Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore CityU_Brochure2020_v2

CityU_Brochure2020_v2

Published by fun.hung, 2020-07-03 09:59:07

Description: CityU_Brochure2020_v2

Search

Read the Text Version

CONTENT 1 Mission 2 使命 3 History 4 历史 Laboratory Members 4.1 实验室成员 4.2 Core Research Fields 4.3 核心研究领域 4.4 Antenna 4.5 天线 4.6 Passive Microwave Circuits 4.7 无源微波电路 4.8 Active Microwave Circuits 4.9 有源微波电路 5.0 System Integration 5.1 系统集成 5.2 Terahertz (THz) Science and Technology 5.3 太赫兹科学与技术 Microelectromechanical Systems (MEMS) for Frequency Control 6 无线通信微型机电系统 7 Multi-Antenna Communication Technology 8 多天线通讯技术 Nonlinear Laser Dynamics for Microwave Photonics 非线性激光动态微波光子学 Plasmonic Devices for Photonics and THz Applications 用于光子学和太赫兹应用的等离子体器件 Biological Effects Produced by High-Frequency Radiations 高频辐射产生的生物效应 Novel Materials Polymer-Composite Layer for THz Applications 用于太赫兹应用的高分子复合层新材料 High-Performance Small-Diameter Nanowires for Electronics, Spintronics and Photonics 用于电子学、自旋电子学和光子学的高性能小直径纳米线 Molecular- and Nano-Materials for Photonics and Drug-Delivery Applications 分子和纳米材料在光子学与给药系统的应用 Core Research Facilities 核心研究设备 Student Achievements 学生成就 Laboratory Contact 实验室联系方式

MCOISRSEIORNESEARCH FACILITIES 使核心命研究设备 The establishment of the State Key Laboratory of Millimeter Waves at the City University of Hong Kong w as appr oved by t h e M i n i st r y o f S ci e n ce a n d Technol ogy of C hi na i n M ar ch 2008. I t is t he f irs t laborat ory of its kind in the engineering discipline in Hong Kong. Research activities in the Laboratory focus on the advancements and applications of millimeter wave and terahertz technologies. Key mission areas include antenna design, RFIC design and fast computational technique. The Laboratory works closely with her strategic partner at the Southeast University for promoting collaboration between Hong Kong and the mainland. Our long-term goal is to carry out fundamental and applied research for the advancements of communication technologies in China. 香港城市大学于2008年3月获国家科学技术部批准,成立毫米波国家重点实验室,是香港首家在工程领域方面的国家 重点实验室。实验室致力于拓展毫米波及太赫兹技术的发展与应用,核心研究领域包括天线设计、射频集成电路及 快速运算法。实验室与东南大学结合成策略性伙伴,致力于我们长远的目标:提升国家通讯技术的基础及应用研究 能力作出贡献。

HISTORY 历史 The State Key Laboratory of Millimeter Waves (SKLMW), Partner Laboratory in the City University of Hong Kong (CityU), traces its root to the early 1980s when Professor Kai Fong Lee was named the founding head of the Department of Electronic Engineering. Professor Lee is Dean Emeritus of School of Engineering at the University of Mississippi and recipient of the 2009 John Kraus Antenna Award of IEEE Antennas and Propagation Society. He recruited Professors Kwai Man Luk and Edward Yung in forming a 3-person applied electromagnetics research group. The electromagnetics research group immediately received international attention when Professor Kenneth K. Mei, winner of the 2009 IEEE Electromagnetics Award, joined the group in 1994 after decades of distinguished career at the University of California, Berkeley. The reputation of the electromagnetics group further attracted Professor Chi Hou Chan from the University of Washington to join in 1996. Professor Quan Xue then joined the group in 1999, first as a research fellow and then a faculty member, in extending the research scope to microwave and millimeter-wave integrated circuits and systems. In the meantime, Professor Kwok Wa Leung, a former student of Professor Luk, has gradually established himself a leading authority in dielectric resonator antennas. Dr. Hang Wong, also a former student of Professor Luk, has emerged a rising contender in small antenna research. The core team led by Professors Luk, Xue, and Both by design and natural evolution, we have expanded Chan spearheaded the establishment of SKLMW, our research activities into micro- and nano-fabrication, Partner Laboratory in CityU, with the approval by microwave photonics, digital and mobile communications, the M inis t r y of S c i e n c e a n d Te c h n o l o g y o f C hi na multiple-input and multiple-output (MIMO) technologies, in March 2008. SKLMW benefits from the sensor networks, nano/micro-electromechanical systems synergy of CityU's research strengths in (NEMS/MEMS), and system integrations. To position microwave and millimeter-wave circuit designs, ourselves for funding opportunities in future 5G antenna technologies, and computational communication, we have been building our research infrastructure for terahertz (THz) science and technology electromagnetics. The SKLMW forms close from 0.1 to 10 THz. At this exceptionally high frequency collaborations with its counterpart at Southeast range, both materials and devices are not readily University, Nanjing. The SKLMW at CityU also available. Their properties are also not well-understood. serves as a platform to attract researchers of Furthermore, THz wavelengths are comparable to the outstanding caliber, both within and outside size of living cells. We have invited colleagues with the University, to research on focused areas relevant expertise to jointly define research strategies in developing communication technologies and projects in the THz regime with the aim to make for China. major research impact.

毫米波国家重点实验室的基础源于1980年代本校电子工程系始创人李启方教授。李教授现为美国密西西比大学 工 程 学 院 院 长 , 幷 为 2009年 国 际 电 机 暨 电 子 工 程 师 学 会 天 线 及 传 播 分 会 约 翰 丹 尼 尔 克 劳 斯 天 线 奖 (IEEE Antennas and Propagation Society John Daniel Kraus Antenna Award) 得奖者。当时,李教授邀请 现为本校电子工程系的系主任陆贵文讲座教授及容启宁讲座教授,组成电子工程系应用电磁学3人研究团队。 团队更于1994年邀请了梅冠香教授加入。梅教授在加州大学柏克莱分校任教达32年,并为2009年国际电机暨电 子工程师学会电磁学奖(2009 IEEE Electromagnetics Award)得奖者。随后,团队声望更获得来自美国华盛顿 大 学 , 现 为 本 系 的 陈 志 豪 讲 座 教 授 的 关 注 , 并 于 1996年 加 入 。 实 验 室 的 研 究 范 畴 于 1 9 9 9 年 薛 泉 博 士 加 入 后 , 在微波和毫米波集成电路及系统研究领域得到了更大的拓展。同时,陆教授之前的学生,现为本系工作的梁国 华教授已经逐渐成长为介质谐振天线方面的权威。黄衡博士也在小天线研究领域展现出越来越大的竞争力。 毫米波国家重点实验室于2008年3月获国家科学技术部 通过设计与发展,我们把研究工作扩展到了微加工与 的批准而成立。重点实验室在陆教授、薛教授及陈教授的 领导下,与东南大学毫米波国家重点实验室建立了合作 纳米加工、微波光子学、数字与移动通信、MIMO技术、 关系,通过整合了香港城市大学在微波电路设计、天线 传感器网络、纳米/微机电系统、以及系统集成。为了 技术及快速运算法方面的研究实力,使重点实验室为 校内外杰出学者提供研究平台,致力发展我国当代的 投身于未来的5G通信网络,我们把研究重点放在从0.1到 通讯技术。 10THz的太赫兹技术。在这种极高的频率范围,目前 没有可利用的材料与器件,对他们的特性也不甚了解。 而且,太赫兹波长与生物细胞相近,我们还邀请了相关 领域的同事帮助我们确定太赫兹的研究战略与项目, 使得我们的研究获得更大的影响力。

LABORATORY MEMBERS 实验室成员 ADVISORY COMMITTEE | 学术委员会 Professor Ke WU Professor Che Ting Chan 吴 柯 教授 陈子亭 教授 CHAIRMAN 主席 MEMBERS 委员 Quasi-Optical Waveguide Systems Theory and simulation of material properties Software-Defined Devices Theory of of advanced materials: photonic Substrate Integrated Circuits(SICs) crystals, metamaterials and nano-materials Professor Zhi Ning CHEN Dr. Keren LI 陈志宁 教授 李可人 博士 MEMBERS 委员 MEMBERS 委员 Antennas and RF Microwave and Antenna Applied Electromagnetics Optical Fiber Communication Professor Wei HONG Professor Shenggang LIU 洪 伟 教授 刘盛纲 教授 MEMBERS 委员 MEMBERS 委员 Antennas and RF Technologies Free Electron Laser Microwave Integrated Circuit Optics Mobile Communications Plasma Electronics Relativistic Electronics Professor Jun Fa MAO 毛军发 教授 Professor Lei ZHU MEMBERS 委员 祝 雷 教授 MEMBERS 委员 Electromagnetic Theory RF and Microwave Circuits RF and Microwave Engineering Signal Integrity of High-Speed Antenna Technology Integrated Circuits Applied Electromagnetics

DIRECTOR Antenna Computational Electromagnetics Professor Chi Hou CHAN* Microwave and Millimeter-Wave Circuit 陈志豪教授 (RFIC, Terahertz Components and Systems) Chair Professor of Electronic Engineering DEPUTY DIRECTOR Glass Materials and Devices Polymer Materials and Devices Professor Edwin Yue Bun PUN* Lithium Niobate Materials and Devices 潘裕斌教授 Plasmonics/Nanophotonics Chair Professor of Electronic Engineering Deoxyribonucleic Acid (DNA) - Based Biopolymer Materials and Devices Biophotonics MEMBERS Microwave Photonics Dr Nelson Sze Chun CHAN Nonlinear Laser Dynamics 陈仕俊博士 Semiconductor Lasers (optical chaos generation, radio-over-fiber, Associate Professor of Department and photonic microwave generation) of Electronic Engineering Antenna Theory and Design Professor Kwok Wa LEUNG Computational Electromagnetics 梁国华教授 (guided wave theory, mobile communications) Professor of Department of Electronic Engineering Synthesis and Application of Nano Materials Inorganic and Organometallic Chemistry Dr WONG Chun Yuen WONG Spectroscopy 黄骏弦博士 Associate Professor of Nanofabrication Technology Department of Chemistry Nanoimprint Biomedical Professor Stella W. PANG Microelectronic 彭慧芝教授 Optical Chair Professor of Microelectromechanical Devices & Microsystems Electronic Engineering Molecular electronics Dr Roy Arul Lenus VELLAISAMY Molecular self-assembly 华礼生博士 Photonics Associate Professor of Department Nano-materials science of Materials Science and Engineering Bio-electronics Renewable energy(Solar and Fuel Cells) and printed electronics

MEMBERS Proteomics Dr Yun Wah LAM Adaptive Signal Processing 林润华博士 Digital and Mobile Communications Associate Professor of (Wireless Communications) Department of Chemistry Analytical Chemistry Dr Shu Hung LEUNG Electrochemistry 梁树雄博士 Photochemistry Associate Professor of Department Biosensory Applications of Electronic Engineering Professor Kenneth Kam Wing LO 罗锦荣教授 Professor of Chemistry Dr. En Yuan Joshua LEE Micromechanical Oscillators and Filters 李恩源博士 Nano/Micro-Electromechanical Systems (NEMS/MEMS) Assistant Professor of Department Sensors and Actuators of Electronic Engineering Dr Johnny Chung Yin HO Monolayer Assisted Nano-Scale Processing 何颂贤博士 Synthesis and Characterization of Associate Professor of Department Fundamental Properties of Nano-Materials of Materials Science and Engineering Large-Scale and Heterogeneous Integration of Nano-Materials for Flexible and High Dr. Hang WONG Performance Technological Applications 黄衡博士 Associate Professor of Department Antennas of Electronic Engineering Millimeter Wave Technologies Implant Communications Professor Kwai Man LUK* Applied Electromagnetics 陆贵文教授 Small antenna Chair Professor of Electronic Antenna measurements Engineering Satellite communications OTHER INSTITUTIONS Antenna Design Applied Electromagnetics Microwave and Antenna Measurement (Microstrip antennas, Dielectric resonator antennas, computational electromagnetics) Professor Lijun Jiang Professor Xiuyin ZHANG Associate Professor of Department Professor of School of Electronic and Information Engineering of Electrical and Electronic Engineering South China University of Technology The University of Hong Kong RF and wireless communications Electromagnetics Computational Electromagnetics Dr. Jensen Tsan Hang LI EMC/EMI Associate Professor IC Signal and Power Integrity The Hong Kong University of Science and Technology Multiphysics Characterization for Metamaterials and Nano Devices Electromagnetic and Acoustic Metamaterials Metamaterial Inspired Antenna Technology Photonic Crystals Material Engineering Transformation Optics Professor Shi-Wei Qu Associate Professor of School of Electronic Engineering University of Electronic Science and Technology of China 反射阵天线研究 Ka波段圆极化天线研究 新型背腔式天线研究 60GHz无线通信用背腔天线研究

CORE RESEARCH FIELD 核心研究领域

ANTENNAS 天线 One of the core research areas of SKLMW is the exploration of microstrip antennas for wireless communications. Many state-of-the-art techniques such as the L-probe patch antennas, vertical patch antennas, and magneto-electric dipole antennas have been invented. These inventions outperform conventional designs in bandwidth, antenna gain, stability in radiation patterns, etc., which also shape the trend in antenna research for many followers around the world. The laboratory is also a leading research center in dielectric resonator antennas that employ inexpensive materials, like different glass materials, a s ra diat ing elem e n ts . To a d d re s s fu tu re needs i n 5G w i rel ess communi cati ons, the l aborat or y has extended its antenna research efforts from microwave into millimeter-wave frequencies. We have developed novel antenna elements and arrays based on dielectric patch, higher-order mode patch, and dielectric lens antennas, which can be fabricated with inexpensive standard manufacturing processes such a s p r int ed- c ir c uit , p l a te d -th ro u g h -h o l e , a n d 3D -pri nti ng technol ogi es. We al so pl ay a l eadi ng role in RF, antenna systems, and related technologies in local and mainland industries through the development of new concepts and products. One example is the development of key components for mobile satellite communications in Beidou marine/land vehicles and handheld terminals, illustrating our cutting-edge technologies in RF and antenna designs. Our inventions of novel small antennas earned us a State Tech nologic al I nv e n ti o n Aw a rd (Se c o n d Prize) i n 2011. Moreover, i n l and-based communi cations, we contribute in subsystem designs for Bluetooth, WLAN, Zigbee, 2G and 3G mobile services, and millimeter-wave radio systems. Looking forward, we anticipate a new era of the integration of antenna and nanofabrication technologies for communications, sensing, and energy conversion.

天线设计是重点实验室最突出的研究领域之一。除优越的基础研究外,我们同时 将研究成果,成功拓展和转移到不同的无线通讯应用系统,并研发了多种新型 天线,如L-型探针贴片天线、垂直贴片天线及磁电偶极天线等。 这些发明都胜过传统的设计在带宽、天线增益、辐射方向的稳定性等上面的 表现,并引领世界天线研究的潮流。本实验室还在介质谐振天线研究领域处于 领导地位,这种天线使用低成本的材料作为辐射单元,例如玻璃。为了满足未来 5G通信的需要,本实验室还把天线研究从微波拓展到了毫米波,研发了许多新型 天线单元与阵列,例如:介质贴片天线、高次模贴片天线、介质透镜天线等。 并利用低成本的加工技术来加工这些天线,例如:印刷电路、电镀通孔和三维 打印技术。我们实验室还通过提出创新的研发理论和产品,在射频、天线系统及 相关技术上处于本地以及中国大陆的领导地位。其中一个典型例子就是我们 开发了用于移动卫星通信的北斗水路汽车和手持终端的关键部件,这显示了我们 在射频与 天 线 设 计 上 的 尖 端 科 技 实 力 。 我 们 研 发 的 小 天 线 赢 得 了 2011国 家 科技进步二等奖。此外,在地面通信方面,我们团队在蓝牙、WLAN、zigbee、 2G/3G移动设备等准系统以及毫米波系统方面都做出了很大贡献。展望未来, 实验室已开始幷重点推动用于通信、传感与能量转换的天线与纳米加工技术。

PASSIVE MICROWAVE CIRCUITS 无源微波电路 Abundant efforts have been made to develop 我们已投放大量的资源以发展新型的无源微波网络, novel microwave distributed networks. We mainly 主要专注于滤波、相位控制与功率分配的电路微型化 focus on circuit miniaturization and bandwidth 及其频宽提升。其中最具代表性的发明是紧缩微带 enhancement of signal filtering, phase controlling 谐振单元(CMRC),利用电磁带隙结构产生的慢波 and power dividing circuits. One of our 效应来达到电路小型化。此项发明可应用于功分器, representative inventions, compact microstrip 频率倍增器及次谐波泵式混频器上,能优化及提升 resonant cell (CMRC), is to induce the slow wave 电路效能。此外,双面平行带线结构的研究,如宽带 effect for size reduction, while such electromagnetic 反相功分器,混合环,推挽式放大器及推式次谐波 bandgap (EBG) structures have been further 振荡器,将我们的研究拓展到多层多导体技术上。 developed in non-microstrip networks. Subsequently, this invention has been utilized in power amplifiers, frequency doublers and sub-harmonic pumped mixers for boosting circuit performances. Furthermore, abundant works based on double-sided parallel-strip lines (DSPSL), like wideband out-of-phase Wilkison power dividers, hybrid rings, push-pull amplifiers and push-push sub-harmonic oscillators; carry our expertise over into the multi-layer multi-conductor technologies.

ACTIVE MICROWAVE CIRCUITS 有源微波电路 Nonlinear characteristics of active devices (diodes and transistors) have been intensively investigated to improve the linearity and power performances of signal-amplifying and frequency-converting circuits. We have proposed adopting the nonlinearity of a single diode (including forward-biased and reverse-based configurations) and anti-parallel reconfigurable transistor (ART) pair for distortion compensation. On the other side, the noticeable linearity improvement, offered by the incorporation of CMRC in a power amplifier, highlights the importance of out-of-band termination for intermodulation response. A bias-adaptation technique, self-adaptive biasing (SAB), along with harmonic terminations, is therefore devoted to dynamic IMD sweet spot control as a novel circuit-level linearization. With strong technical knowledge and solid experience in the design of microwave circuits, our innovations have been subsequently validated by their use in industrial silicon-based (CMOS and BiCMOS) and III-V compound semiconductor (GaAs) processes. High-performance power amplifiers, mixers and antenna switches have been successfully utilized for ISM band applications. We are currently working with nano-scale CMOS and multilayer post-processing in GaAs integrated circuits to explore our research on m i l l i m et er w ave an d Te r a h e r t z M M I C s. 毫 米 波 国 家 重 点 实 验 室 于 2 0 0 8 年 3 月 获 国 家 科 学 技术部的批准而成立。重点实验室在陆教授、薛教授及陈教授的领导 下,与东南大学毫米波国家重点实验室建立了合作关系,通过整合了香港城市大学在微波电路设计、天线技术及快速 运 算 法 方 面 的 研 究 实 力 , 使 重 点 实 验 室 为 校 内 外 杰 出 学 者 提 供 研 究 平 台 , 致 力 发 展 我 国 当 代 的 通讯技术。 有着微波电路设计上纯熟的操作技术及丰富的实际经验,我们的发明已在工业硅基(CMOS;BiCMOS)与 III-V 族 化 合 物 半 导 体 (GaAs)的 使 用 过 程 中 得到了验证。高效能功率放大器,混合器及天线开关亦已在ISM频 段 中应用。我们正研究如何在集成电路上应用纳米CMOS及多层面后处理过程以研发毫米波的微波和太赫兹的 单片积体电路。

SYSTEM INTEGRATION 系统集成 For integration, different modules will be connected together in order to form a functional receiver or transmitter chain. Therefore, many parameters need to be considered and fulfill the design specifications such as user interface, device limitation, gain cascade, system noise, as well as filtering and power supply. After a feasible study, performance optimization will be carried out. This is a big challenge, since the goal of a transmitter or receiver is usually an iterative process of compromise between performance, size, cost and power consumption. Therefore, the commercial software will be applied to study each parameter that could affect the overall performance and to produce a result that fulfills the specifications and requirements at each stage. 系统集成是将多个功能模块整合成一组系统化的接收或发射系统。系统集成需全面考虑各变量以满足设计上的规范, 如用户接口,装置规限,增益,噪声,滤波及电源供应等。经过可行性研究后,再进行参数优化,这是一项极具挑战性 的工作,因为要设计出一个理想的发射或接收器是一个与效能,体积,成本及能源消耗的反复权衡与取舍的过程。 所以,我们应用商业用软件于研究各变数在过程中所产生的影响及如何产生结果以满足在各阶段中特定而合理的要求。



TERAHERTZ (THZ) SCIENCE AND TECHNOLOGY 太赫兹科学与技术 In recent years, the field of terahertz (THz) technologies has entered a phase of unprecedented interest and expansion. This frequency range, bridging the gap of the electromagnetic spectrum between electronics and photonics, offers emerging opportunities for new engineering paradigms. This emerging field has been recognized as of extreme importance for many scientific and commercial applications in future wireless, security, biology, astrophysics, materials, medicine, and environmental sensing. THz technologies can be applied not only in radio astronomy but also in the identification of chemical, physical, and biological agents (i.e. DNA molecules), as well as in imaging. Recent breakthroughs in millimeter-wave and THz developments have paved the way for novel research activities and technological developments, stimulated by the progressive advent of cost-effective components, circuits and systems for wide-ranging commercial applications. An analogy of a prism at optical frequency is a frequency scanning antenna at THz which can be realized in the form of a reflectarray consisting of thousands of elements of about 0.2 mm by 0.2 mm each. Fine details with tight control of geometrical dimensions of each element require microfabrication in a cleanroom. In this example, the reflectarray has a scanning range of 30o when the frequency is varied from 200 to 300 GHz.

