Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore PPT NILAI OPTIMUM

PPT NILAI OPTIMUM

Published by Rinati Adiasih, 2020-11-05 22:14:38

Description: RINATI TRIDA ADIASIH_PPT NILAI OPTIMUM

Search

Read the Text Version

Nilai Optimum Suatu Fungsi Objektif (Metode Uji Titik pojok) PROGRAM LINEAR DUA VARIABEL SMK WIKARYA KARANGANYAR RINATI TRIDA ADIASIH, S.Pd

Langkah-langkah Menentukan Nilai Optimum Fungsi Objektif dari Masalah Kontektual Menggunakan Metode Uji Titik Pojok 1. Buatlah model matematika dari permasalahan yang disajikan. 2. Gambarlah daerah penyelesaian dari kendala-kendala dalam masalah program linear tersebut. 3. Tentukan titik-titik pojok dari daerah penyelesaian itu 4. Subtitusikan koordinat setiap pojok itu ke fungsi objektif 5. Bandingkan nilai-nilai fungsi objektif tersebut. Nilai terbesar berarti menunjukkan nilai maksimum dari fungsi f (x, y) sedangkan nilai terkecil berarti menunjukkan nilai minimum dari fungsi f (x, y)

Contoh Soal Seorang praktikan membutuhkan dua jenis larutan, yaitu larutan A dan larutan B untuk eskperimennya. Kedua jenis larutan itu mengandung bahan seperti tertera pada tabel berikut. Bahan Jenis Larutan Larutan A Larutan B I 10 mL 5 mL II 10 mL 15 mL Larutan A dan larutan B tersebut akan digunakan untuk membuat larutan C yang mengandung bahan I sedikitnya 40 mL dan bahan II sedikitnya 60 mL. harga tiap mL larutan A adalah Rp.5.000 dan tiap mL larutan B adalah Rp.8. 000. Berapakah harga minimal untuk pembelian kedua jenis larutan tersebut?

Misal : Larutan A = x Fungsi Objektif : Larutan B = y f (x, y) = 5000x + 8000 y y Model Matematika : 8B 10x + 5y  40 DHP 10x +15y  60 4 x0 C y0 A x Uji Titik Pojok Titik A (6,0) 46 10x +15y  60 Titik B (0,8) 10x + 5y  40 Titik C (....,....)

Mencari Titik C 10x + 5y = 40 10x + 5y = 40 10x + 5(2) = 40 10x +15y = 60 − 10x +10 = 40 −10 y = −20 10x = 40 −10 y = −20 −10 10x = 30 y=2 x = 30 10 Titik C (3,2) x=3

Subtitusikan koordinat setiap titik pojok ke fungsi objektif Titik Pojok f (x, y) = 5000x + 8000 y Min Titik A (6,0) Titik B (0,8) 5000(6) + 8000(0) = 30000 Titik C (3,2) 5000(0) + 8000(8) = 64000 5000(3) + 8000(2) = 31000 Jadi, Praktikan paling sedikit mengeluarkan dana adalah Rp. 30.000


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook