h(x) f '(x) f '(x) h(x) (x 2)² h(x) 0 2; f x 2 f '(x) f (x) (C ) y x 1 () 3 f limf (x) (x 1) 0 (C ) () : y x 1 f x limf (x) (x 1) lim 2ln(x 2) 0 x x x 2 () : (C ) f f (x) (x 1) () : (C ) f f (x) (x 1) 2ln(x 2) (x 2) x 2; (x 2) 0 ln(x 2) (1;0) () (C ) x 1 ln(x 2) 0 () f x 1 ln(x 2) 0 2; 1 () x 1 ln(x 2) 0 1; A (C ) f (C ) 4 f (C ) f f'' (C ) f ''(x) h '(x)(x 2)² 2(x 2)h(x) f (x 2)4 f '(x) h(x) (x 2)² f ''(x) h '(x)(x 2) 2h(x) 4ln(x 2) 6 (x 2)3 (x 2)3 x e3 2 3 ln(x 2) 3 f ''(x) 0 2 x 2 e2 x e3 2 f ''(x) 0 x e3 2 f ''(x) 0 ( e3 2; e3 1 3 ) A (C ) 4 e3 f (C ) f 45 0202
g(x) g(1) g(x) g(1) g lim lim 1 III x 1 x 1 x 1 x 1 x g(x) g(x) (x 1) x 2 2 ln(x 2) f (x) x 2;1 g(x) (x 1) x 2 2 ln(x 2) f (x) x 1; lim g(x) g(1) lim f (x) 1 lim 2 . ln(y 1) 3 x 1 x 1 x 1x 1 yy0 y 1 lim g(x) g(1) lim f (x) 1 lim 2 .ln(y 1) 3 x 1 x 1 x 1x 1 yy 0 y 1 3 3 1 g 0 1g (1;0) (C ) g (C ) (C ) 3 fg (C ) (C ) g(x) f (x) x 2;1 fg g(x) f (x) x 1; (C ) (C ) gf y (C ...) g 3 2 1 -4 -3 -2 -1 0 123 x -1 () -2 (C ) ــــ f -3 46 0202
0214 31 g 1I g g(x) xln x x 0;3 g(3) 3ln3 3 lim x ln x 0 lim g(x) lim (x ln x x) 0 x 0 x 0 x 0 x e2 ln x 2 0 g'(x) (x ln x x)' 1.ln x x. 1 1 ln x 2 x x e2 ln x 2 0 g'(x) 0 g'(x) 0 x e2 ln x 2 0 g'(x) 0 x 2 e2 3 g '(x) 0 0 g(x) g(3) 1,45 1,46 0; 3 g(e2 ) g(x) 2 2 g(x) 2 0;3 g(e2 ) 2 g(3) g(3) 3ln 3 3 g(e2 ) e2 e2 ;3 f g() 2 1,45 1,46 g(1,46) 2,01 g(1,45) 1,99 g(x) 2 g() 2 0 g() 2 x0 3 g g(x) 2 g(x)-2 0 (Cf ) 1 II 0f 0 2f 47 0202
f (x) x 2 ln x (x 2)ln x;x 0;2 (x 2) ln x; x 2;3 lim f (x) f (2) lim (x 2)ln 2 ln 2 f ' (2) g x 2 (x 2) x 2 (x 2) lim f (x) f (2) lim (x 2)ln 2 ln 2 f ' (2) d x 2 (x 2) x 2 (x 2) f ' (2) f ' (2) 2 f gd f 3 f f (x) x 2 ln x 0;3 f (3) ln3 lim ln x lim f (x) 2 lim ln x x 0 x 0 x 0 f 2;3 0;2 f '(x) ln x x 2 g(x) 2 ;x 0;2 x x ln x x 2 x g(x) 2 ;x 2;3 x f '(x) 2 I 0;2 g(x) 2;3 g(x) f X0 23 f'(x) 0 f () f (3) f (x) 0 (Ch ) x () 1 III 2 h h(x) (2 cos x)ln(cos x) 0 ; 2 () lim h(x) lim h(x) (Ch ) x 2 x x 2 2 lim (cos x) 0 0 lim (2 cos x) 1 lim ln(cos x) x x x 2 22 h (Ch ) () 48 0202
h(x) f (cos x) f x cos x h x cos x 1 0;1 y f 0 ; 2 (C ) h 0 1 x 0 2 ; h -1 h -2 h(0) f (cos0) f (1) 0 x0 2-3 h(x) 0 1 0213 30 1; g 1I g g(x) (x 1)² 2 ln(x 1) 1; 0 g '(x) 2(x 1) 1 2(x 1)² 1 x 1; x 1 x 1 g g'(x) 0 x 1; ln( 1) 2 ( 1)² 0,31 0,32 g(x) 0 g(0,31) 0 g(0,32) g(0,31) g(0,32) 1; g* g() 0 ln( 1) 2 ( 1)² ( 1)² 2 ln( 1) 0 g() 0 g(x) 3 x1 g(x) 0 1; g g(x) 0 g(x) 1 II lim f (x) lim f (x) x 1 f (x) (x 1)² 2 ln(x 1)2 1; f lim ln(x 1) lim f (x) lim (x 1)² 2 ln(x 1)2 0 1 1 1 limln(x 1)² lim f (x) lim (x 1)² 2 ln(x 1)² x x x 49 0202
f '(x) 2g(x) x 1; 0 x 1 f '(x) 2(x 1) 22 ln(x 1) 1 2(x 1)² 2 ln(x 1) 2g(x) x 1 x 1 x 1 f3 x 1 f '(x) 2g(x) f '(x) f'(x) 0 x 1 g(x) f (x) f 4 f () ( 1)²1 ( 1)2 f () f () f () ( 1)² 2 ln( 1)2 2 I ln( 1) 2 ( 1)² f () ( 1)² ( 1)²2 ( 1)²1 ( 1)² f () f () ( 1)²1 ( 1)² 0,31 0,32 1 1,31² 1² 1,32².....(2) 1,31 1 1,32 1 1 1,31² 1 1² 1 1,32².....(3) (2) 1 1,31²1,31² f () 1 1,32²1,32² (3) (2) y f () 11 1; 2 5 (C ) 10 f 9 f (2) 3² (2 ln(3))² 9, 8 AM f (x) 1 III 7 M(x;h(x)) A (1;2) 6 AM (x 1)2 (2 ln(x 1)2 f (x) 5 1; 4 k(x) f (x) k 3 1; fk 0 2 1; k 1 k k(x) f (x) -4 -3 -2 -1 0 123456 x k '(x) f '(x) 1; 2 f (x) 52 0202
f '(x) k '(x) k '(x) f '(x) 2 f (x) 1; fk AM () B AM f (x) k(x) k() ln( 1) ; k 1; AM k ln( 1) k (;ln( 1)) B AB ( 1) ( 1)² 1 AM (x 1)2 (2 ln(x 1)2 MB AB ( 1)2 (2 ln( 1)2 ( 1)²1 ( 1)² ( 1) 1 ( 1)² 0 0213 33 g 1 g(x) (x 1)ex g limg(x) lim xex limg(x) lim xex 0 x x x x f x f '(x) (x 1)ex ' 1.ex (x 1).ex xex x 0 f'(x) 0 f(x) 0 -1 1 (x 1)ex 0 x 0 g 1 g(x) 1 1 (x 1)ex 0 g(x) 1 0 0; f 1 II 51 0202
f (x) ex 1;x 0 0; f x 0; f 0 0; f (0) 1 lim 1 0 f xx 0; f x0 f '(x) lim f (x) f (0) 1 0 f x 0 lim f (x) lim ex 1 1 x 0 xx 0 lim f (x) x lim ex lim f (x) lim ex 1 lim ex xx x xx x xx f '(x) 1 (x 1)ex x 0; 0 x² f '(x) ex (x) 1(ex 1) 1 ex (x 1) x² x² f 1 (x 1)ex 0 2I f f '(x) 0 f (x) 1 0; f 1 III n f (x) ex 1 n ln x 0; f n nx n ln x ' n 1 f '(x) 1 ex (x 1) n x n x² x 1 ex (x 1) 0 n 0 f f '(x) 0 x² x limf (x) lim f (x) 0 x n 0 n lim n ln x lim ex 1 1 lim f (x) lim ex 1 n ln x 0 x 0 0 n x0 lim n ln x lim ex 1 lim f (x) ex 1 n ln x lim x xx x n xx 50 0202
C C 3 n 1 n 4 fn1(x) fn (x) Cn1 C 5 n f n1 ( x ) f (x) ex 1 (n 1) ln x ex 1 n ln x ln x n x x ln x ln x x 0 1 0 C Cn1 C Cn1 n n C Cn1 n B nB C Cn1 B(1;e 1) 3 n 0,3 ;0,4 f ( ) 0 1 11 f ( ) 0 0,3;0,4 11 1 f ff 1 f (0,3) f (0,4) 0 f (0,4) 0,31 f (0,3) 0,03 11 11 f ( ) 0 0,3 ;0,4 1 1 fn (1) 0 n 1 n fn (1) 0 n 1 n x 0;1 f n 1 (x) f (x) 3 n n 1 n f (x) f (x) n1 f ( ) 0 ;1 nn 1 n f ( ) 0 ;1 nn n1 1 III f n f ( ) f (1) 0 f (1) e 1 0 f ( ) 0 n1 n n n1 f ( ) 0 ;1 nn n1 0;1 ex 1 e 1 0;1 x 6 x f f (x) f (1) ex 1 e 1 11 x 53 0202
0210 34 ba 1 g '(1) 4 4 A(1; 1) g g(1) 1 a 2 g(1) 1² a bln(1) 1 a 1 b2 g '(1) 2 b 4 g '(x) 2x b 1 x g 0; g(x) x² 2 2ln(x) lim ln x lim g(x) lim x² 2 lim ln x 2 x 0 x 0 x 0 x 0 limg(x) limx² 2 limln x limln x x x x x g '(x) 2x 2 0; f x g 0; x g'(x) 0 x 0 g g'(x) g(x) 0 g(x) g limg(x) lim g(x) x x 0 0; 0; g() 0 0; g(x) x 0; g(x) 0 g(0;) ;0 x ; g(x) 0 g(;) 0; lim f (x) lim f (x) 1 II x x 0 f (x) x 2 2ln(x) 0; f x lim ln(x) lim f (x) lim x 2 2ln(x) 2 lim 2ln(x) xx 0 x xx 0 x 0 x 0 lim ln(x) 0 lim f (x) lim x 2 2ln(x) xx x x x 54 0202
f '(x) g(x) f '(x) x² 1 .x 1.ln x x ² 2 1 ln x g(x) x f '(x) 1 2 x² x² x² f f '(x) X0 f '(x) g(x) f '(x) f'(x) 0 x² f (x) g(x) f f () () (C ) (C ) yx2 () 2 f f limf (x) (x 2) 0 (C ) y x 2 () f x lim ln(x) 0 lim f (x) (x 2) lim 2ln(x) 0 xx x x x f (x) (x 2) 2 ln x () (C ) f x x0 1 () 0 (C ) (C ) () f f () (C ) f (T) () (T) (C ) f f '(x ) 1 1 (T) () (T) (C ) 0 f x e 2 2ln(x ) 0 g(x ) x2 g(x ) 1 f '(x ) 1 0 0 00 0 0 x² 0 55 0202
y x 2 2 y f '(e)(x e) f (e) (T) e f xx f(x) 0 f 21 f (0,6) f(0,7) 0 0; f (x ) 0 0,7 0,6 α 1 f (2,7)f(2,8) 0 ; f(x ) 0 2,7 2,8 β 2 y (C ) (T) () f 4 (C ) f () 3 2 (T) 1 0 123456 x -1 -2 (m 2)x 2ln(x) 0...(1) 3 y x m x m f (x) m 2 2ln(x) 1 y f (x) x (C ) y x m f 1 m 2 2 2 1 m 2 2 1 e e 1 m 2 4 1 2 2 m 2 3 e 56 0202
0211 35 ba 1 f '(1) 0 1 2 (C ) A( ;1) f (1) 1 f2 2 b .4x² 8x(a b ln(2x) b 2(a bln(2x) f (x) a bln(2x) x 4x3 4x² f '(x) 4x²² a 1 f (1) a 1 f (1) 1 21 2 b 2 b 2a b 2a 0 f '(1) 0 2 lim g(x) lim g(x) 0 x 0 x g(x) 1 2ln(2x) 0; g 4x² lim ln(2x) 0 limg(x) lim 1 lim 2ln(2x) 0 x (2x)² 4x² (2x)²x x x lim 4x² 0 lim 1 2ln(2x) lim g(x) lim 1 2ln(2x) x 0 x 0 x 0 x 0 (2x)² g g '(x) 2 .4x² 8x(1 2 ln(2x )) 8x(1 1 2 ln(2x )) ln(2x) x g '(x) (4x²)² 16x 4 x3 ln(2x)) g '(x) 57 0202
x1 g'(x) 0 x 1 g'(x) 0 x 1 g'(x) 0 2 2 2 x0 1 g f'(x) 2 f (x) 0 g(x) 0 0; f(1) 2 (1 2ln(2x)) 0 g(x) 0 x 1 ln(2x) 1 0 2e 2 y (C ) 1 f (C ) x 1 f 2e 0 1 2 3x -1 0212 36 x1 x g g'(x) g(x) g(x) 2x ln x 1; g 2 limln x limg(x) lim2x limln x x x x x g g'(x) 0 g '(x) 2 1 x 1; g g 58 0202
g(x) 0 x 1; g(x) 2 2; g 1; g g(x) 0 x 1; 6ln x 0 f (x) x 2 ln x x 6ln x 6ln x f (x) x x 6ln x . x 6ln x 2 ln x 2x ln x x 2x ln x 2x ln x xx lim f (x) x lim ln x 0 lim f (x) 0 0 f (x) xx x 20 ff 6 (2x ln x) (2 1 )(6ln x) 12 6ln x 12ln x 6ln x 12(1 ln x) x x x x x f '(x) (2x ln x)² (2x ln x)² x(2 ln x)² x1 e f '(x) f'(x) 0 f (x) 1 ln x f (e) 0 f '(x) 0 x e f '(x) 0 0 x e f '(x) 0 x e 1; f f (x) k k x 1; 0 f (x) f (e) f 59 0202
f (e) 6 k 0; 6 0 k f (e) 2e 1 2e 1 ( ) 1 (C ) ( ) 1 f1 3 y 3x 3 y 3(x 1) y f '(1)(x 1) f (1) h h h(x) f (ex ) 1; h(1) f (e) 6 limf (x) 0 limex limh(x) limf (ex ) 0 2e 1 x x x x h '(x) exf '(ex ) 12(1 x) (2ex x)² x1 1; (1 x) 0 h '(x) 0 h'(x) 0 1; h h(x) h(1) 0 y 6 y 0(x 1) (C ) ( ) ( ) 2e 1 h2 2 y y h '(1)(x 1) h(1) (C ) (C ) ( ) ( ) 3 h f 21 ( ) 1 ( ) 2 (C ) 2 1 f -2 -1 0 1 2 3 4 5 6x -1 -2 (C ) h 62 0202
0219 77 1 x 2xln x 0 0 x 1 1 x 2xln x 0 x 1 1 1 x 2xln x 0 1 x 0 2xln x 0 ln x 0 x 1 1 x 2xln x 0 1 x 0 2xln x 0 ln x 0 0 x 1 2 f0 lim x ln x 0 lim f (x) f (0) lim f (x) lim (1 x ln x) 1 fd '(0) x 0 x x 0 x 0 x 0 x 0 (Cf ) () y f ' (0)(x 0) f(0) x O (Cf ) d (Cf ) () ln x f (x) x x²ln x () (Cf ) ln x 0 0 x 1 () (Cf ) ln x 0 x 1 (1;1) () (Cf ) ln x 0 x 1 (0;0) () (Cf ) x² 0 x 0 lim f (x) x lim f (x) lim x(1 x ln x) x x f f '(x) 1 2x ln x x 0; f f1 1; f 1 x 2xln x 0 x 1 0;1 f 1 x 2xln x 0 0 x 1 1 x0 f '(x) 0 1 f (x) 0 y f '(a)(x a) f(a) () (Cf ) (T) 4 () (Cf ) (T) 121 0202
a 1 () f '(a) 1 a 1 a 0 2ln a 1 0 a(2ln a 1) 0 f '(a) 1 e yx 1 y f 1 )(x 1 ) 1 ) 2e '(e 2 e2 f(e 2 1,76 1,77 1; f (x) 0 0;1 limf (x) f (1) 1 1; f x f () 0 1,76 1,77 f (1,77) 0,01 f (1,76) 0,9 f (1,76).f (1,77) 0 (;0) () (d) (;0) () (d) y x y 1(x ) f() (Cf ) () (d) (T) y (d) 1 (Cf ) () 0 12 x (T) 0; 5 -1 x²ln x m 0 y x m f (x) x m x x²ln x x m x²ln x m 0 y f (x) (Cf ) m 0; yxm 0m 1 0m 1 2 2e m 1 3 2e m 1 4 2e 120 0202
0218 78 2f1 lim f (x) f (0) 1 0f x 0 lim ln x lim f (x) lim x 1 1 1 lim 1 1 ln x ln x x 0 x 0 x 0 x 0 lim f (h) f (0) h 0 h lim ln h lim f (h) f (0) lim h 1 1 1 lim 1 h 0 h 0 ln h h 0 ln h h 0 h h (Cf ) lim f (h) f (0) h 0 h . lim f (x) lim f (x) lim f (x) 2 x 1 x 1 x lim x lim ln x lim f (x) lim (x) lim 1 x x x x x ln x lim ln x 0 lim f (x) 2 lim 1 x 1 x 1 ln x x 1 lim ln x 0 lim f (x) 2 lim 1 x 1 x 1 ln x x 1 f f '(x) 1 1 0;1 1; f f x(ln x) f 1 x0 f '(x) f (x) 1 (Cf ) () f (x) x 1 1 ; 7 lim f (x) (x 1) lim 1 0 ln x x x ln x (Cf ) (Cf ) y x 1 () (Cf ) f (x) (x 1) () () 127 0202
ln x f (x) (x 1) 1 ln x () (Cf ) ln x 0 x 0;1 () (Cf ) ln x 0 x 1; 1,49 1,5 (Cf ) 4 (Cf ) f(x) 0 1,49 1,5 1; f (1,49) 0,01 f(1,5) 0,03 f (1,49).f(1,5) 0 f(x) 0 (Cf ) 1,49 1,5 f() 0 y ( 3 1 )(x ) (Cf ) y f '()(x ) f() (Cf ) f '() 1 1 1 ( 1)² 3 1 (ln )² y ( 3 1 )(x ) 5 6 (Cf ) () h(x) 1; h h(x) 1 x x ln x 1; h h '(x) 1 ln x x. 1 ln x 1; x x 1; 1; h '(x) 0 h x h1 1; h(1) 0 lim h(x) lim x( 1 1 ln x) 2 x xx 1; x h(x) 0 21 f(x) x 1 h(x) x 1 x 1 x ln x x ln x f (x) x 1 1 1 1 xln x x 1 h(x) xln x ln x xln x xln x xln x 124 0202
x 1 f(x) x 1 x 1 x ln x f(x) x 1 f(x) x 1 x 1 f(x) x 1 x 1 x ln x x ln x f(x) x 1 x 1 f (x) (x 1) 1 0 ln x f(x) x 1 x 1 f(x) x 1 h(x) 0 x ln x x ln x x ln x 1 (e² ²) ln( 1) A 1 (e )(e 2) 7 22 x 1 f(x) x 1 x 1 x ln x e ( x x 1 x )dx e f (x)dx e ( x 1)dx ln 1 x)e e (x x 1 x )dx e (x x )dx 1 x² ln(ln 1 e² 1 ² ln(ln ) 1 (e² ²) ln( 1) ln ln x 2 2 2 2 e 1)dx 1 x² x e 1 e² e 1 ² 1 (e )(e 2) 2 2 2 2 (x 1 (e² ²) ln( 1) A 1 (e )(e 2) 22 y 5 () 4 3 2 1 0 1 2 3 4 5 6 7 8x -1 (Cf ) -2 -3 125 0202
0217 79 g 1I x 0; g'(x) 0 g '(x) 1 1 x² x 0; 0 1,76;1,77 g g(1,77) 0,006 g(1,76) 0,0029 0; g(x) 0 g 1,76 1,77 g() 0 0; g(x) g(x) 0 x ; g(x) x 0; g(x) 0 f 1 II 2 f (x) x 1 ;x 0 0; f x ln x f (0) 0 lim f (x) f(0) 0 0 f x 0 lim ln x lim f (x) lim x 1 lim 1 0 x 0 x 0 x ln x ln xx 0 x 0 f (x) lim xx 0 lim x ln x 0 lim f (x) lim x 1 1 xx 0 x 0 x² x ln x x 0 lim f (x) f(0) 1 f '(0) f (x) x 0x 0 lim xx 0 O1 (Cf ) 0 f f '(x) g(x) 0; x 2 (x ln x)² (x ln x) (1 1)(x 1) ln x 1 g(x) f (x) x 1 x x x ln x f '(x) x(x ln x)² (x ln x)² (x ln x)² limf (x) 3 x 126 0202
limf (x) lim 1 lim ln x 0 limf (x) lim x 1 lim x(1 1 ) 1 x x xx x x x ln x x x(1 ln x ) x x x f f g(x) f '(x) 0 x 0 f '(x) f (x) f () 1 0 4 h(x) 0 x h h(x) x ln x 0; x 1; h '(x) h '(x) x 1 x 0; x 1 h '(x) 0 h(1) 1 h(x) 0 x 0 x 0;1 h '(x) 0 h(x) 1 x 0; y 1 (Cf ) f (x) 1 y 1 (Cf ) f (x) 1 x 1 1 1 ln x 1 ln x x ln x x ln x h(x) h(x) 0 1 ln x x 0 e1 1 ln x 0 (T) (Cf ) (T) (Cf ) (T) (Cf ) (Cf ) y 3 (Cf ) 2 1 y 1 0 1 2 3 4 5 6 7 8 9x 127 0202
0217 42 g(x) g I g g(x) x 2 ln x 0; g g '(x) x 1 g '(x) 1 1 x 1 xx x 1 g'(x) 0 .0;1 g x 0;1 g'(x) 0 1; x 1; g'(x) 0 g g(x) 3 g(1) 3 0; x 0; x g(x) f '(x) g(x²) x 1 II 2x² f (x) 1 x e ln(x²) * f 2 x f '(x) 1 (1 2x 1ln(x²) 1 x² 2 ln(x²) g(x²) 2 x ) 2 x² 2x² x² f g(x²) f '(x) f '(x) g(x²) g(x) 2x² g(x²) 0 g(x²) 0 f f (x) f (x) x 2 f (x) f (x) 1 x e ln(x²) x e ln(x²) e 2 x x f (2(0) x) f (x) 2(1 e) f (x) f (x) e 2 (0; 1 e) (Cf ) 2 limf (x) lim f (x) limf (x) lim f (x) x x 0 x x 0 128 0202
lim ln(x ²) lim f (x) 1 lim x e ln(x²) x 2 x x 0 x 0 x 0 limx e lim ln(x ²) 0 lim f (x) 1 lim x e ln(x²) x 2 x x x x x f (x) e f (x) f (x) f (x) e limf (x) e limf (x) lim f (x) e lim f (x) x x x 0 x 0 f x 0 f '(x) f (x) .(C ) y1x e () 3 f 22 lim f (x) ( 1 x 2e ) 0 y1x e () 2 22 x lim ln(x ²) 0 lim f (x) ( 1 x 2e ) 1 lim ln(x²) 0 x 2 2 x x x x () (C ) f f (x) y 1 ln(x²) () (C ) 2x f 11 () (C ) x 1;1 x² 1 ln(x²) 0 f x x 1 0 1 00 ln(x ²) x 00 () (C ) x 1;0 1; ln(x²) 0 f x 0 4 () (C ) x ;1 0;1 ln(x²) f x 1 (Cf ) 2 129 0202
f '(x 0 ) 1 2 x0 e x0 e ln x02 2 g( x 2 ) x 2 g(x²) 1 f '( x 0 ) 1 0 0 2x² 2 2 e (T1 ) (T1 ) y 1 (x e) f (e) 1 x 1 e 1 (T1 ) 2 2 2e e (T2 ) (T2 ) y 1 (x e) f (e) 1 x 1 e 1 (T2 ) 2 2 2e (Cf ) limf (x) lim f (x) ;0 f x x 0 f (0,4) f (0,5) 0 0,5 0,4 f () 0 limf (x) lim f (x) 0; f x x 0 f (2) f (2,1) 0 2 2,1 f () 0 (Cf ) () 5 y (T2 ) 3 (T1) 2 (Cf ) 1 -4 -3 -2 -1 0 1234x () -1 -2 x(e 2m) ln(x²) m 6 112 0202
1 x m f (x) m 1 (e ln(x²)) x(e 2m) ln(x²) 2 2x 1 x m f (x) y 1 x m....(1) 2 2 y f (x)......(2) (C ) y 1 x m f2 (m ) m 1e1 m 1e1 2e 2e 0216 41 g 1I g g '(x) 0; g '(x) (1 x²)' (2ln x)' 2x 2 x g x 0 g'(x) 0 0,52 0,53 g(x) 0 0 g(0,53) 0.011 g(0,52) 0.037 0; g g() 0 0; g(x) 7 g(x) g(x) 0 x ; g(x) 0 x 0; limf (x) lim f (x) 1 II x x 0 f (x) x 3 2ln x 0; f x lim 1 lim 2ln(x) lim f (x) xx 0 x 0 x 0 lim x lim ln(x) 0 limf (x) xx x x f '(x) g(x) 0; 0 x² 111 0202
(3 2ln x)' 2 .x 1(3 2ln x) x² 1 2ln x) g(x) x f '(x) (x) ' 1 x x² x² x² f g(x) f '(x) f '(x) g(x) x² x 0 f '(x) 0 f () f (x) f () f () 2( 1 ) 2ln() 1 ² g() 0 f () 3 2ln() f () 3 1 ² 2 2( 1 ) 1.88 1 1.92.....(2) 0,52 0,53...(1) 2,71 f () 2,80....(3) 1,39 1 1,40....(3) (2) (1) 7 limf (x) x x lim 3 0 lim ln(x) 0 lim 3 ln x xx xx x x x f (x) x lim 2 0 x (Cf ) y x limf (x) x limf (x) (x) 0 x x () : y x (Cf ) f (x) (x) 3 2ln x () (Cf ) x x0 1 3 2ln x 0 f (x) (x) 0 ee 3 2ln x x0 x 0 0 () (Cf ) () (Cf ) () (Cf ) 110 0202
() (Cf ) (T) f '(a) 1 () (T) () (T) a 1 g(a) a² g(a) 1 f '(a) 1 e a² f( 1 ) 1 2 e y x 2 e y 1(x 1 ) f ( 1 ) (T) ee ee x1 x0 (Cf ) 4 f (0,22) f(0,23) 0 0; f f (x0) 0 0,23 0,22 x0 f f (2,11) f(2,13) y 0 ; f (x1) 0 () 3 2,11 2,11 x1 2 (C ) (T) () 1 f -2 -1 0 12345 6 7 8 9x -1 -2 3 2ln x mx 0 (T) -3 x m f (x) (C) -4 (Cf ) -5 5 y x m 3 2ln x mx 0...(1) y f (x) y x m m 3 2ln x (1) x (1) (1) 0 m 2 e 2 (1) m 0 1 (1) m 2 e 4 (1) m 2 e 3 117 0202
0215 40 2f 1I f (0) 1 0; f (x) 1 x² ln(x) lim f (x) f (0) 1 0 f x 0 lim x² ln x 0 lim f (x) lim (1 x² ln x) 1 x 0 x 0 x 0 0f lim f (x) 1 0 x 0 x lim f (x) 1 lim x² ln x lim x ln x 0 x 0 x x 0 x x 0 lim f (x) f (0) f '(0) 0 lim f (x) 1 0 x 0x 0 x 0 x 0 f(C ) 0 f limf (x) 0 x limf (x) lim(1 x² ln x) x x f0 0; f (x) 1 x² ln(x) x1 f '(x) 2x ln x². 1 x(1 2ln x) 2e x x 0 x(1 2ln x) 0 f '(x) 0 1 x 1 ; x(1 2ln x) 0 f '(x) 0 e x 0; 1 x(1 2ln x) 0 f '(x) 0 e f x0 x f '(x) 2 0 f (x ) 2 f (x) 1 0; f(x) 0 7 114 0202
limf (x) f(x ) 1,183 x ; f 2 2 x f(x) 0 f () 0 1,531 1,532 1,531 1,532 f (1,532) f (1,531) 0,00012 g4 g(x) f ( x ) g g(x) f ( x ) f ( x ) g(x) x x (C ) (C ) 2; 2 g gf g(x) f (x) (C ) (C ) (C ) g(x) f (x) g f g y x 0;2 x 2;0 1 (C ) g -2 -1 0 1 2x -1 0214 47 1 f f f (x) (1 2ln x)(1 ln x) 0; lim (ln x) lim f (x) lim(ln x) limf (x) x 0 x x 0 x f f '(x) ( 2)(1 ln x) ( 1)(1 2ln x) 1 (1 4ln x) x xx 115 0202
x 0 1 1 4ln x f '(x) f '(x) e4 1 f (x) 0 x e4 f '(x) 0 9 4 1 f '(x) 0 x e4 1 f '(x) 0 0 x e4 y f '(e)(x e) f (e) y f '(a)(x a) f (a) (T) y 3x3 y 3 (x e) 0 ee e C C f f f (x) 0 (1 ln x) 0 (1 2ln x) 0 (1 2ln x)(1 ln x) 0 f (x) 0 xe (1 ln x) 0 x 1 (1 2ln x) 0 ( 1 ;0) (e;0) e e C f g2 g(x) 1 ln x 0; g lim g(x) lim (1 ln x) limg(x) lim(1 ln x) x 0 x 0 x x x 0 f g '(x) g'(x) 0 g '(x) 1 g(x) x g 116 0202
0 ; e² C C C C g f g f f (x) g(x) C C gf f (x) g(x) (1 2ln x)(1 ln x) (1 ln x) 2(1 ln x)(1 ln x) x1 xe (1 ln x)(1 ln x) 0 f (x) g(x) 0 e C C e x0 gf (1 ln x) 1 e 0 (1 ln x) 0 0 C C C C C C gf gf gf x1 xe C C e g f y 0 ; e² C C g f 4 (C ) f 3 2 1 -1 0 1 2 3 4 5 6 (7C ) x -1 g 117 0202
0217 44 u 1I u(x) ex 3x 4 e 0; u u'(x) ex 3 0 x ln3 u'(x) 0 x ln3 u'(x) 0 ex ln3 u'(x) 0 0;ln 3 ln 3; u ex e 3x 4 x 0; u(ln3) 7 3ln3 e ex 3x 4 e 0 u ex e 3x 4 u(x) 0 x 0; v'(1) 0 2 v(x) 3x3 4x² 1 ln x 0; v v '(1) 0 v'(x) 9x2 8x 1 9x3 8x² 1 xx v(x) 0 x 0; v '(1) 0 9x3 8x² 1 (x 1)(9x² 8x 1) v '(x) v '(x) x 0; (9x² 8x 1) 0 (x 1) x 1 v'(x) 0 x 1 v'(x) 0 v(x) 0 v(1) 0 v 1 ln x 3x 4 x 0; x² 1 ln x 3x 4 3x3 4x² 1 ln x 0 v(x) 0 I2 x² ex e 1 ln x 0 x0; 3 x² 1 ln x 3x 4...(2) 1 ln x 3x 4 ex e 3x 4...(1) x² x² 118 0202
ex e 1 ln x 0 21 x² lim f (x) lim f (x) 1 II x x 0 f (x) ex ex ln x 0; f x lim ln x lim f (x) lim ex 1 lim f (x) lim ex ex ln x xx 0 x x 0 x 0 x 0 x 0 lim ln x 0 lim ex lim f (x) lim ex ex ln x lim ex e ln x) x( x ²x xx x x x xx x² 0; f2 y 3 2 1 .x ln x 1 ln x x f '(x) ex e ex e 1 x² x² -1 0 1 2 3x I3 f '(x) 0 -1 0; 2, 5 (C ) f (1) 3 f -2 (C ) f (1) 0 f A(1;0) -3 0210 45 g 1I g(x) 2ln(x 1) x 1; 3 g x 1 lim (x 1)ln(x 1) 0 lim g(x) lim 2(x 1)ln(x 1) x lim x (x 1) x 1 x 1 x 1 x 1 x 1 x -1 1 3 g'(x) 2 1 2x 1 2 g(3) x 1 (x 1)² (x 1)² g '(x) 0 g(x) x 1 2x 1 0 g'(x) 0 g( 1) 2 2 2x 1 g '(x) g 119 0202
0,8 0,7 g(x) 0 2 g(0,8) g(0,7) 0 1; 1 g 2 g() 0 0,8 0,7 g(0) 0 g(x) 0 x g(x) 3 g(x) g(x) 0 x ;0 g(x) 0 x 1; 0;3 g '(x) g(x) h '(x) 4 h h(x) g(x)² 1; 3 gh h '(x) h '(x) 2g(x).g'(x) h h '(x) x -1 1 0 3 h '(x) 2g(x).g'(x) g(x) 2 0 h '(x) 0 g'(x) 0 g(x).g '(x) h '(x) 00 0 lim h(x) lim g(x)² x 1 x 1 h x -1 1 0 3 2 0 h '(x) 00 h(x) h( 1) h(3) 2 h() h(0) 102 0202
0 (C ) Tf 0 f 1 II f (x) x² ;x 0 1; 3 f ln(x 1) f (0) 0 L lim f (x) f (0) L 0 f x 0 x 0 lim ln(x 1) 1 f (x) f (0) x lim 1 1 x lim lim ln(x 1) x 0 x 0 x 0 x 0 ln(x 1) x 0 x y f '(0)(x 0) f (0) 0 (C ) T f yx T f (0) 0 f '(0) 1 f f '(x) xg(x) ² x 1;0 0;3 2 ln(x 1) 2x.ln(x 1) x² x(2 ln(x 1) x ) xg(x) x 1 x 1 f '(x) ln(x ln(x 1)² ln(x 1)² 1)² xg(x) f '(x) f '(x) xg(x) ² ln(x 1) x -1 0 3 g(x) 0 0 + 1; f x 0+ f () ;3 f '(x) - f () 2( 1) f () ² 2²( 1) 2( 1) ln( 1) g() 0 ln( 1) 2( 1) 0,2 1 0,3 0,8 0,7 101 0202
0,2 0,7 ( 1) 0,3 0,8 0,48 f () 0,28 2.0,3 0,8 2( 1) 2.0,2 0,7 f lim f (x) f (3) x 1 lim ln(x 1) lim f (x) lim x² 0 f (3) 9 x 1 x 1 ln(x 1) ln 4 x 1 f x -1 03 f '(x) 0 0 0 f (x) f () f (3) 0 x ln(x 1) 0 x 1; 3 3 h(x) 0 x 1; 3 h(x) x ln(x 1) 0h x h '(x) x x 1 x ln(x 1) 0 h(x) 0 f (x) x x(x ln(x 1)) xh(x) T (C ) ln(x 1) ln(x 1) T f (C ) f (x) x 0 x 1; 3 x f h '(x) T (C ) f 3 (C ) T T' 4 f y ax b T' 100 0202
a 1 T T' b f (3) 3 9 3 (3;f (3)) T' ln 4 y x3 9 T' ln 4 (C ) T' T f 5 (C ) y f 6 (T ') 5 4 3 2 (T) 1 -3 -2 -1 0 1 2 3 4 5x -1 6 f(x) x m y x m f(x) x m y f (x) yxm (C ) f T' T m0 2 m 01 0 m1 3 1 m f (3) 4 107 0202
0211 46 g 1 g g(x) x² ln(x2) 1 0; lim x² ln(x²) 1 lim g(x) lim x² ln x² 1 x x 0 x 0 x 0 1 g '(x) 2x 2 g '(x) x g g'(x) 0 g(x) g(1) 0 x0 g(x) g(x) g(x) g(1) 0 1 0 f '(x) g(x) 0; f 2 x3 f f 0; f (x) (1 1 )(ln x) 0; x² 0; f '(x) 2 ln x 1 (1 1 ) 2 ln x x² 1 x² 1 ln ² g(x) x3 x x² x3 x3 x3 x3 f x0 1 f '(x) g(x) f '(x) 0 x3 f (x) g(x) f '(x) f 0 limf (x) lim f (x) x x 0 104 0202
1 C lim ln x f x ²x f (x) ln x ln x C f x² ln x x0 1 0 C C 1 1 ln x 2 f f x² 2 x C lim ln x lim 0 f x x limf (x) ln x 0 lim 1 ln x 0 x ²x x C f C f y (C ) 3f 2 1 -1 0 1 2 3 4 5 6 7x -1 -2 () -3 105 0202
0212 47 lim g(x) 1 g x 0 g(x) x 1 2ln x 0; (C ) x 0 lim g(x) lim x 1 2ln x g x 0 x 0 limg(x) 2 x lim ln x lim 1 0 lim g(x) lim x 1 2 ln x lim x 1 1 2 ln x xx xx x x x x x g x 01 2 g'(x) 1 2 x 2 g '(x) 0 xx g(x) 0 x2 0 g(2) g(1) 0 g(1) 3,5 3,6 g(x) 0 g(1) 0 1 g(x) 0 g(3,5) g(3,6) 0 2; g 3,5 3,6 g() 0 3,5 3,6 x0 1 g( 1 ) g(x) g(x) 0 0 x g(x) x0 1 1 x 1 x 1 g(1) 0 g( 1 ) 0 x x 0 g( 1 ) x 106 0202
f (x) 3 lim xx 0 f (x) x² x x² ln x ;x 0 0; f f (0) 0 lim (x ln x) 0 lim f (x) lim (x 1 x ln x) 1 xx 0 x 0 x 0 1 f lim f (x) f (0) f '(0) lim f (x) 1 x 0x 0 xx 0 f limf (x) lim(x² x x² ln x) lim(x²)(1 1 ln x) x x x x f f '(x) xg( 1 ) 0; x x f '(x) 2x 1 2x ln x x x 1 2x ln x x(1 1 2ln 1) xg( 1) xx x g( 1 ) f '(x) f '(x) xg( 1 ) x x f(1) f(1) 1 f 2² x0 1 f ( 1 ) 1 1 1 ln 1 ² ² f '(x) 00 1 ln ² f (x) 1 0 f () ln 1 g() 0 2 f(1) 1 1 1 2 ² 2² 24,5 2² 25,92...(2) 2,5 1 2,6....(1) 3,5 3,6 107 0202
0,10 f () 0,11 2,5 1 2,6 21 25,92 2² 24,5 0;3 f (C ) 4 f y 2 1 0 1 2 3 4x 108 0202
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194