近年,太赫兹技术引起了广泛的兴趣并得到了空前的发展。这段频谱处于电子与 光子电磁频谱间的空隙幷为发展新的工程技术提供契机。此领域被认为在多个 科学及商业的范畴具有极其重要的作用,比如:未来的无线通信、安全、生物、 天体物理学、材料、医学,环境遥感等。太赫兹技术不单应用于射频天文学上, 亦能应用于化学,生物媒介(DNA)的辨别及成像上。最近在毫米波及太赫兹 技术方面的进展为新的研究和技术发展铺垫了道路。这些新的研究和技术促进了 具有广泛商业应用的低成本零件、电路及系统。 棱镜在光频率就好比是在太赫兹的频率扫描天线,此天线可由数千约0.2毫米 乘以0.2毫米的单元组成的一个反射阵来实现。为了严格控制每个单元的几何 尺寸的细节,需要在洁净室进行微加工。在这个例子中,从200至300赫兹 变化时,反射阵具有30° 的扫描范围频率。

MICROELECTROMECHANICAL SYSTEMS (MEMS) FOR FREQUENCY CONTROL 用于频率控制的微机电系统 Micron scale high Q passive components 微型机电系统 (MEMS) 技术在利用高Q值微组件下, utilizing microelectromechanical systems (MEMS) 已 于 兆 赫 兹 中 达 到 过 万 Q值 。 作 为 晶 体 管 的 近 亲 technology have demonstrated Q's of 10,000 at 而言,系统部件在单片实践中是可扩展及有潜力的。 GHz frequencies. As with their transistor 因此,在多频可重构易携通讯应用上,实践低能源 close-relatives, MEMS devices are scalable and 高稳定性的微型部件便获得很大的关注。此外,随着 hold promise for on-chip implementation. These 分离部件可机械性连接并可视为集成电路后,微机 have thus received much interest for realizing 电系统的技术便以倍数增长,更视在信频处理上研发 low-power high-stability miniaturized clocks 集成机体电路为目标。研究方向集中于研发上述的 amenable for future multiband reconfigurable 全机体电路并稳定温度对于电路的影响。 portable communication applications. Furthermore, the benefits afforded by MEMS technology grows exponentially as discrete devices are mechanically linked, as analogous to integrated circuits, to realize an integrated mechanical circuit for unprecedented capability and functionality in signal and frequency processing.Current research focus is on realizing such an all-mechanical circuit in addition to strategies for stabilizing the temperature dependence of these frequency references.

MULTI-ANTENNA COMMUNICATION TECHNOLOGY 多天线通讯技术 In recent years, MIMO (multiple input multiple output) has been considered for B3G and 4G communication systems. This technology can increase the diversity and/or multiplicity of data transmission. Since millimeter wave has short wavelength, a large number of antennas can be possibly implemented at transmitters and receivers. The high directivity and spatial gain of massive antennas can overcome the large fading of millimeter wave transmission. The research will study communication techniques with massive antennas for reliable communications over the fast fading millimeter-wave channels. 近 年 来 , MIMO在 新 一 代 移 动 通 讯 (B3G及 4G)中 广 泛 应 用 。 此 项 技 术 能 提 升 数 据 传 输 的 多 样 性 。 因 为 毫 米 波 具有波长短的特点,所以大规模天线便可应用于发射机和接受机上。而大规模天线的强方向性及高空间增益 能解决毫米波在传输上的高衰减性。所以,我们将专注研究可靠的大规模天线通讯技术以便应用于高衰减的 毫米波信道上。

NONLINEAR LASER DYNAMICS FOR MICROWAVE PHOTONICS 非线性激光动态微波光子学 Utilizing the wide variety of nonlinear dynamics, 半导体激光器丰富的非线性动力学特性,可以被用来 semiconductor lasers have been investigated for 产生多种光子微波信号。由于半导体激光器具有光子 generating a diverse range of photonic microwave 寿命短、受激发射截面大的特点,所产生的光子微波 signals. Thanks to the short photon lifetimes and 信号的频率远远超过传统调制带宽。首先,基于激光器 large stimulated emission cross-sections in 的单周期非线性动力学态,我们研究窄带光子微波 semiconductor lasers, the photonic microwave 信号的产生与调制。单周期震荡的光子微波可以被 signals possess large bandwidths well exceeding the conventional direct modulation bandwidths. 用于光载无线通信 (RoF) 和高达100 GHz 信号的全光 Firstly, narrowband photonic microwave signal 生成。其次,基于激光器的混沌非线性动力学态, generation and modulation were investigated 我们研究宽带光子微波信号的产生。利用宽带激光 through the period-one nonlinear dynamics. 混沌,我们提出信号过采样、并行输出等技术。实现 The photonic microwave oscillations have 了只需要低速电子器件的高速随机数生成。实验上 been considered for radio-over-fiber (RoF) communication and all-optical frequency generation 产 生 了 总 速 率 高 达 0.2 Tbps 的 随 机 数 的 输 出 , 并 且 up to 100 GHz. Secondly, broadband photonic 通 过 了 美 国 国 家 标 准 与 技 术 研 究 院 (NIST)的 随 机 性 microwave signal generation was investigated 严格标准测试。此外,我们亦致力于改善理论分析 using the chaotic nonlinear dynamics. Optical 模型,提高频率稳定性和混沌波形质量的研究。 chaos for very high-speed physical random bit generation (RBG) was demonstrated using low-bandwidth electronics, parallel configuration, and oversampling. Aggregated bit rates exceeding 0.2 Tbps were experimentally achieved, where high-quality randomness was verified by the stringent tests from the National Institute of Sta n dar ds and Te c h n o l o g y (N IST ). M o reover, techniques for improving the analytical model, frequency stability, chaotic quality using fiber gratings are being actively pursued.

PLASMONIC DEVICES FOR PHOTONICS AND THZ APPLICATIONS 用于光子学和太赫兹应用的等离子体器件 Surface plasmon polaritons (SPPs) refer to electromagnetic waves that are coupled to charge-carriers at the interface between a dielectric and a conductor as the electromagnetic waves travel along the interface. The study, excitation, and control of SPPs are known as plasmonics. The conductor ohmic losses, dielectric absorption, and scattering due to inhomogeneities on the surface affect the plasmon propagation. By using nanotechnologies, such as electron beam lithography, subwavelength plasmonic nanostructures can be created with EM properties that are not obtainable from natural materials. The electromagnetic waves can be strongly confined and greatly enhanced. They can be manipulated in ways not possible with conventional devices. The associated physics and potential applications across a range of science and engineering disciplines have led to tremendous cross-disciplinary activities. In SKLMW, we design, fabricate, and investigate plasmonic devices that operate from THz to visible frequency regimes. 表 面 等 离 子 体 极 化 (SPPs)可 以 参 考 电 磁 波 被 耦 合 到 在 介 质 和 导 体 作 为 之 间 的 充 电 载 体 , 电 磁 波 沿 边 界 面 传 播 。 探 索 、 激 励 和 控 制 SPPs被 称 为 等 离 子 学 。 导 体 的 欧 姆 损 失 、 介 质 吸 收 以 及 散 散 是 由 于 表 面 上 的 不 均 匀 性影响了等离子体的传播。通过使用纳米技术,我们来创造一些自然界材料所没有的电磁特性,比如电子 束光刻,亚波长等离子体纳米结构。电磁波能被牢牢地限制住并得到极大地增强。它们可以被我们用传统器件 所不可能的方式操纵。在一系列的科学和工程学科相关的物理和潜在应用已经产生了很多跨学科研究。 在 SKLMW, 我 们 在 设 计 、 制 造 并 研 究 从 太 赫 兹 到 可 见 光 频 率 的 等 离 子 器 件 。 35nm diameter dots 10nm wide linest Crestec CABL 9000C High-resolution

BIOLOGICAL EFFECTS PRODUCED BY HIGH-FREQUENCY RADIATIONS 高频辐射产生的生物效应天线 In the past few years, many studies have started to reveal a range of complex biological effects produced by high-frequency radiations, such as THz radiations. Despite their relatively low energy, THz radiation can cause changes in cell adhesion and migration, DNA damages, and stem cell differentiations. Some of these changes may be attributed to the temperature changes associated with the THz radiations, but most cannot be explained by these thermal effects. They are possibly the results of unknown biological perturbations caused by the radiation. Circumstantial evidence suggests that these effects are highly cell type-specific, but the lack of systematic studies hinders any further conclusions. We are conducting a detailed investigation on the impact of THz radiations, at various wavelengths, on DNA and RNA synthesis in a panel of mammalian cell lines. The outcome of this work is the establishment of a more comprehensive picture on the dosage-, wavelength-, and cell type-dependent effects of THz radiation. Furthermore, we are investigating the potential effect of THz radiation on two organismal models: C. elegans development and planarian regeneration. These invertebrate model systems provide a convenient in vivo platform for the analysis of the effects of THz radiation on cell renewal, migration, and differentiation.

在过去的几年里,很多研究开始揭露由高频辐射产生的复杂生物效应,比如: 太赫兹辐射。尽管太赫兹辐射的能量较低,它仍能引起细胞粘附和迁移的变化、 DNA 破坏以及干细胞分化。引起这些变化其中一个原因是由于太赫兹辐射导致的 温度变化,然而大部分情况并不能由这些热效应来解释,他们更像是辐射引起的 未知生物扰动的结果。一些间接证据显示这些效应是高度的细胞型特异,但是 系统研究的缺乏阻碍了进一步的结论。毫米波国家重点实验室正在开展关于不同 波长太赫兹辐射对哺乳动物细胞系DNA 及 RNA 合成影响的研究。这项工作的 成果是建立一个更加完备的关于用量、波长和细胞类型相关性的太赫兹辐射效应 图谱。而且,我们还在研究太赫兹辐射对于线虫进化和涡虫再生这两种生物模型 的潜在效应。这些无脊椎生物模型系统为分析太赫兹辐射对于细胞更新、迁移和 分化的影响提供了一个方便平台。

NOVEL MATERIALS POLYMER-COMPOSITE LAYER FOR THZ APPLICATIONS 用于太赫兹应用的高分子复合层新材料 We design a photonic flash memory device where Infrared (IR) light is used for data encryption in addition to an applied voltage bias. In thin film transistor memory architecture, most of the organic or inorganic semiconductors have almost no absorption in IR region due to their typical optical energy bandgap. Up-conversion (UC) describes a nonlinear optical process in which an UC material generates one high-energy photon for every two or more low-energy excitation photons. It has been proved to utilize UC materials for optical manipulation in applications such as solid-state lasers, solar energy conversion, optical storage, cancer therapy, and biological labeling/imaging. Here, we utilize wide bandgap UC materials as nanolamps whose visible emission enhances charge density in the active layer of the memory device. By the absorption of IR light, high-energy photons are emitted by the UC materials. Eventually, the high-energy emission from UC materials are reabsorbed by the active semiconductor layer and more photo-excitons are generated in the active layer which ultimately influence the charge trapping efficiency and data storage levels of the memory device. By increasing the charges in the polymer composite layer, we manipulate the dielectric constant of the medium with light. With a tunable dielectric constant, we aim to obtain a tunable THz photonic device. 毫米波国家重点实验室设计光子闪存器件,其中的红外光(IR)被用于数据加密以及施加电压偏压。在薄膜晶体管的 存储器架构,大部分的有机或无机半导体几乎不吸收红外区域的光,这是由于它们典型的光子能量带隙。上变频(UC) 描述了一种非线性光学方法,其中UC材料产生对于每两个或更多个低能量激发光子的一个高能量光子。事实证明把UC 材料用于光学操纵有广泛的应用,比如固态激光器、太阳能转换、光存储、癌症治疗以及生物标记与成像。这里,毫米 波国家重点实验室利用宽带隙的UC材料作为纳米灯,其可见光激发增强了存储器器件有源层的电荷密度。通过红外光的 吸收,高能量光子被UC材料激发。最终,来自UC材料的高能量辐射被有源半导体层再吸收,多个光激子在有源层被 生成,其最终影响电荷捕捉的效率和数据存储的水平。通过增加高分子复合材料层的电荷,我们操纵介质对于光的 介电常数。使用可调的介电常数,我们的目标是获得一个可调的太赫兹光子器件。



