Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore 6.2 Introduction-to-Partial-Differential-Equations-Third-Edition-by-K-Sankara-Rao

6.2 Introduction-to-Partial-Differential-Equations-Third-Edition-by-K-Sankara-Rao

Published by rameshmat8, 2022-08-22 10:43:24

Description: 6.2 Introduction-to-Partial-Differential-Equations-Third-Edition-by-K-Sankara-Rao

Search

Read the Text Version

324 INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS (iv) L[eattn ; s] n! n! sn1 so(sa) (s  a)n1 (v) L[cos at cosh bt; s] ª at § ebt  ebt · º L «cos ¨© 2 ¸¹ ; s» ¼ ¬ 1 {L[ebt cos at; s]  L[ebt cos at; s]} 2 1 ­ sb  sb ½ 2 ®  b)2   b)2  ¾ ¯ (s a2 (s a2 ¿ EXAMPLE 6.6 Fing the Laplace transform of the following: (i) t2eat , (ii) t sin at, (iii) t2 cos at, (iv) tneat . Solution Using the result established in Theorem 6.4, we have (i) L[t2eat ; s] (1)2 d2 L[eat ; s] d2 § 1 · d § 1 · 2 ds2 ds2 ¨© s  a ¸¹ ds ©¨ (s  a)2 ¹¸ (s  a)3 Alternatively, L[eatt2; s] 2! 2 (using the shifting property) s3 so(sa) (s  a)3 (ii) L[t sin at; s] (1)1 d L[sin at; s]  d § s2 a a2 · 2as ds ds ¨©  ¹¸ (s2  a2 )2 (iii) L[t2 cos at; s] (1)2 d2 L[cos at; s] d2 § s · ds2 ds2 ©¨ s2  a2 ¹¸ d ª a2  s2 º 2s3  6sa2 « » ds ¬« (s2  a2 )2 ¼» (s2  a2 )3 (iv) L[eattn ; s] n! n! (using the shifting property) sn1 so(sa) (s  a)n1 EXAMPLE 6.7 Find the Laplace transform of (i) te4t sin 3t, (ii) sin 2t sin 3t, (iii) sin3 2t. www.MathSchoolinternational.com






























Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook