers on a number line. When the sum is more than ten, we make two jumps:First we make a jump to get to the ten, and then we make another jump to add the rest.Using the Book: Pages 141-142 Closing Statement:Page 141: Read and discuss the demonstration at the top of the page. Read the directions. Who can tell us what we learnedComplete the page together. today? [Accept relevant answers.]Page 142: Read the directions. Solve examples 1-3 together. Today we practiced solving additionExample 4: On Your Own (Note: This example is a challenge. Many students may need help to examples that equal more than tensucceed.) Have some students explain how this example is different. Challenge your students to by making two jumps on a numbertry to solve it on their own; then review the example together. line. Tomorrow we will practice this more. Display the 6 + 6 Dot Card and its number sentence on the Math Window poster. 171
4.19 Chapter 4 Lesson 19: Practice: Using the Number Line CCSS 1.OA.1 Use addition and Concept Development: Copyright © 2012 by SPOTS Educational Resources. All rights reserved. subtraction to solve word problems. CCSS 1.OA.6 Add and subtract I. Reviewing using the number line within 20. Write 8 + 5 on the board and place the 8 + 5 Dot Card next to it. Review the Goal: process of completing a ten and adding the rest, and solve the equation. Students will practice using an open number line to add numbers whose Draw an open number line next to the Dot Card. Say: Now let’s solve this example sum is a teen number. on the number line. [Fill in the number line as you go along.] With which number Materials needed: Drop-It form should we start the number line? [8] How many are we adding? [5] How many do #2; equation cards; blank papers we need to make a ten? [2] We need to jump 2 to get to ten. How many more do we have? [3] We need to jump 3 more. What number did we get to? [13] LESSON WARM-UP: Drop-It: Hand out Drop-It form In the same way, solve 9 + 6 and 7 + 5 on number lines. #2. Flash 10-12 Teen Addition Dot Cards. Have the students write each II. Reviewing story problems with an unknown part equation on their papers. Check the Tell a story: Tamar has eight dolls. Three of them have black hair. The rest have blond students’ work. hair. How many dolls have blond hair? Introductory Statement: Let’s draw this story. How many dolls does Tamar have? [8] Yesterday we learned how to show adding on a number line for addition What drawing should we use to show the dolls? [Accept a suggestion.] How many examples that equal more than 10. dolls should we draw? [8] We know that three dolls have black hair; we want to Today we will practice that. know how many dolls have blond hair. We need to take away the part that we know in order to find the other part – how many have blond hair. Let’s circle three tHINKING tRIGGER: (_drawings_) and write “black hair.” This is showing the part that we know. What do How does learning to add on a the others [Point to the rest of the drawings.] show us? [the dolls with blond hair] number line help you? Let’s circle them and write “blond.” Five dolls have blond hair. [Point to each group of shapes, and review what they tell us: how many in all, how many black-haired,172 and how many blond-haired.] Now let’s show this story on a math puzzle. [Draw a math puzzle.] How many dolls does Tamar have in all? [8] This is the whole number. [Fill it in.] Some dolls have black hair and some have blond hair. How many have black hair? [3] [Fill in one part.] What do we want to find out? [how many have blond hair] I will write a question mark in the empty puzzle piece to show that this is what we want to find out. We have the whole and one part. How do we find the other part? [subtract] [Draw an equation format.] There are eight dolls in all. Three have black hair. [Write 8 - 3, and solve.] How many dolls have blond hair? [5] [Fill in the difference.] Tell the following stories. For each story, make a simple math drawing, fill in a math puzzle, and write a number sentence to solve the story. Leah has seven hair accessories for her dolls’ hair. Four are clips. How many are headbands? Bill had ten stuffed animals. He gave some away, and now he has four left. How many did he give away? Student Teacher: Divide the class into pairs. Give each pair a blank sheet of paper. Have one partner choose an addition equation card with sums that are teen numbers and
Practice: Using the Number Line Complete the number line. Write the sum. 1.Complete the number line. Write the sum. 1. 9+5= +5 7+6= +62. 9 2. 7 8+6= +6 7+5=3. 8 Fill in the math puzzle and write the number sentence. Solve. 3. Pablo built a tower with 9 blocks. Some blocks fell off. Now the tower has 6 blocks. How many blocks fell off the tower? ____ blocks 9+9= Student Workbook page+9Whole Student Workbook page4. 9 Part PartCopyright © 2012 by SPOTS Educational Resources. All rights reserved. = +7 4. Clara built a tower with 9 red blocks Whole and 6 blue blocks.7+7= 7 How many blocks are in her tower? Part Part ____ blocks 143 143 = 144 144Chapter 4 Lesson 19 CCSS 1.OA.1, CCSS 1.OA.6draw an open number line. Have him/her give the number line to his/her partner to fill in to match the number sentence. Thenhave them switch: The second partner chooses the equation card, and the first shows it on a number line.Conclusion:Today we practiced showing addition examples that equal more than ten on a number line. When the sum is more than ten, we maketwo jumps: First we make a jump to get to the ten, and then we make another jump to add the rest.Using the Book: Pages 143-144Page 143: Read the directions. Complete examples 1-2 together. Then have the students complete examples 3-4 on their ownwhile you offer help as needed.Review the page together. Closing Statement:Page 144: Examples 1-2: Read the directions. Point out example 2: On Your Own. Who can tell us what we learnedHave some students explain how this example is different. Have the class complete the today? [Accept relevant answers.]section independently while you offer help as needed. Review the section together. Today we practiced solving addition examples that equal more than tenExamples 3-4: Read the directions. Read the stories to the class and solve them together. by making two jumps on a number line. Tomorrow we will practice with the doubles facts. 173
