ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺜﺎﻟﺜﺔ )(1 y = 1 x4 (2) y = (x + 1) 3 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﺃﻭﺟﺪ ﻣﻌﻜﻮﺱ ﻛﻞ ﺩﺍﻟﺔ ﻣﻤﺎ ﻳﻠﻲ: 2 (3) y = (x + 1) 2 - 3 (4) y = x + 5 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-7ﺍﻛﺘﺐ ﻛﻞ ﺩﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ ،ﺛﻢ ﺻﻨّﻔﻬﺎ ﺑﺤﺴﺐ ﻋﺪﺩ ﺍﻟﺤﺪﻭﺩ ﻭﺑﺤﺴﺐ ﺍﻟﺪﺭﺟﺔ. (5) f (x) = 3x2 - 7x4 + 9 - x4 (6) f (x) = 11x2 + 8x - 3x2 (7) f (x) = 2x^x - 3h^x + 2h ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(8-9ﺃﻭﺟﺪ ﺃﺻﻔﺎﺭ ﺍﻟﺪﺍﻟﺔ ﺛﻢ ﺍﺭﺳﻢ ﺑﻴﺎﻧًﺎ ﺗﻘﺮﻳﺒﻴًّﺎ ﻟﻬﺎ ﻣﺮﺍﻋ ًﻴﺎ ﺳﻠﻮﻙ ﺍﻟﻨﻬﺎﻳﺔ) .ﻗ ّﺮﺏ ﺇﻟﻰ ﺃﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻋﺸﺮﺓ ﻋﻨﺪ ﺍﻟﻀﺮﻭﺭﺓ(. (8) f (x) = x^x - 3h^x + 2h (9) f (x) = ^x - 2h2 ^x - 1h ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(10-13ﺣ ّﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ .ﺃﻋﻂ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺪﻗﻴﻘﺔ ﺃﻭ ﻗ ّﺮﺏ ﺇﺟﺎﺑﺘﻚ ﺇﻟﻰ ﺃﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻋﺸﺮﺓ. (10) ^x - 3h^x2 + 3x - 4h = 0 (11) ^x + 2h^x2 + 5x + 1h = 0 (12) x3 - 2x2 - x + 2 = 0 (13) x4 - 2x2 - x + 2 = 0 (14) 0 , 4 , - 2 ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(14-15ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﺻﻔﺎﺭﻫﺎ: )ﻣﻜﺮﺭ ﻣﺮﺗﻴﻦ( (15) 2 , - 1 (16) ^x3 + 7x2 - 36h ' ^x + 3h ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(16-17ﺍﻗﺴﻢ ﻣﺴﺘﺨﺪ ًﻣﺎ ﻗﺴﻤﺔ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ﺍﻟﻤﻄﻮﻟﺔ. (17) ^x3 + 7x2 - 5x - 6h ' ^x + 2h (18) ^x3 + x2 + x - 14h ' ^x - 3h ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(18-19ﺍﻗﺴﻢ ﻣﺴﺘﺨﺪ ًﻣﺎ ﺍﻟﻘﺴﻤﺔ ﺍﻟﺘﺮﻛﻴﺒﻴﺔ. (19) ^x4 - 5x2 + 4x + 12h ' ^x + 1h ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(20-21ﺍﺳﺘﺨﺪﻡ ﺍﻟﻘﺴﻤﺔ ﺍﻟﺘﺮﻛﻴﺒﻴﺔ ﻭﻧﻈﺮﻳﺔ ﺍﻟﺒﺎﻗﻲ ﻹﻳﺠﺎﺩ )f(a )(20 f (x) = 2x4 + 19x3 - 2x2 - 44x - 24 , a = -2 3 (21) f (x) = - x3 - x2 + x , a = 0 51
ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴﺔ ) (1ﻟﺘﻜﻦg(x) = (m + 1)x3 + 11x2 + 4x - 4 : ﺍﻟﺤﺪﻭﺩ. ﺃﺣﺪ ﺃﺻﻔﺎﺭ ﻛﺜﻴﺮﺓ 1 ﻗﻴﻤﺔ mﺑﺤﻴﺚ ﻳﻜﻮﻥ ﺃﻭﺟﺪ 2 ) (2ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ: (a) 2x4 + x3 - 11x2 + 11x - 3 = 0 (b) 4x4 - x2 + 6x - 9 = 0 ) (3ﺃﻭﺟﺪ ﻗﻴﻤﺔ aﺑﺤﻴﺚ ﺗﻜﻮﻥ f(x) = x5 + x4 - 6x3 - 14x2 - ^a + 5hx - (a - 3) :ﻗﺎﺑﻠﺔ ﻟﻠﻘﺴﻤﺔ ﻋﻠﻰ ^x + 1h2 x3 - 7x + 6 ﺑ ّﺴﻂ ﻣﺎ ﻳﻠﻲ: )(4 x4 + x3 - 5x2 + x - 6 )g (x) = 4x4 - 11x3 - 2x2 + 23x - 14 (5 ) (aﺣﻠّﻞ ) g(xﺇﻟﻰ ﻋﻮﺍﻣﻞ. ) (bﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ .g(x) = 0 :ﻗ ّﺮﺏ ﺇﺟﺎﺑﺘﻚ ﺇﻟﻰ ﺃﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﻣﺌﺔ. ) (6ﻟﺘﻜﻦf (x) = x3 - ^3a + 2bhx2 + ^a + bhx : ) (aﺃﻭﺟﺪ ﻗﻴﻢ a, bﺑﺤﻴﺚ ﺗﻜﻮﻥ ^x - 1h,^x - 2hﻣﻦ ﻋﻮﺍﻣﻞ )f(x ) (bﺣﻠّﻞ ﻓﻲ ﻫﺬﻩ ﺍﻟﺤﺎﻟﺔ ) f(xﺇﻟﻰ ﻋﻮﺍﻣﻞ. ) (7ﺃﻭﺟﺪ ﺩﺍﻟﺔ ﻛﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺗﻘﺒﻞ ﺍﻟﻘﺴﻤﺔ ﻋﻠﻰ ^x + 5h,^2x - 1hﻭﺑﺎﻗﻲ ﻗﺴﻤﺘﻬﺎ ﻋﻠﻰ ^x - 3h ﻳﺴﺎﻭﻱ 40 ) (8ﻟﺘﻜﻦg(x) = x3 + 8 : ) (aﺃﻭﺟﺪ ﺻﻔ ًﺮﺍ ﻟﻜﺜﻴﺮﺓ ﺍﻟﺤﺪﻭﺩ. ) (bﺣﻠّﻞ ) g(xﺇﻟﻰ ﻋﻮﺍﻣﻞ. ) (a) (9ﺍﻛﺘﺐ V(x) = ^x2 + ax + bh2ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﺎﻣﺔ. ) (bﺃﺛﺒﺖ ﺃﻥ f(x) = x4 + 6x3 + 7x2 - 6x + 1 :ﻫﻲ ﻣﺮﺑﻊ ﻟﻜﺜﻴﺮﺓ ﺣﺪﻭﺩ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻧﻴﺔ. ) (10ﺃﻭﺟﺪ ﻧﻤﻮﺫ ًﺟﺎ ﺗﻜﻌﻴﺒﻴًّﺎ ﻟﻠﺪﺍﻟﺔ ﺍﻟﺘﻲ ﺗﻤﺮ ﻓﻲ ،^-1, - 3h, (0,0), (1, - 1), (2,0) :ﺛﻢ ﺍﺳﺘﺨﺪﻡ ﻫﺬﺍ ﺍﻟﻨﻤﻮﺫﺝ ﻟﺘﻘﺪﻳﺮ ﻗﻴﻤﺔ yﻋﻨﺪﻣﺎ x = 17 52
d = 3.8 # 102 cm ﺣﺠﻢ ﻹﻳﺠﺎﺩ ،V = πh ^R 2 + Rd + d2h ﺍﻟﻌﻼﻗﺔ: ﺍﺳﺘﺨﺪﻡ ﺍﻟﻬﻨﺪﺳﺔ: )(11 h = 3.5 # 102 cm 3 ﺍﻟﻤﺨﺮﻭﻁ ﺍﻟﻨﺎﻗﺺ ﺍﻟﻤﻮﺿﺢ ﻓﻲ ﺍﻟﺸﻜﻞ. R = 5.6 # 102 cm ﺍﻛﺘﺐ ﺇﺟﺎﺑﺘﻚ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻌﻠﻤﻴﺔ. ) (12ﺍﻟﻬﻨﺪﺳﺔ :ﺻﻨﺪﻭﻕ ﻳﻘﻞ ﻋﺮﺿﻪ 2 mﻋﻦ ﻃﻮﻟﻪ ،ﻭ ﻳﻘﻞ ﺍﺭﺗﻔﺎﻋﻪ 1 mﻋﻦ ﻃﻮﻟﻪ. ﺃﻭﺟﺪ ﻃﻮﻝ ﺍﻟﺼﻨﺪﻭﻕ ﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﺣﺠﻤﻪ 60 m3 ) (13ﺗﺮﻳﺪ ﺷﺮﻛﺔ ﻟﻠﺘﺨﺰﻳﻦ ﺻﻨﻊ ﺻﻨﺪﻭﻕ ﻟﻠﺘﺨﺰﻳﻦ ﺣﺠﻤﻪ ﻣﺜﻠﻲ ﺣﺠﻢ ﺃﻛﺒﺮ ﺻﻨﺪﻭﻕ ﺗﺨﺰﻳﻦ ﻟﺪﻳﻬﺎ ،ﺇﺫﺍ ﻛﺎﻧﺖ ﺃﺑﻌﺎﺩ ﺃﻛﺒﺮ ﺻﻨﺪﻭﻕ ﺗﺨﺰﻳﻦ ﻟﺪﻳﻬﺎ ﻫﻲ 120 cmﻃﻮ ًﻻ 100 cm ،ﻋﺮ ًﺿﺎ، 90 cmﺍﺭﺗﻔﺎ ًﻋﺎ ،ﻭﻳﺮﺍﺩ ﺻﻨﻊ ﺍﻟﺼﻨﺪﻭﻕ ﺍﻟﺠﺪﻳﺪ ﺑﺰﻳﺎﺩﺓ ﻛﻞ ﺑﻌﺪ ﺍﻟﻤﻘﺪﺍﺭ ﻧﻔﺴﻪ، ﻓﺄﻭﺟﺪ ﺍﻟﺰﻳﺎﺩﺓ ﻓﻲ ﻛﻞ ﺑﻌﺪ. ) (14ﺍﻟﺤﺴﺎﺏ ﺍﻟﺬﻫﻨﻲ :ﺇﺫﺍ ﻛﺎﻥ ﻧﺎﺗﺞ ﺿﺮﺏ ﺛﻼﺛﺔ ﺃﻋﺪﺍﺩ ﺻﺤﻴﺤﺔ ﻣﺘﺘﺎﻟﻴﺔ ^n - 1h, n , ^n + 1h :ﻫﻮ ،210ﻓﺎﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﻭﺃﻭﺟﺪ ﺣﻠﻬﺎ ﻹﻳﺠﺎﺩ ﺍﻷﻋﺪﺍﺩ. ) (15ﺍﻟﻬﻨﺪﺳﺔ :ﺣﺠﻢ ﺧ ّﺰﺍﻥ ) (Vﻳﻤﺜّﻞ ﺑﺎﻟﺪﺍﻟﺔ .V(x) = x3 + 8x2 + 15x :ﻟﻨﻔﺮﺽ ﺃﻥ xﺗﻤﺜﻞ ﺍﻟﻌﺮﺽ x + 3 ،ﺗﻤﺜّﻞ ﺍﻟﻄﻮﻝ x + 5 ،ﺗﻤﺜﻞ ﺍﻻﺭﺗﻔﺎﻉ ،ﺣﺠﻢ ﺍﻟﺨ ّﺰﺍﻥ ،70 m3ﻓﻤﺎ ﺃﺑﻌﺎﺩﻩ؟ 53
ﺗﻤ ﱠﺮ ْﻥ ﺍﺳﺘﻜﺸﺎﻑ ﺍﻟﻨﻤﺎﺫﺝ ﺍﻷﺳﻴﺔ 4-1 Exploring Exponential Models ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﺍﺫﻛﺮ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﻛﻞ ﺩﺍﻟﺔ ﺗﻤﺜّﻞ ﻧﻤ ًّﻮﺍ ﺃﺳﻴًّﺎ ﺃﻭ ﺗﻀﺎﺅ ًﻻ ﺃﺳﻴًّﺎ .ﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﺰﻳﺎﺩﺓ ﺍﻟﺪﺍﻟﺔ ﺃﻭ ﻧﻘﺼﺎﻧﻬﺎ؟ (1) y = 1298(1 . 63) x (2) y = 0 . 65(1.3) x (3) f(x) = 2 (0 . 65) x )(4 f )(t = 0 . `8 1 t (5) y = 5(6) x 8 j ) (6ﺍﻟﺪﺭﺍﺳﺎﺕ ﺍﻻﺟﺘﻤﺎﻋﻴﺔ :ﻳﻌﺮﺽ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ ﻣﻌﻠﻮﻣﺎﺕ ﻋﻦ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﺃﻛﺒﺮ ﺃﺭﺑﻊ ﻣﺪﻥ ﻓﻲ ﺍﻟﻌﺎﻟﻢ ﻓﻲ ﺳﻨﺔ .1994 ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﺳﻨﺔ 1994ﻣﺘﻮﺳﻂ ﻣﻌﺪﻝ ﺍﻟﻨﻤﻮ ﺍﻟﺴﻨﻮﻱ ﺍﻟﻤﺪﻳﻨﺔ )ﺍﻟﺪﻭﻟﺔ( ﺍﻟﺘﺮﺗﻴﺐ ﻓﻲ ﺳﻨﺔ 1994 )(Ι 1.4% 26 518 000 ﻃﻮﻛﻴﻮ )ﺍﻟﻴﺎﺑﺎﻥ( 1 0.3% ﻧﻴﻮﻳﻮﺭﻙ )ﺍﻟﻮﻻﻳﺎﺕ ﺍﻟﻤﺘﺤﺪﺓ( 16 271 000 2 2.0% 16 110 000 ﺳﺎﻭﺑﺎﻭﻟﻮ )ﺍﻟﺒﺮﺍﺯﻳﻞ( 3 0.7% 15 525 000 ﻣﻜﺴﻴﻜﻮ )ﺍﻟﻤﻜﺴﻴﻚ( 4 ) (aﻟﻨﻔﺘﺮﺽ ﺍﺳﺘﻤﺮﺍﺭ ﻫﺬﻩ ﺍﻟﻤﻌﺪﻻﺕ ﻟﻠﻨﻤﻮ ،ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺗﻤﺜّﻞ ﺍﻟﻨﻤﻮ ﺍﻟﻤﺴﺘﻘﺒﻠﻲ ﻟﻌﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﻛﻞ ﻣﺪﻳﻨﺔ. ) (bﺍﺳﺘﺨﺪﻡ ﻣﻌﺎﺩﻻﺗﻚ ﻛﻲ ﺗﺘﻮﻗﻊ ﻋﺪﺩ ﺳﻜﺎﻥ ﻛﻞ ﻣﺪﻳﻨﺔ ﻓﻲ ﺳﻨﺔ .2004ﻫﻞ ﺗﻐﻴﺮ ﺍﻟﺘﺮﺗﻴﺐ؟ ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(7-8ﻣﺜّﻞ ﻛﻞ ﺩﺍﻟﺔ ﺑﻴﺎﻧﻴًّﺎ .ﺑﻴّﻦ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﺗﻤﺜﻞ ﻧﻤ ًّﻮﺍ ﺃﺳﻴًّﺎ ﺃﻭ ﺗﻀﺎﺅ ًﻻ ﺃﺳﻴًّﺎ ﻣﺤﺪ ًﺩﺍ ﺍﻟﻌﺎﻣﻞ. (7) y = 100(0 . 5) x (8) f(x) = 2x ) (9ﺍﻟﺴﺆﺍﻝ ﺍﻟﻤﻔﺘﻮﺡ :ﺍﻛﺘﺐ ﻣﺴﺄﻟﺔ ﺣﻴﺎﺗﻴﺔ ﺗﻤﺜّﻞ ﻧﻤ ًّﻮﺍ ﺃﺳﻴًّﺎ ﺃﻭ ﺗﻀﺎﺅ ًﻻ ﺃﺳﻴًّﺎ ﻟﻜﻞ ﺩﺍﻟﺔ ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) (7ﻭ).(8 ) (10ﺍﻻﻗﺘﺼﺎﺩ :ﺍﻓﺘﺮﺽ ﺃﻧﻚ ﺗﺮﻳﺪ ﺷﺮﺍﺀ ﺳﻴﺎﺭﺓ ﺛﻤﻨﻬﺎ 4 500ﺩﻳﻨﺎﺭ .ﻣﻦ ﺍﻟﻤﺘﻮﻗﻊ ﺃﻥ ﺗﻨﺨﻔﺾ ﻗﻴﻤﺘﻬﺎ ﺑﻤﻌﺪﻝ 20% ﺳﻨﻮﻳًّﺎ ،ﺇﺫﺍ ﺃﺧﺬﺕ ﻗﺮ ًﺿﺎ ﻣﺪﺗﻪ ﺃﺭﺑﻊ ﺳﻨﻮﺍﺕ ﻟﺸﺮﺍﺀ ﺍﻟﺴﻴﺎﺭﺓ ،ﻓﻜﻢ ﺳﺘﻜﻮﻥ ﻗﻴﻤﺔ ﺍﻟﺴﻴﺎﺭﺓ ﺑﻌﺪ ﺃﻥ ﺗﺴﺪﺩ ﺍﻟﻘﺮﺽ ﻓﻲ ﺃﺭﺑﻊ ﺳﻨﻮﺍﺕ؟ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(11-14ﺍﻛﺘﺐ ﺩﺍﻟﺔ ﺃﺳﻴّﺔ ﻟﺘﻤﺜﻴﻞ )ﻧﻤﺬﺟﺔ( ﻛﻞ ﻣﻮﻗﻒ ﻣﻤﺎ ﻳﻠﻲ .ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﺍﻟﺪﺍﻟﺔ ﺑﻌﺪ ﺧﻤﺲ ﺳﻨﻮﺍﺕ. ) (11ﺗﺠ ّﻤﻊ ﻣﻦ ﺍﻟﻀﻔﺎﺩﻉ ﻣﺆﻟﻒ ﻣﻦ 250ﺿﻔﺪﻋﺔ ،ﻳﺘﺰﺍﻳﺪ ﺑﻤﻌﺪﻝ 22%ﺳﻨﻮﻳًّﺎ. ) (12ﻣﺠﻤﻮﻋﺔ ﻃﻮﺍﺑﻊ ﺛﻤﻨﻬﺎ 35ﺩﻳﻨﺎ ًﺭﺍ ،ﻳﺘﺰﺍﻳﺪ ﺛﻤﻨﻬﺎ ﺑﻤﻌﺪﻝ 7.5%ﺳﻨﻮﻳًّﺎ. 54
) (13ﺳﻴﺎﺭﺓ ﺷﺤﻦ ﺻﻐﻴﺮﺓ ﺛﻤﻨﻬﺎ 1 750ﺩﻳﻨﺎ ًﺭﺍ ﺗﻨﺨﻔﺾ ﻗﻴﻤﺘﻬﺎ ﺑﻤﻌﺪﻝ 11%ﺳﻨﻮﻳًّﺎ. ) (14ﻗﻄﻴﻊ ﻣﻦ ﺍﻟﻤﺎﻋﺰ ﻋﺪﺩﻩ 115ﻳﺘﻨﺎﻗﺺ ﺑﻤﻌﺪﻝ 1.25%ﺳﻨﻮﻳًّﺎ. ) (15ﻟﻨﻔﺘﺮﺽ ﺃﻧﻚ ﺗﺸﺘﺮﻱ ﺳﻴﺎﺭﺓ ﺟﺪﻳﺪﺓ ،ﻭﺗﺮﻳﺪ ﺃﻥ ﻳﻜﻮﻥ ﻟﻬﺬﻩ ﺍﻟﺴﻴﺎﺭﺓ ﺃﻋﻠﻰ ﻗﻴﻤﺔ ﺑﻌﺪ ﻣﺮﻭﺭ ﺧﻤﺲ ﺳﻨﻮﺍﺕ ﻋﻠﻰ ﺷﺮﺍﺋﻬﺎ ،ﺃﻱ ﺍﺧﺘﻴﺎﺭ ﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ ﺍﻟﺜﻼﺛﺔ ﺍﻟﻤﻮﺿﺤﺔ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ ﺳﻮﻑ ﺗﺨﺘﺎﺭ؟ ﻗﻴﻤﺔ ﺍﻻﻧﺨﻔﺎﺽ ﺍﻟﻤﺘﻮﻗﻊ ﺍﻟﺴﻌﺮ ﺍﻷﺳﺎﺳﻲ ﺍﻟﺴﻴﺎﺭﺓ 10% 4 275ﺩﻳﻨﺎ ًﺭﺍ 1 12% 4 500ﺩﻳﻨﺎﺭ 2 15% 4 850ﺩﻳﻨﺎ ًﺭﺍ 3 ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺍﻟﺪﺍﻟﺔ y = 3(2) xﺗﻤﺜﻞ ﺗﻀﺎﺅ ًﻻ ﺃﺳﻴًّﺎ. ab ab ﺗﻤﺜﻞ ﻧﻤ ًﻮﺍ ﺃﺳﻴًّﺎ. 2a 1 - x ﺍﻟﺪﺍﻟﺔ )(2 ab 3 y y = k ﻫﻮ 2 =y 1 )(2 2x ﻋﺎﻣﻞ ﺍﻟﻨﻤﻮ ﻟﻠﺪﺍﻟﺔ )(3 3 ) (4ﺇﺫﺍ ﻛﺎﻥ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = bxﻛﻤﺎ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻓﺈﻥ x b 2 1 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-8ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ﻫﻮ: y = aa 1 -2 x ﻋﺎﻣﻞ ﺍﻟﻨﻤﻮ ﻟﻠﺪﺍﻟﺔ )(5 3 kk a 1 b 1 c3 d9 3 9 y ) (6ﻟﻴﻜﻦ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = 2bx :ﻛﻤﺎ ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ: ﻓﺈﻥ bﻳﻤﻜﻦ ﺃﻥ ﺗﺴﺎﻭﻱ: x a -2 b0 c 1 d2 2 ) (7ﺍﻟﺪﺍﻟﺔ ﺍﻷﺳﻴﺔ y = abxﺗﻨﻤﺬﺝ ﺍﻟﺘﺰﺍﻳﺪ ﺍﻟﺴﻜﺎﻧﻲ ،ﺇﺫﺍ ﻛﺎﻥ ﻣﻌﺪﻝ ﺍﻟﺘﺰﺍﻳﺪ ﺍﻟﺴﻜﺎﻧﻲ ﻓﻲ ﻣﺪﻳﻨﺔ ﻣﺎ ﻫﻮ 2.5%ﻓﺈﻥ ﻋﺎﻣﻞ ﺍﻟﻨﻤﻮ ﻳﺴﺎﻭﻱ: a 0.025 b 1.25 c 1.025 d 3.5 55
y ) (8ﺃﻱ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻷﺳﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ﻳﻤﻜﻦ ﺃﻥ ﻳﻤﺜﻠﻬﺎ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻟﻤﻘﺎﺑﻞ: 4 3 x 2 1 0 1 a y = 1 (2) x b y = 2a 1 x c y = - 3 (2) x d y = - 2 (3) x 3 3 k ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(9-11ﻟﺪﻳﻚ ﻗﺎﺋﻤﺘﺎﻥ ﺍﺧﺘﺮ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (2ﻣﺎ ﻳﻨﺎﺳﺐ ﻛﻞ ﺗﻤﺮﻳﻦ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (1ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ ﺇﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ. ﻳﺒﻴّﻦ ﺍﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻷﺳﻲ ﺍﻟﻤﻘﺎﺑﻞ ﺍﻻﻧﺨﻔﺎﺽ ﻓﻲ ﻗﻴﻤﺔ ﺳﻴﺎﺭﺓ ﺧﻼﻝ ﺍﻟﺴﻨﺔ ﺍﻷﻭﻟﻰ. ﺍﻟﻘﻴﻤﺔ )ﺑﺂﻻﻑ ﺍﻟﺪﻧﺎﻧﻴﺮ( y 20 16 13.500 12 8 4 1 2 3 4 5 6x ﻋﺪﺩ ﺍﻟﺴﻨﻮﺍﺕ ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 a -0.325 ) (9ﻣﻘﺪﺍﺭ ﺍﻻﻧﺨﻔﺎﺽ )ﺑﺎﻵﻻﻑ(= b 0.675 ) (10ﻧﺴﺒﺔ ﺍﻻﻧﺨﻔﺎﺽ = c 0.325 ) (11ﻋﺎﻣﻞ ﺍﻻﻧﺨﻔﺎﺽ = d -6.5 56
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﺪﻭﺍﻝ ﺍﻷﺳﻴﺔ ﻭﺗﻤﺜﻴﻠﻬﺎ ﺑﻴﺎﻧﻴًّﺎ 4-2 Exponential Functions and their Graphs ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﻣﺜّﻞ ﺑﻴﺎﻧﻴًّﺎ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻷﺳﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ: (1) y = 4x (2) y = 6x + 3 (3) y = 2-x (4) y = - 3x+4 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-8ﻣﺜّﻞ ﺑﻴﺎﻧﻴًّﺎ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻷﺳﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ﻣﺴﺘﺨﺪ ًﻣﺎ ﺩﺍﻟﺔ ﺍﻟﻤﺮﺟﻊ: (5) y = (5) x - 1 )(6 y = ` 1 x +2 (7) y = (4) x-2 + 3 (8) y = - 2 (3) 2x + 1 3 j ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(9-13ﺍﺳﺘﺨﺪﻡ ﺁﻟﺘﻚ ﺍﻟﺤﺎﺳﺒﺔ ﻹﻳﺠﺎﺩ ﻧﺎﺗﺞ ﻛﻞ ﻣﻘﺪﺍﺭ ﻣﻘ ّﺮ ًﺑﺎ ﺍﻟﻨﺎﺗﺞ ﺇﻟﻰ ﺃﺭﺑﻌﺔ ﺃﺭﻗﺎﻡ ﻋﺸﺮﻳﺔ. (9) e3 (10) 5e6 )(11 ` 5 je 1 4 2 )(12 4 (13) ee e6 ) (14ﺃﻭﺟﺪ ﻗﻴﻤﺔ aﺍﻟﺘﻲ ﻳﺼﺒﺢ ﻋﻨﺪﻫﺎ ﺍﻟﺮﺳﻢ ﺍﻟﺒﻴﺎﻧﻲ ﻟﻠﺪﺍﻟﺔ y = abx :ﺧﻄ ًّﺎ ﺃﻓﻘﻴًّﺎ. ) (a) (15ﺍﻟﻜﻴﻤﻴﺎﺀ :ﺗﻌﻄﻲ ﺍﻟﻌﻼﻗﺔ A = Pe-0.0001t :ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺘﺒﻘﻴﺔ » «Aﺑﺎﻟﻤﻴﻜﺮﻭﺟﺮﺍﻡ ﻣﻦ ﻣﺎﺩﺓ ﺇﺷﻌﺎﻋﻴﺔ ﻣﻌﻴﻨﺔ ﺑﻌﺪ » «tﺳﻨﺔ ﻣﻦ ﺍﻟﺘﻀﺎﺅﻝ؛ » «Pﻫﻲ ﺍﻟﻜﻤﻴﺔ ﺍﻷﻭﻟﻴﺔ ﻟﻠﻤﺎﺩﺓ ﺍﻟﻤﺸﻌﺔ .ﺍﺳﺘﺨﺪﻡ ﺍﻟﻌﻼﻗﺔ ﻹﻛﻤﺎﻝ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ: ﺍﻟﻜﻤﻴﺔ ﺍﻟﻤﺘﺒﻘﻴﺔ ﻣﻦ ﺍﻟﻤﺎﺩﺓ )(A ﺍﻟﺴﻨﻮﺍﺕ )(t ﺍﻟﻜﻤﻴﺔ ﺍﻷﻭﻟﻴﺔ ﻣﻦ ﺍﻟﻤﺎﺩﺓ )(P 5 10 000 5 7 500 5 6 000 5 5 000 5 2 500 5 2 000 ) (bﻗﺎﺭﻥ ﺑﻴﻦ ﻗﻴﻢ ﻛﻞ ﻣﻦ .A , Pﻣﺎﺫﺍ ﺗﻼﺣﻆ؟ ) (16ﻋﻠﻢ ﺍﻟﻤﺤﻴﻄﺎﺕ :ﻛﻠﻤﺎ ﻏﺼﻨﺎ ﻓﻲ ﺃﻋﻤﺎﻕ ﺍﻟﻤﺤﻴﻂ ،ﻗﻠﺖ ﺷﺪﺓ ﺃﺷﻌﺔ ﺍﻟﺸﻤﺲ .ﺇﺫﺍ ﻛﺎﻧﺖ ﺷﺪﺓ ﺃﺷﻌﺔ ﺍﻟﺸﻤﺲ ﻋﻠﻰ ﺳﻄﺢ ﺍﻟﻤﺤﻴﻂ ﻫﻲ ،yﻓﺈﻥ ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻣﻦ yﺍﻟﺘﻲ ﺗﺼﻞ ﺇﻟﻰ ﻋﻤﻖ x mﺗﻌﻄﻰ ﺑﺎﻟﻌﻼﻗﺔy = 20 # (0 . 92) x : )ﻳﻌﺪ ﻫﺬﺍ ﺍﻟﻨﻤﻮﺫﺝ ﻣﻨﺎﺳﺒًﺎ ﻟﻸﻋﻤﺎﻕ ﻣﻦ 6 mﺇﻟﻰ 180 mﺗﺤﺖ ﻣﺴﺘﻮﻯ ﺳﻄﺢ ﺍﻟﺒﺤﺮ(. ) (aﺃﻭﺟﺪ ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻷﺷﻌﺔ ﺍﻟﺸﻤﺲ ﺍﻟﻤﻮﺟﻮﺩﺓ ﻋﻠﻰ ﻋﻤﻖ 15 mﺗﺤﺖ ﻣﺴﺘﻮﻯ ﺳﻄﺢ ﺍﻟﺒﺤﺮ. ) (bﺇﺫﺍ ﻛﺎﻥ ﺃﻗﺼﻰ ﻋﻤﻖ ﻣﺴﺠﻞ ﻟﺮﻳﺎﺿﺔ ﺍﻟﻐﻄﺲ ﻫﻮ 107 mﺗﺤﺖ ﻣﺴﺘﻮﻯ ﺳﻄﺢ ﺍﻟﺒﺤﺮ ،ﻓﺄﻭﺟﺪ ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻷﺷﻌﺔ ﺍﻟﺸﻤﺲ ﻋﻨﺪ ﻫﺬﺍ ﺍﻟﻌﻤﻖ. 57
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ،ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺟﻤﻴﻊ ﺍﻟﺪﻭﺍﻝ ﺍﻷﺳﻴﺔ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ y = abx a ! 0 , b 2 0 , b ! 1 :ﻣﺘﻘﺎﻃﻌﺔ. ab ) (2ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = - 2xﻫﻮ ﺍﻧﻌﻜﺎﺱ ﻓﻲ ﻣﺤﻮﺭ ﺍﻟﺴﻴﻨﺎﺕ ﻟﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = 2x ) (3ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = - (3) xﻫﻮ ﺍﻧﻌﻜﺎﺱ ﻓﻲ ﻣﺤﻮﺭ ﺍﻟﺼﺎﺩﺍﺕ ﻟﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ a b y = - (3)-x ab ) (4ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = 3(5) x-2ﻫﻮ ﺍﻧﺴﺤﺎﺏ ﻟﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = 3(5) x ab ﺑﻤﻘﺪﺍﺭ ﻭﺣﺪﺗﻴﻦ ﺟﻬﺔ ﺍﻟﻴﻤﻴﻦ. a y = 3 (2) x ) (5ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = 3(2)xﻳﻘﻄﻊ ﺟﺰﺀًﺍ ﻣﻦ ﻣﺤﻮﺭ ﺍﻟﺼﺎﺩﺍﺕ ﻗﺪﺭﻩ .3 ﻓﻲ ﺍﻟﺒﻨﻮﺩ ) ،(6-12ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ﻓﺈﻥ ﺩﺍﻟﺔ ﺍﻟﻤﺮﺟﻊ ﻟﻬﺎ ﻳﻤﻜﻦ ﺃﻥ ﺗﻜﻮﻥ: y = 3a 1 x+1 + 5 ﻟﺘﻜﻦ )(6 2 k b y = 3 (2) -x c y = 3a 1 x+1 d y = a 1 x 2 2 k k ﻛﺪﺍﻟﺔ ﻣﺮﺟﻊ ﻳﻤﻜﻦ ﺭﺳﻢ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ: y = 1 (4) x ﺍﻟﺪﺍﻟﺔ ﺑﻴﺎﻥ ﺑﺎﺳﺘﺨﺪﺍﻡ )(7 3 a y = 3 (4) x b y = 3 (4) -x c y = 1 (2) 2x + 1 d y = 1 )(2 3x a -3 3 3 ﺧﻄًّﺎ ﺃﻓﻘﻴًّﺎ ﻫﻲ: `8 1 ^α + 2hx αﺍﻟﺘﻲ ﺗﺠﻌﻞ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ ﻗﻴﻤﺔ )(8 2 =y j + 3 b -2 c -8 d0 ) (9ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ f(x) = 3(5) x - 1 :ﻫﻮ ﺍﻧﻌﻜﺎﺱ ﻓﻲ ﻣﺤﻮﺭ ﺍﻟﺼﺎﺩﺍﺕ ﻟﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔg(x) = : a 3 (5) x + 1 b 3 (5) -x - 1 c -3 (5) x + 1 d 3 (5) -x + 1 ﺑﺎﻧﺴﺤﺎﺏ: y = 1 (5) x ﺍﻟﺪﺍﻟﺔ ﺑﻴﺎﻥ ﺑﺎﺳﺘﺨﺪﺍﻡ y = 1 (5) x+2 - 3 ﺍﻟﺪﺍﻟﺔ ﺑﻴﺎﻥ ﺭﺳﻢ ﻳﻤﻜﻦ )(10 2 2 aﻭﺣﺪﺗﻴﻦ ﺟﻬﺔ ﺍﻟﻴﺴﺎﺭ ﻭ 3ﻭﺣﺪﺍﺕ ﻷﺳﻔﻞ bﻭﺣﺪﺗﻴﻦ ﺟﻬﺔ ﺍﻟﻴﻤﻴﻦ ﻭ 3ﻭﺣﺪﺍﺕ ﻷﺳﻔﻞ 3 cﻭﺣﺪﺍﺕ ﺟﻬﺔ ﺍﻟﻴﻤﻴﻦ ﻭﻭﺣﺪﺗﻴﻦ ﻷﻋﻠﻰ dﻭﺣﺪﺗﻴﻦ ﺟﻬﺔ ﺍﻟﻴﻤﻴﻦ ﻭ 3ﻭﺣﺪﺍﺕ ﻷﻋﻠﻰ ) (11ﻣﻌﺎﺩﻟﺔ ﺍﻟﺪﺍﻟﺔ ﺍﻷﺳﻴﺔ ﺍﻟﺘﻲ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ y = a(b)xﺣﻴﺚ ﺍﻷﺳﺎﺱ ﻳﺴﺎﻭﻱ 0.6ﻭﻳﻤﺮ ﺭﺳﻤﻬﺎ ﺍﻟﺒﻴﺎﻧﻲ ﺑﺎﻟﻨﻘﻄﺔ ) (2 , 1.8ﻫﻲ: a y = 1.8 (2) x b y = 0.2 (1.8) x c y = 2 (0.6) x d y = 5 (0.6) x x0 1 2 3 ) (12ﺃﻱ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺗﻨﻤﺬﺝ ﺑﻴﺎﻧﺎﺕ ﺍﻟﺠﺪﻭﻝ ﺍﻟﻤﻘﺎﺑﻞ: y 4 5.2 6.76 8.79 a y = x2 + 1 x + 4 b y = 4 (1.3) x c y = 1.6 (4) x d y = 4 (0.6) x + 2.8 2 58
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﻴﺔ ﻭﺗﻤﺜﻴﻠﻬﺎ ﺑﻴﺎﻧﻴًّﺎ 4-3 Logarithmic Functions and their Graphs ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-8ﺍﻛﺘﺐ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﻠﻲ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﻴﺔ: (1) 42 = 16 (2) 73 = 343 )(3 ` 1 -2 = 4 )(4 8 - 2 = 1 2 3 4 j )(5 ` 1 3 = 1 (6) 10-2 = 0 . 01 3 )(8 5-3 = 1 3 27 125 j (7) 62 = 6 6 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(9-14ﺍﻛﺘﺐ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﻠﻲ ﻓﻲ ﺍﻟﺼﻮﺭﺓ ﺍﻷﺳﻴﺔ: (9) log2128 = 7 (10) log464 = 3 (11) log 100 = 2 (13) log 0.0001 = - 4 )(12 log3 1 =- 2 )(14 log3 1 =- 5 9 243 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(15-20ﺃﻭﺟﺪ ﻗﻴﻤﺔ ﻛﻞ ﻟﻮﻏﺎﺭﻳﺘﻢ ﻣﻤﺎ ﻳﻠﻲ: (15) log2 4 (16) log2 8 (17) log8 8 (18) log2 25 )(19 log 1 1 (20) log 0.01 2 2 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(21-23ﺃﻭﺟﺪ ﻣﺠﺎﻝ ﺍﻟﺘﻌﺮﻳﻒ ﻟﻜﻞ ﺩﺍﻟﺔ ﻣﻤﺎ ﻳﻠﻲ: )(21) y = log (x + 1 )(22 y = log )(x - 2 )(23) y = log(x2 - 4 6 8 ) (24ﻳﺴﺎﻭﻱ ﺗﺮﻛﻴﺰ ﺃﻳﻮﻥ ﺍﻟﻬﻴﺪﺭﻭﺟﻴﻦ @ 6H +ﻓﻲ ﺍﻟﻠﻴﻢ )ﻧﻮﻉ ﻣﻦ ﺍﻟﻠﻴﻤﻮﻥ( ﺣﻮﺍﻟﻰ 1 . 26 # 10-2 ﺃﻭﺟﺪ ﺭﻗﻤﻪ ﺍﻟﻬﻴﺪﺭﻭﺟﻴﻨﻲ ) (pHﻋﻠ ًﻤﺎ ﺃﻥ @.pH = - log6H+ ) (25ﻳﺴﺎﻭﻱ ﺍﻟﺮﻗﻢ ﺍﻟﻬﻴﺪﺭﻭﺟﻴﻨﻲ ﻟﻌﺼﻴﺮ ﺧﻞ ﺍﻟﺘﻔﺎﺡ ) (Cider Vinegarﺣﻮﺍﻟﻰ 3.1 ﺃﻭﺟﺪ ﺗﺮﻛﻴﺰ ﺃﻳﻮﻧﻪ ﺍﻟﻬﻴﺪﺭﻭﺟﻴﻨﻲ @.6H+ )(26) y = log3 (x ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(26-27ﻣﺜّﻞ ﺑﻴﺎﻧﻴًّﺎ ﻛﻞ ﺩﺍﻟﺔ ﻟﻮﻏﺎﺭﻳﺘﻤﻴﺔ ﻣﻌﻴﻨًﺎ ﺍﻟﻤﺠﺎﻝ ﻭﺍﻟﻤﺪﻯ. (27) y = log3 (x - 1) + 2 ) (28ﺍﺷﺮﺡ ﻟﻤﺎﺫﺍ bﻻ ﺗﺴﺘﻄﻴﻊ ﺃﻥ ﺗﺄﺧﺬ ﻗﻴﻤﺔ 1ﻓﻲ ﺍﻟﺪﺍﻟﺔy = logb (x) : 59
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ab ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺇﺫﺍ ﻛﺎﻧﺖ y = 3xﻓﺈﻥ x = log y ab ab ) (2ﺇﺫﺍ ﻛﺎﻧﺖ log2(- y) = xﻓﺈﻥ y = 2-x ab ) (3ﺇﺫﺍ ﻛﺎﻧﺖ 4x = 5ﻓﺈﻥ . 2x = log2 5 ) (4ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ f(x) = log^x2hﻫﻮ R ) (5ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = log3 xﻫﻮ ﺍﻧﻌﻜﺎﺱ ﻓﻲ ﺍﻟﻤﺴﺘﻘﻴﻢ y - x = 0ﻟﺒﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = 3x ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-11ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﻣﻌﻜﻮﺱ ﺍﻟﺪﺍﻟﺔ y = log2xﻫﻮ: a y = logx 2 b y = x2 c y = 2x d y = log 2x ) (7ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ y = log x - 1ﻫﻮ: aR b R+ c ^1, 3h d R/\"1, ) (8ﻣﺠﺎﻝ ﺍﻟﺪﺍﻟﺔ y = log^x2 + 1hﻫﻮ: aR b R+ c 61, 3h d ^1, 3h a y = log^x - 1h - 1 ) (9ﺑﺎﺳﺘﺨﺪﺍﻡ ﺩﺍﻟﺔ ﺍﻟﻤﺮﺟﻊ y = log5xﻳﻤﻜﻦ ﺗﻤﺜﻴﻞ ﺍﻟﺪﺍﻟﺔ: )b y = log5 (5x c y = log5 ^x - 1h - 1 d y = log5 ^x2 + 1h ) (10ﻳﻤﻜﻦ ﺭﺳﻢ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = log(x + 1) - 2ﻣﻌﺘﺒ ًﺮﺍ ﺩﺍﻟﺔ ﺍﻟﻤﺮﺟﻊ y = log xﺑﺎﻧﺴﺤﺎﺏ: bﻭﺣﺪﺓ ﺇﻟﻰ ﺍﻟﻴﻤﻴﻦ ﻭﻭﺣﺪﺗﻴﻦ ﻷﺳﻔﻞ aﻭﺣﺪﺓ ﺇﻟﻰ ﺍﻟﻴﺴﺎﺭ ﻭﻭﺣﺪﺗﻴﻦ ﻷﺳﻔﻞ dﻭﺣﺪﺗﻴﻦ ﺇﻟﻰ ﺍﻟﻴﺴﺎﺭ ﻭﻭﺣﺪﺓ ﻷﻋﻠﻰ cﻭﺣﺪﺗﻴﻦ ﺇﻟﻰ ﺍﻟﻴﻤﻴﻦ ﻭﻭﺣﺪﺓ ﻷﻋﻠﻰ ) (11ﻳﻌﻄﻰ ﺍﻟﺮﻗﻢ ﺍﻟﻬﻴﺪﺭﻭﺟﻴﻨﻲ ) (pHﺑﺎﻟﻌﻼﻗﺔ pH = - log6H+@ :ﺇﺫﺍ ﻛﺎﻥ ﺗﺮﻛﻴﺰ ﺃﻳﻮﻥ ﺍﻟﻬﻴﺪﺭﻭﺟﻴﻨﻲ @ 6H+ﻓﻲ ﺍﻟﺴﺒﺎﻧﺦ ﻫﻮ 4 # 10-6ﻓﺈﻥ ﺍﻟﺮﻗﻢ ﺍﻟﻬﻴﺪﺭﻭﺟﻴﻨﻲ ﻟﻠﺴﺒﺎﻧﺦ ﻫﻮ: a -6.6 b 6.6 c -5.4 d 5.4 60
ﻓﻲ ﺍﻟﺒﻨﻮﺩ ) ،(12-15ﻟﺪﻳﻚ ﻗﺎﺋﻤﺘﺎﻥ ﺍﺧﺘﺮ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (2ﻣﺎ ﻳﻨﺎﺳﺐ ﻛﻞ ﺗﻤﺮﻳﻦ ﻓﻲ ﺍﻟﻘﺎﺋﻤﺔ ) (1ﻟﺘﺤﺼﻞ ﻋﻠﻰ ﺇﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ. ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 a y = 4x ﻣﻌﻜﻮﺱ ﺍﻟﺪﺍﻟﺔ: b y = a -1 -x ) y = - log 1 x (12ﻫﻮ 4 k 4 c y = a 1 x ) y = - log4x (13ﻫﻮ 4 k d y = (- 4) -x ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 ﺑﻴﺎﻥ ﻣﻌﻜﻮﺱ ﻛﻞ ﺩﺍﻟﺔ ﻣﻤﺎ ﻳﻠﻲ ﻫﻮ: a y 8 )y = log3(x) (14 7 )y = log2(4x) (15 6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6x -1 -2 -3 -4 b y 5 4 3 2 1 -3 -2 -1 1 23 4 56 7 8 9 x -1 -2 -3 -4 -5 -6 -7 c y 5 4 3 2 1 -3 -2 -1 1 23 4 56 7 8 9 x -1 -2 -3 -4 -5 -6 -7 61
ﺗﻤ ﱠﺮ ْﻥ ﺧﻮﺍﺹ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﺎﺕ 4-4 Properties of Logarithms ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-8ﺍﻛﺘﺐ ﻛﻞ ﻣﻘﺪﺍﺭ ﻟﻮﻏﺎﺭﻳﺘﻤﻲ ﻓﻲ ﺻﻮﺭﺓ ﻟﻮﻏﺎﺭﻳﺘﻢ ﻭﺍﺣﺪ. (1) log 7 + log 2 )(2 1 log4 y - log4 x , ^x 2 0 , y 2 0h 2 )(3) 4 log M - log N , (M 2 0 , N 2 0 )(4) log x + log y + log z , (x 2 0 , y 2 0 , z 2 0 )(5 log a + log b - log c , (a 2 0 , b 2 0, )c 2 0 4 3 2 )(6) log a + 3 log b , (a 2 0 , b 2 0 )(7 1 ^log 7 x + log7 yh - 3 log7 a , ^x 2 0, y 2 0,a 2 0h 2 )(8) 7 log r - log x + log n , (r 2 0 , x 2 0 , n 2 0 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(9-16ﺃﻭﺟﺪ ﻣﻔﻜﻮﻙ ﻛﻞ ﻟﻮﻏﺎﺭﻳﺘﻢ ﻣﻤﺎ ﻳﻠﻲ: )(9 y , ^x 2 0, y 2 0h (10) log x3 + y5 , ^x 2 0 , y 2 0h log5 x )(11 log3 7 (2x - 3) 2 , `x 2 3 j )(12 log a2b3 , )(a 2 0 , b 2 0 , c 2 0 2 c4 )(13) log 3M 4N-2 , (M 2 0 , N 2 0 )(14) log45 x , (x 2 0 )(15) log(2(x + 1))3 , (x 2-1 (16) log 2x ), (x 2 0 , y 2 0 y ) (17ﺍﻟﺴﺆﺍﻝ ﺍﻟﻤﻔﺘﻮﺡ :ﺍﺳﺘﺨﺪﻡ ﺧﻮﺍﺹ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﺎﺕ ﻹﻋﺎﺩﺓ ﻛﺘﺎﺑﺔ log 64ﺑﺄﺭﺑﻊ ﻃﺮﺍﺋﻖ ﻣﺨﺘﻠﻔﺔ. ) (18ﺍﻟﻜﺘﺎﺑﺔ :ﺍﺷﺮﺡ ﻟﻤﺎﺫﺍ log^5 # 2h ! log 5 # log 2 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(19-23ﺍﺳﺘﺨﺪﻡ ﺧﻮﺍﺹ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﺎﺕ ﻹﻳﺠﺎﺩ ﻗﻴﻤﺔ ﻛﻞ ﻣﻘﺪﺍﺭ. (19) log24 - log216 (20) log55 - log5125 (21) 3 log22 - log24 (22) log 1 + log 100 (23) log 5 + log 8 - 2 log 2 62
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(24-28ﻟﻨﻔﺘﺮﺽ ﺃﻥ .log 4 - 0.6021 , log 5 - 0.6990 , log 6 - 0.7782ﺍﺳﺘﺨﺪﻡ ﺧﻮﺍﺹ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﺎﺕ ﻹﻳﺠﺎﺩ ﻗﻴﻤﺔ ﻛﻞ ﻣﻘﺪﺍﺭ .ﺩﻭﻥ ﺍﺳﺘﺨﺪﺍﻡ ﺁﻟﺘﻚ ﺍﻟﺤﺎﺳﺒﺔ ﻗ ّﺮﺏ ﺇﺟﺎﺑﺎﺗﻚ ﺇﻟﻰ ﺃﻗﺮﺏ ﺟﺰﺀ ﻣﻦ ﺃﻟﻒ. (24) log20 (25) log16 (26) log1.25 (27) log125 )(28 log 1 36 ) (29ﺍﻟﻌﻠﻮﻡ :ﻳﺴﺘﻄﻴﻊ ﺍﻹﻧﺴﺎﻥ ﺳﻤﺎﻉ ﻣﺪﻯ ﻭﺍﺳﻊ ﻣﻦ ﺷﺪﺓ ﺍﻟﺼﻮﺕ ،ﻭﻫﺬﺍ ﻣﺎ ﻳﻮﺿﺤﻪ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ .ﺷﺪﺓ ﺍﻟﺼﻮﺕ ﻫﻲ ﻗﻴﺎﺱ ﻛﻤﻴﺔ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻨﺎﺗﺠﺔ ﻋﻦ ﻣﺼﺪﺭ ﺍﻟﺼﻮﺕ ،ﻭﻳﻌﺘﻤﺪ ﻣﺴﺘﻮﻯ ﺷﺪﺓ ﺍﻟﺼﻮﺕ ﻋﻠﻰ ﺷﺪﺓ ﺍﻟﺼﻮﺕ ،ﻭﻋﻠﻰ ﺍﻟﻤﺴﺎﻓﺔ ﺑﻴﻦ ﻣﺼﺪﺭ ﺍﻟﺼﻮﺕ ﻭﺍﻟﺸﺨﺺ ﺍﻟﺬﻱ ﻳﺴﻤﻌﻪ .ﻭﻳﻌﺮﻑ ﻣﺴﺘﻮﻯ ﺷﺪﺓ ﺍﻟﺼﻮﺕ ﺍﻟﻤﻘﺎﺱ ﺑﺎﻟﺪﻳﺴﻴﺒﻞ ﺑﺎﻟﻜﺎﺩ ﺍﻟﺼﻮﺕ ﺷﺪﺓ I0 ﺍﻟﺼﻮﺕ، ﺷﺪﺓ I ﺣﻴﺚ ،10 log I = ﺍﻟﺼﻮﺕ ﺷﺪﺓ ﻣﺴﺘﻮﻯ ﺍﻟﺘﺎﻟﻴﺔ: ﺑﺎﻟﻤﻌﺎﺩﻟﺔ )(dB I0 ﻣﺴﻤﻮﻉ. ﺃﻛﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ: ﻣﺴﺘﻮﻯ ﺷﺪﺓ ﺍﻟﺼﻮﺕ )ﺩﻳﺴﻴﺒﻞ (dB ﺍﻟﺸﺪﺓ W/m2 ﻧﻮﻉ ﺍﻟﺼﻮﺕ 120 1 ﺻﻮﺕ ﻋﺎ ٍﻝ 0 10-2 ﺻﻮﺕ ﺁﻟﺔ ﺛﻘﺐ 10-5 ﺻﻮﺕ ﺷﺎﺭﻉ ﻣﺰﺩﺣﻢ 10- 6 ﺻﻮﺕ ﻣﺤﺎﺩﺛﺔ 10- 10 10-11 ﺻﻮﺕ ﻫﻤﺲ 10-12 ﺣﻔﻴﻒ ﺃﻭﺭﺍﻕ ﺍﻷﺷﺠﺎﺭ ﺻﻮﺕ ﺑﺎﻟﻜﺎﺩ ﻣﺴﻤﻮﻉ ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-6ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab )log (x - 1)2 = 2 log x - 1 (1 ab ab log 1 = - 2 log x,x 2 0 )(2 ab x2 ab m ab log c n =m 1 log m - log n , m 2 0,n 2 0 )(3 2 log 16 - log2 2 = log 8 )(4 2 2 = )log (x - y log x , x, y ! R+/\"1, )(5 log y )log64 + log69 = 2 (6 63
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(7-13ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (7ﺍﻟﻤﻘﺪﺍﺭ 2 log4 8 + log5 125ﻳﺴﺎﻭﻱ: a 4 b 5 c 6 d 15 ) (8ﺇﺫﺍ ﻛﺎﻥ log 3 = x , log 5 = yﻓﺈﻥ log 45ﺗﺴﺎﻭﻱ: a x+y b 2x + y c 2y + x d x2y a1 ﻳﺴﺎﻭﻱ: log2 x + log2 2x + log2 1 ,x 2 0 )(9 x2 b2 c x d 2x ) (10ﺇﺫﺍ ﻛﺎﻥ log 2 = m , log 3 = nﻓﺈﻥ ﺍﻟﻤﻘﺪﺍﺭ m + n - 1ﻳﺴﺎﻭﻱ: a log 0.06 b log 0.6 c log 6 d log 60 ) (11ﻋﻨﺪﻣﺎ m = 3 , n = 2ﻓﺈﻥ ﺍﻟﻤﻘﺪﺍﺭ ﺍﻷﻛﺒﺮ ﻗﻴﻤﺔ ﻓﻴﻤﺎ ﻳﻠﻲ ﻫﻮ: a log n2 - log m3 b log m2 - log n2 c 3 log n - 2 log m d 2 log m - 3 log n logc3ﻫﻮ: 8 m ﺍﻟﻤﻘﺪﺍﺭ ﻣﻔﻜﻮﻙ )(12 x3 a 3 log 8 b 1 ^log ^8 - x3hh c log 2 - log x d log 2 - 3 log x x3 3 L = 10 log I ﺇﺫﺍ ﻛﺎﻥ ﻣﺴﺘﻮﻯ ﺷﺪﺓ ﺻﻮﺕ ﺻﻔﺎﺭﺓ ﺇﻧﺬﺍﺭ ) (Lﺗﺴﺎﻭﻱ 140 dBﻭﺍﻟﺘﻲ ﺗﻘﺎﺱ ﺑﺎﻟﻌﻼﻗﺔ: )(13 10-12 ﻓﺈﻥ ﺷﺪﺓ ﺻﻮﺗﻬﺎ Iﺗﺴﺎﻭﻱ: a1 b 1000 c 10 d 100 ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(14-15ﻟﺪﻳﻚ ﻗﺎﺋﻤﺘﺎﻥ ﺍﺧﺘﺮ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (2ﻣﺎ ﻳﻨﺎﺳﺐ ﻛﻞ ﺗﻤﺮﻳﻦ ﻓﻲ ﺍﻟﻘﺎﺋﻤﺔ ) (1ﻟﺘﺤﺼﻞ ﻋﻠﻰ ﺇﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ. ﺳﻠﻢ ﺗﺪﺭﺝ ﺍﻟﻀﺠﻴﺞ ﺍﻟﻤﻘﺎﺑﻞ. ﻭﺍﻟﺸﻜﻞ L = 10 log I ﺍﻟﻌﻼﻗﺔ: ﺍﺳﺘﺨﺪﻡ dB 10-12 160 ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 ﻣﺆﻟﻢ aﻫﺎﺩﺋﺔ ﺇﺫﺍ ﻛﺎﻧﺖ ﺷﺪﺓ ﺻﻮﺕ ﻣﺎ ) (Iﻫﻲ: ﺟﱟﺪﺍ 140 ﻣﺆﻟﻢ 120 ﻋﺎ ٍﻝ bﻣﺆﻟﻤﺔ ) 10-5 (14ﻓﺈﻥ ﻗﻮﺗﻪ ﺗﻜﻮﻥ: cﻋﺎﻟﻴﺔ ) 1.65 # 10-2 (15ﻓﺈﻥ ﻗﻮﺗﻪ ﺗﻜﻮﻥ: ﺟ ًّﺪﺍ 90 dﻋﺎﻟﻴﺔ ﺟ ًّﺪﺍ ﻋﺎ ٍﻝ 70 ﻣﻌﺘﺪﻝ 50 ﻫﺎﺩﺉ 30 ﻫﺎﺩﺉ ﺟ ًّﺪﺍ 0 ﻋﺘﺒﺔ ﺍﻟﺴﻤﻊ 64
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻷﺳﻴﺔ ﻭﺍﻟﻠﻮﻏﺎﺭﻳﺘﻴﻤﻴﺔ 4-5 Exponential and Logarithmic Equations ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-8ﺣ ّﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﻠﻲ .ﺍﺧﺘﺒﺮ ﺻﺤﺔ ﻛﻞ ﺣﻞ: (1) 92y = 66 (2) 12y-2 = 20 (3) 5 - 3x = - 40 (4) 252x+1 = 144 (7) 7 n2 - 12 = 5 (8) -3 + 2 4 x3 = 33 3 5 (5) 3x 2 = 27 , x 2 0 (6) 2 + 8r 3 = 26 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(9-13ﺍﺳﺘﺨﺪﻡ ﻗﺎﻋﺪﺓ ﺗﻐﻴﻴﺮ ﺍﻷﺳﺎﺱ ﻹﻳﺠﺎﺩ ﻗﻴﻤﺔ ﻛﻞ ﻟﻮﻏﺎﺭﻳﺘﻢ ﻣﻤﺎ ﻳﻠﻲ: (9) log27 (10) log333 (11) log21 0.085 (12) log5 510 (13) log4 1.116 x = 80 ﺍﻟﻤﻌﺎﺩﻟﺔ: ﺑﺎﻋﺘﺒﺎﺭ )(14 23 ) (aﺣ ّﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺑﺄﺧﺬ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﺑﺄﺳﺎﺱ 2ﻟﻜﻞ ﻃﺮﻑ. ) (bﺣ ّﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺑﺄﺧﺬ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﺑﺄﺳﺎﺱ 10ﻟﻜﻞ ﻃﺮﻑ. ) (cﻗﺎﺭﻥ ﺑﻴﻦ ﺇﺟﺎﺑﺎﺗﻚ ﻓﻲ ﺍﻟﻔﻘﺮﺗﻴﻦ ) .(a), (bﺃﻱ ﻃﺮﻳﻘﺔ ﺗﻔﻀﻠﻬﺎ؟ ﻭﻟﻤﺎﺫﺍ؟ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(15-20ﺣﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻟﻮﻏﺎﺭﻳﺘﻤﻴﺔ ﻣﻤﺎ ﻳﻠﻲ: (15) log 6x - 3 = - 4 (16) log x - log 3 = 8 (17) log2(3x - 5) = 1 (18) log^2xh + log^x - 3h = log 8 (19) log^3xh - log^x + 20h = - log 2 (20) log(2x-1) 49 = 2 (21) log 64 = log 4 )(5x - 3 ) (22ﺍﻷﺣﻴﺎﺀ ﺍﻟﺒﺮﻳﺔ :ﻟﻨﻔﺮﺽ ﺃﻥ ﻓﺼﻴﻠﺔ ﻣﻌﻴﻨﺔ ﻣﻦ ﺍﻟﺤﻴﻮﺍﻧﺎﺕ ﺍﻟﺒﺮﻳﺔ ﺍﻟﻤﻌﺮﺿﺔ ﻟﺨﻄﺮ ﺍﻻﻧﻘﺮﺍﺽ ﺗﺘﻨﺎﻗﺺ ﺃﻋﺪﺩﺍﻫﺎ ﺑﻤﻌﺪﻝ 3.5%ﺳﻨﻮﻳًّﺎ ﻭﻗﺪ ﺃﺣﺼﻴﺖ 80ﺣﻴﻮﺍﻧًﺎ ﻣﻦ ﻫﺬﻩ ﺍﻟﻔﺼﻴﻠﺔ ﻓﻲ ﻣﻮﻃﻨﻬﺎ ﺍﻟﺬﻱ ﺗﻘﻮﻡ ﺑﺪﺭﺍﺳﺘﻪ. ) (aﺗﻮﻗﻊ ﻋﺪﺩ ﺣﻴﻮﺍﻧﺎﺕ ﻫﺬﻩ ﺍﻟﻔﺼﻴﻠﺔ ﺍﻟﺬﻱ ﺳﻴﺒﻘﻰ ﺑﻌﺪ 10ﺳﻨﻮﺍﺕ. ) (bﺑﻌﺪ ﻛﻢ ﺳﻨﺔ ﺳﻮﻑ ﻳﺘﻨﺎﻗﺺ ﻋﺪﺩ ﺣﻴﻮﺍﻧﺎﺕ ﻫﺬﻩ ﺍﻟﻔﺼﻴﻠﺔ ﻷﻭﻝ ﻣﺮﺓ ﺇﻟﻰ ﺃﻗﻞ ﻣﻦ 15ﺣﻴﻮﺍﻧًﺎ ،ﺑﺎﻟﻤﻌﺪﻝ ﻧﻔﺴﻪ؟ 65
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab x = 1 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ 9x = 3ﻫﻮ )(1 ab 2 ab ab ) (2ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ 2 log x = - 1ﻫﻮ x = 10-0.5 ab ) (3ﺇﺫﺍ ﻛﺎﻥ log(x + 6) = 0ﻓﺈﻥ x =-5 a x . 15 a x=6 x = log 146 ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ 149x = 146ﻫﻮ )(4 a x=3 log 14 a x = 10-1 a \"2, ) (5ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ 3 log x - log 6 + log 2.4 = 9ﻫﻮ 5 # 104 a \"-1, ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-14ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. a4 ) (6ﺇﺫﺍ ﻛﺎﻥ (1.5) x = 356ﻓﺈ ّﻥ: a log (6 - x2) = 1 b x . 14.5 c x . 15.3 d x . 16.3 3 ) (7ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ 8 + 10x = 1008ﻫﻮ: a -3 b x . 3.5 c x=3 d x=2 ) (8ﺇﺫﺍ ﻛﺎﻥ 2x2 = 512ﻓﺈ ّﻥ: b x=9 c x = 3 , x =-3 d x =-9 ) (9ﺇﺫﺍ ﻛﺎﻥ 2 log x = - 2ﻓﺈ ّﻥ: b x = 100.5 c x = 10-2 d x = 10-0.5 ) (10ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ log(x2 + 2) = log(5x - 4) :ﻫﻲ: b \"3, c \"2, 3, d \"-2, - 3, ) (11ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ log (x2 - x) = 1 :ﻫﻲ: 2 b \"1, 2, c \"-1, 2, d \"-1, - 2, ) (12ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ log(x + 21) + log x = 2ﻫﻮ: b -25 , 4 c 25 d 4 , 25 ) (13ﻳﻜﻮﻥ x = 3ﺣ ًﻼ ﻟﻠﻤﻌﺎﺩﻟﺔ: b log 9 = 2 c log (x2 + 1) = 2 d log3 x3 + log3 x = 4 x 3 3 ) (14ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ log 81 - log 9 = 2ﻫﻮ: xx b 1 c3 d9 3 66
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﺍﻟﻄﺒﻴﻌﻲ 4-6 Natural Logarithm ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-8ﺍﻛﺘﺐ ﻛﻞ ﺗﻌﺒﻴﺮ ﻣﻤﺎ ﻳﻠﻲ ﻛﻠﻮﻏﺎﺭﻳﺘﻢ ﻃﺒﻴﻌﻲ ﻭﺍﺣﺪ: (1) 3 ln 5 (2) ln 24 - ln 6 (3) ln 3 - 5 ln 3 (4) 5 ln m + 3 ln n , ^m 2 0 , n 2 0h (5) 2 ln 8 - 3 ln 4 (6) 7 )(7 ln a - 2 ln b + 1 ln c , (a 2 0, b 2 0, c 2 )0 )(8 1 (ln x + ln )y - 4 ln c , ^ x 2 0, y 2 0, c2 0h 2 3 ) (9ﺃﻭﺟﺪ ﻗﻴﻤﺔ yﻓﻲy = 15 + 3 ln 7.2 : ) (10ﺃﻭﺟﺪ ﻗﻴﻤﺔ yﻓﻲy = 0.05 - 10 ln x , x = 0.09 : ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(11-12ﺍﺳﺘﺨﺪﻡ ﺍﻟﻌﻼﻗﺔ ،V = - 0.0098t + C lnR :ﺣﻴﺚ Rﻧﺴﺒﺔ ﻛﺘﻠﺔ ﺍﻟﺼﺎﺭﻭﺥ t ،ﺯﻣﻦ ﺍﺷﺘﻌﺎﻟﻪ C ،ﺳﺮﻋﺔ ﺍﻧﻄﻼﻕ ﺍﻟﺒﺨﺎﺭ V ،ﺳﺮﻋﺔ ﺍﻟﺼﺎﺭﻭﺥ. ) (11ﺃﻭﺟﺪ ﺃﻗﺼﻰ ﺳﺮﻋﺔ ﻟﺼﺎﺭﻭﺥ ﻧﺴﺒﺔ ﻛﺘﻠﺘﻪ 20ﻭﺳﺮﻋﺔ ﺍﻧﻄﻼﻕ ﺑﺨﺎﺭﻩ 2.7 km/sﻭﺯﻣﻦ ﺍﺷﺘﻌﺎﻟﻪ 30 s ) (12ﺃﻭﺟﺪ ﻧﺴﺒﺔ ﻛﺘﻠﺔ ﺻﺎﺭﻭﺥ ﺳﺮﻋﺔ ﺍﻧﻄﻼﻕ ﺑﺨﺎﺭﻩ 3.15 km/sﻭﺯﻣﻦ ﺍﺷﺘﻌﺎﻟﻪ 50 sﻭﻟﻪ ﺃﻗﺼﻰ ﺳﺮﻋﺔ 6.9 km ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(13-18ﺍﺳﺘﺨﺪﻡ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﺍﻟﻄﺒﻴﻌﻲ ﻟﺤﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﻠﻲ: (13) 3e2x = 12 (14) ex+1 = 30 )(15 x e9 -8 = 6 (16) 4ex+2 = 32 (17) 2e3x-2 + 4 = 16 (18) 2e2x = ex + 6 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(19-28ﺣ ّﻞ ﻛﻞ ﻣﻌﺎﺩﻟﺔ ﻣﻤﺎ ﻳﻠﻲ: (19) ln 3x = 6 (20) ln^4x - 1h = 36 (21) ln(x - 1) 2 = 3 )(22 ` ln x - 1 j = 4 (23) 2 ln 2x2 = 1 (24) ln x - 3 ln 3 = 3 (26) 1.1 + ln x2 = 6 (27) ln^2x - 1h = 0 2 )(25 1 ln x + ln 2 - ln 3 = 3 2 )(28 1 ln (5x - 3) 3 = 2 ) (29ﺍﻟﺘﻔﻜﻴﺮ ﺍﻟﻨﺎﻗﺪ :ﻫﻞ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺔ ln 5 + log210ﻋﻠﻰ ﺷﻜﻞ ﻟﻮﻏﺎﺭﻳﺘﻢ ﻭﺍﺣﺪ؟ ﺍﺷﺮﺡ. ﺍﻟﻘﻤﺮ ﺗﺸﻐﻴﻞ ﻣﺪﺓ ﻓﻤﺎ ﻳﻮﻡ، n ﺑﻌﺪ ﺻﻨﺎﻋﻲ ﻟﻘﻤﺮ )(W ﺑﺎﻟﻮﺍﻁ )(b ﺍﻟﺨﺎﺭﺟﺔ ﺍﻟﻘﻮﺓ b = 40 -n ﺗﻌﻄﻲ ﺍﻟﻌﻼﻗﺔ: )(30 e 300 ﺍﻟﺼﻨﺎﻋﻲ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻘﻮﺓ ﺍﻟﺨﺎﺭﺟﺔ 15 W؟ 67
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab )log4 (ln e4) = 1 (1 ab )4ln8 + ln10 = 4ln80 (2 ab ab )lne2 = 2 (3 ab ) (4ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ lnx = - 2 :ﻫﻮ e2 x ) (5ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ e5 + 4 = 7 :ﻫﻮ 5ln3 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-14ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) 3 ln 4 - 5 ln 2 (6ﻋﻠﻰ ﺷﻜﻞ ﻟﻮﻏﺎﺭﻳﺘﻢ ﻭﺍﺣﺪ ﺗﻜﺘﺐ: )a ln (- 18 b lna 6 k c ln 2 d ln 32 5 ) eln10 (7ﺗﺴﺎﻭﻱ: a 10 b e10 c0 d 1 10 ) (8ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ln(2m + 3) = 8ﻫﻮ: a e8 - 3 b e8 - 3 c e8 - 3 d e4 - 3 2 2 ) (9ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ln4r2 = 3ﻫﻮ: 3 33 - 3 2 a e2 b e2 -e2 c e d 33 2 2 , 2 2 e2 ,- e2 ) (10ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ e2x = 10ﻫﻮ: a x = ln 10 b ln 5 c 5 d 2 ln 10 2 e ) \"e2, (11ﻫﻲ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ: a ln x = 2 b ln x2 = 2 c ln x2 = 4 d ln x = 4 ) (12ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ex+1 = 13ﻫﻮ: a x = ln 13 + 1 b x = ln 13 - 1 c x = ln 13 d x = ln 12 ) (13ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ln(x - 2)2 = 6ﻫﻮ: a 2 + e3 b 2 - e3 c 2 ! e3 d 2 ! e6 b x = 2 ln 5 - 2 ﻫﻮ: e x + 1 + 3 = 8 ﺍﻟﻤﻌﺎﺩﻟﺔ ﺣﻞ )(14 2 a x = 2 ln 5 - 1 c x = 2 ln 4 d x = 1 ^ln 5 - 1h 2 68
ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺮﺍﺑﻌﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﺍﺭﺳﻢ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺘﺎﻟﻴﺔ: (1) y = - 3 (0 . 25) x )(2 )f (x = 1 (6) - x (3) y = 0.1 (10) x-2 (4) f (x) = (2) x+1 + 3 2 ) (5ﺍﻟﻜﺘﺎﺑﺔ :ﻭ ّﺿﺢ ﻛﻴﻒ ﻳﻤﻜﻨﻚ ﺗﺤﺪﻳﺪ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺪﺍﻟﺔ ﺍﻷﺳﻴﺔ ﺗﻤﺜّﻞ ﻧﻤ ًّﻮﺍ ﺃﺳﻴًّﺎ ﺃﻡ ﺗﻀﺎﺅ ًﻻ ﺃﺳﻴًّﺎ. ﺍﻋﺮﺽ ﻣﺜﺎ ًﻻ ﻟﻜﻞ ﻣﻨﻬﺎ. ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-8ﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺗﺼﻒ ﺍﻟﺪﺍﻟﺔ ﺍﻷﺳﻴﺔ ﺍﻟﺘﻲ ﻋﻠﻰ ﺍﻟﺼﻮﺭﺓ ، y = abx :ﺑﻤﻌﻠﻮﻣﻴﺔ ﺍﻷﺳﺎﺱ ﺍﻟﻤﻌﻄﻰ ﻭﺍﻟﺘﻲ ﻳﻤﺮ ﺭﺳﻤﻬﺎ ﺍﻟﺒﻴﺎﻧﻲ ﺑﺎﻟﻨﻘﻄﺔ ﺍﻟﻤﻌﻄﺎﺓ. ) (6ﺍﻷﺳﺎﺱ ،3ﺍﻟﻨﻘﻄﺔ )(2, 3 ) (7ﺍﻷﺳﺎﺱ ،4ﺍﻟﻨﻘﻄﺔ )(-1, 1 ) (8ﺍﻷﺳﺎﺱ ،2ﺍﻟﻨﻘﻄﺔ )(0, 3 ) (9ﻋﻠﻢ ﺍﻟﺰﻻﺯﻝ :ﻛﻢ ﻣﺮﺓ ﻳﻜﻮﻥ ﺯﻟﺰﺍﻝ ﻗﻮﺗﻪ 5.2ﺑﻤﻘﻴﺎﺱ ﺭﻳﺨﺘﺮ ﺃﻗﻮﻯ ﻣﻦ ﺯﻟﺰﺍﻝ ﻗﻮﺗﻪ 3ﻋﻠ ًﻤﺎ ﺑﺄﻥ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻤﻨﻄﻠﻘﺔ ﺗﺴﺎﻭﻱ x ،E # 30xﻫﻲ ﺩﺭﺟﺔ ﻗﻮﺓ ﺍﻟﺰﻟﺰﺍﻝ ﺑﻤﻘﻴﺎﺱ ﺭﻳﺨﺘﺮ. ) (10ﺍﺭﺳﻢ ﺑﻴﺎﻥ ﺍﻟﺪﺍﻟﺔ y = log8xﺛﻢ ﺍﺳﺘﺨﺪﻣﻬﺎ ﻛﺪﺍﻟﺔ ﻣﺮﺟﻊ ﻟﺮﺳﻢ ﺑﻴﺎﻥ ﻛﻞ ﻣﻦ ﺍﻟﺪﻭﺍﻝ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ: )(a) y = log8 (x + 2 (b) y = log8x - 1 (c) y = log8 (x + 2) - 1 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(11-14ﺃﻭﺟﺪ ﻣﻔﻜﻮﻙ ﻛﻞ ﻣﻦ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ: )(11) log4r2 n , (r 2 0 , n 2 0 (12) log2 ^x + 1h2 , ^x 2-1h )(14) log 3x3y2 , (x 2 0 , y 2 0 )(13 log7 a , ^a 2 0 , b 2 0h b ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(15-18ﺍﺳﺘﺨﺪﻡ ﺧﻮﺍﺹ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﺎﺕ ﻹﻳﺠﺎﺩ ﻧﺎﺗﺞ ﻛﻞ ﻣﻦ ﺍﻟﻤﻘﺎﺩﻳﺮ ﺍﻟﺘﺎﻟﻴﺔ: (15) log327 - log39 (16) 2 log 264 - log 22 )(17 -log 4 1 - log 464 (18) 2 log 5 + log 40 16 ) (19ﺳﺆﺍﻝ ﻣﻔﺘﻮﺡ :ﺍﻛﺘﺐ ﻣﻘﺪﺍﺭﻳﻦ ﻟﻮﻏﺎﺭﻳﺘﻤﻴﻴﻦ .ﺃﻱ ﻣﻨﻬﻤﺎ ﻟﻪ ﺍﻟﻘﻴﻤﺔ ﺍﻷﻛﺒﺮ؟ ﺍﺷﺮﺡ. 3 3 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(20-30ﺣﻞ ﻛ ًّﻼ ﻣﻦ ﺍﻟﻤﻌﺎﺩﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: (22) log 4x = 3 (20) x4 = 81 (21) 3k2 = 24 (23) 2 log x = - 4 (24) log 2x + log x = 1 (25) log x - log(x - 1) = 1 69
(26) logx(3x + 4) = 2 (27) ln(x - 2) + ln x = 1 (28) ln (x + 1) + ln (x - 1) = 4 (29) ln x + ln(2x - 1) = 7 (30) 3 ln x - ln 2 = 4 ) (31ﻟﻨﻔﺘﺮﺽ ﺃﻥ ﺛﻤﻦ ﺁﻟﺔ ﺗﺴﺘﺨﺪﻡ ﻓﻲ ﺻﻨﺎﻋﺔ ﺳﻠﻌﺔ ﻣﺎ ﻟﻬﺎ ﻋﺎﻣﻞ ﺗﻀﺎﺅﻝ ﺳﻨﻮﻱ ﻗﻴﻤﺘﻪ .0.75ﺇﺫﺍ ﺑﻠﻎ ﺛﻤﻦ ﺍﻵﻟﺔ 10 000ﺩﻳﻨﺎﺭ ﺑﻌﺪ 5ﺳﻨﻮﺍﺕ ﻣﻦ ﺍﻻﺳﺘﺨﺪﺍﻡ ،ﻓﻤﺎ ﻗﻴﻤﺘﻬﺎ ﺍﻷﺳﺎﺳﻴﺔ؟ ) (32ﺍﻟﺪﺭﺍﺳﺎﺕ ﺍﻻﺟﺘﻤﺎﻋﻴﺔ :ﻋﺎﻡ 1991ﻛﺎﻥ ﻋﺪﺩ ﺳﻜﺎﻥ ﻛﺎﺭﺍﺗﺸﻲ ﻓﻲ ﺑﺎﻛﺴﺘﺎﻥ ﺣﻮﺍﻟﻰ 8ﻣﻼﻳﻴﻦ ﻧﺴﻤﺔ ،ﻭﻛﺎﻥ ﻋﺎﻣﻞ ﺍﻟﻨﻤﻮ ﺍﻟﺴﻨﻮﻱ ﻓﻲ ﻫﺬﺍ ﺍﻟﻮﻗﺖ .1.039 ) (aﻣﺎ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﺍﻟﻤﺘﻮﻗﻊ ﻓﻲ ﻋﺎﻡ 2010؟ ) (bﻣﺎ ﻣﻌﺪﻝ ﺍﻟﺰﻳﺎﺩﺓ ﺍﻟﺴﻨﻮﻳﺔ ﺍﻟﻤﺘﻮﻗﻊ؟ ) (cﻣﺘﻰ ﻳﺼﻞ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﺇﻟﻰ 10ﻣﻼﻳﻴﻦ ﻧﺴﻤﺔ؟ ) (33ﺳﻜﺎﻥ ﺍﻟﻌﺎﻟﻢ :ﺑﻠﻎ ﻋﺪﺩ ﺳﻜﺎﻥ ﺍﻟﻌﺎﻟﻢ ﻓﻲ ﻋﺎﻡ 1994ﺣﻮﺍﻟﻰ 5.63ﺑﻼﻳﻴﻦ ﻧﺴﻤﺔ ،ﻭﻳﻘﺎﻝ ﺇﻧﻪ ﻳﻨﻤﻮ ﺑﻤﻌﺪﻝ 2%ﺳﻨﻮﻳًّﺎ. ) (aﺍﻛﺘﺐ ﻣﻌﺎﺩﻟﺔ ﺃﺳﻴﺔ ﻟﻮﺻﻒ ﻫﺬﺍ ﺍﻟﻨﻤﻮ. ) (bﺻﻒ ﻧﻤﻮ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻛﻞ 35ﺳﻨﺔ. ) (cﺻﻒ ﻧﻤﻮ ﻋﺪﺩ ﺍﻟﺴﻜﺎﻥ ﻓﻲ ﻧﺼﻒ ﺍﻟﻤﺪﺓ ﺍﻟﺰﻣﻨﻴﺔ ﺍﻟﻤﺤﺪﺩﺓ ﻓﻲ ﺍﻟﺠﺰﺀ ).(b 70
ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴﺔ ) (1ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ(ex - 1)ex = 3ex - 3 : ) (2ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ3(ex ) 2 - ex - 4 = 0 : ) (3ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔln 3x - 1 + ln x - 1 = ln x - 2 : ) (4ﻫﻞ ﺻﺤﻴﺢ ﺃﻥaln b = bln a , a 2 0 , b 2 0 :؟ 4e2x = 4 ﺃﺛﺒﺖ ﺃﻥ: )(5 e2x + 3 1 + 3e-2x ) (6ﺣ ّﻞ ﺍﻟﻤﻌﺎﺩﻟﺔex + 2e- x = 3 : ) (7ﺃﻭﺟﺪ ﻣﺠﻤﻮﻋﺔ ﺣﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ2(ln x) 2 - 5 ln x - 3 = 0 : ) (8ﺍﻟﺼﻨﺎﻋﺎﺕ :ﻟﻨﻔﺮﺽ ﺃﻧﻚ ﺗﻌﻤﻞ ﻓﻲ ﻣﺼﻨﻊ ﻟﻠﻤﻜﺎﻧﺲ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ،ﻭﻗﺪ ﺳﺎﻫﻤﺖ ﻓﻲ ﺻﻨﻊ ﺗﺼﻤﻴﻢ ﻣﺴﺘﺨﺪ ًﻣﺎ ﻣﻜﻮﻧﺎﺕ ﺟﺪﻳﺪﺓ ﺗﻌﻤﻞ ﻋﻠﻰ ﺗﺨﻔﻴﺾ ﺷﺪﺓ ﺻﻮﺕ ﻃﺮﺍﺯ ﻣﻌﻴﻦ ﻣﻦ 10- 4 w/m2ﺇﻟﻰ ،6 . 31 # 10- 6 w/m2 ﻣﺎ ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻻﻧﺨﻔﺎﺽ ﺍﻟﺼﻮﺕ ﺍﻟﺬﻱ ﺣﻘﻘﻪ ﺍﺳﺘﺨﺪﺍﻡ ﻫﺬﻩ ﺍﻟﻤﻜﻮﻧﺎﺕ ﺍﻟﺠﺪﻳﺪﺓ؟ )ﺍﺳﺘﺨﺪﻡ .^I0 = 10-12 w/m2 ) (9ﺇﺫﺍ ﻛﺎﻥ ﻛﻞ ﻣﻦ ﺍﻟﺪﺍﻟﺘﻴﻦ ، y = logbx , y = bx :ﻣﻌﻜﻮﺱ ﻟﻸﺧﺮﻯ ،ﺍﺳﺘﺨﺪﻡ ﺍﻟﺨﺎﺻﻴﺔ logbbx = xﻭﺑﺮﻫﺎﻥ ﺍﻟﺨﻄﻮﺓ ﺍﻟﻮﺍﺣﺪﺓ ﻟﺨﺎﺻﻴﺔ ﻧﺎﺗﺞ ﺍﻟﻀﺮﺏ ﻓﻲ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻤﺎﺕ ،ﻟﻤﺴﺎﻋﺪﺗﻚ ﻋﻠﻰ ﺑﺮﻫﻨﺔ ﻛﻞ ﻣﻦ ﺧﺎﺻﻴﺔ ﺍﻟﻘﺴﻤﺔ ﻭﺧﺎﺻﻴﺔ ﺍﻟﻘﻮﻯ. ) (10ﺑﺎﻋﺘﺒﺎﺭ ﺍﻟﻤﻌﺎﺩﻟﺔax = b : ) (aﺣ ّﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﻟﻸﺳﺎﺱ 10 ) (bﺣ ّﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻠﻮﻏﺎﺭﻳﺘﻢ ﻟﻸﺳﺎﺱ a ) (cﺍﺳﺘﺨﺪﻡ ﻧﺘﺎﺋﺠﻚ ﻓﻲ ﺍﻟﻔﻘﺮﺗﻴﻦ ) (a), (bﻟﺘﺤﻘﻖ ﻗﺎﻋﺪﺓ ﺗﻐﻴﻴﺮ ﺍﻷﺳﺎﺱ. ) (11ﺍﻟﻬﻨﺪﺳﺔ :ﺗﺄﺧﺬ ﺑﻌﺾ ﻗﻄﺮﺍﺕ ﺍﻟﻤﻄﺮ ﺷﻜ ًﻼ ﻛﺮﻭﻳًّﺎ .ﻟﻨﻔﺮﺽ ﺃﻥ ﻧﺼﻒ ﻗﻄﺮ ﻗﻄﺮﺓ ﻣﻄﺮ ﻣﺘﺴﺎﻗﻄﺔ ﻳﺘﻨﺎﻗﺺ ﺑﻤﻘﺪﺍﺭ 0.02 mmﻧﺘﻴﺠﺔ ﺍﻟﺘﺒﺨﺮ ،ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻢ ﻗﻄﺮﺓ ﺍﻟﻤﻄﺮ ﺍﻵﻥ ،7 mm3ﻓﻤﺎ ﻃﻮﻝ ﻧﺼﻒ ﺍﻟﻘﻄﺮ ﺍﻷﺻﻠﻲ ﻟﻘﻄﺮﺓ ﺍﻟﻤﻄﺮ؟ ) (12ﺗﺼﻒ ﺍﻟﺪﺍﻟﺔ ، f(x) = 1 . 31 e0.548x :ﺍﻟﺘﺰﺍﻳﺪ ﺍﻷﺳﻲ ﻟﻌﺪﺩ ﻣﺴﺘﺨﺪﻣﻲ ﺍﻟﺸﺒﻜﺔ ﺍﻟﺪﻭﻟﻴﺔ ﻟﻠﻤﻌﻠﻮﻣﺎﺕ )ﺍﻹﻧﺘﺮﻧﺖ( ﺑﺎﻟﻤﻠﻴﻮﻥ ﻣﻦ ﻋﺎﻡ 1990ﺇﻟﻰ ﻋﺎﻡ .1995ﻟﻨﻔﺮﺽ ﺃﻥ xﺗﻤﺜّﻞ ﺍﻟﺰﻣﻦ ﺑﺎﻟﺴﻨﻮﺍﺕ ﻣﻨﺬ ﻋﺎﻡ .1990 ) (aﻣﺎ ﺃﻭﻝ ﻋﺎﻡ ﻛﺎﻥ ﻋﺪﺩ ﻣﺴﺘﺨﺪﻣﻲ ﺍﻹﻧﺘﺮﻧﺖ ﻓﻴﻪ 13ﻣﻠﻴﻮﻥ ﻣﺴﺘﺨﺪﻡ؟ ) (bﻣﺎ ﺍﻟﻤﺪﺓ ﺍﻟﻤﺴﺘﻐﺮﻗﺔ ﻟﺘﻀﺎﻋﻒ ﻋﺪﺩ ﻣﺴﺘﺨﺪﻣﻲ ﺍﻹﻧﺘﺮﻧﺖ ﻣﻨﺬ ﻋﺎﻡ 1990؟ ) (cﺣ ّﻞ ﺍﻟﻤﻌﺎﺩﻟﺔ f(x) = 1 . 31 e0.548x :ﻓﻲ x ) (dﺍﻟﻜﺘﺎﺑﺔ :ﺍﺷﺮﺡ ﻛﻴﻒ ﻳﻤﻜﻨﻚ ﺍﺳﺘﺨﺪﺍﻡ ﻣﻌﺎﺩﻟﺘﻚ ﻣﻦ ﺍﻟﻔﻘﺮﺓ ) (cﻟﺘﺘﺤﻘﻖ ﻣﻦ ﺇﺟﺎﺑﺎﺗﻚ ﻋﻦ ﺍﻟﻔﻘﺮﺗﻴﻦ ) .(a), (bﻣﺎ ﺍﻟﻨﺎﺗﺞ ﺍﻟﺬﻱ ﺣﺼﻠﺖ ﻋﻠﻴﻪ؟ 71
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻤﺘﺠﻪ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ 5-1 The Vector in the Plane ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻨﻘﺎﻁA^-3,4h, B^2, - 1h, C^3,5h : ) (aﻋﻴّﻦ ﺍﻟﺰﻭﺝ ﺍﻟﻤﺮﺗﺐ ﺍﻟﺬﻱ ﻳﻤﺜﻞ ﻣﺘﺠﻪ ﺍﻟﻤﻮﺿﻊ ﻟﻜ ّﻞ ﻣﻦ1 AB 2,1 BC 2,1 CA 2 : ) (bﺇﺫﺍ ﻛﺎﻥ ﻣﺘﺠﻪ ﺍﻟﻤﻮﺿﻊ OMﺣﻴﺚ M^4,3hﻳﻤﺜّﻞ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻤﻮﺟﻬﺔ BE ﻓﺄﻭﺟﺪ ﺇﺣﺪﺍﺛﻴﺎﺕ Eﺑﻔﺮﺽ ﺃﻥ E^x , yh ) (2ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻨﻘﺎﻁE^-3,2h, F^2, - 1h, G^4, - 2h : ﺃﻭﺟﺪ ﻣﺮ ّﻛﺒﺎﺕ ﻛﻞ ﻣﻦ ﺍﻟﻤﺘﺠﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ1 EF 2,1 GF 2,1 EG 2 : ) (a) (3ﻟﻜﻞ ﻣﻦ ﺍﻟﻤﺘﺠﻬﺎﺕ ﺍﻟﺘﺎﻟﻴﺔu =1 3, 2 2, v =1-2, 4 2, w =1-3, - 2 2, t =1 2, - 3 2 : ﺍﺭﺳﻢ ﻣﺘﺠﻪ ﺍﻟﻤﻮﺿﻊ. ) (bﺃﻭﺟﺪ ﻃﻮﻝ ﻛﻞ ﻣﺘﺠﻪ ﻭﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻲ ﻳﺼﻨﻌﻬﺎ ﻣﻊ ﺍﻻﺗﺠﺎﻩ ﺍﻟﻤﻮﺟﺐ ﻟﻤﺤﻮﺭ ﺍﻟﺴﻴﻨﺎﺕ. uﻣﺘﺠﻪ ﻭﺣﺪﺓ. ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ xﺑﺤﻴﺚ ﻳﺼﺒﺢ u =1 x , 3 2 ﺇﺫﺍ ﻛﺎﻥ )(4 5 ) (5ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻨﻘﺎﻁA^3, - 1h, B^5, - 4h, C^2 ,4h, D^4 ,1h : ﺃﺛﺒﺖ ﺃﻥ1 AB 2=1 CD 2 : ) (6ﻟﻴﻜﻦ A =1 4 , - 3 2, B =1 3x - 2 , 4y + 1 2 :ﺃﻭﺟﺪ ﻗﻴﻤﺘﻲ x, yﺑﺤﻴﺚ ﻳﻜﻮﻥA = B : ) (7ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲA^5,2h, B^-2,6h, C^-3,3h, D^4, - 1h : ﺃﺛﺒﺖ ﺃﻥ 1 AB 2 :ﻣﻌﺎﻛﺲ ﻟـ 1 CD 2 ) (8ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻨﻘﺎﻁA^2, - 3h, B^-1,3h, C^1, - 1h : ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺜﻼﺙ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ. ) ABC (9ﻣﺜﻠﺚ A 1 AE 2 = - 1 1 AB 2 ﺣﻴﺚ: 1 AE 2 ﺍﺭﺳﻢ )(a 2 = 1 BD 2 3 1 BC 2 ﺣﻴﺚ: 1 BD 2 ﺍﺭﺳﻢ )(b 2 BC 72
) (10ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻨﻘﺎﻁA^3,2h, B^1,5h, C^7, 4h : 1 BD 2=- 1 1 BA 2 ﺣﻴﺚ: D ﺍﻟﻨﻘﻄﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺃﻭﺟﺪ )(a 2 1 AE =2 3 1 AC 2 ﺣﻴﺚ: E ﺍﻟﻨﻘﻄﺔ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺃﻭﺟﺪ )(b 2 ) (cﺃﺛﺒﺖ ﺃﻥ 1 DE 2, 1 BC 2 :ﻟﻬﻤﺎ ﺍﻻﺗﺠﺎﻩ ﻧﻔﺴﻪ. ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﺎﻟﻴﺔA^2,1h, B^-3,0h, C^3, - 4h, D^x , yh : ab ) (1ﺍﻟﺰﻭﺝ ﺍﻟﻤﺮﺗﺐ ﺍﻟﺬﻱ ﻳﻤﺜﻞ ﻣﺘﺠﻪ ﺍﻟﻤﻮﺿﻊ ﻟـ :BAﻫﻮ ^-5, - 1h ab ) (2ﻣﺮ ّﻛﺒﺎﺕ BCﻫﻲ 1 6, 4 2 ab ) (3ﺍﻟﻤﺜﻠﺚ ABCﻫﻮ ﻣﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﻴﻦ. ab ) (4ﺇﺫﺍ ﻛﺎﻥ 1 AB 2=1 CD 2ﻓﺈﻥx = - 2 , y = - 5 : ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-8ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (5ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺇﺫﺍ ﻛﺎﻥ u =1-2,2 2 ﻓﺈﻥ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﺘﻲ ﻳﺼﻨﻌﻬﺎ uﻣﻊ ﺍﻻﺗﺠﺎﻩ ﺍﻟﻤﻮﺟﺐ ﻟﻤﺤﻮﺭ ﺍﻟﺴﻴﻨﺎﺕ ﻳﺴﺎﻭﻱ: a 45º b -45º c 135º d 225º ﻣﺘﺠﻪ ﻭﺣﺪﺓ ﻓﺈﻥ yﻳﺴﺎﻭﻱ: u .u =1ﺇﺫﺍ ﻛﺎﻥ 12 , y2 ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ )(6 13 a 1 b 13 c 5 d 5 13 13 13 ! 13 ) (7ﻟﺘﻜﻦ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻨﻘﺎﻁ A^1,3h, B^3,2h, C^0, - 1h, D^-4,1h :ﻓﻴﻜﻮﻥ: a 1 AB 2= 1 CD 2 b 1 AB 2 = - 1 CD 2 c 1 CD 2= - 2 1 AB 2 d 1 AB 2 = - 2 1 CD 2 ) (8ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻨﻘﺎﻁ E^2,4h, F^-1, - 5h, G^x , yh :ﺇﺫﺍ ﻛﺎﻥ 1 EF 2=1 EG 2 :ﻓﺈﻥ ) (x, yﻳﺴﺎﻭﻱ: )a (- 1, - 5 )b (- 5, - 13 )c (5,13 )d (1,5 73
ﺗﻤ ﱠﺮ ْﻥ ﺟﻤﻊ ﺍﻟﻤﺘﺠﻬﺎﺕ ﻭﻃﺮﺣﻬﺎ 5-2 Addition and Subtraction of Vectors A C ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ E A B ) (1ﻓﻲ ﺍﻟﻤﺜﻠﺚ ABCﺍﻟﻤﻘﺎﺑﻞ Eﻣﻨﺘﺼﻒ ABﻭ Fﻣﻨﺘﺼﻒ BC ) (aﻋﻴّﻦ ﺍﻟﻨﻘﻄﺔ Mﺣﻴﺚ1 BM 2=1 BE 2+1 BF 2 : F ) (bﻋﻴّﻦ ﺍﻟﻨﻘﻄﺔ Nﺣﻴﺚ1 AN 2=1 AE 2+1 AF 2 : ) (cﺃﺛﺒﺖ ﺃﻥ1 AB 2=1 MN 2 : ) (2ﻓﻲ ﺍﻟﻤﺜﻠﺚ ABCﺍﻟﻤﻘﺎﺑﻞ M ،ﻣﻨﺘﺼﻒ BC BMC ) (aﻋﻴّﻦ ﺍﻟﻨﻘﻄﺔ Pﺣﻴﺚ1 BP 2=1 MA 2+1 MC 2 : A ED ) (bﻋﻴّﻦ ﺍﻟﻨﻘﻄﺔ Qﺣﻴﺚ1 BQ 2=1 AC 2+1 MB 2 : ) (3ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﺮﺑﺎﻋﻲ ABCDﺍﻟﻤﻘﺎﺑﻞ Eﻣﻨﺘﺼﻒ ADﻭ Fﻣﻨﺘﺼﻒ BC ) (aﻋﻴّﻦ ﺍﻟﻨﻘﻄﺔ Pﺣﻴﺚ1 CP 2=1 CD 2+1 BA 2 : ) (bﺃﺛﺒﺖ ﺃﻥ1 CP 2=1 CE 2+1 BE 2 : B ) (cﺃﺛﺒﺖ ﺃﻥ2 1 EF 2=1 AB 2+1 DC 2 : F ) A, B, C, D (4ﻧﻘﺎﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ،ﺑ ّﺴﻂ: C )2 1 AB 2+4 1 BC 2+2 1 CD 2+2 1 DA 2 (a )2 1 AB 2- 3 1 AC 2+1 AD 2+2 1 BD 2 (b ) (5ﺍﻧﻄﻠﻖ ﻣﺮﻛﺐ ﺻﻴﺪ ﻣﻦ ﺍﻟﻤﻴﻨﺎﺀ ﻧﺎﺣﻴﺔ ﺍﻟﺸﺮﻕ ﻭﺍﺟﺘﺎﺯ ﻣﺴﺎﻓﺔ ،250 kmﺛﻢ ﺍﻧﺤﺮﻑ ﻋﻤﻮﺩﻳًّﺎ ﺑﺎﺗﺠﺎﻩ ﺍﻟﺸﻤﺎﻝ ﻟﻴﺠﺘﺎﺯ ﻣﺴﺎﻓﺔ ،40 kmﺛﻢ ﻋﺎﺩ ﻣﺒﺎﺷﺮﺓ ﺑﺨﻂ ﻣﺴﺘﻘﻴﻢ ﺇﻟﻰ ﺍﻟﻨﻘﻄﺔ ﺍﻟﺘﻲ ﺍﻧﻄﻠﻖ ﻣﻨﻬﺎ ﻓﻲ ﺍﻟﻤﻴﻨﺎﺀ ﺑﻤﺘﻮﺳﻂ ﺳﺮﻋﺔ ﻳﺴﺎﻭﻱ 50 km/h ) (aﺍﺳﺘﺨﺪﻡ ﺍﻟﻤﺘﺠﻬﺎﺕ ﻟﺘﻨﻤﺬﺝ ﻣﺴﺎﺭ ﺍﻟﻤﺮﻛﺐ ﻓﻲ ﺭﺣﻠﺘﻪ. ) (bﻣﺎ ﺍﻟﻮﻗﺖ ﺍﻟﺬﻱ ﺍﺳﺘﻐﺮﻗﻪ ﺍﻟﻤﺮﻛﺐ ﻟﻠﻌﻮﺩﺓ ﺇﻟﻰ ﺍﻟﻤﻴﻨﺎﺀ؟ ) (6ﻳﺴﺒﺢ ﺧﺎﻟﺪ ﻣﻦ ﺿﻔﺔ ﺍﻟﻨﻬﺮ ﺍﻟﺠﻨﻮﺑﻴﺔ ﺇﻟﻰ ﺍﻟﻀﻔﺔ ﺍﻟﺸﻤﺎﻟﻴﺔ ﺍﻟﻤﻘﺎﺑﻠﺔ ﺑﻤﺘﻮﺳﻂ ﺳﺮﻋﺔ ﻳﺴﺎﻭﻱ 35 km/hﻭﺗﺘﺤﺮﻙ ﺍﻟﻤﻴﺎﻩ ﺑﺎﺗﺠﺎﻩ ﺍﻟﺸﺮﻕ ﺑﻤﺘﻮﺳﻂ ﺳﺮﻋﺔ ﻳﺴﺎﻭﻱ .12 km/h ) (aﺍﺳﺘﺨﺪﻡ ﺍﻟﻤﺘﺠﻬﺎﺕ ﻟﺘﻨﻤﺬﺝ ﻣﻌﻄﻴﺎﺕ ﺍﻟﻤﺴﺄﻟﺔ. ) (bﺃﻭﺟﺪ ﻣﺘﻮﺳﻂ ﺍﻟﺴﺮﻋﺔ ﺍﻟﻨﺎﺗﺠﺔ ﺍﻟﺘﻲ ﻳﻨﺘﻘﻞ ﺑﻬﺎ ﺧﺎﻟﺪ ﻣﻦ ﺿﻔﺔ ﺍﻟﻨﻬﺮ ﺍﻟﺠﻨﻮﺑﻴﺔ ﺇﻟﻰ ﺍﻟﻀﻔﺔ ﺍﻟﺸﻤﺎﻟﻴﺔ ﺍﻟﻤﻘﺎﺑﻠﺔ. 74
) (7ﻣﺜّﻞ ﺍﻟﻨﻘﺎﻁ ﺍﻟﺘﺎﻟﻴﺔ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺣﻴﺚ Oﻧﻘﻄﺔ ﺍﻷﺻﻞ i , j ،ﻣﺘﺠﻬﻲ ﺍﻟﻮﺣﺪﺓ ﺍﻷﺳﺎﺳﻴﺎﻥ OA = 3 i - 4j , OB = - 2 i + 3j ،OC = - 4 i - j ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ab ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ،ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺇﺫﺍ ﻛﺎﻥ 1 AB 2+1 BC 2=1 AC 2ﻓﺈﻥAB + BC = AC : )1 AC 2+1 BA 2+1 CB 2= 0 (2 ) ABCF (3ﻣﺘﻮﺍﺯﻱ ﺃﺿﻼﻉ ﺣﻴﺚBA =1-2,3 2 ،BF =1 1, 4 2 : ab ` 1 BC 2 = 1 3,1 2 ) (4ﻓﻲ ﺍﻟﻤﺴﺘﻄﻴﻞ 1 AE 2=1 BD 2 :ABCDﺇﺫًﺍ a b 1 AC 2+1 AD 2=1 AE 2 E AD ab BC ) (5ﻓﻲ ﺍﻟﻤﺜﻠﺚ 1 AB 2-1 AC 2+1 BC 2-1 BA 2=1 AB 2 :ABC ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-9ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺇﺫﺍ ﻛﺎﻥ L =1 AC 2+ 2 1 AB 2-1 BC 2ﻓﺈﻥ: a L = 1 1 AB 2 b L =- 1 1 AB 2 2 2 c L = 3 1 AB 2 d L = - 3 1 AB 2 ) (7ﺇﺫﺍ ﻛﺎﻥ ،1 AM 2= 2(3 i - j) + 3(- 2 i ) - 2jﻓﺈﻥ 1 AM 2ﻳﺴﺎﻭﻱ: a 2 i - 3j b 3 i - 2j c -4j d 6 i - 6j ) ABCD (8ﻣﺘﻮﺍﺯﻱ ﺃﺿﻼﻉ ﺣﻴﺚ . A^-2,1h, B^0, - 2h, C^3, - 1h :ﺇﺫًﺍ ﺇﺣﺪﺍﺛﻴﺎﺕ Dﻫﻲ: a ^2 ,2h b ^-1,2h c ^1,2h d ^1, - 2h 75
) U = 4 i - 2j , V = x i - j (9ﻫﻤﺎ ﻣﺘﺠﻬﺎﻥ ﻣﺘﻮﺍﺯﻳﺎﻥ .ﻗﻴﻤﺔ xﻫﻲ: a2 b -2 c8 d -8 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) (10-13ﻟﺪﻳﻚ ﻗﺎﺋﻤﺘﺎﻥ ،ﺍﺧﺘﺮ ﻣﻦ ﺍﻟﻘﺎﺋﻤﺔ ) (2ﻣﺎ ﻳﻨﺎﺳﺐ ﻛﻞ ﺗﻤﺮﻳﻦ ﻓﻲ ﺍﻟﻘﺎﺋﻤﺔ ) (1ﻟﺘﺤﺼﻞ ﻋﻠﻰ ﺇﺟﺎﺑﺔ ﺻﺤﻴﺤﺔ. E B AC O D F ﻣﻦ ﺍﻟﺸﻜﻞ ﺃﻋﻼﻩ ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 a BD )AB + AD = (10 b AC )CE + CF = (11 c0 d DB ﺍﻟﻘﺎﺋﻤﺔ )(2 ﺍﻟﻘﺎﺋﻤﺔ )(1 a 2 BA )EA = (12 b 2 BE )2 OC = (13 c - CA d CA 76
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻀﺮﺏ ﺍﻟﺪﺍﺧﻠﻲ 5-3 Scalar Product ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﻓﻲ ﻛﻞ ﺷﻜﻞ ﻣﻤﺎ ﻳﻠﻲ ﺃﻭﺟﺪu : v : )(a )(b y 3 v u 2 60c 1v u -3 -2 --1 1 1 2 3 4x u = 4 units -2 v = 3 units -3 ) (2ﻟﻨﺄﺧﺬ u =1 2, - 1 2, v =1-3, 2 2, w =1 1, 2 2 :ﺃﻭﺟﺪ: (a) u : v (b) u : w (c) v : w )(d) (3u) : (- 2v )(e) (- 4u) : (3v ) u , v (3ﻣﺘﺠﻬﺎﻥ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺣﻴﺚ . u = 4 , v = 5, u : v = - 6 :ﺃﻭﺟﺪ: (a) ^2u + 3v h2 (b) ^3u - 2v h : ^-2u + v h ) (4ﻟﻨﺄﺧﺬ u =1 x , 4 2, v =1 2 , - 3 2 ) (aﺃﻭﺟﺪ ﻗﻴﻤﺔ xﺑﺤﻴﺚ ﻳﻜﻮﻥ uﻣﺘﻌﺎﻣﺪ ﻣﻊ .v ) (bﺃﻭﺟﺪ ﻗﻴﻤﺔ xﺑﺤﻴﺚ ﻳﻜﻮﻥ . u = 5 units ) (5ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ u =1 2 , - 2 2, v =1- 2,0 2 ﺃﻭﺟﺪ m^u , v h ) A^-1,3h, B^-3,1h, C^3, - 1h (6ﺛﻼﺙ ﻧﻘﺎﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ. ) (aﺃﻭﺟﺪAB , AC , BC : ) (bﺃﻭﺟﺪ AB : AC :ﺛﻢ ﺍﺳﺘﻨﺘﺞ ﻧﻮﻉ ﺍﻟﻤﺜﻠﺚ .ABC 77
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(7-10ﺃﻭﺟﺪ .u : v )u = 2 , v = 5 , m^u, v h = 135º (8 )u = 2 , v = 3 , m^v, u h = 30º (7 )u = 4 2 , v = 7 6 , m^u, v h = 90º (10 )u = 3 , v = 4 , m^u, v h = 180º (9 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(11-14ﺍﺳﺘﺨﺪﻡ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻹﻳﺠﺎﺩ: AB 30º 4 4 )DE : BC (12 )CF : DE (11 E2 D C4 )AD : BF (14 )BF : CF (13 5 F ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-6ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺇﺫﺍ ﻛﺎﻥ ،u : v = 0ﻓﺈﻥ u = v ab ab ) (2ﺇﺫﺍ ﻛﺎﻥ ،u =1-2, x 2, v =1 5,1 2, u = vﻓﺈﻥ x =-10 ab ab ) (3ﺇﺫﺍ ﻛﺎﻥ ،u : w = - 5 , v : w = 3ﻓﺈﻥ ^u - v h : w = - 8 ab ) (4ﺇﺫﺍ ﻛﺎﻧﺖ ، A^-1,2h, B^2,3h, C^-4,5hﻓﺈﻥ AB : AC = - 6 ) (5ﺇﺫﺍ ﻛﺎﻧﺖ ،L^-3,4h, M^0,5hﻓﺈﻥ LM = 10 ) A , B (6ﻣﺘﺠﻬﺎﻥ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺣﻴﺚ A =1 2, - 3 2, B =1 1,0 2 ` cos (A, B) = 2 13 13 ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(7-14ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ: ) (7ﺇﺫﺍ ﻛﺎﻥ ،u =1 2 , - 2 2, v =1-1, m 2, u : v = 3ﻓﺈﻥ mﺗﺴﺎﻭﻱ: a 5 b 5 c 1 d 1 -2 2 2 -2 C ) (8ﻓﻲ ﻣﺜﻠﺚ H ،ABCﻫﻮ ﺍﻟﻤﺴﻘﻂ ﺍﻟﻌﻤﻮﺩﻱ ﻟـ Cﻋﻠﻰ . AB = AB : AC 4 A2 H 4 B a -6 b 12 c -12 d6 78
A AB = AC = 3 cm , m(BC , BA) = 70% ( ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ9) 3 : ﻳﺴﺎﻭﻱ ﺗﻘﺮﻳﺒًﺎAB : AC \\ = 70c b 6.89 c3 d - 2.3 BC B : ﺷﺒﻪ ﻣﻨﺤﺮﻑ ﻗﺎﺋﻢ )ﺍﻧﻈﺮ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ( ﺣﻴﺚABCD (10) a 2.3 b -11 AB = 5 cm , AO = 2 cm , OD = 2 cm , CD = 3 cm D 3C : ﻳﺴﺎﻭﻱOB : OC 2 O c 12 d -12 2 A5 a 11 (11) AB : AC = y B 3 A2 1 -3 -2 --11 1 2 3 4 5 6 x -2 -3 C a2 b -2 c 18 d0 cos (AB, AC) = ،( ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ12) y 6C 5 4 3 A2 1 B -3-2-1 1 2 3 4 5 6 x a0 b 3 c 1 d 1 79 5 2 10
) (13ﺇﺫﺍ ﻛﺎﻥ u =1-5, m 2, v =1 2,3 2 ،u = vﻓﺈﻥ mﺗﺴﺎﻭﻱ: a 10 b 3 c - 10 d 15 3 - 10 3 2 ) (14ﺇﺫﺍ ﻛﺎﻥ AB : BC = - 2ﻓﺈﻥ ) m(BA , BCﻻ ﻳﻤﻜﻦ ﺃﻥ ﻳﺴﺎﻭﻱ: a 60º b 28º c 122º d 50º 80
ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺨﺎﻣﺴﺔ ) (1ﻟﻴﻜﻦ A^2, 3h, B^-1, 5h, C^3, - 4h ) (aﻋﻴّﻦ ﺍﻟﺰﻭﺝ ﺍﻟﻤﺮﺗﺐ ﺍﻟﺬﻱ ﻳﻤﺜﻞ ﻣﺘﺠﻪ ﺍﻟﻤﻮﺿﻊ ﻟـ BA y ) (bﺇﺫﺍ ﻛﺎﻥ ﻣﺘﺠﻪ ﺍﻟﻤﻮﺿﻊ OMﻳﻤﺜﻞ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻤﻮﺟﻬﺔ ،ACﻓﺄﻭﺟﺪ ﺇﺣﺪﺍﺛﻴﺎﺕ .M ) (2ﺇﺫﺍ ﻛﺎﻥ u =1 2, - 2 2 2 x ﻓﺎﺭﺳﻢ ﻣﺘﺠﻪ ﺍﻟﻤﻮﺿﻊ ،ﺛﻢ ﺃﻭﺟﺪ ﺍﻟﻤﻌﻴﺎﺭ ،ﻭﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ θﺍﻟﺘﻲ ﻳﺼﻨﻌﻬﺎ ﻣﻊ ﺍﻻﺗﺠﺎﻩ ﺍﻟﻤﻮﺟﺐ ﻟﻤﺤﻮﺭ ﺍﻟﺴﻴﻨﺎﺕ. 2u ﻣﺘﺠﻪ ﻭﺣﺪﺓ. u ،u =1ﻓﺄﻭﺟﺪ ﻗﻴﻤﺔ yﺑﺤﻴﺚ ﻳﺼﺒﺢ 22 ,y 2 ﺇﺫﺍ ﻛﺎﻥ )(3 3 ) A, B, C, D (4ﺃﺭﺑﻊ ﻧﻘﺎﻁ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﻣﺨﺘﻠﻔﺔ ﻭﻟﻴﺴﺖ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ .ﻟﺘﻜﻦ ﺍﻟﻨﻘﻄﺔ Nﺑﺤﻴﺚ: 1 AN 2 = 1 AD 2+1 AB 2+1 DC 2 ) (aﺍﻛﺘﺐ ﺍﻟﻤﺘﺠﻪ 1 AN 2ﺑﺪﻻﻟﺔ 1 AC 2, 1 AB 2 ) (bﺍﺳﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻤﻀﻠﻊ ABNCﻫﻮ ﻣﺘﻮﺍﺯﻱ ﺃﺿﻼﻉ. M ) (5ﺍﺳﺘﺨﺪﻡ ﺍﻟﺮﺳﻢ ﺍﻟﻤﻘﺎﺑﻞ: ) (aﺃﻭﺟﺪ 1 AM 2ﺑﺪﻻﻟﺔ 1 NA 2, 1 NM 2 AM : AB = AN : AB = 1 AB ﺃﺛﺒﺖ ﺃﻥ2 : )(b 2 BN ) ABC (6ﻣﺜﻠﺚ ﺑﺤﻴﺚA . AC = 2 3 , AB = 6, AB : AC = 18 : ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ) m(AB , AC ) (7ﻟﻴﻜﻦ A =1 x - 5, x - 5 2 , B =1 1,1 - x 2 :ﺃﻭﺟﺪ: ) (aﻗﻴﻤﺔ xﺑﺤﻴﺚ ﻳﻜﻮﻥ ﺍﻟﻤﺘﺠﻪ Aﻟﻪ ﺍﺗﺠﺎﻩ B ) (bﻗﻴﻤﺔ xﺑﺤﻴﺚ ﻳﻜﻮﻥ ﺍﻟﻤﺘﺠﻪ Aﻣﺘﻌﺎﻣ ًﺪﺍ ﻣﻊ ﺍﻟﻤﺘﺠﻪ B ) (8ﻟﻴﻜﻦ A = 2, - 1 , B = 1,2 :ﻣﺘﺠﻬﻴﻦ ﻓﻲ ﻣﺴﺘﻮﻯ ﺇﺣﺪﺍﺛﻲ .ﺃﻭﺟﺪ: (a) A : B (b) B 2 (c) 1 3A + B 2:1 A + B 2 (d) 1 A + 2B 2:1 2A - B 2 81
) (9ﻟﺘﻜﻦ ﺍﻟﻨﻘﺎﻁ A^1,2h, B^4,0h, C^3,3h :ﻓﻲ ﻣﺴﺘﻮﻯ ﺇﺣﺪﺍﺛﻲ. ﺍﻟﻤﺴﺘﻘﻴﻢ ﺍﻟﻤﺘﻌﺎﻣﺪ ﻣﻊ ABﺍﻟﻤﺎﺭ ﺑﺎﻟﻨﻘﻄﺔ Cﻳﻘﻄﻊ ﻣﺤﻮﺭ ﺍﻟﺼﺎﺩﺍﺕ ﺑﺎﻟﻨﻘﻄﺔ .D ﺃﻭﺟﺪ ﺇﺣﺪﺍﺛﻴﺎﺕ ﺍﻟﻨﻘﻄﺔ .D y C 3 2A j B x 34 i1 D A ) ABC (10ﻣﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ ،ﻃﻮﻝ ﺿﻠﻌﻪ 4 cm ﻟﻴﻜﻦa = 1 AB 2, b = 1 AC 2 : ) (aﺃﻭﺟﺪ 1 CB 2ﺑﺪﻻﻟﺔ a , bﻭﺍﺳﺘﻨﺘﺞ a - b C NB ) (bﺃﻧﺸﺊ ﺍﻟﻨﻘﻄﺔ Dﺑﺤﻴﺚ 1 AD 2= a + b ) (cﻣﺎ ﻧﻮﻉ ﺍﻟﺮﺑﺎﻋﻲ ABDC؟ ) (dﺃﻭﺟﺪ a + b N ) ABCD (11ﻣﺘﻮﺍﺯﻱ ﺃﺿﻼﻉ ،ﻣﺮﻛﺰﻩ .O CD Mﻣﻨﺘﺼﻒ ،1 AB 2ﺍﻟﻨﻘﻄﺔ Nﺣﻴﺚ1 DN 2=1 OC 2 : ) (aﺃﻭﺟﺪ 1 ON 2ﺑﺪﻻﻟﺔ 1 BC 2 O ) (bﺃﺛﺒﺖ ﺃﻥ1 BC 2 = 1 OD 2 +1 OC 2 : ) (cﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻨﻘﺎﻁ M, N, Oﺗﻘﻊ ﻋﻠﻰ ﺍﺳﺘﻘﺎﻣﺔ ﻭﺍﺣﺪﺓ. BM A ) (12ﺃﻭﺟﺪ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ θﺍﻟﻤﺤﺪﺩﺓ ﺑﺎﻟﻤﺘﺠﻬﻴﻦ 1 AB 2,1 AC 2 y 8B 7 6 5 4 3 2θ 1A C 1 2 3 4 5 6x 82
) (13ﺇﺫﺍ ﻛﺎﻧﺖ A^-4,1h, B^-1,2h, C^1, - 4hﺭﺅﻭﺱ ﺍﻟﻤﺜﻠﺚ ABC ﻓﺄﺛﺒﺖ ﺃﻥ ﺍﻟﻤﺜﻠﺚ ﻗﺎﺋﻢ ﻓﻲ .B y 4 3 B2 A1 -5 -4 -3 -2 -1-1 1x C -2 -3 -4 ) (14ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻤﺘﺠﻬﺎﺕA = - 4 i - 2j , B = - i - 3j , C =1-5,5 2 ، ) (aﺃﺛﺒﺖ ﺃﻥB ! C : ) (bﺃﻭﺟﺪA : B , A : C : ) (cﻣﺎﺫﺍ ﻧﺴﺘﻨﺘﺞ؟ ﻓﻲ ﺍﻟﺘﻤﺮﻳﻦ ) ،(15ﺍﺧﺘﺮ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (15ﻟﻴﻜﻦ ، A =1-4,3 2 :ﻓﺈﻥ ﺍﻟﻤﺘّﺠﻪ ﺍﻟﻤﺘﻌﺎﻣﺪ ﻣﻊ Aﻣﻤﺎ ﻳﻠﻲ ﻫﻮ: )(a 1 2, - 3 2 (b) 1 3, - 4 2 )(c 1 3 ,2 2 (d) 1 4 ,3 2 2 2 83
D C ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴﺔ RQ 5 B ) (1ﻟﻨﺄﺧﺬ ﻓﻲ ﺍﻟﻤﺴﺘﻮﻯ ﺍﻹﺣﺪﺍﺛﻲ ﺍﻟﻤﻨﺘﻈﻢ ﺍﻟﻤﺘﻌﺎﻣﺪ ﺍﻟﻨﻘﺎﻁ: A xP A^2, 2h, B^4, 5h, C^4 - m, 0hﺣﻴﺚ mﻋﺪﺩ ﺣﻘﻴﻘﻲ. ) (aﺃﻭﺟﺪ ﻗﻴﻤﺔ mﺑﺤﻴﺚ ﻳﻜﻮﻥ ﺍﻟﻤﺜﻠﺚ ABCﻗﺎﺋﻢ .A ) (bﻟﻘﻴﻤﺔ mﺍﻟﺘﻲ ﻭﺟﺪﺗﻬﺎ ،ﺃﺛﺒﺖ ﺃﻥ ABCﻣﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻟﻀﻠﻌﻴﻦ. ) (2ﺍﻟﺸﻜﻞ ﺍﻟﻤﻘﺎﺑﻞ ﻳﻤﺜﻞ ﻣﺮﺑ ًﻌﺎ ﺭﺳﻢ ﻓﻲ ﺩﺍﺧﻠﻪ ﻣﺴﺘﻄﻴﻞ. ﺃﺛﺒﺖ ﺃﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﻴﻦ: CQ , PRﻣﺘﻌﺎﻣﺪﻳﻦ. )ﻣﺴﺎﻋﺪﺓ :ﺍﺳﺘﺨﺪﻡ ﻋﻼﻗﺔ ﺷﺎﻝ( ) (3ﻓﻲ ﺍﻟﻤﺜﻠﺚ MABﺍﻷﺩﻧﺎﻩ ﺃﺛﺒﺖ ﺃﻥ: MA : MB = MI 2 - a2 M D 5 cm C Aa I a B 2 cm B θ ) (4ﺇﺫﺍ ﻛﺎﻥ ، A + B = w , A - 2B = - w :ﻓﺄﺛﺒﺖ ﺃﻥ: A A , Bﻟﻬﻤﺎ ﺍﻻﺗﺠﺎﻩ ﻧﻔﺴﻪ. E ) (5ﻓﻲ ﺍﻟﻤﺴﺘﻄﻴﻞ ﺍﻟﻤﻘﺎﺑﻞ Eﻣﻨﺘﺼﻒ . AB ﺃﻭﺟﺪ ) θﺍﺳﺘﺨﺪﻡ ﺍﻵﻟﺔ ﺍﻟﺤﺎﺳﺒﺔ(. 84
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻤﺠﺘﻤﻊ ﺍﻹﺣﺼﺎﺋﻲ ﻭﺍﻟﻤﻌﺎﻳﻨﺔ 6-1 Statistical Population and Sampling ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﺃﺫﻛﺮ ﻣﺮﺍﺣﻞ ﺍﻟﺒﺤﺚ ﺍﻹﺣﺼﺎﺋﻲ ﺍﻷﺭﺑﻌﺔ ﻣﺮﺗﺒﺔ. ) (2ﻣﺎ ﻫﻲ ﺃﺳﺎﻟﻴﺐ ﺟﻤﻊ ﺍﻟﺒﻴﺎﻧﺎﺕ. ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) ،(3-4ﺍﺫﻛﺮ ﻣﺎ ﻧﻮﻉ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﻲ ﺗﺼﻒ ﻛ ًّﻼ ﻣﻦ ﺍﻟﺤﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ: ) (3ﻋﺪﺩ ﺍﻟﺘﺬﺍﻛﺮ ﺍﻟﻤﺒﺎﻋﺔ ﻹﺣﺪﻯ ﺍﻟﻤﺴﺮﺣﻴﺎﺕ. ) (4ﺃﻧﻮﺍﻉ ﻣﻨﺘﺠﺎﺕ ﻣﻌﺠﻮﻥ ﺍﻷﺳﻨﺎﻥ ﺍﻟﻤﺒﺎﻋﺔ ﻟﻠﻤﺴﺘﻬﻠﻚ. ) (bﺃﻧﻮﺍﻉ ﺍﻟﻜﺘﺐ ﻓﻲ ﻣﻜﺘﺒﺔ ﺍﻟﻤﺪﺭﺳﺔ. ) (5ﺣ ّﺪﺩ ﻧﻮﻉ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻟﻜﻞ ﻣﻤﺎ ﻳﻠﻲ: ) (dﺃﻟﻮﺍﻥ ﺃﺣﺬﻳﺔ ﺍﻟﻄ ّﻼﺏ ﻓﻲ ﺻﻔﻚ. ) (aﺃﻭﺯﺍﻥ ﻃ ّﻼﺏ ﺍﻟﺼﻒ ﺍﻟﺤﺎﺩﻱ ﻋﺸﺮ ﻓﻲ ﻣﺪﺭﺳﺘﻚ. ) (cﺍﻟﺪﺧﻞ ﺍﻟﺸﻬﺮﻱ ﻟﻸﺳﺮﺓ ﻓﻲ ﺩﻭﻟﺔ ﻣﺎ. ) (6ﻋﺮﻑ ﺍﻟﻤﺠﺘﻤﻊ ﺍﻟﻤﻨﺘﻬﻲ ﻭﺍﻟﻤﺠﺘﻤﻊ ﻏﻴﺮ ﺍﻟﻤﻨﺘﻬﻲ. ) (7ﻋ ّﺮﻑ ﻛ ًّﻼ ﻣﻦ: ) (cﺍﻟﺤﺼﺮ ﺍﻟﺸﺎﻣﻞ. ) (bﺍﻟﻤﺠﺘﻤﻊ ﺍﻹﺣﺼﺎﺋﻲ. ) (aﻋﻠﻢ ﺍﻹﺣﺼﺎﺀ. ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ab ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺍﻟﻤﻮﺍﻟﻴﺪ ﻓﻲ ﺍﻟﻌﺎﻟﻢ ﺳﻨﺔ 2010ﻋﺒﺎﺭﺓ ﻋﻦ ﻣﺠﺘﻤﻊ ﻏﻴﺮ ﻣﻨﺘﻪ. ab ) (2ﻭﺣﺪﺓ ﺍﻟﺪﺭﺍﺳﺔ ﻟﻌﺪﺩ ﺯﻭﺍﺭ ﻣﺮﻛﺰ ﻋﻠﻤﻲ ﻓﻲ ﻳﻮﻡ ﻭﺍﺣﺪ ﻫﻲ ﺃﻱ ﺯﺍﺋﺮ. ab ) (3ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﺤﺼﺮ ﺍﻟﺸﺎﻣﻞ ﻓﻲ ﺩﺭﺍﺳﺔ ﺃﻧﻮﺍﻉ ﺍﻟﺴﻤﻚ ﺍﻟﻤﻮﺟﻮﺩﺓ ab ﻓﻲ ﺃﺣﺪ ﺍﻟﻤﺤﻴﻄﺎﺕ. ) (4ﻋﺪﺩ ﺍﻟﺼﻔﺤﺎﺕ ﻓﻲ ﻛﺘﺎﺏ ﻣﺎ ﻫﻮ ﺑﻴﺎﻧﺎﺕ ﻛﻤﻴﺔ ﻣﺴﺘﻤﺮﺓ. ) (5ﻋﻨﺪ ﺗﺮﺗﻴﺐ ﺍﻷﺷﻴﺎﺀ ﻧﺴﺘﺨﺪﻡ ﺑﻴﺎﻧﺎﺕ ﻛﻴﻔﻴﺔ ﻣﺮﺗﺒﺔ. 85
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-10ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻜﻴﻔﻴﺔ ﺗﻜﻮﻥ: bﻣﺮﺗﺒﺔ ﻓﻘﻂ aﺍﺳﻤﻴﺔ ﺃﻭ ﻣﺮﺗﺒﺔ dﺍﺳﻤﻴﺔ ﻓﻘﻂ cﻣﺘﻘﻄﻌﺔ ) (7ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻤﺴﺘﻤﺮﺓ ﻫﻲ ﺑﻴﺎﻧﺎﺕ: dﻛﻴﻔﻴﺔ cﻛﻤﻴﺔ bﻣﺮﺗﺒﺔ aﺍﺳﻤﻴﺔ ) (8ﻋﻨﺪ ﺇﺟﺮﺍﺀ ﺗﺤﺎﻟﻴﻞ ﺍﻟﺪﻡ ﻧﺴﺘﺨﺪﻡ: bﺍﻟﻤﻌﺎﻳﻨﺔ aﺍﻟﺤﺼﺮ ﺍﻟﺸﺎﻣﻞ dﻟﻴﺲ ﺃﻳًّﺎ ﻣﻤﺎ ﺳﺒﻖ cﺍﻟﺤﺼﺮ ﺍﻟﺸﺎﻣﻞ ﻭﺍﻟﻤﻌﺎﻳﻨﺔ ) (9ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﻜﻤﻴﺔ ﺗﻜﻮﻥ: bﻣﺮﺗﺒﺔ ﻓﻘﻂ aﺍﺳﻤﻴﺔ ﺃﻭ ﻣﺮﺗﺒﺔ dﻣﺴﺘﻤﺮﺓ ﻓﻘﻂ cﻣﺘﻘﻄﻌﺔ ﺃﻭ ﻣﺴﺘﻤﺮﺓ ) (10ﻋﺪﺩ ﺍﻟﻤﺸﺎﻫﺪﻳﻦ ﻓﻲ ﻣﺒﺎﺭﺍﺓ ﻛﺮﺓ ﻗﺪﻡ ﻫﻮ ﻋﺒﺎﺭﺓ ﻋﻦ ﺑﻴﺎﻧﺎﺕ: bﻛﻴﻔﻴﺔ ﻣﺮﺗﺒﺔ aﻛﻴﻔﻴﺔ ﺍﺳﻤﻴﺔ dﻛﻤﻴﺔ ﻣﺴﺘﻤﺮﺓ cﻛﻤﻴﺔ ﻣﺘﻘﻄﻌﺔ 86
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻌﻴﻨﺎﺕ 6-2 Samples ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﺃﻭﺟﺪ ﻛﺴﺮ ﺍﻟﻤﻌﺎﻳﻨﺔ ﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ 8ﻭﺣﺠﻢ ﺍﻟﻤﺠﺘﻤﻊ .100 ) (2ﺃﻭﺟﺪ ﺣﺠﻢ ﺍﻟﻤﺠﺘﻤﻊ ﺍﻹﺣﺼﺎﺋﻲ ﺇﺫﺍ ﻛﺎﻥ ﻃﻮﻝ ﺍﻟﻔﺘﺮﺓ 5ﻭﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ .100 ) (3ﻣﺎ ﺍﻟﻔﺮﻕ ﺑﻴﻦ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﻟﺒﺴﻴﻄﺔ ﻭﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﻟﻄﺒﻘﻴﺔ؟ ) (4ﺷﺮﻛﺔ ﺩﺭﺍﺳﺎﺕ ﺗﺮﻳﺪ ﺍﺳﺘﻔﺘﺎﺀ ﺍﻟﻌ ّﻤﺎﻝ ﻭﺃﺻﺤﺎﺏ ﺍﻟﻌﻤﻞ ﻓﻲ ﻣﻨﻄﻘﺔ ﻣﻌﻴّﻨﺔ .ﻳﺒﻠﻎ ﻋﺪﺩ ﺍﻟﻌ ّﻤﺎﻝ 200ﻋﺎﻣﻞ ﻭﺃﺻﺤﺎﺏ ﺍﻟﻌﻤﻞ .40 ) (aﺃﻱ ﻧﻮﻉ ﻋﻴﻨﺔ ﻋﺸﻮﺍﺋﻴﺔ ﺗﺴﺘﺨﺪﻡ ﻓﻲ ﻫﺬﻩ ﺍﻟﺤﺎﻟﺔ؟ ) (bﻛﻢ ﻳﺴﺎﻭﻱ ﻛﺴﺮ ﺍﻟﻤﻌﺎﻳﻨﺔ ﺇﺫﺍ ﻛﻨﺎ ﻧﺮﻳﺪ ﻋﻴﻨﺔ ﻣﻦ 60ﺷﺨﺺ؟ ) (cﻫﻞ ﻧﺴﺘﺨﺪﻡ ﺟﺪﻭﻝ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﻓﻲ ﻫﺬﻩ ﺍﻟﺪﺭﺍﺳﺔ؟ ) (dﻧﺮﻗّﻢ ﺍﻟﻌ ّﻤﺎﻝ ﻣﻦ 1ﺇﻟﻰ 200ﻭﺃﺻﺤﺎﺏ ﺍﻟﻌﻤﻞ ﻣﻦ 201ﺇﻟﻰ .240 ﺍﺳﺘﺨﺪﻡ ﺍﻟﺼﻒ ﺍﻟﺴﺎﺩﺱ ﻭﺍﻟﻌﻤﻮﺩ ﺍﻟﺴﺎﺩﺱ ﻭﻋ ّﺪﺩ ﺃ ّﻭﻝ 5ﺃﻋﺪﺍﺩ ﻟﻠﺴﺤﺐ ﺍﻟﻌﺸﻮﺍﺋﻲ ﻣﻦ ﻛﻞ ﻃﺒﻘﺔ. ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ ﺃﻓﻀﻞ ﺗﻤﺜﻴﻞ ﻟﻠﻤﺠﺘﻤﻊ ﻧﺨﺘﺎﺭ ﺍﻟﻌﻴﻨﺔ ﺑﻄﺮﻳﻘﺔ ﻋﺸﻮﺍﺋﻴﺔ. ab ab ) (2ﻻ ﻳﻮﺟﺪ ﻓﺮﻕ ﺑﻴﻦ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﻟﺒﺴﻴﻄﺔ ﻭﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﻟﻄﺒﻘﻴﺔ. ab ﻛﺴﺮ ﺍﻟﻤﻌﺎﻳﻨﺔ = ﺍﻟﻤﺠﺘﻤﻊ ﺣﺠﻢ )(3 ab ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ ) (4ﺣﺠﻢ ﺍﻟﻤﺠﺘﻤﻊ ﺍﻹﺣﺼﺎﺋﻲ = ﻃﻮﻝ ﺍﻟﻔﺘﺮﺓ #ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ ) (5ﺇﺫﺍ ﻛﺎﻥ ﻃﻮﻝ ﺍﻟﻔﺘﺮﺓ ﻳﺴﺎﻭﻱ ،70ﻭﺍﻟﻤﻔﺮﺩﺓ ﺍﻷﻭﻟﻰ ﺗﺴﺎﻭﻱ ،43 ﻓﺎﻟﻤﻔﺮﺩﺓ ﺍﻟﺨﺎﻣﺴﺔ ﺗﺴﺎﻭﻱ 322 87
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-10ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ: ) (6ﻳﺘﻮﺍﻓﺮ ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﻟﺒﺴﻴﻄﺔ: bﺍﻹﺗﺎﺣﺔ ﻟﻜﻞ ﻋﻨﺼﺮ ﻓﻴﻬﺎ ﺍﻟﻔﺮﺻﺔ ﻧﻔﺴﻬﺎ ﻓﻲ ﺍﻟﻈﻬﻮﺭ aﺷﺮﻁ ﺍﻟﺘﺤﻴﺰ dﻛﻞ ﻣﻤﺎ ﺳﺒﻖ. cﺷﺮﻁ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﻭﺍﻻﻧﺘﻈﺎﻡ ) (7ﻳﺘﻮﻓﺮ ﻓﻲ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻤﻨﺘﻈﻤﺔ: bﺷﺮﻁ ﺍﻻﻧﺘﻈﺎﻡ ﻓﻘﻂ aﺷﺮﻁ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﻭﺍﻻﻧﺘﻈﺎﻡ dﻟﻴﺲ ﺃﻳًّﺎ ﻣﻤﺎ ﺳﺒﻖ cﺷﺮﻁ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﻓﻘﻂ ) (8ﻋﻨﺪ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻄﺒﻘﻴﺔ ﻳﻔﻀﻞ ﺃﻥ: bﺗﻜﻮﻥ ﻃﺒﻘﺎﺕ ﺍﻟﻤﺠﺘﻤﻊ ﻣﺘﺠﺎﻧﺴﺔ ﺑﺪﺍﺧﻠﻬﺎ ﻣﺨﺘﻠﻔﺔ ﻓﻲ ﻣﺎ ﺑﻴﻨﻬﺎ aﺗﻜﻮﻥ ﻋﺸﻮﺍﺋﻴﺔ ﻭﻣﻨﺘﻈﻤﺔ dﻟﻴﺲ ﺃﻳًّﺎ ﻣﻤﺎ ﺳﺒﻖ cﻻ ﺗﺘﻴﺢ ﻟﻜﻞ ﻋﻨﺼﺮ ﻓﻴﻬﺎ ﺍﻟﻔﺮﺻﺔ ﻧﻔﺴﻬﺎ ﻓﻲ ﺍﻟﻈﻬﻮﺭ ) (9ﺇﺫﺍ ﻛﺎﻥ ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ ﻳﺴﺎﻭﻱ 100ﻭﺣﺠﻢ ﺍﻟﻤﺠﺘﻤﻊ ﺍﻹﺣﺼﺎﺋﻲ ﻳﺴﺎﻭﻱ ،2 000ﻓﻜﺴﺮ ﺍﻟﻤﻌﺎﻳﻨﺔ ﻳﺴﺎﻭﻱ: a 0.3 b 0.5 c 0.05 d 0.02 ) (10ﺇﺫﺍ ﻛﺎﻥ ﻃﻮﻝ ﺍﻟﻔﺘﺮﺓ ﻳﺴﺎﻭﻱ 40ﻭﺣﺠﻢ ﺍﻟﻤﺠﺘﻤﻊ ﺍﻹﺣﺼﺎﺋﻲ ﻳﺴﺎﻭﻱ ،1000ﻓﺤﺠﻢ ﺍﻟﻌﻴﻨﺔ ﻳﺴﺎﻭﻱ: a 35 b 25 c 40 d 30 88
ﺗﻤ ﱠﺮ ْﻥ ﺃﺳﺎﻟﻴﺐ ﻋﺮﺽ ﺍﻟﺒﻴﺎﻧﺎﺕ 6-3 Ways to Display Data ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﺃﺛﻨﺎﺀ ﻋﻤﻞ ﺍﻟﻄﻼﺏ ﻓﻲ ﻣﺠﻤﻮﻋﺎﺕ ﻋﻠﻰ ﻧﺸﺎﻁ ﻣﻌﻴﻦ ﻓﻲ ﺍﻟﺼﻒ ﺳﺠﻞ ﺍﻟﻤﻌﻠﻢ ﺍﻟﻤﻼﺣﻈﺎﺕ ﺍﻟﻤﺒﻴّﻨﺔ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ: ﻳﺴﺘﻤﻊ ﻓﻘﻂ ﻳﺤﺎﻭﺭ ﻭﻳﻨﺎﻗﺶ ﺍﻟﻔﺌﺔ ﻳﺘﺨﺬ ﻗﺮﺍ ًﺭﺍ ﺍﻟﻤﺠﻤﻮﻉ ﻏﻴﺮ ﻣﺸﺎﺭﻙ 4 6 22 ﺍﻟﺘﻜﺮﺍﺭ 5 7 ) (aﺃﻭﺟﺪ ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﺒﻲ ﻭﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻤﺌﻮﻱ ﻟﻜﻞ ﻓﺌﺔ. ) (bﺍﻋﺮﺽ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺍﻟﻘﻄﺎﻋﺎﺕ ﺍﻟﺪﺍﺋﺮﻳﺔ. ) (2ﻳﺒﻴّﻦ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ ﻭﻗﺖ ﺧﺮﻭﺝ ﺍﻟﺴﻴﺎﺭﺍﺕ ﻣﻦ ﺃﺣﺪ ﺍﻟﻤﻨﺘﺠﺎﺕ ﺍﻟﺴﻴﺎﺣﻴﺔ ﺑﻌﺪ ﻇﻬﺮ ﺃﺣﺪ ﺍﻷﻳﺎﻡ. ﺍﻟﻤﺠﻤﻮﻉ 4- 5- 6- 7- 8- 9-ﺍﻟﻔﺌﺔ 17 31 25 14 7 6 100ﺍﻟﺘﻜﺮﺍﺭ ) (aﺃﻛﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺑﺈﺿﺎﻓﺔ ﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ. ) (bﺍﺭﺳﻢ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺘﻜﺮﺍﺭﻱ. ) (cﺍﺭﺳﻢ ﺍﻟﻤﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻭﻣﻨﻪ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺘﻜﺮﺍﺭﻱ. ) (3ﻳﻌﺮﺽ ﻣﺪﻳﺮ ﺃﺣﺪ ﻣﻄﺎﻋﻢ ﺍﻟﻮﺟﺒﺎﺕ ﺍﻟﺴﺮﻳﻌﺔ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ ﻋﺪﺩ ﺍﻟﻮﺟﺒﺎﺕ ﺍﻟﻤﺮﺳﻠﺔ ﺇﻟﻰ ﺍﻟﻤﻨﺎﺯﻝ ﺧﻼﻝ ﺃﺣﺪ ﺍﻷﺳﺎﺑﻴﻊ ،ﻭﺑُﻌﺪ ﻫﺬﻩ ﺍﻟﻤﻨﺎﺯﻝ ﻋﻦ ﺍﻟﻤﻄﻌﻢ. ﺍﻟﻤﺠﻤﻮﻉ 0- 4- 8- 12- 16- 20- 24-ﺍﻟﺒﻌﺪ )(km 12 25 21 20 12 8 4 102ﺍﻟﺘﻜﺮﺍﺭ ) (aﺃﻛﻤﻞ ﺍﻟﺠﺪﻭﻝ ﺑﺈﺿﺎﻓﺔ ﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ. ) (bﺍﺭﺳﻢ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺘﻜﺮﺍﺭﻱ. ) (cﺍﺭﺳﻢ ﺍﻟﻤﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻭﻣﻨﻪ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺘﻜﺮﺍﺭﻱ. 89
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ab ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ) (1ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﺒﻲ ﻳﺴﺎﻭﻱ :ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﺮﻛﺰﻳﺔ ﻟﻘﻄﺎﻉ 360º # ab ) (2ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﺒﻲ = ﻣﺠﻤﻮﻉ ﺍﻟﺘﻜﺮﺍﺭﺍﺕ ﺗﻜﺮﺍﺭ ﺍﻟﻘﻴﻤﺔ ab ab ) (3ﻣﺮﻛﺰ ﻓﺌﺔ 20-ﻃﻮﻟﻬﺎ 10ﻳﺴﺎﻭﻱ 30 ) (4ﻻ ﻳﻤﻜﻦ ﺭﺳﻢ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻗﺒﻞ ﺍﻟﻤﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ. ) (5ﻳﻤﻜﻦ ﺗﻤﺜﻴﻞ ﺑﻴﺎﻧﺎﺕ ﻛﻤﻴﺔ ﻣﺴﺘﻤﺮﺓ ﺑﺎﻟﻘﻄﺎﻋﺎﺕ ﺍﻟﺪﺍﺋﺮﻳﺔa b . y ﺃﻋﺪﺍﺩ ﺍﻟﻤﺮﺍﺟﻌﻴﻦ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-10ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ40 . 30 ﻓﻲ ﺍﻟﺘﻤﺮﻳﻨﻴﻦ ) (6-7ﺍﺳﺘﺨﺪﻡ ﺍﻟﻤﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﻤﻘﺎﺑﻞ ﺍﻟﺬﻱ ﻳﻤﺜﻞ ﺃﻋﺪﺍﺩ 20 15 10 ﺍﻟﻤﺮﺍﺟﻌﻴﻦ ﻓﻲ ﺇﺣﺪﻯ ﺍﻟﻮﺯﺍﺭﺍﺕ ﺧﻼﻝ ﺳﺎﻋﺎﺕ ﺍﻟﺪﻭﺍﻡ ﺍﻟﻴﻮﻣﻲ ﻓﻲ ﺩﻭﻟﺔ ﻣﺎ. 7 9 11 13 15 x ) (6ﺇﺟﻤﺎﻟﻲ ﻋﺪﺩ ﺍﻟﻤﺮﺍﺟﻌﻴﻦ ﻫﻮ: ﺳﺎﻋﺎﺕ ﺍﻟﺪﻭﺍﻡ a 80 b 65 c 70 d 75 a4 ) (7ﻃﻮﻝ ﺍﻟﻔﺘﺮﺓ ﻳﺴﺎﻭﻱ: ﺍﻟﺘﺮﺑﻴﺔ ﺍﻟﺒﺪﻧﻴﺔ b3 c2 d1 ﻟﻐﺔ ﻓﺮﻧﺴﻴﺔ ﺍﻟﺘﺮﺑﻴﺔ ﺍﻟﻔﻨﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) (8-10ﺍﺳﺘﺨﺪﻡ ﺍﻟﺸﻜﻞ ﺍﻟﺒﻴﺎﻧﻲ ﺍﻟﻤﻘﺎﺑﻞ ﺍﻟﺬﻱ ﻳﻤﺜﻞ ﺍﻟﻤﻮﺍﺩ ﺍﻻﺧﺘﻴﺎﺭﻳﺔ ﺍﻟﻤﻔﻀﻠّﺔ a 120º ﻟﺪﻯ ﻃ ّﻼﺏ ﺇﺣﺪﻯ ﺍﻟﻤﺪﺍﺭﺱ ﺍﻟﺒﺎﻟﻎ ﻋﺪﺩﻫﻢ 200ﻃﺎﻟﺐ. a 30 a 50 ﻟﻐﺔ ﺇﻧﺠﻠﻴﺰﻳﺔ ) (8ﻛﻢ ﻳﺴﺎﻭﻱ ﻗﻴﺎﺱ ﺍﻟﺰﺍﻭﻳﺔ ﺍﻟﻤﺮﻛﺰﻳﺔ ﻟﻘﻄﺎﻉ ﺍﻟﺘﺮﺑﻴﺔ ﺍﻟﺒﺪﻧﻴﺔ؟ b 45º c 180º d 90º b 25 b 40 ) (9ﻛﻢ ﻳﺒﻠﻎ ﻋﺪﺩ ﺍﻟﻄ ّﻼﺏ ﺍﻟﻤﺴ ّﺠﻠﻴﻦ ﺑﺎﻟّﻠﻐﺔ ﺍﻹﻧﺠﻠﻴﺰﻳﺔ؟ c 35 d 40 ) (10ﻛﻢ ﻳﺒﻠﻎ ﻋﺪﺩ ﺍﻟﻄ ّﻼﺏ ﺍﻟﻤﺴﺠﻠﻴﻦ ﺑﺎﻟﻤﻮﺍﺩ ﺍﻟﻠﻐﻮﻳّﺔ؟ c 55 d 60 90
ﺗﻤ ﱠﺮ ْﻥ ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ 6-4 Standard Deviation ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ﺍﻟﻔﺌﺔ )ﺑﺎﻟﺪﻳﻨﺎﺭ( ) (1ﺃﻭﺟﺪ ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ .5 , 5 , 5 , 5 :ﻓ ّﺴﺮ ﺇﺟﺎﺑﺘﻚ. ﺍﻟﺘﻜﺮﺍﺭ ) (2ﺳ ّﺠﻞ ﺻﺎﺣﺐ ﻣﺘﺠﺮ ﺃﻥ ﻣﺒﻴﻊ ﺍﻟﺴﻠﻊ ﺑﺤﺴﺐ ﺃﺳﻌﺎﺭﻫﺎ ﻫﻮ ﻛﻤﺎ ﻳﻠﻲ: ﺍﻟﻤﺠﻤﻮﻉ 0- 10- 20- 30- 40- 50- 190 300 470 280 260 100 1 600 ) (aﺃﻭﺟﺪ ﺍﻟﻤﺘﻮ ّﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ. ) (bﺃﻭﺟﺪ ﺍﻟﺘﺒﺎﻳﻦ ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻷﺳﻌﺎﺭ ﺍﻟﺴﻠﻊ. ) (3ﺗﺼﻨﻊ ﻣﺆﺳﺴﺔ ﻋﺒﻮﺍﺕ ﻟﺤﻔﻆ ﺍﻷﺟﺒﺎﻥ ﻋﻠﻰ ﺃﻥ ﺗﺤﺘﻮﻱ ﺍﻟﻌﻠﺒﺔ ﺍﻟﻮﺍﺣﺪﺓ ﻋﻠﻰ 170 gﻣﻦ ﺍﻟﺠﺒﻨﺔ .ﻭﻟﻜﻦ ﻋﻨﺪ ﻭﺯﻥ 200ﻋﻠﺒﺔ ،ﺟﺎﺀﺕ ﺍﻷﻭﺯﺍﻥ ﻛﻤﺎ ﻳﺒﻴﻦ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﺍﻟﺘﺎﻟﻲ: ﺍﻟﻮﺯﻥ ﺍﻟﻤﺠﻤﻮﻉ 167 168 169 170 171 172 173 174 g 10 15 24 55 48 34 8 6 200ﺍﻟﺘﻜﺮﺍﺭ ) (aﺃﻭﺟﺪ ﺍﻟﻤﺘﻮ ّﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ﻟﻬﺬﻩ ﺍﻷﻭﺯﺍﻥ. ) (bﺃﻭﺟﺪ ﺍﻟﺘﺒﺎﻳﻦ ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻬﺬﻩ ﺍﻷﻭﺯﺍﻥ. ab ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ab ab ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﺇﺫﺍ ﺃﺿﻔﻨﺎ ﺍﻟﻌﺪﺩ ﻧﻔﺴﻪ ﻋﻠﻰ ﺟﻤﻴﻊ ﺍﻷﻋﺪﺍﺩ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ ،ﻧﺤﺼﻞ ﻋﻠﻰ ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻧﻔﺴﻪ. 91 ) (2ﺇﺫﺍ ﺿﺮﺑﻨﺎ ﺍﻷﻋﺪﺍﺩ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺎﻟﻌﺪﺩ ﻧﻔﺴﻪ ،ﻻ ﻳﺘﻐﻴّﺮ ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ. ) (3ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻳﻜﻮﻥ ﺩﺍﺋ ًﻤﺎ ﺃﺻﻐﺮ ﻣﻦ ﺍﻟﻤﺘﻮ ّﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ. ) (4ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻳﻜﻮﻥ ﺩﺍﺋ ًﻤﺎ ﻣﻮﺟﺒًﺎ.
ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-9ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (5ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺘﺒﺎﻳﻦ ﻳﺴﺎﻭﻱ ،100ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻳﺴﺎﻭﻱ: a !10 b -10 c 10 ﻟﻴﺲ ﺃﻳًﺎ ﻣﻤﺎ ﺳﺒﻖ d ) (6ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻠﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ 1 , 2 , 3 , 4 , 4 , 5 , 5 , 6 :ﻳﺴﺎﻭﻱ: a 0.78 b 1.56 c 2.78 d 3.78 ) (7ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻳﺴﺎﻭﻱ ﺻﻔ ًﺮﺍ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﺒﻴﺎﻧﺎﺕ: bﻧﺼﻔﻬﺎ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﻀﺮﺑﻲ ﻟﻠﻨﺼﻒ ﺍﻵﺧﺮ aﻣﺘﺴﺎﻭﻳﺔ cﻧﺼﻔﻬﺎ ﻫﻮ ﺍﻟﻤﻌﻜﻮﺱ ﺍﻟﺠﻤﻌﻲ ﻟﻠﻨﺼﻒ ﺍﻵﺧﺮ dﻻ ﻳﻤﻜﻦ ﺃﻥ ﻳﺴﺎﻭﻱ ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﺻﻔ ًﺮﺍ. ) (8ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻫﻮ ﻣﻘﻴﺎﺱ: bﺗﺸﺘﺖ ﺍﻟﻘﻴﻢ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ aﺗﻤﺮﻛﺰ ﺍﻟﻘﻴﻢ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ dﻟﻴﺲ ﺃﻳًّﺎ ﻣﻤﺎ ﺳﺒﻖ cﺍﻧﺤﺮﺍﻑ ﺍﻟﻘﻴﻢ ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ ) (9ﻳﺴﺎﻭﻱ ﺍﻧﺤﺮﺍﻑ ﻣﻌﻴﺎﺭﻱ ﻟﺒﻴﺎﻧﺎﺕ ﻣﻌﻴّﻨﺔ .4ﺑﻌﺪ ﺿﺮﺏ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻓﻲ ﺍﻟﻌﺪﺩ ،3ﻳﺼﺒﺢ ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ: a 13 b 12 c 11 d 10 92
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ 6-5 Empirical Rule ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﻣﺎ ﻫﻮ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌ ّﻲ؟ ) (2ﻣﺎ ﻫﻲ ﺧﺼﺎﺋﺺ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌ ّﻲ؟ ) (3ﻣﺎ ﺍﻟﺸﻜﻞ ﺍﻟﺬﻱ ﻳﺄﺧﺬﻩ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌ ّﻲ؟ ) (4ﺃﻛﻤﻞ ﺍﻟﺮﺳﻢ ﺃﺩﻧﺎﻩ: 99.7% 68% 13.5% 13.5% x - 3σ x-σ x x+σ x + 3σ ) (5ﺗﺒﻴﻦ ﻹﺣﺪﻯ ﺍﻟﻤﺆﺳﺴﺎﺕ ﺍﻟﺼﻨﺎﻋﻴﺔ ﺃﻥ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ﻷﺭﺑﺎﺣﻬﺎ ﺍﻟﺸﻬﺮﻳﺔ 1 250ﺩﻳﻨﺎ ًﺭﺍ ﺑﺎﻧﺤﺮﺍﻑ ﻣﻌﻴﺎﺭﻱ 225ﺩﻳﻨﺎ ًﺭﺍ ﻭﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻟﻬﺬﻩ ﺍﻷﺭﺑﺎﺡ ﻫﻮ ﻋﻠﻰ ﺷﻜﻞ ﺍﻟﺠﺮﺱ )ﺗﻮﺯﻳﻊ ﻃﺒﻴﻌﻲ(. ) (aﻃﺒﻖ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ. ) (bﻫﻞ ﻭﺻﻠﺖ ﺃﺭﺑﺎﺡ ﻫﺬﻩ ﺍﻟﻤﺆﺳﺴﺔ ﺇﻟﻰ 2 000ﺩﻳﻨﺎﺭ؟ ) (6ﻳﻌﻠﻦ ﻣﺼﻨﻊ ﻹﻧﺘﺎﺝ ﺍﻷﺳﻼﻙ ﺍﻟﻤﻌﺪﻧﻴﺔ ﺃﻥ ﻣﺘﻮﺳﻂ ﺗﺤﻤﻞ ﺍﻟﺴﻠﻚ ﻫﻮ 1 400 kgﺑﺎﻧﺤﺮﺍﻑ ﻣﻌﻴﺎﺭﻱ .200 kg ﻋﻠﻰ ﺍﻓﺘﺮﺍﺽ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜﻞ ﻟﺘﻮﺯﻳﻊ ﺗﺤﻤﻞ ﺍﻷﺳﻼﻙ ﺍﻟﻤﻌﺪﻧﻴﺔ ﻳﻘﺘﺮﺏ ﻛﺜﻴ ًﺮﺍ ﻣﻦ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌﻲ: ) (aﻃﺒﻖ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ. ) (bﺃﻭﺟﺪ ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻸﺳﻼﻙ ﺍﻟﻤﻌﺪﻧﻴﺔ ﺍﻟﺘﻲ ﻳﺰﻳﺪ ﻣﺘﻮﺳﻂ ﺗﺤﻤﻠﻬﺎ ﻋﻦ .1 000 kg 93
ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-5ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab ) (1ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﺷﻜﻞ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌ ّﻲ ﺟﺮ ًﺳﺎ ﻏﻴﺮ ﻣﺘﻤﺎﺛﻞ. ab ) (2ﻓﻲ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌ ّﻲ ﺍﻟﻤﻨﻮﺍﻝ ﻭﺍﻟﻮﺳﻴﻂ ﻏﻴﺮ ﻣﺘﺴﺎﻭﻳﻴﻦ. ab ) (3ﻓﻲ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌ ّﻲ ﺍﻟﻔﺘﺮﺓ @ 6x - σ , x + σﺗﺤﺘﻮﻱ ﻋﻠﻰ 95%ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ. ab ) (4ﻓﻲ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌ ّﻲ 99.7%ﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺗﻮﺟﺪ ﻓﻲ ﺍﻟﻔﺘﺮﺓ @.6x - 3σ , x + 3σ ) (5ﺗﺴﺘﺨﺪﻡ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ ﻟﺪﺭﺍﺳﺔ ﺍﻟﺠﻮﺩﺓ ﻓﻲ ﻣﻮﺍﻗﻒ ﺇﺣﺼﺎﺋﻴﺔ ﻣﺘﻌﺪﺩﺓ ﻟﻌﻴﻨﺎﺕ ﺫﺍﺕ ﻗﻴﻢ ﻣﻔﺮﺩﺓa b . ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(6-8ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (6ﺗﺰﻋﻢ ﺷﺮﻛﺔ ﺃﻥ ﻣﺘﻮﺳﻂ ﻋﻤﺮ ﻣﻨﺘﺠﻬﺎ ﻫﻮ 50ﺷﻬ ًﺮﺍ ﻣﻊ ﺍﻧﺤﺮﺍﻑ ﻣﻌﻴﺎﺭﻱ 5ﺃﺷﻬﺮ .ﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻠﻤﻨﺘﺠﺎﺕ ﺍﻟﺘﻲ ﻳﺰﻳﺪ ﻋﻤﺮﻫﺎ ﻋﻦ 50ﺷﻬ ًﺮﺍ ﻫﻲ: a 50% b 55% c 45% d 40% ) (7ﺍﻟﺘﻤﺜﻴﻞ ﺍﻷﻓﻀﻞ ﻟﻠﺘﻮﺯﻳﻊ ﺍﻟﻄﺒﻴﻌ ّﻲ ﻫﻮ: ab c d 99.7% bﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ ) (8ﺍﻟﻔﺘﺮﺓ @ 6x - 2σ , x + 2σﺗﺤﺘﻮﻱ ﻋﻠﻰ: 95% dﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ 68% aﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ 90% cﻣﻦ ﺍﻟﺒﻴﺎﻧﺎﺕ 94
ﺗﻤ ﱠﺮ ْﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ 6-6 Standarized Value ﺍﻟﻤﺠﻤﻮﻋﺔ Aﺗﻤﺎﺭﻳﻦ ﻣﻘﺎﻟﻴﺔ ) (1ﺃﻛﻤﻞ ﺍﻟﺠﻤﻠﺔ ﺍﻟﺘﺎﻟﻴﺔ: ﻗﻴﻤﺔ ﻣﻔﺮﺩﺓ ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﻋﻦ . ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻫﻲ ﻣﺆﺷﺮ ﻳﺪﻝ ﻋﻠﻰ ﻟﻘﻴﻢ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. ﻭﺫﻟﻚ ﺑﺎﺳﺘﺨﺪﺍﻡ ) (2ﻓﻲ ﺃﺣﺪ ﺍﻻﺧﺘﺒﺎﺭﺍﺕ ﺣﻴﺚ ﺍﻟﺪﺭﺟﺔ ﺍﻟﻌﻈﻤﻰ ،20ﺟﺎﺀﺕ ﺩﺭﺟﺔ ﺃﺣﺪ ﺍﻟﻄﻼﺏ 15ﻣﻊ ﻣﺘﻮﺳﻂ ﺣﺴﺎﺑﻲ 14 ﻭﺍﻧﺤﺮﺍﻑ ﻣﻌﻴﺎﺭﻱ .4ﻣﺎ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻟﻠﺪﺭﺟﺔ 15ﻣﻘﺎﺭﻧﺔ ﺑﺒﻘﻴﺔ ﺩﺭﺟﺎﺕ ﻫﺬﺍ ﺍﻻﺧﺘﺒﺎﺭ؟ ) (3ﻟﻨﺄﺧﺬ ﺍﻟﺒﻴﺎﻧﺎﺕ.5 ،5 ،6 ،7 ،7 : ) (aﺃﻭﺟﺪ :ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ، xﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ σﻟﻬﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. ) (bﺃﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻟﻬﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ. ) (4ﻓﻲ ﺍﻟﻤﺪﻳﻨﺔ Aﻳﺰﻥ ﺃﺣﺪ ﺍﻟﺮﺟﺎﻝ 75 kgﻣﻊ ﻣﺘﻮﺳﻂ ﺣﺴﺎﺑﻲ ﻟﻠﺮﺟﺎﻝ 70 kgﻭﺍﻧﺤﺮﺍﻑ ﻣﻌﻴﺎﺭﻱ .5 kg ﻭﻓﻲ ﺍﻟﻤﺪﻳﻨﺔ Bﻳﺰﻥ ﺃﺣﺪ ﺍﻟﺮﺟﺎﻝ 80 kgﻣﻊ ﻣﺘﻮﺳﻂ ﺣﺴﺎﺑﻲ ﻟﻠﺮﺟﺎﻝ 76 kgﻭﺍﻧﺤﺮﺍﻑ ﻣﻌﻴﺎﺭﻱ .8 kg ﺃﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ z1ﻟﻮﺯﻥ 75 kgﻓﻲ ﺍﻟﻤﺪﻳﻨﺔ Aﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ z2ﻟﻮﺯﻥ 80 kgﻓﻲ ﺍﻟﻤﺪﻳﻨﺔ .B ) (5ﻓﻲ ﺍﺧﺘﺒﺎﺭﺍﺕ ﻣﺎﺩﺓ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻧﺎﻝ ﺧﺎﻟﺪ ﺍﻟﺪﺭﺟﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻣﻦ .12 ،15 ،16 ،17 :20 ﺃﻣﺎ ﻓﻲ ﺍﺧﺘﺒﺎﺭﺍﺕ ﻣﺎﺩﺓ ﺍﻟﻜﻴﻤﻴﺎﺀ ﻓﻘﺪ ﻧﺎﻝ ﺍﻟﺪﺭﺟﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ ﻣﻦ .11 ،13 ،15 ،9 :20 ) (aﺃﻭﺟﺪ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ z1ﻟﻠﺪﺭﺟﺔ 15ﻓﻲ ﻣﺎﺩﺓ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ z2ﻟﻠﺪﺭﺟﺔ 15ﻓﻲ ﻣﺎﺩﺓ ﺍﻟﻜﻴﻤﻴﺎﺀ. ) (bﻓﻲ ﺃ ّﻱ ﻣﺎﺩﺓ ﻛﺎﻧﺖ ﺍﻟﺪﺭﺟﺔ 15ﻫﻲ ﺃﻓﻀﻞ ﻣﻘﺎﺭﻧﺔ ﺑﺒﻘﻴﺔ ﺍﻟﺪﺭﺟﺎﺕ؟ ﺍﻟﻤﺠﻤﻮﻋﺔ Bﺗﻤﺎﺭﻳﻦ ﻣﻮﺿﻮﻋﻴﺔ ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(1-4ﻇﻠّﻞ aﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺻﺤﻴﺤﺔ ﻭ bﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻌﺒﺎﺭﺓ ﺧﺎﻃﺌﺔ. ab x-x ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ = )(1 ab σ ab ) (2ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﺗﺆﺷﺮ ﺇﻟﻰ ﺗﺸﺘﺖ ﻗﻴﻤﺔ ﻋﻦ ﺑﻘﻴﺔ ﻗﻴﻢ ﺍﻟﺒﻴﺎﻧﺎﺕ. 95 ) (3ﻓﻲ ﺑﻴﺎﻧﺎﺕ ﺣﻴﺚ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ x = 14ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ σ = 4 ﻓﺈﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻟﻠﻤﻔﺮﺩﺓ x = 16ﻫﻲz = 0.5 :
) (4ﻓﻲ ﺑﻴﺎﻧﺎﺕ ﺣﻴﺚ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ x = 12ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻟﻠﻤﻔﺮﺩﺓ x = 15 ab ﻫﻲ ، z = 0.4 :ﻓﺈﻥ ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱσ = 7.5 : ﻓﻲ ﺍﻟﺘﻤﺎﺭﻳﻦ ) ،(5-8ﻇﻠّﻞ ﺭﻣﺰ ﺍﻟﺪﺍﺋﺮﺓ ﺍﻟﺪﺍﻝ ﻋﻠﻰ ﺍﻹﺟﺎﺑﺔ ﺍﻟﺼﺤﻴﺤﺔ. ) (5ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻟﻠﻤﻔﺮﺩﺓ 14ﻣﻘﺎﺭﻧﺔ ﺑﻘﻴﻢ ﺑﻴﺎﻧﺎﺕ ﺣﻴﺚ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ 12.5ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ 6 ﻫﻲ: a -0.25 b 0.25 c 2.5 d -2.5 ) (6ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻟﻤﻔﺮﺩﺓ ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﻫﻲ 0.625ﻭﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ 12ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ 8ﻓﺈﻥ ﻫﺬﻩ ﺍﻟﻤﻔﺮﺩﺓ ﺗﺴﺎﻭﻱ: a7 b -7 c 17 d -17 ) (7ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻟﻠﻤﻔﺮﺩﺓ 14ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﻫﻲ 0.6ﻭﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ 11ﻓﺈﻥ ﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ ﻟﻘﻴﻢ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﻫﻮ: a 0.2 b -0.2 c -5 d5 ) (8ﺍﻟﻘﻴﻤﺔ ﺍﻟﻤﻌﻴﺎﺭﻳﺔ ﻟﻠﻤﻔﺮﺩﺓ 18ﻣﻦ ﺑﻴﺎﻧﺎﺕ ﻫﻲ 0.75ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ 8ﻓﺈﻥ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ﻫﻮ: a 24 b 12 c -12 d -24 96
ﺍﺧﺘﺒﺎﺭ ﺍﻟﻮﺣﺪﺓ ﺍﻟﺴﺎﺩﺳﺔ ) (1ﻫﻞ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﺤﺼﺮ ﺍﻟﺸﺎﻣﻞ ﻓﻲ ﺩﺭﺍﺳﺔ ﺍﻟﻤﺠﺘﻤﻌﺎﺕ ﺍﻹﺣﺼﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺃﻡ ﻻ؟ ﺍﺷﺮﺡ ﺍﻟﺴﺒﺐ. ) (aﺩﺭﺍﺳﺔ ﻛﻤﻴﺔ ﺍﻟﺴﻜﺮ ﺍﻟﻤﻮﺟﻮﺩﺓ ﻓﻲ ﺍﻟﺪﻡ ﻋﻨﺪ ﺃﺣﺪ ﺍﻷﺷﺨﺎﺹ. ) (bﺇﻳﺠﺎﺩ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ﻷﻭﺯﺍﻥ ﻃﻼﺏ ﺻﻔﻚ. ) (2ﻓﻲ ﺇﺣﺪﻯ ﺍﻟﻤﺆﺳﺴﺎﺕ ﺗ ّﻢ ﺳﺤﺐ ﻋﻴﻨﺔ ﻋﺸﻮﺍﺋﻴﺔ ﻃﺒﻘﻴﺔ ﻣﻜﻮﻧﺔ ﻣﻦ 70ﻓﺮ ًﺩﺍ ﻭﻛﺴﺮ ﺍﻟﻤﻌﺎﻳﻨﺔ ﻟﻬﺬﻩ ﺍﻟﻌﻴﻨﺔ 0.08 ) (aﺃﻭﺟﺪ ﻋﺪﺩ ﺍﻷﻓﺮﺍﺩ ﺍﻟﻌﺎﻣﻠﻴﻦ ﻓﻲ ﻫﺬﻩ ﺍﻟﻤﺆﺳﺴﺔ )ﺍﻟﻤﺠﺘﻤﻊ ﺍﻹﺣﺼﺎﺋﻲ(. ) (bﻋﻠ ًﻤﺎ ﺃﻥ ﺍﻟﻤﺆﺳﺴﺔ ﻣﻜﻮﻧﺔ ﻣﻦ ﺛﻼﺙ ﻓﺌﺎﺕ :ﺍﻟﻔﺌﺔ Aﺣﻴﺚ ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻄﺒﻘﻴﺔ ، 30ﺍﻟﻔﺌﺔ Bﺣﻴﺚ ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻄﺒﻘﻴﺔ ،30ﺍﻟﻔﺌﺔ Cﺣﻴﺚ ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻄﺒﻘﻴﺔ ،10ﺃﻭﺟﺪ ﺣﺠﻢ ﺍﻟﻌﻴﻨﺔ ﺍﻟﻤﻨﺎﻇﺮﺓ ﻟﻜ ّﻞ ﻓﺌﺔ. ) (3ﻓﻲ ﺇﺣﺪﻯ ﺍﻟﺸﺮﻛﺎﺕ ﺗ ّﻢ ﺳﺤﺐ ﻋﻴﻨﺔ ﻋﺸﻮﺍﺋﻴﺔ ﻣﻨﺘﻈﻤﺔ ﻣﻜﻮﻧﺔ ﻣﻦ 25ﻓﺮ ًﺩﺍ ﺑﺤﻴﺚ ﺇﻥ ﻃﻮﻝ ﺍﻟﻔﺘﺮﺓ ،50 ﺃﻭﺟﺪ ﺣﺠﻢ ﺍﻟﻤﺠﺘﻤﻊ ﺍﻻﺣﺼﺎﺋﻲ )ﻋﺪﺩ ﺃﻓﺮﺍﺩ ﺍﻟﻌﺎﻣﻠﻴﻦ ﻓﻲ ﺍﻟﺸﺮﻛﺔ(. ) (4ﻓﻲ ﺍﺳﺘﻄﻼﻉ ﺃﺟﺮﻱ ﻋﻠﻰ ﺍﻟﺼﻒ ﺍﻟﺜﺎﻧﻲ ﻋﺸﺮ ﻋﻠﻤﻲ ﻟﻤﻌﺮﻓﺔ ﺁﺭﺍﺋﻬﻢ ﺣﻮﻝ ﻣﻬﻨﺔ ﺍﻟﻤﺴﺘﻘﺒﻞ ﺟﺎﺀﺕ ﺍﻹﺟﺎﺑﺎﺕ ﻛﻤﺎ ﻳﺒﻴّﻦ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ: ﺍﻟﻤﺠﻤﻮﻉ ﺭﺟﻞ ﺃﻋﻤﺎﻝ ﻣﺤﺎﻡ ﻃﺒﻴﺐ ﻣﻬﻨﺪﺱ ﺿﺎﺑﻂ ﻣﻌﻠﻢ ﺍﻟﻤﻬﻨﺔ 2 3 6 7 5 2 25ﺍﻟﺘﻜﺮﺍﺭ ) (aﺃﻛﻤﻞ ﺍﻟﺠﺪﻭﻝ ﻹﻳﺠﺎﺩ ﺍﻟﺘﻜﺮﺍﺭ ﺍﻟﻨﺴﺒﻲ ﻭﺍﻟﻨﺴﺒﺔ ﺍﻟﻤﺌﻮﻳﺔ ﻟﻠﺘﻜﺮﺍﺭ. ) (bﻣﺜّﻞ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺎﻟﻘﻄﺎﻋﺎﺕ ﺍﻟﺪﺍﺋﺮﻳﺔ. ) (5ﻓﻲ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ .7 ،8 ،6 ،5 ،4 ،9 ،3 :ﺃﻭﺟﺪ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ، xﺍﻟﺘﺒﺎﻳﻦ vﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ σ ) (6ﻋﻠﻰ ﺍﻓﺘﺮﺍﺽ ﺃﻥ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ﻷﺭﺑﺎﺡ ﺇﺣﺪﻯ ﺍﻟﺸﺮﻛﺎﺕ ﻫﻮ 850ﺩﻳﻨﺎ ًﺭﺍ ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ 175ﺩﻳﻨﺎ ًﺭﺍ ﻭﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻷﺭﺑﺎﺡ ﻫﺬﻩ ﺍﻟﺸﺮﻛﺔ ﻫﻮ ﻋﻠﻰ ﺷﻜﻞ ﺟﺮﺱ )ﺗﻮﺯﻳﻊ ﻃﺒﻴﻌﻲ(. ) (aﻃﺒّﻖ ﺍﻟﻘﺎﻋﺪﺓ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ ﻋﻠﻰ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ﻷﺭﺑﺎﺡ ﻫﺬﻩ ﺍﻟﺸﺮﻛﺔ. ) (bﻫﻞ ﺍﻧﺨﻔﻀﺖ ﺃﺭﺑﺎﺡ ﻫﺬﻩ ﺍﻟﺸﺮﻛﺔ ﺇﻟﻰ 300ﺩﻳﻨﺎﺭ؟ ﺍﺷﺮﺡ ﺫﻟﻚ. ) (cﻫﻞ ﻭﺻﻠﺖ ﺃﺭﺑﺎﺡ ﻫﺬﻩ ﺍﻟﺸﺮﻛﺔ ﺇﻟﻰ 1400ﺩﻳﻨﺎﺭ؟ ﺍﺷﺮﺡ ﺫﻟﻚ. 97
) (7ﻧﺎﻝ ﺍﻟﻄﺎﻟﺐ ﺳﺎﻟﻢ 15ﻣﻦ 20ﻓﻲ ﺍﺧﺘﺒﺎﺭ ﻣﺎﺩﺓ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ ﺣﻴﺚ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ﻟﻠﺪﺭﺟﺎﺕ 13ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ 2.5ﻭﻗﺪ ﻧﺎﻝ ﺃﻳ ًﻀﺎ 13ﻣﻦ 20ﻓﻲ ﺍﺧﺘﺒﺎﺭ ﻣﺎﺩﺓ ﺍﻟﻔﻴﺰﻳﺎﺀ ﺣﻴﺚ ﺍﻟﻤﺘﻮﺳﻂ ﺍﻟﺤﺴﺎﺑﻲ ﻟﻠﺪﺭﺟﺎﺕ 11.5 ﻭﺍﻻﻧﺤﺮﺍﻑ ﺍﻟﻤﻌﻴﺎﺭﻱ 2.4 ﻓﻲ ﺃﻱ ﻣﺎﺩﺓ ﺗﻌﺘﺒﺮ ﺩﺭﺟﺔ ﺳﺎﻟﻢ ﻫﻲ ﺍﻷﻓﻀﻞ ﻣﻘﺎﺭﻧﺔ ﺑﺪﺭﺟﺎﺕ ﻛﻞ ﻣﺎﺩﺓ؟ ﺍﺷﺮﺡ. ) (8ﻳﺒﻴّﻦ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻷﻭﺯﺍﻥ ﻃ ّﻼﺏ ﺍﻟﺼﻒ ﺍﻟﺤﺎﺩﻱ ﻋﺸﺮ ﺑﺎﻟﻜﻴﻠﻮﺟﺮﺍﻡ ).(kg ﺍﻟﻤﺠﻤﻮﻉ 64- 68- 72- 76- 80-ﺍﻟﻔﺌﺔ 4 5 7 6 3 25ﺍﻟﺘﻜﺮﺍﺭ ) (aﺃﻛﻤﻞ ﺍﻟﺠﺪﻭﻝ ﻹﻳﺠﺎﺩ ﻣﺮﺍﻛﺰ ﺍﻟﻔﺌﺎﺕ. ) (bﻣﺜّﻞ ﻫﺬﻩ ﺍﻟﺒﻴﺎﻧﺎﺕ ﺑﺎﻟﻤﺪﺭﺝ ﺍﻟﺘﻜﺮﺍﺭﻱ ﻭﺍﻟﻤﻀﻠﻊ ﺍﻟﺘﻜﺮﺍﺭﻱ. 98
ﺗﻤﺎﺭﻳﻦ ﺇﺛﺮﺍﺋﻴﺔ ) (1ﻫﻞ ﻳﻤﻜﻦ ﺍﺳﺘﺨﺪﺍﻡ ﺍﻟﺤﺼﺮ ﺍﻟﺸﺎﻣﻞ ﻓﻲ ﺩﺭﺍﺳﺔ ﺍﻟﻤﺠﺘﻤﻌﺎﺕ ﺍﻹﺣﺼﺎﺋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ،ﺃﻡ ﻻ؟ ﻣﻊ ﺫﻛﺮ ﺍﻟﺴﺒﺐ. ) (aﺩﺭﺍﺳﺔ ﺃﻧﻮﺍﻉ ﺍﻟﺤﺸﺮﺍﺕ ﻓﻲ ﺩﻭﻟﺔ ﺍﻟﻜﻮﻳﺖ. ) (bﺩﺭﺍﺳﺔ ﻧﺴﺒﺔ ﻋﺪﺩ ﺍﻹﻧﺎﺙ ﺇﻟﻰ ﻋﺪﺩ ﺍﻟﺬﻛﻮﺭ ﺍﻟﻌﺎﻣﻠﻴﻦ ﻓﻲ ﺃﺣﺪ ﺍﻟﻤﺼﺎﺭﻑ ﻓﻲ ﺩﻭﻟﺔ ﺍﻟﻜﻮﻳﺖ. ) (2ﺍﻟﻜﺘﺎﺑﺔ ﻓﻲ ﺍﻟﺮﻳﺎﺿﻴﺎﺕ :ﺍﺫﻛﺮ ﺃﻣﺜﻠﺔ ﺗﺘﻀﻤﻦ ﻣﺎ ﻳﻠﻲ: ) (aﻣﺠﺘﻤﻊ ﺇﺣﺼﺎﺋﻲ ﻣﻨﺘﻪ -ﻭﺣﺪﺓ ﺍﻟﺪﺭﺍﺳﺔ -ﺍﻟﻤﺘﻐﻴﺮ ﺍﻟﻤﺮﺍﺩ ﺩﺭﺍﺳﺘﻪ. ) (bﻣﺠﺘﻤﻊ ﺇﺣﺼﺎﺋﻲ ﻏﻴﺮ ﻣﻨﺘﻪ -ﻭﺣﺪﺓ ﺍﻟﺪﺭﺍﺳﺔ -ﺍﻟﻤﺘﻐﻴﺮ ﺍﻟﻤﺮﺍﺩ ﺩﺭﺍﺳﺘﻪ. ) (3ﻓﻲ ﺃﺣﺪ ﻣﺼﺎﻧﻊ ﻏﺰﻝ ﺍﻟﻨﺴﻴﺞ ،ﺍﻟﺬﻱ ﻳﺤﻮﻱ 600ﻋﺎﻣﻞ ﻣﺮﻗﻤﻴﻦ ﻣﻦ 1ﺇﻟﻰ .600ﺃﺭﺍﺩ ﺻﺎﺣﺐ ﺍﻟﻤﺼﻨﻊ ﻣﻨﺎﻗﺸﺔ ﻋﺪﺩ ﻣﻦ ﺍﻟﻌﻤﺎﻝ ﻓﻲ ﻛﻴﻔﻴﺔ ﺗﺤﺴﻴﻦ ﺍﻹﻧﺘﺎﺝ .ﺍﻟﻤﻄﻠﻮﺏ ﺳﺤﺐ ﻋﻴﻨﺔ ﻋﺸﻮﺍﺋﻴﺔ ﺑﺴﻴﻄﺔ ﻣﻜﻮﻧﺔ ﻣﻦ 15ﻋﺎﻣ ًﻼ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺟﺪﻭﻝ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ. ) (4ﺃﺭﺍﺩ ﻣﺪﻳﺮ ﻋﺎﻡ ﺷﺮﻛﺔ ﻛﺒﺮﻯ ﻹﻧﺘﺎﺝ ﻣﻮﺍﺩ ﺍﻟﺪﻫﺎﻥ ﺗﻘﻴﻴﻢ ﺃﺩﺍﺀ ﻛﺎﻓﺔ ﺍﻟﻤﻮﻇﻔﻴﻦ ،ﻋﻠ ًﻤﺎ ﺃﻥ ﺍﻟﺸﺮﻛﺔ ﺗﻀﻢ 80 ﻣﻬﻨﺪ ًﺳﺎ ﺗ ّﻢ ﺗﺮﻗﻴﻤﻬﻢ ﻣﻦ 201ﺇﻟﻰ 120 ،280ﺍﺧﺘﺼﺎﺻﻲ ﻣﺨﺘﺒﺮ ﺗ ّﻢ ﺗﺮﻗﻴﻤﻬﻢ ﻣﻦ 301ﺇﻟﻰ ،420ﻭﺃﺧﻴ ًﺮﺍ 220ﻋﺎﻣ ًﻼ ﺗ ّﻢ ﺗﺮﻗﻴﻤﻬﻢ ﻣﻦ 501ﺇﻟﻰ .720ﺍﻟﻤﻄﻠﻮﺏ ﺳﺤﺐ ﻋﻴﻨﺔ ﻋﺸﻮﺍﺋﻴﺔ ﻃﺒﻘﻴﺔ ﻣﻜﻮﻧﺔ ﻣﻦ 21ﻓﺮ ًﺩﺍ ﺗﻤﺜﻞ ﺟﻤﻴﻊ ﺍﻟﻌﺎﻣﻠﻴﻦ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺟﺪﻭﻝ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﺑﺘﺪﺍﺀً ﻣﻦ ﺍﻟﺼﻒ ﺍﻟﺴﺎﺑﻊ ﻭﺍﻟﻌﻤﻮﺩ ﺍﻷ ّﻭﻝ. ) (5ﺃﺭﺍﺩ ﻣﻌﻠﻢ ﻓﻲ ﺃﺻﻮﻝ ﺗﻌﻠﻴﻢ ﺍﻟﻘﺮﺁﻥ ﺍﻟﻜﺮﻳﻢ ﺗﺸﻜﻴﻞ ﻣﺠﻤﻮﻋﺎﺕ ﻓﻲ ﺍﻟﺼﻔﻮﻑ ﺍﻟﺜﺎﻧﻮﻳﺔ ﻹﺣﺪﻯ ﺍﻟﻤﺪﺍﺭﺱ ﺍﻟﺘﻲ ﺗﺤﻮﻱ 144ﻃﺎﻟﺒًﺎ ﻣﺮﻗﻤﻴﻦ ﻣﻦ 1ﺇﻟﻰ .144ﺍﻟﻤﻄﻠﻮﺏ ﺳﺤﺐ ﻋﻴﻨﺔ ﻋﺸﻮﺍﺋﻴﺔ ﻣﻨﺘﻈﻤﺔ ﻣﻜﻮﻧﺔ ﻣﻦ 16ﻃﺎﻟﺒًﺎ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺟﺪﻭﻝ ﺍﻷﻋﺪﺍﺩ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺍﺑﺘﺪﺍﺀً ﻣﻦ ﺍﻟﺼﻒ ﺍﻟﺜﺎﻟﺚ ﻭﺍﻟﻌﻤﻮﺩ ﺍﻟﺜﺎﻟﺚ. ) (6ﻳﺘﺄﻟﻒ ﻓﺮﻳﻖ ﺍﻟﻌﻤﻞ ﻓﻲ ﺇﺣﺪﻯ ﺍﻟﺸﺮﻛﺎﺕ ﻣﻦ 360ﻣﻮﻇ ًﻔﺎ ﻭﻫﻢ ﻣﻦ ﺍﻟﺠﻨﺴﻴﻦ ﺃﻱ ﺫﻛﻮﺭ ﻭﺇﻧﺎﺙ ﻭﻳﻌﻤﻠﻮﻥ ﺇﻣﺎ ﺑﺪﻭﺍﻡ ﻛﺎﻣﻞ ﺃﻭ ﺑﺪﻭﺍﻡ ﺟﺰﺋﻲ ﻛﻤﺎ ﻫﻮ ﻣﺒﻴّﻦ ﻓﻲ ﺍﻟﺠﺪﻭﻝ ﺍﻟﺘﺎﻟﻲ: 180ﻣﺮﻗﻤﻴﻦ ﻣﻦ 1ﺇﻟﻰ 180 ﺫﻛﻮﺭ/ﺩﻭﺍﻡ ﻛﺎﻣﻞ 36ﻣﺮﻗﻤﻴﻦ ﻣﻦ 181ﺇﻟﻰ 217 ﺫﻛﻮﺭ/ﺩﻭﺍﻡ ﺟﺰﺋﻲ 18ﻣﺮﻗﻤﻴﻦ ﻣﻦ 218ﺇﻟﻰ 236 ﺇﻧﺎﺙ/ﺩﻭﺍﻡ ﻛﺎﻣﻞ 126ﻣﺮﻗﻤﻴﻦ ﻣﻦ 237ﺇﻟﻰ 363 ﺇﻧﺎﺙ/ﺩﻭﺍﻡ ﺟﺰﺋﻲ ﺍﻟﻤﻄﻠﻮﺏ ﺃﺧﺬ ﻋﻴﻨﺔ ﻃﺒﻘﻴﺔ ﺣﺠﻤﻬﺎ 40ﻣﻮﻇ ًﻔﺎ ،ﻭﻓ ًﻘﺎ ﻟﻠﻔﺌﺎﺕ ﺃﻋﻼﻩ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﺮﻧﺎﻣﺞ ﺇﺣﺼﺎﺋﻲ. 99
Search