HIGH-PERFORMANCE SMALL-DIAMETER NANOWIRES FOR ELECTRONICS, SPINTRONICS AND PHOTONICS 用于电子学、自旋电子学和光子学的高性能小直径纳米线 In the past decade, due to their intriguing physical properties, one-dimensional (1D) nanowires (NWs) have attracted attention as fundamental building blocks for next-generation electronics, optoelectronics, and photovoltaics. Although significant progress has been made in the manipulation of NW nucleation and composition in both binary and ternary systems, it is still challenging to control the morphology and size of NWs on length scales ranging from the atomic upwards, particularly for the technologically important antimonide (III-Sb) semiconductor NWs. In general, various device structures based on GaSb NWs have been realized. Further performance enhancement suffers from uncontrolled radial growth during the NW synthesis due to the required high precursor partial pressures and large atomic size of Sb, resulting in non-uniform and tapered NWs with diameters larger than few tens of nanometers. Here we develop the use of sulfur surfactant in chemical vapor deposition to achieve very thin and uniform GaSb NWs with diameters down to 20 nm. In contrast to surfactant effects typically employed in the liquid phase and thin-film technologies, the sulfur atoms contribute to form stable S-Sb bonds on the as-grown NW surface, effectively stabilizing sidewalls and minimizing unintentional radial nanowire growth. When configured into transistors, these devices exhibit impressive electrical properties with the peak hole mobility of ~200 cm2V-1s-1, better than any mobility value reported for a GaSb NW device to date. These factors indicate the effectiveness of this surfactant-assisted growth for high-performance small-diameter GaSb NWs. By designing and optimizing appropriate device structures, we aim to achieve low-power high-speed electronics, hole-base quantum devices and mid- to long-infrared wavelength optoelectronics based on these high-performance GaSb NWs.

在过去十年中,由于一维纳米线(NWs)有趣的物理性质,它们作为下一代 电子、光电子和太阳光电等基本模块得到了广泛的关注。虽然在操纵纳米线的 晶核形成以及二元和三元系统的组成上取得了显着的进展,但是在控制纳米线从 原子级以上的形态和尺度上,特别是对于在技术上非常重要的锑化物(Ⅲ-Sb) 半导体的纳米线,仍然具有很大的挑战。一般来说,基于GaSb 纳米线的多种 器件结构已经得到实现。进一步的性能提升会面临在纳米线合成期间不受控的 径向生长,这是由于所需的高初级粒子分压和锑化物的大原子尺寸,造成不均匀 的和锥形的直径大于几十纳米的纳米线。毫米波国家重点实验室开发了使用硫的 化学气相沉积的表面活化剂,以实现非常薄且均匀的直径小至20纳米的GaSb 纳米线。与之相应的,表面活性剂的效果通常采用在液相和薄膜技术中,硫原子 有助于形成在生长状态的纳米线表面稳定的硫-锑化学键,可以有效地稳定 侧壁并尽量减少无用的径向纳米线生长。当配置成晶体管时,这些设备显示出 令人印象深刻的电性能,其峰值空穴迁移率达到~200 cm2V-1s-1,比迄今为止 任何的基于GaSb纳米线的设备移动性都更好。这些因素表明此表面活化剂对 小直径高性能的GaSb纳米线辅助生长的有效性。通过设计和优化适当的器件 结构,我们的目标是实现基于高性能GaSb纳米线的低功耗高速的电子、孔基 量子器件和中至远红外波长光电子。

MOLECULAR- AND NANO-MATERIALS FOR PHOTONICS AND DRUG-DELIVERY APPLICATIONS 分子和纳米材料在光子学与给药系统的应用 Interactions between light and matters in 在分子和纳米尺度,光和物质之间的作用以及这些 molecular- and nano-scales, together with the 作用的应用,在过去二十年中一直是在材料科学领域 研究的重点。然而,除了一些太赫兹频率很弱且为 application of these interactions, have been a 分子间相互的作用之外,太赫兹波与分子/纳米材料 research focus in the field of materials 之间的相互作用却很少被研究。我们合理地设计出 science in the past two decades. In contrast, 具有药物活性的新分子材料。我们还把这些药物加载 interactions between THz waves and molecular-/ 进入生物相容的和无毒的纳米载体。通过设计和优化 nano-materials are rarely investigated, except for 纳米载体和药物分子之间的相互作用,目标是实现 some weak and intermolecular interactions 能执行太赫兹触发的纳米给药系统。 at THz frequencies. Here, we rationally design new molecular materials which have pharmaceutical activities. We also load these drugs into biocompatible and nontoxic nano-carriers. By designing and optimizing the interactions between the nano-carriers and the drug molecules, we aim to achieve implementing a THz-triggered nano-drug-delivery system. Fluorescence DIC Merged

CORE RESEARCH FACILITIES 核心研究设备 The SKLMW supports research activities in frequencies in MHz, GHz, THz regions, and beyond. Examples of the applications include radars, cellular phones, satellites, lasers, and fiber communications, which meet the increasing demand for mobility and high-speed data transfers. The Laboratory also benefits from nanotechnology with the potential to create many new materials and devices with wide-ranging applications, such as those in medicine, electronics, and energy. Micro-/nano-scale devices and circuits can be explored. The SKLMW is well equipped with facilities for antenna and microwave measurement. Our near-field antenna test chambers cover frequency bands from 700 MHz to 67 GHz; the compact range antenna measurement facility supports frequencies from 1 GHz to 50 GHz; the Satimo complex antenna system can measure a complete set of parameters of an antenna within bands from 800 MHz to 18 GHz. Our purpose-built far-field antenna measurement system goes up to 300 GHz. Most of our microwave apparatus, including network analyzers, spectrum analyzers, and signal generators, cover up to 110 GHz. To f aci l i t at e T H z r e se a r ch , t h e l a b o r a t o r y i s equi pped w i t h an A gi l ent P N A - X vect or net work analy z er wit h extension modules from OML and VDI, covering the full frequency range from 90 GHz to 1.1 THz. In addition, we also have an EKSPLA THz spectrometer with short pulses of pulsewidths below 90 fs in order to cover the frequency range from 0.1 to 3.5 THz. With the increasing R&D activities in microwave integrated circuits (MMIC), the Laboratory has also installed a probe station and a load-pull system of up to 50 GHz. Our USD 8 million-worth facilities not only support internal research and development activities, but also provide measurement services to external customers. Additionally, an advanced micro-/nano-processing facility for microwave, circuits, and photonic devices has been established in the Department of Electronic Engineering at CityU to support cutting-edge research projects. The facility provides state-of-the-art tools that support electron-beam lithography down to 10-nm resolution, direct laser writing, photolithography, metal and dielectric depositions, as well as wet and dry etching. The Department hosts helpful technical staff responsible for running and maintaining the cleanroom, educating and training users, maintaining the equipment, and supporting research.

无线与光子学工作频率是处于兆赫、太赫兹以上的工作频段。应用层面包括雷达,手提电话,卫星,激光及 光纤通讯。纳米技术具庞大的潜力以研发多层面应用物料及仪器应用于医学,电子学及能源创造等。微米与 纳米器件及电路将被探索将引导新一代无线网络微波信号的光子学技术的应用从而满足不断增长的高机动性及 高数据传输率的需求。 实验室已配备了较为完整的天线及微波测量设备。其中的近场天线测试室的测试范围已能涵盖频宽由700MHz 至50GHz,而紧缩天线亦涵盖1GHz至50GHz。与此同时,Satimo天线系统能测得天线频带由800MHz至 1 8 G H z 的 完 整 参 数 。 已 配 备 仪 器 中 大 多 已 达 至 11 0 G H z , 如 网 络 分 析 仪 , 频 谱 分 析 仪 及 讯 号 产 生 器 等 , 测 试 范围亦将于一年内提升至500GHz。 此外,实验室已装置频带达至50GHz的探针平台及负载牵引系统以支援增长中的微波集成电路的研发项目。 高达8百万美元的设备不仅支持校内的研究项目,而且为校外的研究或应用机构提供测量服务。 在加工能力方面,我们配备了领先的微波及光子仪器与电路处理设施以支持尖端的研究项目。设施提供当代 最先进的仪器如电光束平版印刷系统(10纳米),激光导引刻划,照相平版印刷系统,金属与电介质沉淀系统 及干湿蚀刻系统,职员负责维持无尘室的日常运作,培训使用者,维护仪器及支持研究工作。

STUDENT ACHIEVEMENTS 学生成就 COMPETITION / CONFERENCE AWARD YEAR IEEE M i cr o w a ve Th e o r y a n d Te ch n i q u e s So ci e t y U n d e r g r a d u a t e / Pre-graduate Scholarship Scholarship 2010, 2009, 2008, IEEE M i cr o w a ve Th e o r y a n d Te ch n i q u e s So ci e t y ( M T T- S) 2007, 2006 Graduate Fellowship Graduate IEEE Region 10 (Asia Pacific) Student Paper Contest Fellowship 2004 (Undergraduate) IEEE Region 10 Student Paper Contest (Postgraduate Category) 1st Prize 2004 2nd Prize 2004 Asia-Pacific Microwave Conference Scholarship 2008, 2004 Scholarship 2010, 2007, 2002 IEEE In te r n a ti o n a l C o n f e r e n ce o n I n d u st r i a l Te ch n o l o g y Scholarship 2003 IEEE International Microwave Symposium Student Paper Competition Best Student 8 th C h a l l e n g e r C u p C o m p e t i t i o n So u t h C h i n a U n i ve r si t y o f Te ch n o l o g y Paper Award 2005 7th Challenger Cup Xian Jiaotong University In te r n a ti o n a l Fu l b r i g h t Sci e n ce a n d Te ch n o l o g y Aw a r d Best Student 2006 Outstanding Paper Award at the Broadband World Forum Asia Microwave Prize International Symposium on Antennas and Propagation Scholarship 2008 Microwave and Millimetre-wave Symposium of China Scholarship 2008 Best Paper Award 2005 1st Prize 2004 3rd Prize 2003 Distinction Award 2003 2nd Prize 2003 2nd Prize 2001 3rd Prize 2001 2007 Merit Prize 2008 Bronze Priz 2008 Certificate of Best Paper Award 2008 Best Paper Award 2007

Laboratory Contact | 实验室联系 Contact | 联络 State Key Laboratory of Terahertz and Millimeter Waves (City University of Hong Kong) 太赫兹及毫米波国家重点实验室(香港城市大学) Room 15-200, 15/F, Lau Ming Wai Academic Building, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 香港特别行政区九龙达之路83号香港城市大学刘鸣炜学术楼15楼15-200室 T | 电话 (852) 3442 4895 F | 图文传真 (852) 3442 0353 E | 电邮 [email protected] W | 网站 http://www.ee.cityu.edu.hk/skltmw/


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook