21.. DQifuaerdernattiiactEioqnuations                                                                 eLearn.Punjab                                                                                                      eLearn.Punjab2.2 FINDING f’(x) FROM DEFINITION          OF DERIVATIVEGiven a function f , f ' ( x) if it exists, can be found by the following four steps                   Find f ( x + d x)Step I             Simplify f ( x + d x) - f ( x)Step IIStep III           Divide f ( x + d x) - f ( x) by d x to get                       f (x +dx)- f (x)  and simplify itStep IV                                             (x  +d x)-      (x)                           dx                   Find   lim             f         dx    f                          d x→0       The method of inding derivatives by this process is called diferentiation by deinitionor by ab-initio or from irst principle.Example 1: Find the derivative of the following functions by deinition==(a) f ( x) c                            (b) f ( x) x2Solution: (a) For f ( x) = c     (i) f ( x + d x) =c     (ii) f ( x + d x) - f ( x) = c - c = 0(iii)    f  (x  +d x)-                 f  ( x=)  d=0x  0                   dx                   (x  +  d x)            -=f ( x)(iv)   lim      f                                      dl=xi→m0 ( 0 )  0                           dx       d x→0               Thus                    f '(x) = 0   ,  that is,        d   (c)  =0(b) For f(x) = x2                                                      dx(i) f ( x + d x) =( x + d x)2(ii) f ( x + d x) - f ( x) = ( x + d x)2 - x2 = x2 + 2xd x + (d x)2 - x2                                             = 2xd x + (d x)2 =(2x + d x)d x                                                                                                      version: 1.1                                                                           7
12.. DQiufaedrernattiiactEioqnuations                                                                                      eLearn.Punjab       (iii)  f  (x  +d x)  -          f  (x)   =(2+x +ddxx)d            x  =≠2x d x       ,  (d x      0)                 eLearn.Punjab                                                                                                                              version: 1.1                        dx                        (x  +d x)         -     ( x=)       (iv)   lim    f                       f            lim    (    2  x  +  d  x=)  2x                               dx              d x→0                                       d x→0              i.e., f ' ( x) = 2xExample 2:              Find the derivative of x at x = a from irst principle.Solution: If                           f ( x) = x , then(i) f ( x + d x) = x + d x and(ii) f ( x + d x) - f ( x) = x + d x - x                            ( )(=                                                      )x                                          x+dx - x x+dx +                                       rationalizing the                                                     x+dx + x                                           numerator                            =             (x +d x)- x                                          x+dx + x                                                          dxi.e.,         f  (x  +d x)  -          f  (x)   =x +      dx     +          x                      (I)(iii) Dividing both sides of(1)by d x , we have              =f=( x + ddxx) - f ( x)           d  ≠        dx                    x)            1        (d x  0)                                                   x(     x+dx +                           x+dx +                                                                                                        x(iv) Taking limit of both the sides as d x → 0, we have              lim    f  (x  +d x)-           f  (x)    =  lim              1        x                                                                          x+dx +              d x→0            dx                         d x→0i.e.,         =f ' ( x)     =x +1 x              1               (x > 0)                                                2xand f '(a) = 1                           2a                                                                                  8
21.. DQifuaerdernattiiactEioqnuations                                                                 eLearn.Punjabor                                                                                                    eLearn.Punjab                                                                                                        version: 1.1Puttin=g x a==in f ( x) x , gives f (a) aSo f ( x) - f (a) = x - aUsing alternative form for the deinition of a derivative, we have            f  (  x)  -     f  (a    )  =   x- a                      -     a               x-a                   x           ( ()( ) )=                   x- a                   x+ a         (rationalizing the numerator)                  (x - a)               x+ a( )==( x             -≠a    x     -  a                   1               (x a)    (II)                                     x                 x+ a                            )           +   aTaking limit of both the sides of (II)as x → a, gives           lim    f=(=xx) -- af (a)              lim     1        a           1                                                       x+                   a+ a           x→a                                   x→ai.e., f '(a) = 1                          2aExample 3:              If     y=       1   , then find     dy       at x=  - 1 by ab-initio method.                                        x2                  dxSolution:  Here          y=       1     , so                                      (i)                                  x2                                              (ii)           y   +  d   y  =     (  x   1     x)2                                     +dSubtracting (i) from (ii), we get=d y                  (  x   1       x  )2  =- x12     x2 - ( x + d x)2                            +d                         x2 ( x + d x)2                     (                          )(                   ))                  =      x  +  (  x  +d     x)      x  -(x  +  d  x                                     x2     (x  +   d  x)2                                                                            9
12.. DQiufaedrernattiiactEioqnuations                                                                                                                                   eLearn.Punjab                                                                                                                                                                        eLearn.Punjab==                        (   2x +     d  x)(      -d x    )          -d x(2x + d x)                                            (iii)                                       x                               x2 ( x + d x)2                               x2 (       +d       x)2   Dividing both sides of (iii) by d x,, we have   ==dd xy                   -d x(2x            x+≠)d2  x  )          -(2x +d x)                                    (d x 0)                             x2 (x +d                   d             x2 ( x + d x)2                                                           x   Taking limit as d x → 0,, gives                              lim    d    y     =  lim        -(2x +d x)                                     d    x                   x2 ( x + d x)2                              d x→0                d x→0                              =  -(2x)                                   (Using quotient theorem of limits)                                 ( )x2 x2                                    =( --12)3=                                 -2                                                               -2   i.e.,               d=y       x3    and                 d=y     |x=   -1                       -1         2                       dx                                  dxNote:            The value of dy at x = -1 is written as dy | .                                   dx dx x=-1Example 4:                                                                            2                              Find the derivative of x3 and also calculate the value of derivative at x = 8.Solution:     Let         f   (x)   =     2     .Then                                        x3                 f  (  x  +   d  x)    =( x     +  d     )2                                                        x3              and                                                                (  x  +   d  x  )2          2    (  x+  d   )4  +   (  x+     d  x  )  2  .x  2  +  x  4                                                                                       3            x    )4        x                              3      3        3                                                                                   (    - x3                 +(     x3   x)  2      2f  (x +d x)-  f  (  x)  =  (  x  +  d  x  )  2  -    2     =                                             3          +d       3                4                                             3                                          x+d                                     .x 3                                                   x3                                                                                  + x3                                                                                                                                                                        version: 1.1                                                                                                       10
21.. DQifuaerdernattiiactEioqnuations                                                                                                          eLearn.Punjab                    (  x  +  d  x  )  2  3  -    x  2  3                                 ( x + d x)2 - x2                            eLearn.Punjab                                         3               3                                                                                     version: 1.1          (   x  +  d      )4   +  (  x     +  d   )2       2       +    4         (x  +  d      )4       +  (x  +d   )2      2  +    4                          x3                      x3    .x 3           x3                       x3                   x3   .x 3      x3i.e.,  f  (x     +d x)       -  f  (x)         =                    d     x(2x +d x)                   2        4                        (i)                                                                                                       3                                                (x+        d     x  )4    +  (  x  +   d  x  )  2  .x      +  x3                                                                      3                         3       Dividing both the sides of (i) by d x , we get       f  (x     +d x)-         f  (x)         =                            2x +d x                                                      (ii)                    dx                             (x   +     d  x  )  4  +  (  x  +   d  x  )  2  .x   2  +    4                                                                       3                        3       3                                                                                                              x3       Taking limit of both the sides as d x → 0, we have                    f '(=x) 4                      22=x 2           =4          2x            2                                                                                    4             1                                      x3 + x3.x3 + x3 3x3                                    3x3and                 =f '(8)        =2 1                 1                                   3.(8)3               3Example 5:                      Find the derivative of x3 + 2x + 3 .Solution: Let y = x3 + 2x + 3. Then     (i) y + d y =( x + d x)3 + 2( x + d x) + 3       (ii) d y = ( x + d x)3 + 2( x + d x) + 3 - x3 + 2x + 3                = ( x + d x)3 - x3  + 2 ( x + d x) - x + (3 - 3)                = ( x + d x) - x ( x + d x)2 + ( x + d x) x + x2  + 2d x       (iii)        d     y  =  d  x  (   x   +  d    x)2   +     (  x+d         x)  x  +     x2    +    2d  x                    d     x                                            dx                                                                                                       11
12.. DQiufaedrernattiiactEioqnuations                                                                           eLearn.Punjab                                                                                                                eLearn.Punjab             = ( x + d x)2 + ( x + d x) x + x2 + 2(iv)  lim    =dd xy   lim              (  x  +  d  x)2  +  (x  +  d  x)x  +  x2  +  2      d x→0           d x→0                dy = (x)2 + ( x) x + x2 + 2                dx( )i.e., d x3 + 2x + 3 = 3x2 + 2        dx2.2.1 Derivation of xn where ndZ.(a) We ind the derivative of xn when n is positive integer.       (a) Let y = xn . Then            y + d y =( x + d x)nand d y =( x + d x)n - xnUsing the binomial theorem, we have              x n                                 n(n -1)                                 (d x)n -                                                         2      ( )d y=                      +  nxn-1.d               x  +              xn-2  (d x2+)     .+..                   xni.e.,=d y    d  x    nxn-1          +    n(n -1)       x+n-2.+d  x  ...     (d x)n-1                (i)                                                2Dividing both sides of (i) by d x , gives      d  y=  nxn-1 + n( n -1) xn-2 . d+x +...                          ( d x )n-1                         (ii)      d  x                2Note that each term on the right hand side of (ii) involves d x except the irst term, so taking the limit as d x → 0 , we get dy = nxn-1                                                dx( )==As y xn , so d xn n.xn-1                           dx                                                                                                                                   version: 1.1                                                                            12
21.. DQifuaerdernattiiactEioqnuations                                                                            eLearn.Punjab                                                                                                                 eLearn.PunjabNote:  ( ) ( )If n = 0, then the formula d xn = nxn-1 reduces to d =x0 0=x0-1 0 i.e.,                                                  dx dxd (1) = 0 which is correct by example 1 part (a).dx(b) Let y = xn where n is a negative integer.Let n = -m (m is a positive integer). Then            =y      x=-m                     1                                                         (i)                                             xm                                                        (ii)and y + d y =( x +1d x)mSubtracting (i) from (ii). gives            =d y         (             x   1  x)m     =- x1m    xm - ( x + d x)m                                          +d                    xm ( x + d x)m            xm  -     xm               +  mxm-1d   x  + m(m -1) xm-2        (d  x)2  +  ...  +  (d  x)m         =                                                        2                                                          xm ( x + d x)m                                       (expanding ( x + d x)m by binomial theorem)            -d  x   mxm-1                 +   m(m -1) x dm-2 x   +  ...  +  (d  )x m-1         =                                             2                                                   xm .( x + d x)m=and dd xy  x  m+(   -1                   x)m   .  mxm-1  +  m(+m -1)  xm-2 .d  x    ...     (d x)m-1                     x+d                                                                    2       Taking limit when d x → 0 , we get            ( )dy         -1                                    (all terms containing d x ,vanish)                         xm.xm            dx                    =                            mxm-1                                                                                                                 version: 1.1                                                                       13
