3 :ﺍﻟﻨﺸﺎﻁ ﺍﻟﺴﺎﺑﻖ ﻳﺒ ﹼﻴﻦ ﺃﺭﺑﻊ ﻃﺮﺍﺋﻖ ﻹﺛﺒﺎﺕ ﺗﻄﺎﺑﻖ ﺍﻟﻤﺜﻠﺜﺎﺕ ﺍﻟﻘﺎﺋﻤﺔ ﻭﻫﻲ ✓ ؛ ﻟﺘﻘﻮﻳﻢ ﻓﻬﻢ ﺍﻟﻄﻼﺏ10 ﺍﺳﺘﻌﻤﻞ ﺍﻟﺴﺆﺍﻝ ﻃﺮﻳﻘﺔ ﻛﺘﺎﺑﺔ ﺑﺮﻫﺎﻥ ﻧﻈﺮﻳﺔ ﺑﺎﻻﺳﺘﻨﺎﺩ .ﻟﻤﺴﻠﻤﺎﺕ LL 3.6 leg L H ﺍﻃﻠﺐ ﺇﻟﻰ ﺍﻟﻄﻼﺏ ﻛﺘﺎﺑﺔ ﺑﺮﻫﺎ ﹴﻥ ﺣ ﱟﺮ؛ ﻹﺛﺒﺎﺕ . ﻓﻲ ﺍﻟﻤﺜﻠﺜﺎﺕ ﺍﻟﻘﺎﺋﻤﺔLL ﺣﺎﻟﺔ ﺍﻟﺘﻄﺎﺑﻖ Hypotenuse HA 3.7 Angle A DEF , RST D R A Y X L A 3.8 EF C B Z ST . ﻣﺜﻠﺜﺎﻥ ﻗﺎﺋﻤﺎ ﺍﻟﺰﺍﻭﻳﺔ . ∠ ﻗﺎﺋﻤﺘﺎﻥE , ∠S HL 3.9 EF ST , ED SR DEF RST EF ST , ED :ﻧﻌﻠﻢ ﺃﻥ ﻭﺑﻤﺎ ﺃﻥ ﺟﻤﻴﻊ،∠ ﻗﺎﺋﻤﺘﺎﻥE , ∠S ﻭﺃﻥ، SR ،∠E ∠S ﺇﺫﻥ،ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻘﺎﺋﻤﺔ ﻣﺘﻄﺎﺑﻘﺔ : ﻓﺎﺫﻛﺮ ﺍﻟﻤﺴﻠﻤﺔ ﺃﻭ ﺍﻟﻨﻈﺮﻳﺔ ﺍﻟﺘﻲ ﺍﺳﺘﻌﻤﻠﺘﻬﺎ،“ ﻭﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻹﺟﺎﺑﺔ ”ﻧﻌﻢ،ﺣ ﹼﺪﺩ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﻛﻞ ﺯﻭﺝ ﻣﻦ ﺍﻟﻤﺜﻠﺜﺎﺕ ﺍﻵﺗﻴﺔ ﻣﺘﻄﺎﺑﻘﻴﻦ ﺃﻡ ﻻ ﺑﺤﺴﺐDEF RST ﻭﻟﺬﻟﻚ ﻳﻜﻮﻥ HL ،ﻧﻌﻢ (9 ﻻ (8 LA ،ﻧﻌﻢ (7 . SAS ﺍﺳﺘﻌﻤﻞ ﻧﻈﺮﻳﺔ ﻓﻴﺜﺎﻏﻮﺭﺱ( ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ: )ﺇﺭﺷﺎﺩ3.9 ( ﺍﻟﻨﻈﺮﻳﺔ12 ( ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ10 : ﺍﻛﺘﺐ ﺑﺮﻫﺎﻧﹰﺎ ﻟﻜ ﱟﻞ ﻣﻤﺎ ﻳﺄﺗﻲ 187 3-5 3.7 ( ﺍﻟﻨﻈﺮﻳﺔ10 ﺗﻮﺟﺪ ﺣﺎﻟﺘﺎﻥ ﳑﻜﻨﺘﺎﻥ( ﺍﻧﻈﺮ ﺍﻟﻬﺎﻣﺶ: )ﺇﺭﺷﺎﺩ3.8 ( ﺍﻟﻨﻈﺮﻳﺔ11 A D ﺍﻧﻈﺮ ﻣﻠﺤﻖ ﺍﻹﺟﺎﺑﺎﺕ.13 ﺍﺳﺘﻌﻤﻞ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ﻟﻺﺟﺎﺑﺔ ﻋﻦ ﺍﻟﺴﺆﺍﻝ E AB ⊥ BC, DC ⊥ BC (13 AC BD BC AB DC 187 3-5 2 ABC , EFD 1 (11 ABC .ﻗﺎﺋﻤﺎ ﺍﻟﺰﺍﻭﻳﺔ ∠ ﻗﺎﺋﻤﺘﺎﻥA, ∠E ﻓﻴﻬﻤﺎ ،ﻗﺎﺋﻤﺎ ﺍﻟﺰﺍﻭﻳﺔ DEF ، ___ ___ ___ ___ AC DF , ∠C ∠F ،∠ ﻗﺎﺋﻤﺘﺎﻥA , ∠D ﻓﻴﻬﻤﺎ CB DF , ∠B ∠F ABC DEF ABC EFD CF CD A BD E A BE F ﻗﺎﺋﻤﺎABC , DEF ﻧﻌﻠﻢ ﺃﻥ ﻗﺎﺋﻤﺎABC , EFD__ ﻧ_ﻌﻠﻢ_ﺃ_ﻥ_ ___ ___ ،AC DF ﻭ،∠ ﻗﺎﺋﻤﺘﺎﻥA, ∠D ﻓﻴﻬﻤﺎ،ﺍﻟﺰﺍﻭﻳﺔ . ∠B ∠F ، CB DF ،ﺍﻟﺰﺍﻭﻳﺔ ∠؛ ﻷﻥ ﺟﻤﻴﻊA ∠E ∠ ﻗﺎﺋﻤﺘﺎﻥ؛ ﻟﺬﺍA, ∠E ∠ ؛ ﻷﻥ ﺟﻤﻴﻊ ﺍﻟﺰﻭﺍﻳﺎA ∠D ﻭ.∠C ∠F ﻭ ABC EFD ﺇﺫﻥ.ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﻘﻮﺍﺋﻢ ﻣﺘﻄﺎﺑﻘﺔ ﺑﺤﺴﺐABC DEF ﺍﻟﻘﻮﺍﺋﻢ ﻣﺘﻄﺎﺑﻘﺔ؛ ﺇﺫﻥ AAS. ﺑﺤﺴﺐ .ASA
3 -5 (27) (26) 3-5 3-5 ASA, AAS ASA, AAS :(AAS) (ASA) . (AAS) ﺯﺍﻭﻳﺔ – ﺯﺍﻭﻳﺔ – ﺿﻠﻊ:ﻳﻤﻜﻨﻚ ﺇﺛﺒﺎﺕ ﺗﻄﺎﺑﻖ ﻣﺜﻠﺜﻴﻦ ﻣﺴﺘﻌﻤ ﹰﻼ ﻧﻈﺮﻳﺔ . (ASA) ﺯﺍﻭﻳﺔ – ﺿﻠﻊ – ﺯﺍﻭﻳﺔ:ﻳﻤﻜﻨﻚ ﺇﺛﺒﺎﺕ ﺗﻄﺎﺑﻖ ﻣﺜﻠﺜﻴﻦ ﻣﺴﺘﻌﻤ ﹰﻼ ﺍﻟﻤﺴ ﹼﻠﻤﺔ ﺇﺫﺍ ﻃﺎﺑﻘﺖ ﺯﺍﻭﻳﺘﺎﻥ ﻭﺿﻠﻊ ﻏﲑ ﳏﺼﻮﺭ ﺑﻴﻨﻬﲈ ﰲ ﻣﺜﻠﺚ ﻧﻈﺎﺋﺮﻫﺎ ﰲ ﻣﺜﻠﺚ ﺁﺧﺮ ﻓﺈﻥ ﺍﳌﺜﻠﺜﲔ ﺍﻟﺘﻄﺎﺑﻖ ﺑﺰﺍﻭﻳﺘﻴﻦ . ﻓﺈﻥ ﺍﳌﺜﻠﺜﲔ ﻣﺘﻄﺎﺑﻘﺎﻥ،ﺇﺫﺍ ﻃﺎﺑﻘﺖ ﺯﺍﻭﻳﺘﺎﻥ ﻭﺍﻟﻀﻠﻊ ﺍﳌﺤﺼﻮﺭ ﺑﻴﻨﻬﲈ ﰲ ﻣﺜﻠﺚ ﻧﻈﺎﺋﺮﳘﺎ ﰲ ﻣﺜﻠ ﹴﺚ ﺁﺧﺮ ﻣﺴ ﹼﻠﻤﺔ ﺍﻟﺘﻄﺎﺑﻖ ﺑﺰﺍﻭﻳﺘﻴﻦ .( ﻣﺘﻄﺎﺑﻘﺎﻥAAS) ﻭﺿﻠﻊ ﻏﻴﺮ ﻣﺤﺼﻮ ﹴﺭ ﺑﻴﻨﻬﻤﺎ (ASA) ﻭﺿﻠﻊ ﻣﺤﺼﻮﺭ ﺑﻴﻨﻬﻤﺎ :ﻟﻘﺪ ﺃﺻﺒﺢ ﻟﺪﻳﻚ ﺍﻵﻥ ﲬﺲ ﻃﺮﺍﺋﻖ ﻹﺛﺒﺎﺕ ﺗﻄﺎﺑﻖ ﻣﺜﻠﺜﲔ ﻫﻲ SSS • ﺍﳌﺴ ﹼﻠﻤﺔ ASA • ﺍﳌﺴ ﹼﻠﻤﺔ AB .ﺍﻛﺘﺐ ﺑﺮﻫﺎ ﹰﻧﺎ ﺫﺍ ﻋﻤﻮﺩﻳﻦ SAS • ﺍﳌﺴ ﹼﻠﻤﺔ AAS • ﺍﳌﺴ ﹼﻠﻤﺔ AB CD B ﻣﺎ ﺍﻷﺿﻼﻉ ﺍﻟﻤﺘﻄﺎﺑﻘﺔ ﻓﻲ ﺍﻟﺸﻜﻞ؟،∠BCA ∠DCA :ﻓﻲ ﺍﻟﺸﻜﻞ ﺍﻟﻤﺠﺎﻭﺭ ∆ABD ∆CDB ﺇﺛﺒﺎﺕ ﺃﻥ A 1 C ﺣﺘﻰ ﻳﻜﻮﻥ ﺍﻟﻤﺜﻠﺜﺎﻥ ﻣﺘﻄﺎﺑﻘﻴﻦ،ﻣﺎ ﺍﻟﻌﻨﺼﺮﺍﻥ ﺍﻟﻤﺘﻨﺎﻇﺮﺍﻥ ﺍﻵﺧﺮﺍﻥ ﺍﻟﻠﺬﺍﻥ ﻳﺘﻌ ﹼﻴﻦ ﺃﻥ ﻳﻜﻮﻧﺎ ﻣﺘﻄﺎﺑﻘﻴﻦ DC 2 ؟AAS ﻭﻓﻖ ﺍﻟﻨﻈﺮﻳﺔ D . ﻭﻓﻖ ﺧﺎﺻﻴﺔ ﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﺘﻄﺎﺑﻖAC AC ﻳﻜﻮﻥ ﺍﻟﻀﻠﻊ ﺍﳌﺤﺼﻮﺭ ﺑﻴﻨﻬﲈ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ؛ ﻟﺬﺍ ﻳﺘﻌﲔ ﺃﻥ ﺗﻜﻮﻥAC ∠ ؛ ﻷﻥ2∠ ﻭ1 ﻻ ﻳﻤﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﺍﻟﻌﻨﴫﺍﻥ ﺍﻵﺧﺮﺍﻥ ﳘﺎ ( ﻣﻌﻄﻴﺎﺕ1 AB CD (1 .AAS ∆ ﻭﻓﻖ ﺍﻟﻨﻈﺮﻳﺔABC ∆ADC ﻭﻋﻨﺪﻫﺎ ﻳﻜﻮﻥ،∠B ∠D ( ﻧﻈﺮﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺒﺎﺩﻟﺘﲔ ﺩﺍﺧﻠ ﹼﹰﻴﺎ2 ∠CBD ∠ADB (2 ( ﻧﻈﺮﻳﺔ ﺍﻟﺰﺍﻭﻳﺘﲔ ﺍﳌﺘﺒﺎﺩﻟﺘﲔ ﺩﺍﺧﻠ ﹰﹼﻴﺎ3 ∠ABD ∠BDC (3 A :ﺍﻛﺘﺐ ﺑﺮﻫﺎ ﹰﻧﺎ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﻟﻤﺤ ﹼﺪﺩ ﻓﻲ ﻛﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﻴﻦ ﺍﻵﺗﻴﻴﻦ ( ﺧﺎﺻﻴﺔ ﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﺘﻄﺎﺑﻖ4 BD BD (4 .( ﺑﺮﻫﺎﻥ ﺫﻭ ﻋﻤﻮﺩﻳﻦ1 B C BC EF ASA ( ﺍﳌﺴ ﹼﻠﻤﺔ5 ∆ABD ∆CDB (5 D AB ED .∆ABC ∠C ∠F ∆DEF ﺇﺛﺒﺎﺕ ﺃﻥ :ﺍﻛﺘﺐ ﺑﺮﻫﺎ ﹰﻧﺎ ﻣﻦ ﺍﻟﻨﻮﻉ ﺍﳌﺤ ﹼﺪﺩ ﰲ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺴﺆﺍﻟﲔ ﺍﻵﺗﻴﲔ : EF BD .( ﺑﺮﻫﺎﻥ ﺣﺮ2 V .( ﺑﺮﻫﺎﻥ ﺫﻭ ﻋﻤﻮﺩﻳﻦ1 RT AE ﺗﻨﺼﻒCD ∠S ∠V U .SV ﻧﻘﻄﺔ ﻣﻨﺘﺼﻒT (1 BC EF , AB ED (1 A C E ∠E ∠BCA AB CD S ∠C ∠F (2 ∠ABC ∠DEF (2 ∆ABC ∆CDE ﺇﺛﺒﺎﺕ ﺃﻥ Geo-SG04-0∆5-R0T7S-86∆01U81TV ﺇﺛﺒﺎﺕ ﺃﻥ AAS (3 ∆ABC ∆DEF (3 : Geo-SG04-05-08-860181 : S .( ﺑﺮﻫﺎﻥ ﺗﺴﻠﺴﻠﻲ2 AE CD ∠E ∠BCA : R T ∠STU ﺗﻨ ﹼﺼﻒTR ;∠S ∠U AC CD AC CE U (1 ∠S ∠V (1 ∠A ∠DCE SV T ∠SRT ∠URT ﺇﺛﺒﺎﺕ ﺃﻥ ∠STR ∠UTR ∠STU ﺗﻨﺼﻒTR .ASA ∆ABC ∆CDE (2 ST TV (2 ﺗﻌﺮﻳﻒ ﻣﻨﺼﻒ ﺍﻟﺰﺍﻭﻳﺔ ﻣﻌﻄﻴﺎﺕ (3 ∠RTS ∠VTU (3 ∠SRT ∠URT SRT URT ∠S ∠U ASA (4 ∆RTS ∆UTV (4 ﺍﻟﻌﻨﺎﴏ ﺍﳌﺘﻨﺎﻇﺮﺓ ﰲ ﺍﳌﺜﻠﺜﲔ AAS ﻣﻌﻄﻴﺎﺕ ﺍﳌﺘﻄﺎﺑﻘﲔ ﺗﻜﻮﻥ ﻣﺘﻄﺎﺑﻘﺔ 27 RT RT ﺧﺎﺻﻴﺔ ﺍﻻﻧﻌﻜﺎﺱ ﻟﻠﺘﻄﺎﺑﻖ 3 3 26 (29) ( 2 8 ) 3-5 3-5 ASA, AAS ASA, AAS ﺃﻧﻮﺍﻉ ﻣﺨﺘﻠﻔﺔ ﻣﻦ ﺍﻟﻘﻄﻊ5 ﺍﺳﺘﻌﻤﻞ ﻣﻬﻨﺪﺱ ﺩﻳﻜﻮﺭ (4 ،( ﺃﺭﺍﺩ ﺃﺧﻮﺍﻥ ﺍﻗﺘﺴﺎﻡ ﻗﻄﻌﺔ ﺍﻷﺭﺽ ﺍﻟﺘﺎﻟﻴﺔ ﺑﺎﻟﺘﺴﺎﻭﻱ1 J .( ﺍﻛﺘﺐ ﺑﺮﻫﺎ ﹰﻧﺎ ﺗﺴﻠﺴﻠ ﹰﹼﻴﺎ1 ﺇﺫﺍ ﻭﺟﺪ ﺇﺣﺪ،ﺍﻟﺰﺟﺎﺟﻴﺔ ﺍﻟﻤﺜﻠﺜﺔ ﺍﻟﺸﻜﻞ ﻟﻌﻤﻞ ﺩﻳﻜﻮﺭ ﻟﻠﺤﺎﺋﻂ A ،ﻗﻄﻊ ﺍﻟﺰﺟﺎﺝ ﻣﻜﺴﻮﺭﺓ ﻭﺍﻟﺒﺎﻗﻲ ﻣﻨﻬﺎ ﻫﻮ ﺍﻟﺠﺰﺀ ﺍﻟﻤﺒﻴﻦ ﺃﺩﻧﺎﻩ B K L ∠N ∠L D N . JK MK C .∆JKN M ﺃﻥ ﺇﺛﺒﺎﺕ ∆MKL ﻳﻘﺴﻢ ﺍﻷﺭﺽ ﺇﱃDB ﻓﻘﺎﻡ ﺃﺣﺪﳘﺎ ﺑﻮﺿﻊ ﺣ ﱟﺪ ﻓﺎﺻ ﹴﻞ ﻓﻬﻞ ﻳﺴﺘﻄﻴﻊ ﻣﻌﺮﻓﺔ ﻫﺬﻩ ﺍﻟﻘﻄﻌﺔ ﻣﻦ ﺃﻱ ﻧﻮﻉ ﻣﻦ ﺍﻷﻧﻮﺍﻉ ﲬﻦ ﺍﳌﻌﻠﻮﻣﺔ ﺍﻟﺘﻲ ﻛﺎﻧﺖ ﻟﺪﻳﻪ ﺣﺘﻰ ﻳﺘﻴﻘﻦ،ﻗﻄﻌﺘﲔ ﻣﺘﻄﺎﺑﻘﺘﲔ : .ﺍﳋﻤﺴﺔ ﺍﳌﺨﺘﻠﻔﺔ ﺍﻟﺘﻲ ﺍﺳﺘﻌﻤﻠﻬﺎ؟ ﺑ ﱢﺮﺭ ﺇﺟﺎﺑﺘﻚ ﻣﻦ ﺃﻥ ﻗﻄﻌﺘﻲ ﺍﻷﺭﺽ ﻣﺘﻄﺎﺑﻘﺘﺎﻥ؟ JKN MKL ∠N ∠L ASA ∠D ∠B DB : AAS ﻣﻌﻄﻴﺎﺕ .ASA . JK MK ﻣﻌﻄﻴﺎﺕ ∠JKN ∠MKL ﺍﻟﺰﺍﻭﻳﺘﺎﻥ ﺍﳌﺘﻘﺎﺑﻠﺘﺎﻥ ﺑﺎﻟﺮﺃﺱ ﻣﺘﻄﺎﺑﻘﺘﺎﻥ ﺗﺤﺘﺎﺝ ﺇﺩﺍﺭﺓ ﺣﺪﻳﻘﺔ ﺇﻟﻰ ﻏﻄﺎﺀ ﻋﻠﻰ ﻫﻴﺌﺔ (5 ،ﺃﺭﺍﺩ ﺧﺎﻟﺪ ﺻﻨﻊ ﺍﻟﻬﺮﻡ ﺍﻟﻤﺒﻴﻦ ﺑﺎﻟﺸﻜﻞ ﻣﻦ ﺍﻟﻮﺭﻕ ﺍﻟﻤﻘﻮ (2 B ( ﺍﻛﺘﺐ ﺑﺮﻫﺎ ﹰﻧﺎ ﺗﺴﻠﺴﻠ ﹼﹰﻴﺎ2 ﻃﻮﻝ،ﻣﺜﻠﺚ ﻟﺘﻐﻄﻴﺔ ﺣﻘﻞ ﻋﻠﻰ ﻫﻴﺌﺔ ﻣﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ ﺍﻷﺿﻼﻉ D AB C B . ﻣﺜﻠﺜﺎ ﹴﺕ ﻣﺘﻄﺎﺑﻘﺔ ﻋﲆ ﺍﻷﻗﻞ3 ﻓﺎﺳﺘﻨﺘﺞ ﺃﻥ ﻋﻠﻴﻪ ﺍﻟﻘﻴﺎﻡ ﺑﻘ ﱢﺺ A .200 ft ﺿﻠﻌﻪ .ﻓﻬﻞ ﺍﺳﺘﻨﺘﺎﺟﻪ ﺻﺤﻴﺢ؟ ﺑ ﱢﺮﺭ ﺇﺟﺎﺑﺘﻚ .∠A ∠C AD CD ﻗﻴﺎﺱ ﻛ ﱟﻞ،( ﺇﺫﺍ ﹸﻭﺟﺪ ﻏﻄﺎﺀ ﻋﻠﻰ ﻫﻴﺌﺔ ﻣﺜﻠﺚ ﻓﻴﻪ ﺯﺍﻭﻳﺘﺎﻥa ﺍﻟﻌﻨﺎﴏ ﺍﳌﺘﻨﺎﻇﺮﺓ .∠ABC ﺗﻨ ﹼﺼﻒDB ﻓﻬﻞ ﻫﺬﺍ،200 ft ﻭﻃﻮﻝ ﺃﺣﺪ ﺃﺿﻼﻋﻪ، 60° ﻣﻨﻬﲈ .ASA ﰲ ﺍﳌﺜﻠﺜﲔ ﺍﳌﺘﻄﺎﺑﻘﲔ C .AD CD ﺇﺛﺒﺎﺕ ﺃﻥ .ﺍﻟﻐﻄﺎﺀ ﻣﻨﺎﺳﺐ ﻟﺬﻟﻚ ﺍﳊﻘﻞ؟ ﻭ ﱢﺿﺢ ﺇﺟﺎﺑﺘﻚ ﻟﺪ ﻧﺠﺎﺭ ﻗﻄﻌﺔ ﺧﺸﺒﻴﺔ ﻋﻠﻰ ﺷﻜﻞ ﻣﺜﻠﺚ ﻣﺘﻄﺎﺑﻖ (3 ﺗﻜﻮﻥ ﻣﺘﻄﺎﺑﻘﺔ : ﻓﺮﺳﻢ، ﺇﺫﺍ ﺃﺭﺍﺩ ﺃﻥ ﻳﻘﺴﻤﻬﺎ ﺇﻟﻰ ﻗﺴﻤﻴﻦ ﻣﺘﻄﺎﺑﻘﻴﻦ،ﺍﻷﺿﻼﻉ 60° ﻭﻋﻤﻮﺩﻳ ﹰﺔ ﻋﻠﻰ ﺍﻟﻀﻠﻊA ﺑﺎﻟﻘﻠﻢ ﻗﻄﻌ ﹰﺔ ﻣﺴﺘﻘﻴﻤ ﹰﺔ ﻣﻦ ﺍﻟﻨﻘﻄﺔ ABD CBD AB CB ASA 60° ﻓﻬﻞ ﻣﺎ ﻗﺎﻡ ﺑﻪ ﺍﻟﻨﺠﺎﺭ ﻳﻀﻤﻦ ﺗﻄﺎﺑﻖ ﺍﻟﻤﺜﻠﺜﻴﻦ، A ﺍﻟﻤﻘﺎﺑﻞ ﻟﹺـ ASA ﻣﻌﻄﻴﺎﺕ AAS .ﺍﻟﻨﺎﺗﺠﻴﻦ؟ ﺑ ﱢﺮﺭ ﺫﻟﻚ ∠A ∠C ﻣﻌﻄﻴﺎﺕ ( ﺇﺫﺍ ﻋﻠﻤﺖ ﺃﻥ ﻗﻴﺎﺱ ﻛ ﱟﻞ ﻣﻦ ﺍﻟﺰﻭﺍﻳﺎ ﺍﻟﺜﻼﺙ ﰲ ﻏﻄﺎ ﹴﺀ ﻣﺜﻠﺚb A ﻓﻬﻞ ﻳﻜﻮﻥ ﻫﺬﺍ ﺍﻟﻐﻄﺎﺀ ﻣﻨﺎﺳ ﹰﺒﺎ ﻟﺬﻟﻚ،60° ﺍﻟﺸﻜﻞ ﻳﺴﺎﻭﻱ ∠ABD ∠CBD ∠ABC ﺗﻨﺼﻒDB ﺗﻌﺮﻳﻒ ﻣﻨﺼﻒ ﺍﻟﺰﺍﻭﻳﺔ ﻣﻌﻄﻴﺎﺕ ﺍﳊﻘﻞ ﺑﺎﻟﴬﻭﺭﺓ؟ D E .( ﺍﻛﺘﺐ ﺑﺮﻫﺎ ﹰﻧﺎ ﺣ ﹼﹰﺮﺍ3 G F DE FG ∠E ∠G BDC ∆DFG ∆FDE ﺇﺛﺒﺎﺕ ﺃﻥ : ∠EDF ∠GFD DE F G : ∆DFG ∆FDE DF FD ∠E ∠G .AAS . 3 28 29 3 3 187A
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401