4.20 Chapter 4 Lesson 20: Doubles with Teen SumsCCSS 1.OA.3 Apply properties of Note: This is a short lesson. Provide additional practice for addition facts asoperations. needed. See page 16 for suggested activities.CCSS 1.OA.6 Add and subtractwithin 20. Concept Development:Goal: Show the class the dice and play a game: Have students take turns rolling the twoStudents will add doubles. dice. Each time a double is rolled, the student who rolled it writes the equationMaterials needed: Drop-It form on the board and solves it. If a smiley is rolled, the other number is doubled and#4; two large dice labeled with the the equation is written on the board. Thus, for example, if a student rolls a 3 andnumbers 5, 6, 7, 8, 9, and ; domino a smiley, he/she would then write the equation 3 + 3. At the end of the game,cutouts read the number sentences that are written on the board.LESSON WARM-UP: Student Teacher:Drop-It: Hand out Drop-It form #4. Place the “doubles” dominos on the board. Have some students in turn chooseFlash 10-12 addition flash cards with a domino, write on the board, write the number sentence it models, and thensums to 10. Have the students write solve it.the sums on their papers. Check thestudents’ work. Conclusion: Today we practiced our doubles facts.Introductory Statement:Yesterday we practiced our rule thatwe can add numbers in any order andget the same sum. Today we will learnour doubles facts. tHINKING tRIGGER: Copyright © 2012 by SPOTS Educational Resources. All rights reserved.Who remembers what doubles factsare? [both addends are the same]Can you think of some examples?174
Write the doubles fact. 2. Doubles with Teen Sums Add. You can use the Dot Cards to help. Circle the doubles.1. = 1. 6 2. 8 3. 6 4. 8 5. 2 = = +5 +7 +6 +4 +93. 4. 6. 8 7. 5 8. 7 9. 8 10. 7 +8 +9 +6 +5 +5 = 11. 9 12. 6 13. 7 14. 3 15. 5Write the doubles fact. +9 +8 +7 +8 +65. 6. Fill in the math puzzle and write the number sentence. + Solve. Student Workbook page Student Workbook page+16.Sara picked a double-8 domino.Whole How many dots does she haveCopyright © 2012 by SPOTS Educational Resources. All rights reserved. in all? ____ dots Part Part7. 8. = + +Chapter 4 Lesson 20 CCSS 1.OA.3, CCSS 1.OA.6 145 145 146 146Using the Book: Pages 145-146Page 145: Examples 1-4: Read the directions. Discuss what is shown in each picture. Have the students complete the sectionon their own while you offer help as needed.Examples 5-8: Read the directions. Have the students complete the section on their own while you circulate to offer help asneeded.Review the page together.Page 146: Examples 1-15: Read the directions. Have the students complete the section on their own while you circulate tooffer help as needed. Review the section together.Example 16: Read the directions. Read the story to the class. Solve together.Display the 6 + 5 Dot Card and its number Closing Statement:sentence on the Math Window poster. Who can tell us what we learned today? [Accept relevant answers.] Today we practiced our double facts to 18. Tomorrow we will learn how to solve a new kind of story problem. 175
4.21 Chapter 4 Lesson 21: Story Problems with Start UnknownCCSS 1.OA.1 Use addition and Concept Development:subtraction to solve word problems.CCSS 1.OA.8 Determine the I. Reviewing simple addition story problemsunknown whole number in anaddition or subtraction equation Distribute blank sheets of paper to each student. Tell a story: Danny has five red crayonsrelating three whole numbers. and four blue crayons. How many crayons does he have? Solve this story problem and think about how you are solving it. [As the students solve this problem, circulate and note theGoal: method they are using. Choose students who used different ways, and ask them toStudents will use addition in story share their answer and the method they used. Be sure to include one or two studentsproblems to find how many there who drew simple drawings to help them solve it. Write a number sentence to show thewere in the beginning. story (5 + 4 = 9).]Materials needed: small rocks;paper bag; magnetic math puzzles; Do the same for the following story: Danny has nine crayons. Justin has two more crayonsblank sheets of paper than Danny has. How many crayons does Justin have?LESSON WARM-UP: II. Using manipulatives and math puzzles to solve story problems with an unknown beginning number Now let’s tell some math stories. These are a little different from the other ones we’ve discussed, so listen carefully. I will tell you about a boy named Jeff who has some collections. What do you collect? [Allow students to respond.] Jeff has a rock collection. He traded away four rocks. Now he has ten rocks left. How many rocks did he start with?Flash 10-12 Teen Addition Dot What do we want to find out? [how many rocks Jeff had in the beginning] Let’s think ofCards. Have the class identify the how we can solve this problem. [Use rocks to show the story: Place ten rocks in a bag.]number sentence of each card in These rocks are how many Jeff has left. [Make a group of four rocks.] These rocks are howunison. many he traded away. How can we show the amount Jeff had in the beginning? [put the groups together] [Put the rocks together and draw a number-sentence format.] Did weIntroductory Statement: add or subtract? [add] How many rocks does Jeff have left? [10] [Fill in 10.] Plus how manyWe’ve solved many kinds of story rocks did Jeff trade away? [4] [Fill in +4.] What is our sum? [14] Jeff