12.. DQiufaedrernattiiactEioqnuations                                                                              eLearn.Punjab                                                                                                                   eLearn.Punjab                     ( ) ( )= -m xm-1.x-2m = -m x(-m)-1 =nxn-1                            [ m- n=]     or d ( x)n = nxn-1                   dxSo far we have proved that d [ x]n = nxn-1, if n ∈ Z                                       dx       The above rule holds if n ∈Q - ZFor example     d   =x 23                     2=x 23-1   2                dx                                  3                                                                   1                                                              3x3The proof of    d                    x  n    =  nxn-1  when       n∈Q - Z        is left as an exercise.                dxNote that  d      xn               =     nxn-1  is called power rule.           dx                                                                      Exercise 2.11. Find by deinition, the derivatives w.r.t ‘x’ of the following functions deined as:(i) 2x2 + 1             (ii) 2 - x                                    (iii) 1             (iv) 1              (v)    1                                                                                x                 x3               x-a(vi) x( x - 3)          (vii)                       2                 (viii)  (x  +   )1                   3                   5                                                    x4                                                                                     43   (ix) x2             (x) x 2(xi)  xm,m∈ N           (xii)                           1             (xiii) x40          (xiv) x-100                                                    xm,m∈ N2. Find dy from irst principle if               dx(i) x + 2                                                  (ii)        1                                                                      x+a                                                                                                                   version: 1.1                                                                              14
21.. DQifuaerdernattiiactEioqnuations                                                                                                                                        eLearn.Punjab                                                                                                                                                                             eLearn.Punjab2.2.2 DIFFERENTIATION OF EXPRESSIONS OF THE TYPES:                                    (ax + b)n                 and            1                         ,             n =1,2,3...                                                                         (ax + b)n     We ind the derivatives of (ax + b)n and                                                                                  1               from the irst principle when n ∈ N                                                                                                                          (ax + b)nExample 1:                          Find from deinition the diferential coeicient of (ax + b)n w.r.t. ‘ x ‘ when nis a positive integer.Solution: Let y = (ax + b)n, (n is a positive integer)     Then y + d y= a( x + d x) + bn= (ax + b) + ad xn       Using the binomial theorem we havey + d y =+(ax +b)n                     1n +(ax             b)n-1 (ad+x)                       n     +( ax      )b n-2 (ad+x)2 + ...                (ad x)n                                                                                                       2dy=  (y +d y)- y =                  1n  (  ax      +    )b n-1     (  ad    x  )  +      n      (  ax  +    b  )n-2  .a2    (d  x  )2  +  ...  +  an  (d  x  )n                                                                                                  2=    d  x  1n    (  ax  +  b  )n-1  .a       +    n    (  ax    +  b  )n-2         .a   2d      x  +  ...   +  a  n  (d  x  )n-1                                                                2So =dd xy  1n       (  ax  +  b  )n-1  a        +    n    (  ax  +    b  )n-2    .a        2d      x  +  ...  +   a  n  (d  x  )n-1                                                              2Taking limit when d x → 0 , we have     =dlixm→0 dd xy          lim       1n    (  ax   +  b       )n-1  .a  +      n      (  ax      +  b  )n-2  .a2d      x  +  ...  +  an   (d  x  )n-1                                                                                               2                             d x→0O=r dy     1n (ax + b)n-1.a                        [All other terms tends to zero when d x → 0 ]      dx     Thus d (ax + b)n = n(ax + b)n-1.a             dx                                                                                                                                                                             version: 1.1                                                                                                                     15
12.. DQiufaedrernattiiactEioqnuations                                                                                                                                      eLearn.Punjab                                                                                                                                                                           eLearn.PunjabExample 2:                    Find from irst principle, the derivative of                                                                            1      w.r.t. ‘ x ’,                                                                                                                                                 (ax + b)nSolution:       Let           y=       1                   (when n is a positive integer). Then                                   (ax + b)n                   y  +    d  y   =a (         +    1         )    +            n             and                                                      dx                                            x                             b                d     y    =  y   +   d  y  -    y    =    ( ax            +       1       ad    xn   -  ( ax     1  b)n                                                                                                                      +                                                                                    b) +or              d     y    =  (ax + b)n          -    (ax + b + ad                        x)n                              (ax + b)         +    ad xn (ax +                       b)nor              dy            (  +     +  b+)  +    -1             -n    (    +       b)n     x  ( ax      b)        ad xn        ( ax   b )n ]     (I)                                   ax                 ad x                      ax +                                                                           +Using the binomial theorem, we simplify the expression   (ax + b) + ad xn - (ax + b)n ,That is,   (ax + b) + ad xn - (ax + b)n= [(ax + b)n + 1n (ax + )b n-1 (ad x)                                            +      n   ( ax         +     )b n-2       .a2  (d  x)2    +   ...  +  ( ad  x)n     ]                                                      2=  1n     (  ax      +  )b n-1   .ad  x    +      n      (  ax      +      b  )n-2  .a2   (d  x  )2  +    ...  +   an  (d  x  )n                                                           2=  d  x    1n     (  ax   +  b  )n-1  .a     +      n      (  ax        +  b  )n-2  a  2d  x  +   ...  +  a  n  (d  x  )n-1                                                                  2Now (I) becomesd y =(ax + b) + addxxn (ax + b)n [1n (a-x )b n-1.a                                                                                                                                                                           version: 1.1                                                                                                          16