started with 14 rocks.problems. Today we will solve adifferent kind of story problem. Place or draw a math puzzle on the board. Review the parts (part, part, and whole). Say: Let’s fill this puzzle in to show how we solved the story. Let’s think: What did we know? [the parts: 4 rocks Jeff traded away and 10 rocks he still has.] [Fill in 4 and 10 in the puzzle.] What did we want to find out? [how many he had before] That is the whole number. I will write a question mark in the puzzle piece to show that we wanted to find out the whole number. tHINKING tRIGGER: Summarize: We added to solve, because when the numbers that we know are the parts, we Copyright © 2012 by SPOTS Educational Resources. All rights reserved. add them together to find the whole number.Write 10 + 3 and 8 + 4 on the board.Ask students to think of stories to Tell the following story: Jeff’s brother gave him some trading cards. Jeff lost two cards. Nowmatch these sentences and tell them he has twelve cards left. How many cards did Jeff’s brother give him?to the class. Have the class solve the Place a math puzzle on the board. Say: Let’s use the puzzle to help us solve this problem.story problems. Ask some students We have to decide what we know and what we want to find out. We know that Jeff lost 2to tell how they solved the story trading cards. Are the 2 cards that Jeff lost a whole or a part? [a part; they’re only a part ofproblems. his cards] [Fill 2 in the appropriate puzzle piece.] Jeff has 12 cards left. Are the 12 cards that Jeff has left the whole or a part of the cards he got from his brother? [a part] [Fill 12 in the appropriate puzzle piece.] Now we can see what we want to find out: the whole number;how many cards Jeff‘s brother gave him. [Write a question mark in the remaining puzzle piece.]Summarize: When the numbers that we know are the parts, we add them together to find the whole number. [Write 12 + 2 and solve.]Point to each number in the equation and ask what it tells us (how many cards Jeff had left; how many Jeff lost and how many his brothergave him).[Distribute counters to the class. Have students use counters to show the story.]176
Story Problems with Start UnknownWhen we know both parts, we add to find Make a simple math drawing to show the story problem. out how much we had to begin with. Fill in the math puzzle. Write the number sentence and solve.Make a simple math drawing to show the story problem. 1. Mr. Green has a container of WholeFill in the math puzzle. Write the number sentence and solve. markers. Part Part1. Sue has a sticker collection. Whole 5 markers dried out. 4 stickers got lost. Now he has 10 markers. = Now she has 10 stickers. Part Part How many markers did he have How many stickers did Sue have to begin with? to begin with? ___ stickers = ___ markerslost now2. Zev has a marble collection. 2. Adel baked some cookies. 3 marbles roll away. She gave 3 to her neighbor. Now he has 8 marbles left. Now she has 9 cookies. How many marbles did he have How many cookies did she bake? to begin with? ___ marbles ____ cookies Student Workbook pageWholeWhole Student Workbook page Part Part Part PartCopyright © 2012 by SPOTS Educational Resources. All rights reserved. = =Chapter 4 Lesson 21 CCSS 1.OA.1 Use addition and subtraction to solve word problems. 147 147 148 148III. Showing story problems using simple drawingsJeff went to the beach and brought home some shells for a new collection. Three shells broke. He has ten shells left in his collection. How manyshells did Jeff bring home? [Draw or place on the board a math puzzle, and draw a blank number-sentence format; fill in as above.]This time I will use simple drawings to show the story. [Draw the story while referring to the numbers of the puzzle.]Repeat this approach with another story: Jeff’s sister Rebecca collects coins. Now she has seven Indian-head pennies. Yesterday, she gave herfriend five Indian-head pennies. How many Indian-head pennies did she have in the beginning?What do we want to find out? [how many coins she had in the beginning] [Fill in a math puzzle and write a number sentence to solve thestory. Distribute blank sheets of paper and have the students make a simple drawing to show the story. Circulate as the students draw thestory, and offer assistance as needed. Ask a few students to share their drawings and explain how they showed the story.]Student Teacher:Tell the following story: Ron’s mother served some cookies for a snack for Ron and his friends. They ate six of the cookies, and sevenwere left on the plate. How many were on the plate to begin with? [Divide the class into pairs. Give each pair a blank sheet ofpaper. Have students choose how to solve the story problem by either making a simple drawing, filling in a math puzzle, orwriting a number sentence. Have the pairs share how they solved the problem.]Conclusion: Closing Statement:Now we’ve learned to solve story problems in which we need to find how many there were Who can tell us what we learnedin the beginning. today? [Accept relevant answers.] Today we learned another kind ofUsing the Book: Pages 147-148 story problem. We learned to add to find how many there were in thePage 147-148: Read and discuss the text at the top of page 147. beginning. Tomorrow we will learnRead the directions. Read each story. Complete the pages together. how to count money. 177
4:22 Chapter 4 Lesson 22: Dimes, Nickels, and Pennies NYS CCLS 1.MD.3 Recognize and Concept Development: Copyright © 2012 by SPOTS Educational Resources. All rights reserved. identify coins, their names, and their value. I. Reviewing the values of coins Place a nickel on the board. Ask the class how much it is worth, and write 5¢ Goal: next to the coin. Place a penny on the board, ask the class how much it is worth, Students will count a collection of and write 1¢ next to it. Show a nickel and four pennies on the board. Together, coins that includes a dime, a nickel, count the value of the coins, beginning with 5¢ for the nickel. Place a dime on and pennies. the board. Ask the class its value. Write 10¢ next to the dime. Place three pennies Materials needed: Drop-It next to the dime and, together with the class, count the value of the collection, form #4; model coins, including beginning with the dime. Add another penny, and count the value together. dimes, nickels, and pennies; a group Continue in this way until you show 19¢. of real coins for each student that includes a dime, a nickel, and nine II. Counting and comparing the values of groups of coins pennies Clear the board. Place a dime and five pennies on the board. Together, count their value, and write 15¢. Point to the pennies and ask: What coin we can use in LESSON WARM-UP: place of these five pennies? [a nickel] [Remove the five pennies and put a nickel in Drop-It: Hand out Drop-It form their place.] How much money do we have now? Is it the same amount that we had #4. Flash 10-12 subtraction flash with the pennies? [Count the coins together: 10, 15.] It is the same amount. [Add a cards. Have the students write the penny, and count the value together: 10, 15, 16. Continue adding pennies until differences on their papers. Check you count 19¢.] the students’ work. Place groups of coins with values between 2¢ and 19¢ on the board. Together, Introductory Statement: count the value of each group. Point out that we start with the coin of the highest Today we will learn something value (dime) and continue with the next highest (nickel), and then we go on to different. Today we will count groups the coin of the lowest value (penny). of coins to see how much they are worth. Now that we’ve have learned Clear the board. Place nine pennies, and then place one dime and two pennies about teen numbers, we can count on the board. Ask the class which group of coins they think is worth more. Count larger amounts of money. the value of each group of coins. Point out that the group with more coins is not necessarily worth more. tHINKING tRIGGER: My little brother once got a dime from Compare the values of additional groups of coins. our uncle. He was upset that he had so little. Can you guess how I made Distribute coins to the students. Write a sum of money between 2¢ and 19¢ on him happy? I traded his dime for four the board. Have the students display that amount of money on their desks, and pennies! Why do you think he was have each student show the group of coins to a neighbor. happier now? Would you rather have four pennies or a dime? Why? Do you Compare the different ways the students were able to show the amount. think it was a good idea to do this? III. Writing number sentences with money178 Have the each student place a dime on his/her desk. Ask everyone to give his/ her neighbor 2¢. Ask: With the 10 cents and the 2 cents combined — how much money do you have now? [12¢] What number sentence can we write for what just happened? How much money did you have at first? [10¢] How much did you get? [2¢] How much do you have in all? [12¢] What is our number sentence? [On the board, write 10¢ + 2¢ = 12¢.] Have the students place 15¢ on their desks. Ask them to put 5¢ away. How much money do they have now? (10¢) Together, write a number sentence to show what they did. In the same way, write number sentences for 14¢, taking away 2¢; and 17¢, taking away 5¢.
Dimes, Nickels, and PenniesWho has the most money? Write each amount. In each row, circle the groups of coins that are equal. 1. 2. 3.Max Bob Ann 5¢ 10¢ 10¢ 11¢ 12¢ 13¢ 14¢ 10¢ 15¢ 16¢ 4. 5. 6.Ann. She has 16¢. 7. 8. 9.Count on. Write how many cents are in each group.1. ¢, ¢, ¢ in all Write the number sentence and solve.2. 10. Brian has 16¢. He buys a snack for 5¢. How much money does he have left? ¢ ¢= ¢ Student Workbook page¢, ¢, ¢, ¢in all Student Workbook page3.Copyright © 2012 by SPOTS Educational Resources. All rights reserved. ¢, ¢, ¢, ¢, ¢, ¢ in all 11. Suzy has 18¢. She buys a snack for 6¢.4. How much money does she have left? ¢ ¢ ¢= ¢ ¢, ¢, ¢, ¢, ¢ in all 150 150Chapter 4 Lesson 22 NYS CCLS 1.MD.3 Recognize and identify coins, their names, and their value. 149 149IV. Solving word problems with moneyDraw a wallet on the board and place 18¢ in it. Count the value of the coins and say: I have 18¢. I want to buy a drink that costs 7¢.Help me write a number sentence to show how much money I will have left. [Draw an equation format and fill it in with the class:18¢ - 7¢ = 11¢.] I will have 11¢ left.Remove the coins and show 16¢. Count the coins and say: I have 16¢. I want to buy a treat that costs 3¢. How much money will Ihave left? [Together, write the equation 16¢ - 3¢ = 13¢.] I will have 13¢ left.Student Teacher:Have two students each place a group of coins on the board and lead the class in counting its value. Have one of the studentswrite the coins’ value on the board. Ask a third student to circle the group of coins that is worth more.Conclusion:Today we learned to count money with a dime, a nickel, and pennies.Using the Book: Pages 149-150 Closing Statement: Who can tell us what we learnedPage 149: Look at the demonstration at the top of the page. Read, count the coins, and today? [Accept relevant answers.]discuss the results. Today we learned about different ways we can show the sameRead the directions. Model example 1 on the board. Have the students complete the amount of money. Tomorrow wepage on their own. Review it together. will practice addition problems with sums greater than ten.Page 150: Examples 1-9: Read the directions, and work on the first three examples asa class. Count the groups of coins together. Discuss why two groups are circled. Have 179the students complete the section on their own or with a partner. Review the sectiontogether.Examples 10-11: Read the directions. Read the story problems to the class, and solvethem together.
4:23 Chapter 4 Lesson 23: Practice and ReinforcementCCSS 1.OA.3 Apply properties of Concept Development:operations. I. Adding using break-apart numbersCCSS 1.OA.6 Add and subtract Write 8 + 6 on the board. Say: Let’s add these numbers. [Point to Dot Card-8 onwithin 20. the banner.] Remember, you can use this card for help. [Read the equation.] Will the sum be more than ten? [yes] What do we do first in order to find the sum? [makeGoal: a ten] How many do we need to make ten? [2] How many more do we need to add to the ten? [4] What are our break-apart numbers? [2, 4] [Fill in the break-apartStudents will review the skills numbers.] Why did we break apart the six? [to make a ten] Now we can find the sumand concepts that were taught in easily. [Point to the numbers as you speak:] Eight and two equals…? [10] And fourChapter 4. more equals…? [14]Materials needed: Blank In the same way, solve 7 + 4.sheets of paper II. Adding using the commutative propertyLESSON WARM-UP: Write 4 + 9 on the board. Say: Something is different about this equation. Can you see what it is? [the first addend is less than the second] How should we solve this?Flash all the Teen Addition Dot [think of the greater addend first]Cards. Have the class identify thenumber sentence of each card in Continue to solve the equation as above.unison. In the same way, solve 3+8.Introductory Statement: III. Adding on a number lineWe are almost at the end of Chapter Write 8 + 5 on the board and draw an open number line. Say: Let’s solve this number4! Today we are going to review some sentence on the number line. With which number should we start the number line?of the things we’ve learned about [8] [Fill in the number line as you go along.] How many are we adding? [5] We needadding with sums that are teen to make a ten. How can we do that? [break apart the 4] How many do we need tonumbers. make a ten? [2] We need to jump two. Where did we end up? [10] How many more do we have? [3] We need to jump 3. What number did we get to? [13] Our sum is 13. tHINKING tRIGGER: [Fill in the sum.] Copyright © 2012 by SPOTS Educational Resources. All rights reserved.Draw two columns on the board, Repeat this with 7 + 6 and 9 + 8.and label them “odd” and “even.”Ask: Who can think of teen addition IV. Reviewing even and odd teen numbersnumber sentences whose sums are Review each equation on the board. Decide together whether the sum is even orodd numbers? Even numbers? [You odd. Circle the even sums in purple and the odd sums in green.may suggest that they refer to theDot Cards for help.] Student Teacher: Write the following equations on the board: 7 + 6, 9 + 8, 8 + 6, 7 + 7, 6 + 5, and 9 + 6. Divide the class into pairs. Give each student a blank sheet of paper. Have each pair choose one equation to solve. Have one partner solve the equation using break-apart numbers, and have the other partner solve it on an open number line. Then have the partners compare their work; the break-apart numbers and the numbers of the jumps, and the sums, should be the same. Have the partners switch roles to solve another problem. Conclusion: Today we reviewed some things we learned in Chapter 4. We added using break- apart numbers, made sure to start from the greater addend, decided whether the sums are even or odd, and also added on a number line.180
Practice and ReinforcementFill in the break-apart numbers. Add. Color odd sums purple and even sums pink.Write the two-step number sentence and fill in the sum.1. 2. 1. 2. 3. 7+6= 8+8= 6+6= 6+7= 6+8=to make ten the rest to make ten the rest7+ + = 8+ + = 4. 5. 6. 7+6= 7+7= 7+8=Complete the number line. Write the sum. 7. 8. 9. 3. 4+9= 4+8= 4+7= +6 9+6= 9 10. 11. 12.4. +5 9+7= 9+8= 9+9= 7+5= Student Workbook page713.14. 15. Student Workbook page5. +7 8+8= 8+6= 8+7=Copyright © 2012 by SPOTS Educational Resources. All rights reserved.8+7= 8Chapter 4 Lesson 23 CCSS 1.OA.3, CCSS 1.OA.6 151 151 152 152Using the Book: Pages 151-152Page 151: Read the directions for each section. Have the students work independently to complete the page and offer help asneeded. Review the page together.Page 152: Read the directions. Have the class complete the first three examples independently. Review, and discuss the patternof the examples as you review: The second addend of each number sentence is one more than the previous one, and so is thesum. Have the students complete the page on their own, and review it together.Display the 7 + 5 Dot Card and its number Closing Statement:sentence on the Math Window poster. What did we learn today in math class? [Accept relevant answers.] Today we reviewed some of the things we learned in Chapter 4. Tomorrow we will talk about different ways we add, and you will decide which is the way that works best for you. 181
4.24 Chapter 4 Lesson 24: Choosing a Way to AddCCSS 1.OA.1 Use addition and Note: This is a short lesson. Provide additional practice for addition facts assubtraction to solve word problems. needed. See page 16 for suggested activities.CCSS 1.OA.6 Add and subtract Concept Development:within 20.Goal: I. Reviewing adding using Dot Cards Write 7 + 7 on the board. Have the class tell you how to show it using a Dot BoardStudents will choose the method and counters.that they prefer when adding withsums that are teen numbers. II. Reviewing adding using a number line Write 9 + 6 on the board. Have the class tell you how to show it on a number line.Materials needed: Drop-It form#5; three sheets of paper for each III. Reviewing adding with break-apart numbersstudent; large timer, numbered Write 8 + 4, and solve together with the class: Decide how to break apart the four (2,cards, or numbered flip-chart 2), draw spaces for the break-apart numbers, and fill them in. Then write the sum.LESSON WARM-UP: IV. Choosing a method to add David, Michael, and Danny are friends. David’s sister Miriam said to the friends: I have aDrop-It: Hand out Drop-It form #5. challenge – a hard question for you. Let’s see if you can tell me the answer! The questionFlash three to five Teen Addition Dot is: How much is 7 + 6? [Write 7 + 6 on the board.] David, Michael, and Danny all thoughtCards. Have the students write each for a moment, and then all three said at once: I know! It’s 13!equation, including the break-apartnumbers, on their papers. Check the Miriam asked them: How did you figure it out so quickly?students’ work. David said: I thought about a picture of the Dot Card with counters, and I thought about what it would look like to color in three dots to make a ten. 10 dots and 3 dots more make 13! [Place a 7 + 6 Dot Card on the board.]Introductory Statement: Michael said: I didn’t do it that way. I thought of breaking apart numbers to make a ten. I thought that I need three to make a ten, and then another 3, which makes 13. [WriteWe’ve learned different ways to add the number sentence and the break-apart numbers on the board.]to teen numbers. Today we will thinkabout those ways and decide which Danny laughed and said: And I did something else! I thought of a number line. I startedway works best for each of us. with seven, jumped three to the ten, and three more to 13! [Draw and fill in a number line accordingly.] Point out that each friend used a different way to solve Miriam’s equation, and that each one is correct. Everyone finds a way that works best for him or her. tHINKING tRIGGER: Hand out three sheets of paper to each student. Have students draw an open Copyright © 2012 by SPOTS Educational Resources. All rights reserved. number line on the first sheet of paper. Write 8 + 5 on the board. Have the studentsWrite 8 + 6 = ___ on the board. solve the problem using the number line, and when they are done, have each ofAsk: What are some ways we can them mark how long it took. (You can display a large digital stopwatch, or you cansolve this? [Show the different ways, flip numbered cards at an even pace, so that they can time themselves.) Tell thebut it is not necessary to solve the students to mark on their papers how long it took them to solve the equation usingequation.] the number line. Write 9 + 7 on the board. Have the class solve the problem using break-apartnumbers on the second sheet of paper, while you time them. Have them write on their papers how long it took them to solve it.Have students draw a blank double Dot Card on the third paper. Write 7 + 5 on the board, and have the class fill in the Dot Card tosolve it while you time them.Ask them to think about which way was easiest for them and which way was quickest. Point out that easiest and quickest are notalways the same, and that all the methods are good ones.182
Choosing a Way to Add Choose the way that works the best for you to solve the story problem. Show your work. Solve.Which way works best for you? 1. Pat had 7¢.Add. I like to use Her dad gave her a nickel.7+6= break-apart How many cents does she have now? I like to numbers. 2. Tim has 8 pencils. use the He gets 7 more from his teacher. Dot Card. 7 + 6 = 13 How many pencils does Tim have now? 33 pencils to make ten the rest 3. Mila has 6 blue buttons and 5 yellow buttons. How many buttons does she have in all? I like to use buttons the number 154 line. +6 +3 +3 7 10 13Circle the way that works best for you. Solve.1. 8 + 6 = 2. 7 + 5 = Student Workbook page 8+6= Student Workbook page7+5= to make ten the restCopyright © 2012 by SPOTS Educational Resources. All rights reserved.to make ten the rest +6 +5 8 7Chapter 4 Lesson 24 CCSS 1.OA.1, CCSS 1.OA.6, NYS CCLS 1.MD.3 153 153 154V. Applying the skill to story problemsI will tell a story. I want you to solve the problem on your paper by adding the way that works best for you.David has 8 blue marbles and 5 green marbles. How many does he have altogether?Give the students time to write the number sentence and solve the problem using one of the methods they learned. Then ask a fewstudents to describe how they chose to solve it and why.You can repeat this activity with another story.Student Teacher:Write 8 + 6 = on the board. Call up three students to solve it, each using a different method.Conclusion:Today we practiced different ways of adding and thought about which way works best for each of us.Using the Book: Pages 153-154 Closing Statement:Pages 153: Read and discuss the demonstration at the top of the page. Point out that each Who can tell us what we learnedgirl solved the problem differently, and that all the ways are correct. today? [Accept relevant answers.] Today we solved addition examplesRead the directions. Have the students complete the page by deciding which method they using different ways: Dot Cards,will use and solving the equation in the way they have chosen. Review the page together, number lines, and break-apartcalling on different students to share, discussing which method each student used. numbers. We thought about which way works best for us. Tomorrow wePage 154: Read each story. Give the students time to solve it on their own. Remind them will review the chapter.to use the method that works best for them.Review the page. For each story, ask some students to tell which method they used and why. 183
44.:215 Chapter 4 Lesson 25: End-of-Chapter ReviewCCSS 1.NBT.2a The numbers from Concept Development:11-19 are composed of a ten andones. Ask the students to look through pages 107-154 and describe different skills andCCSS 1.OA.3 Apply properties of concepts they have learned. Give an example of each, and solve the problemsoperations. together. Give extra examples and review for those skills and concepts that yourCCSS 1.OA.6 Add and subtract students still need to practice more. Be sure to review the skills the students willwithin 20. be practicing in their books on pages 155-156.NYS CCLS 1.MD.3 Recognize andidentify coins, their names, and Student Teacher:their value. Divide the class into small groups. Give each group a blank sheet of paper toGoal: use as a poster. Assign the students in each group a specific skill to cover onStudents will review the skills and their poster using examples, words and pictures. (Form the groups so that theconcepts learned in Chapter 4. students get extra practice that targets the specific concept and/or skill that they need to review.)LESSON WARM-UP: Conclusion:Flash all the Teen Addition DotCards. Have the class identify the Today we reviewed all that we’ve learned in Chapter 4.number sentence of each card inunison.Introductory Statement:We’ve learned a lot of new things inthis chapter. Today we will reviewthem all. tHINKING tRIGGER: Copyright © 2012 by SPOTS Educational Resources. All rights reserved.Can you share with the classsomething new that you’ve learned inthis chapter?184
Write how many. End-of-Chapter Review Fill in the break-apart numbers. 1. 2. 3. Write the two-step number sentence and fill in the sum. 1. 2. 7+5= 6+5=Tens Ones Number Tens Ones Number Dimes Pennies Amount to make ten the rest to make ten the rest ¢ 7+ + = 6+ + =Fill in the missing numbers. 16 20 Complete the number line. Write the sum. 3.4. 12Add or subtract. 7. 11 8. 16 9. 10 10. 15 7+6= +6 +4 +3 +8 +25. 14 6. 14 4. 7 +2 +5 Student Workbook page11. 19 12. 16 13. 17 14. 18 15. 11 16. 19+8 Student Workbook page– 4 – 3 – 4 – 7 –11 – 6 9+8= 9Copyright © 2012 by SPOTS Educational Resources. All rights reserved.Circle the numbers that make ten.Complete the 10 + number sentence. Solve. Add.17. 8 + 2 + 6 = 18. 7 + 9 + 3 = 5. 8 6. 9 7. 4 8. 6 9. 8 10. 5 +3 +9 +7 +6 +7 +610 + = 10 + = 155 155 156 156Chapter 4 Lesson 25 CCSS 1.NBT.2b, CCSS 1.OA.3, CCSS 1.OA.6, NYS CCLS 1.MD.3Using the Book: Pages 155-156Page 155-156: For each section, read the directions and have the students solve the examples on their own. Then go on tothe next section.Review each page together.Display the 8 + 5 Dot Card and its number Closing Statement:sentence on the Math Window poster. Who can tell us what we learned today? [Accept relevant answers.] Today we reviewed Chapter 4. Tomorrow we will review this whole book – all that we’ve learned so far in first grade! 185
4.26 Chapter 4 Lesson 26: Cumulative ReviewCCSS 1.OA.1 Use addition and Concept Development: Copyright © 2012 by SPOTS Educational Resources. All rights reserved.subtraction to solve word problems.CCSS 1.OA.8 Determine the I. Reviewing addition and subtractionunknown whole number in an On each of 10-15 index cards write an addition or subtraction equation. Chooseaddition or subtraction equation a variety of equations that cover the skills learned so far this year. On anotherrelating three whole numbers 10-15 index cards write the solutions to those equations. Divide the board inCCSS 1.OA.3 Apply properties of two. On one side tape the equation cards, facedown. On the other side tapeoperations. the solution cards, facedown. Play a class-wide memory game. Have a studentCCSS 1.OA.6 Add and subtract choose an equation card and solve it. If solved correctly, the student may thenwithin 20. pick a solution card, trying to match it with the equation card he/she chose. NoteNYS CCLS 1.MD.3 Recognize and the types of equations that appear more difficult for the students to solve.identify coins, their names, andtheir value. Write three examples of equations that seem to need more review. Solve them together while explaining your thinking process.Goal: II. Reviewing coinsStudents will review the skills and Place a model penny, nickel, and dime on the board. Review their values. Onconcepts learned in Book 1. the board, write: 15¢; 8¢; 12¢; 7¢. Ask the students to tell different ways theseMaterials needed: Drop-It form amounts can be shown. Use model coins to show each suggestion.#4; 20-30 index cards; model coins III. Solving story problemsLESSON WARM-UP: Write 6 + 2 = ___, 9 – 3 = ___, and 10 + 3 = ___ on the board. For each equation, ask students to suggest different math stories and solve them.Drop-It: Hand out Drop-It form#4. Flash 8-10 addition and 8-10 Tell math stories (see below). For each, first draw an equation format and a mathsubtraction flash cards. Have puzzle on the board. Discuss the story and draw it using a simple math drawing.the students write the sums or Fill in the equation and math puzzle:differences on their papers. Checkthe students’ work. Ella has ten pencils. Five are colored pencils and the rest are regular pencils. How many regular pencils does she have?Introductory Statement:Yesterday we reviewed what we Aaron bought five erasers. Now there are ten left in the store. How many were therelearned in Chapter 4. Now we’ve before Aaron bought his erasers?reached the end of this math book!Today we will review some of the Asher’s mom gave him eight crackers for snack. He ate some at recess, and he hasthings we’ve learned so far this year. three left. How many did he eat? Student Teacher: Divide the class into pairs. Have each pair look through the math book and choose a skill learned this year. Ask them to write some examples and show them with drawings. Conclusion: Today we reviewed some of the things we’ve learned in this book. tHINKING tRIGGER: What important things have we learned in math this year? Do you use any of the ideas we’ve learned at times when you’re not in math class?186
Add or subtract. 3. + 63 Cumulative Review Make a simple math drawing to show the story problem. Fill in the math puzzle. Write the number sentence and solve. 1. + 43 2. + 05 4. + 44 5. + 82 1. Celia has 5 school shirts. Whole 3 are white and the rest are blue. Part Part How many of her school shirts are blue? shirts 6. – 49 7. – 63 8. – 74 9. – 86 10. –190 = 11. +135 12. +145 13. +123 14. –181 15. –179 2. Some carrot sticks were on a plate. Whole Anna ate 4 carrot sticks. Now there are 10 carrot sticks on the plate. Part Part How many carrot sticks were on the plate to begin with? ___ carrot sticks = Student Workbook page16. + 7417. + 8818. + 9619. + 57 20. –190 Student Workbook page Write the value of each coin. 23. 3. Isaac had 9 marbles. WholeCopyright © 2012 by SPOTS Educational Resources. All rights reserved.21. 22. Some marbles rolled away. Now he has 7 marbles. Part Part How many marbles rolled away? ___ marbles = Chapter 4 Lesson 26 CCSS 1.OA.1, CCSS 1.OA.3, CCSS 1.OA.6, NYS CCLS 1.MD.3 157 157 158 158Using the Book: Pages 157-158Page 157: For each section, read the directions and have the students solve the problems on their own. Review the pagetogether.Page 158: Read each story. Have the students solve the story problems on their own and share their work with a neighbor.Review the page together.Name: Name: Name:Write how many. Add. 2. 3. Circle the numbers that make ten. 2. 3. Closing Statement: 1. Complete the 10 + number sentence. Solve. 1. 9+9= 5+7= Who can tell us what we learned 8+5= today? [Accept relevant answers.] 1. 2. 5. 6. Today we reviewed things we’ve 8+2+7= 4. 5+6= 3+8= learned in our math book. Tomorrow 1+9+3= 6+6= we will get a new book! 10 + = 10 + = 187Tens Ones Number Tens Ones Number Dimes Pennies Amount Make a simple math drawing to show the story. ¢ Fill in the math puzzle and write a number sentence. Solve.Fill in the missing numbers. Write the break-apart numbers. 7. Jeff has a rock collection. Whole4. 12 Write the two-step number sentence and fill in the sum. He trades away 4 rocks. Now he has 10 rocks left. 3. 4. How many rocks did he start with? ___ rocks 15 17 20 7+6= 9+5= Part Part to make ten the rest to make ten the rest =Add or subtract. 7+ + = 9+ + =Copyright © 2012 by SPOTS Educational Resources. All rights reserved. 8. Emma blows up 8 balloons. Permission to duplicate classroom quantities granted to users of SPOTS for M. A. T. H.5. 136. 117. 168. 109. 12 Some balloons pop. Copyright © 2012 by SPOTS Educational Resources. All rights reserved.+3+5+2+8+7 She has 5 balloons left. How many balloons Permission to duplicate classroom quantities granted to users of SPOTS for M. A. T. H. popped? ___ balloons Copyright © 2012 by SPOTS Educational Resources. All rights reserved. Permission to duplicate classroom quantities granted to users of SPOTS for M. A. T. H. Complete the number line. Write the sum. Whole Assess. 5. 6. Provide additional Part Part practice as needed. 8+7= 7+5= +7 7 =10. 15 11. 18 12. 17 13. 12 14. 18 8 +5 –2 –4 –5 – 12 –6 Chapter 4 Assessment Form BChapter 4 Assessment Form A 5 6 Chapter 4 Assessment Form C 7
ALL THE MATH RESOURCES YOU NEED TO ACHIEVE MAXIMUM RESULTS EFFICIENTLY AND EFFECTIVELY!
TMM A T HFOR ATHEMATICAL BILITIES & HINKING ABITSA UNIQUE SYSTEM THAT CHANGES THE FOCUSFROM ROTE PRACTICE TO REAL MATH WISDOMTeacher’s EditionGrade 1Volume 1
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193