21.. DQifuaerdernattiiactEioqnuations                                                                                                                   eLearn.Punjab                                                                                                                                                        eLearn.Punjab                                       +    n         (  ax  +  b  )n-2  .a  2d  x  +  ...  +  a  n  (d  x  )n-1  ]                                               2and  d  y  =(ax + b) + ad1xn (ax + b)n [1n (a-x                          )b n-1 .a                                                       +     d  x                                       +    n         (  ax  +  b  )n-2  .a  2d  x  +  ...  +  a  n  (d  x  )n-1  ]                                               2Using the product and sum rules of limits when d x → 0 , we have     dy    =(ax + b)n1(ax + b)n .1n (a-x                     )b n-1 .a                 alldlixom→th0 dderxy+te=rmddyxs  and              dx                                                                                                                            containing                                                                                             d x vanish                                         or   d     = ( ax  1  b)n    =- (ax-+n+ba)n+1  =n ( ax           )b -(n+1) .a     dx                +                                                                      Exercise 2.21. Find from irst principles, the derivatives of the following expressions w.r.t. their     respective independent variables:     (i) (ax + b)3                                          (ii) (2x + 3)5     (iii) (3t + )2 -2                                      (iv)             1                 1                                                       (ax + b)5     (v) (az - b)7                                                                                                                                     version: 1.1                                                                               17
12.. DQiufaedrernattiiactEioqnuations                                                                         eLearn.Punjab                                                                                                              eLearn.Punjab2.3 THEOREMS ON DIFFERENTIATION           We have, so far proved the following two formulas:1. dy (c) = 0 i.e.. the derivative of a constant function is zero.        dx( )2. d xn = nxn-1 power formula (or rule) when n is any rational        dx       number.           Now we will prove other important formulas (or rules) which are used to determinederivatives of diferent functions eiciently. Henceforth, in all subsequent discussion, f, g, hetc. all denote functions diferentiable at x, unless stated otherwise.3. Derivative of y = cf ( x)Proof: Let y = cf ( x) . Then(i) y + d y= cf ( x + d x) and(ii) y + d y - =y cf ( x + d x) - cf ( x)or d y= c | f ( x + d x) - f ( x) | (factoring out c)(iii)      d  y   =  c   f  (x  +d x)-          f  ( x)            d  x                                      dx           Taking limit when d x → 0(iv)       lim    d  y         lim    c. f  (x  +d x)-       f  ( x)   c. lim    f  (x  +d x)-  f  (x)                  d  x                                                          d x→0           d x→0               d x→0                  dx                                         dxA constant factor can be taken out from a limit sign.Thus       dy    =c  f      '( x)  ,that is,          c  f  ( x)'  = cf ' ( x)           dxor     dy  = cf   '( x)            =           c f ( x)' = cf ' ( x)       dx                                                                                                                                           version: 1.1                                                                                    18
21.. DQifuaerdernattiiactEioqnuations                                                                                                                                                            eLearn.Punjab                                                                                                                                                                                                 eLearn.PunjabExample 1:                        Calculate               d     3x    4                                                               dx             3Solution:                         d     3x  4    =   3  d       x  4                        (Using Formula 3)                                  dx           3              dx            3                                     =                     3=x 4 x 43-1                     1           (Using power rule)                                                                 3                                                                                       4x34. Derivative of a sum or a Diference of Functions:       If f and g are diferentiable at x , then f + g, f - g are also diferentiable at xand     f ( x) + g ( x)' =f '( x) + g '( x) ,                                       that            is,      d          f  (  x)  +  g   (  x=)         d     f  (  x  )  +  d     g  (  x  )  Also                                                                                                                 dx                                             dx                       dx f  ( x) - g ( x)'  =f    '(x) - g '(x).           that           is,      d      f   ( x) - g ( x=)     d       f  (  x )  -  d    g  (  x  )                                                                               dx                                dx                        dxProof: Let f=( x) f ( x) + g ( x) . Then(i) f ( x + d x) = f ( x + d x) + g ( x + d x) and(ii) f ( x + d x) - f ( x) = f ( x + d x) + g ( x + d x) -  f ( x) + g ( x)        =  f ( x + d x) - f ( x) + g ( x + d x) - g ( x) (rearranging the terms)(iii)  f=( x + ddxx) - f ( x)               +f    (    x   +  d x)       -     f (x)              g(x +d x)- g(x)                                                               dx                                         dx       Taking the limit when d x → 0(iv)   =dlixm→0 f ( x + ddxx) - f ( x)                 +dlixm→0    f  (  x       +  d x)       -  f (x)       g  (  x      +  d x)      -  g   (  x  )                                                                                          dx                                        dx=                       +dlixm→0  f (x +d x)-                 f (x)            lim          g  (  x  +  d x)  -  g  (  x)                                         dx                                    d x→0                     dx                                            (The limit of a sum is the sum of the limits)               =f ' x f '( x) + g '( x) , that is  f ( x) + g ( x)' = f '( x) + g '( x)or     d     f  (  x  )  +  g   (  x=)        d      f  (  x)    +          d     g  (  x)       dx                                         dx                                dxThe proof for the second part is similar.                                                                                                                                                                                                       version: 1.1                                                                                                        19
12.. DQiufaedrernattiiactEioqnuations                                                                                                                         eLearn.Punjab                                                                                                                                                              eLearn.PunjabNote: Sum or diference formula can be extended to ind derivative of more than twofunctions.Example 1:                            Find the derivative of y = 3 x4 + 2 x3 + 1 x2 + 2x + 5 w.r.t. x .                                                                         432Solution: y = 3 x4 + 2 x3 + 1 x2 + 2x + 5                    432            Diferentiating with respect to x, we havedy    3  x4  +   2  x3  +       1  x2  +   2x=+ 5       d     3  x4    +  d       2  x3    +  d     1  x2    +  d   (2x)  +  d   (5)dx       4          3              2                          dx       4              dx         3              dx       2              dx           dx                                                                                                                         (Using formula 4)=  3     d   (  x4  )  +   2   d      (   x3  )  +  1  d   (  x2  )    +  2  d     (  x  )  +    0           (Using formula 3 and 1)   4     dx                3   dx                   2  dx                    dx                              (By power formula)( ) ( ) ( ) ( )= 3 4x4-1 + 2 3x3-1 + 1 2x2-1 + 2 1.x1-1  4 32= 3x3 + 2x2 + x + 2Example 2:                            ( )( )Find the derivative of y =x2 + 5 x3 + 7 with respect to x.Solution: y =( x2 + 5)( x3 + 7)                                                                     =x5 + 5x3 + 7x2 + 35            Diferentiating with respect to x, we get                           dy=        d    x5     +  5x3    +  7x2      +   35                           dx         dx            ( ) ( )=d              dx                         x5    +  5   d      x3    +7 d            x2     + d [35] (Using formulas 3 and 4)                                          dx               dx                                                                                dx            = 5x 5-1 + 5 x 3x 3-1 + 7 x 2x 2-1 + 0            = 5x4 + 15x2 + 14x                                                                                                                                                              version: 1.1                                                                                                        20
21.. DQifuaerdernattiiactEioqnuations                                                                                         eLearn.Punjab                                                                                                                              eLearn.PunjabExample 3:      ( )( )Find the derivative of y = 2 x + 2 x - x with respect to x.( )( )Solution: y = 2 x + 2 x - x          = 2( )x +1 . x ( )x=-1 2 x ( x +1)( x -1)            =2     x ( x +1=)               2       3     -    1                                                       x2         x2Diferentiating with respect to x , we have=dy             d       2    3   -          1         dx       dx                                 x2             x2            =   2    d       3     -      d        1    =  2    3    3   -  1    -   1    1   -  1                        dx                         dx                                2                    2                                             x2                          x2                         x2                   x2                     1 -1                            x-         1         = 3x -1            = 3x2 - x 2 = 3                                       xx5. Derivative of a product. (The product Rule)If f and g are diferentiable at x, then fg is also diferentiable at x and f (=x) g ( x)' f '( x) g ( x) + f ( x) g '( x) , that is,=ddx  f ( x) g ( x)     +       d      f  ( x) g ( x)                  f  (  x  )    d    g  (  x  )                                       dx                                                             dxProof: Let                       f ( x) = f ( x) g ( x). Then(i) f ( x + d x) = f ( x + d x) g ( x + d x)(ii) f ( x + d x) - f ( x) = f ( x + d x) g ( x + d x) - f ( x) g ( x)Subtracting and adding f ( x) g ( x + d x) in step (ii), givesf(x +d x)-f(x) = f (x +d x)g(x +d x)- f (x)g(x +d x)+ f (x)g(x +d x)- f (x)g(x)            =  f ( x + d x) - f ( x) g ( x + d x) + f ( x) g ( x + d x) - g ( x)                                                                                                                              version: 1.1                                                                                              21
12.. DQiufaedrernattiiactEioqnuations                                                                                                                                 eLearn.Punjab(iii) =f ( x + ddxx) - f ( x)  f (+x + ddx+x) - f ( x)  g ( x d x)                                 f  (  x  )    g  (  x    +  d x)  -      g  (  x)      eLearn.Punjab                                                                                                                                                                         version: 1.1Taking limit when d x → 0                                                                                                                dx(iv)      f  (x  +d x)         -f       (x)      lim                    dx      d x→0      =  lim       f (x +d x)              -   f   ( x).g (   x +d x)+              f (x   ).   g(x +d x)-                      g    d( xx))-      =                                           x   ) . lim g  (x +d x)+                                                         +         d x→0                dx              f(                                       lim    f                      dx                  dx                                                         d x→0              f       (x +d x)-                                                        d x→0       (  x  ). lim        g  (  x                       g  (  x  )         lim                                                                                                d x→0                            dx         d x→0                                                                                                                  (Using limit theorems)Th=us f '( x) f '( x) g ( x) + f ( x) g '( x)                                            lim       g  (  x  +     d    x  )  =g ( x)                                                                                            d x→0or    dd=x  f ( x).g ( x)                 +d        f  (  x )  .g  (  x  )  f  (  x)    d     g  (  x )                                              dx                                                   dx( )( )Example: Find derivative of y = 2 x + 2 x - x with respect to x( )( )Solution: y = 2 x + 2 x - x         = 2( x +1)( x - x )       Diferentiating with respect to x, we get      ( )( )=dy    d                   dx       dx             2                     x +1 x - x       ( ) ( ) ( ) ( )=                                                                                   x              2             d            x +1  x - x +                            x +1 d x -                           dx                                                             dx      ( ) ( )=2      1   x  1  -  1  +  0    x-        x+               x +1     ×        1  -  1  x  1    -  1                             2      2                                                                         2     2                                                                                                   22
21.. DQifuaerdernattiiactEioqnuations                                                                                                              eLearn.Punjab                                                                                                                                                   eLearn.Punjab                         ( ) ( )=2  2   1        x-          x  +            x +1     x   1 -         1                                                 x                                                              2x                         ( )=2   x-         x   +           x  +1        2     x  -1                                        2        x                                         x                                                                                   2                         =     1      x     -        x + 2x -            x + 2 x -1                                x                         = 3x -1                               x6. Derivative of a Quotient (The Quotient Rule)         If f and g are diferentiable at x and g( x) ≠ 0 , for any x ∈ D( g ) then f is diferentiable                                                                                                       gat    x  and          f  (  x)    '  =   f    '(x)g(x) - f (x)g '(x)                         g  (  x)                        g ( x)2              d       f  (  x)             d      f  ( x)  g ( x) -      f  (  x)       d   g ( x)              dx         g  (  x)                   dx                                                     dxthat     is,                               =                                                                                g ( x)2Proof:        Letf ( x) =                  f (x)       Then                                           g(x)                                =gf ((xx                  x)(i)      f    (  x  +    d  x)                      +  d  x)                                                    +  d(ii)     f ( x + d x) -=f ( x)                         f  (x    +d    x)   -    g=f ((xx))     f (x +d x)g(x)- f (x)g(x +d x)                                                       g  (x    +d    x)                               g(x)g(x +dx)Subtracting and adding f ( x) g ( x) in the numerator of step (ii), givesf(x      +d   x) -f ( x)             =f ( x         + d x) g (x)           -    f  (x)g(x)- f (x)g(x                      +d  x) +  f  (x)g(x)                                                                                    g(x)g(x +dx)         =            1              +d       x)    (  f   (x    +d  x)       -  f  (x))g(x) -               f  (x)(g(x     +d  x) -  g ( x))              g(x)g(x                                                                                                                                                   version: 1.1                                                                                                           23
12.. DQiufaedrernattiiactEioqnuations                                                                                                                                                         eLearn.Punjab                                                                                                                                                                                              eLearn.Punjab(iii)          f(x +dx)-f(x)                          -              1       x)   f  (x    +d x)-         f  ( x).g (x)            f  (  x  ).  g  (  x  +  d x)      -   g  (  x)                                                           g                       dx                                 (   x)  g  (x  +d                      dx                                                             dx               Taking limit when d x → 0(iv)           lim        f    (     x  +  d x)    -  f   (   x  )               d x→0                        dxlim                         1        + d x)     f  (x      +d x)   -   f  ( x).g ( x) -                f  (x). g(x              +d x)        -     g(x)        x→0         g  (    x  )  g    (x                                   dx                                                                   dxUsing limit theorems, we have( )f '(x)                    g ( x-)1.g ( x)  f '( x) g (=x) f ( x) g+'( x)                                             lim    g  (       x     d x)             g(x)                                                                                                                    d x→0Thus             f  (  x)   '     f  '(x)g(x) - f (x)g '(x)                    d     f  (  x)    d       f  ( x)  g ( x) -     f  (  x)     d     g  (  x)                      g  (  x)                    g ( x)2                          dx       g  (  x)        dx                                             dx                                                                                               or                                                                                                                                         g ( x)2First Alternative Proof:                                  f(x) =        f (x)            can be written as                           f (x) =f(x)g(x)                                                g(x)       Using the procedure used to prove product rule, quotient rule can be proved.Second Alternative Proof: We irst prove the reciprocal rule and then use product rule toprove the quotient rule.The reciprocal rule. If g is diferentiable at                                                                   x       and g ( x) ≠ 0 , then                                1     is diferentiable at  x  and                                                                                                                                                                             gd           1            =     -  d     g  (  x  )dx                                      dx               (x)                      g ( x)2           (Proof of reciprocal rule is left as an exercise)            g                                                                                                                                                                                              version: 1.1                                                                                                                24
21.. DQifuaerdernattiiactEioqnuations                                                                                                                              eLearn.Punjab       Using       the       product                 rule        to    f    (  x  ).  g   1     )       ,  we      have                                            eLearn.Punjab                                                                                                                                                                     version: 1.1                                                                                          (x       =ddx  f ( x). g (1x)            +  d        f  (  x  )  .  g  1                  f  (  x).     d       g  1                                                        dx                                                                 dx                                                                                     (x)                                            (x)                             =       d        f  (x     )    +  f  (    x)    -   d         g ( x)                                     dx     g      x)                                           ( x)2                                                (                                     dx                                                                                       g       d     f  (x)         d     f     (  x )   g  (x)- f (              x)      d      g    (  x )        dx       g  (x)               dx                             g ( x)2                      dxi.e.,                        =                             ( )Find dy if y =                              x     +1         x    3     - 1                                    dx                                                               2                                                                                      1Example 2:                                                                                                         ,             ( x ≠ 1)                                                                                   x2 -1Solution: Given that( ) ( ) ( )==y                                     3  - 1                                x    +1            x  2                        x +1  x 3 - (1)3                                          1                                             x -1                                     x2 -1                   ( )( )( ) ( )( )=                             x +1                 x -1 x +1+                         x                     x +1 x +1+                          x                                                    x -1                              =                   = ( x +1)( )(x -1 x +1+ x=) ( ) (x +1 2 + )x +1 x                                                                             31                   = x +1+ 2 x + x x + x= x2 + 2x + 2x2 +1       =dy         d        3     +  2x      +          1   +=1          d       x  3    +     d   (2x)       +      d          1    +  d   (1)       dx          dx                                                          dx            2             dx                    dx                       dx                             x2                       2x2                                                                                 2x2                =  3      1     +    2(1)         +   2.      1        + =0          3       x +2+ 1                   2    x2                                2x 2                                                        x                                                                                                           25
12.. DQiufaedrernattiiactEioqnuations                                                                                    eLearn.Punjab                  ( )Diferentiate                             x  +1      x  3  - 1                                 eLearn.Punjab                                                                               2                                            version: 1.1                                                                    3Example 3:                                                                  1              with         respect  to  x.                                                                  x2 - x2( )Solution: Let y =      x            +1       3    - 1                                                 x2                                       31                                       x2 - x2( )=                   3              - 1               x  +1   x 2                  x ( x -1)            ( x +1)( x -1)( x + x +1) (( x -1) x + x +1)                             x ( x -1)                                                     x ( x -1)               = x + x +1                        xDiferentiating with respect to x , we havedy          =  d      x  +            x    + 1dx             dx                    x            (x d x +                   x +1) - ( x +              x    +    1)    d     (       x)              dx                                                                  dx=                                                   (       )2                                                           x( )=        x  1 +  1    -          1    +    0   -     x+  x    +1         .  1    -  1                         2               2                                                2       2                          x                                                                x                                                           x( )=        x  1 +  2  1              -       x+        x +1 1                           x                                         2x                                                 x                                                                                        26
21.. DQifuaerdernattiiactEioqnuations                                                                                                 eLearn.Punjab===x  2 2 x                         +   1    -  x   +    x +1                                                                   eLearn.Punjab                                       x                   2   x                                                                        version: 1.1                                                                            2x + x - x - x -1                            x -1                                              x                                     x.2 x                                                                                                                               3                                                                                                                         2x2Example 4:                    Diferentiate                   2x3 - 3x2 + 5           with respect to                     x.                                                                 x2 +1Solution:   Let       f       (  x  )  x=)2=x23 xx-233-+x132 x+25+.  Then   we       take                                 f  (                                5 and                                                                            g(       x=) x    2  +1                      ( )f ' ( x)=     d    2x3        -        +  5=               - 3(2x) + 0=                     6x2 - 6xNow                                    dx                    3x2            2 3x2and                   g'(x) =          d    x2   + 1  =  2x + 0     = 2x                                       dxUsing the quotient formula:                              f '(x) =    f  '(  x  )  g  ( x) -   f(    x  )  g  '  (  x  )  ,we  obtain                                                                                     g ( x  )2( )( ) ( )d( )dx  2  x3  - 3x2  +  5    =     6x2 - 6x             x2 +1 - 2x3 + 3x2 + 5 (2x)            x2 +1                                                               x2 +1 2                              ( )( )=6x4 -  6x3       +   6x2  - 6x -       4x4      -  6x3   + 10 x                                                                x2 +1                                                                            2                                    6x4  -  6x3       +   6x2  - 6x - 4x4         +  6x3  - 10 x                                                               x2 +1 2                              ( )=                                         + 6x2 -16x                                    2x4  x2 +1 2                              ( )=                                                                           EXERCISE 2.3        Diferentiate w.r.t. x1. x4 + 2x3 + x2                                      2.             x-3 + 2x-3/2 + 3               3.                a+x                                                                                                                      a-x                                                                                     27
12.. DQiufaedrernattiiactEioqnuations                                                               eLearn.Punjab                                                                                                    eLearn.Punjab4.  2x -3                                    5. ( x - 5)(3 - x)            6.     x-   1   2    2x +1                                                                                  x( )7.1+ x          x  -  x  3               ( )x2 +1 2                               2                                             8. x2 -1                   x                                                       9.   x2 +1                                                                                x2 - 310. 1 + x                                    11. 2x -1                     12.       a-x          1- x                                         x2 +1                         a+x13. x2 + 1                                   14.              1+ x - 1- x  15.  x a+x          x2 -1                                               1+ x + 1- x         a-x16. If=y x - 1 , show that 2x dy + y =2 x                        x dx17. If y =x4 + 2x2 + 2 , prove tha=t dy 4x y -1                                               dx2.4 THE CHAIN RULE       The composition fog of functions f and g is the function whose values f [g(x)], are found( )for each x in the domain of g for which g(x) is in the domain of f . f g ( x) is read as f of gof x).Theorem. If g is diferentiable at the point x and f is diferentiable at the point g( x ) thenthe composition function fog is diferentiable at the point x and ( fog )'( x) = f 'g ( x).g '( x) .The proof of the chain rule is beyond the scope of this book. =If y (=fog )( x) f g ( x) , then        ==( fog )'( x)  f g ( x) '                    dy                                                              dx                ⇒        dy  =f 'g   (  x  ).g  '(  x  )      (i)                         dx                                                                  (ii)    Let u = g ( x)                                                (iii)    Then y = f (u)                                                                                                    version: 1.1                                                                  28
21.. DQifuaerdernattiiactEioqnuations                                                                                            eLearn.PunjabDiferentiating (ii) and (iii) w.r.t x and u respectively, we have.                                                               eLearn.Punjab                                                                                                                                   version: 1.1=du            dd=x g ( x)      g '(x)        dx=and dy        dd=u  f (u)         f 'u        duThus (i) can be written in the following forms(a)  d   (  f  (u))  =   f    '(u   )  du     dx                                dx(b) dy = dy .du        dx du dxThe proof of the Chain rule is beyond the scope of this book.Note=:=1. Let y g ( x)n and u g ( x)            =Then y u=n and dy nun-1                                           (power rule)                                    du               Bu=t dy d=y . du nun-1 du                        dx du dx                                      dx               or    d      g  (  x  )  n  = n g ( x)n-1 .g' ( x)            du                 =  g  '  (  x)                       dx                                                                  dx         2. Reciprocal rule can be written as                     d     g  1     )    =  d     g  (  x  )    -1=  - 1.g ( x)-1-1 .g' ( x)                     dx                           dx                                 (x                                                                          = (-1) g ( x)-2 .g' ( x)Example 1:              ( )Find the derivative of x3 +1 9 with respect toSolution:               ( )Let y+=x3 1 +9 =and u x=3 1 Then y u9                                                                               29
12.. DQiufaedrernattiiactEioqnuations                                                                                                                   eLearn.Punjab                                                                                                                                                        eLearn.Punjab                  ==Now du 3x2 and dy 9u8                                                                    (Power formula)                           dx duUsing the formula dy = 9u8 du , we have                          dx dx( ) ( ) ( )or                                                                   u                            du       =3x2               d x3 + 1 9 =9 x3 + 1 8 3x2                                                       =x3     +1 and    dx              dx                    ( )= 27x2 x3 +1 8Example 2:          Diferentiate                              a-x               ,( x ≠ -a) with respect to x                                                              a+xSolution:           Let                y=          =aa=+- xx and u                    a     -  x  .  Then    y         1                                                                                      a     +  x                                                                                                                    u2                         No=w dy                   1=u 12 - 1           1    -  1                                                                                2                                                                           u                                 du 2                                   2         =and du              dd=x  aa +- xx             d     (  a  -    x  )  (  a  +  x)   -  (a  -  x)      d   (a  +  x )                  dx                                               dx                                                           dx              (=0=-1)(a +(xa)+-x(                             )   (        1)                        (a + x)2=                                                  a   -  x          0  +             -a - x - a + x                  -2a                                                   )2                                   (a + x)2                    (a + x)2Using the formula dy = dy . du , we have                             dx du dxd       a  -  x    =1     -      1        -2a          =1      a  -    x   -  1    ×      -2a         u    =a     -  x     dx         a  +  x         2           2           a+x                 2        a  +    x         2                                  a    +  x                              u                                                                              a + x)2                                                (         )2                                              (           =  (a    -    x)-  1  ×           -a           =                      -a              (a    +    x)-  2                                          (a + x)2                (  a  -  x    )1   (  a   +      )3                              1                                                   2                              2                                                                   x2                                                                                                                                                      version: 1.1                                                                                               30
21.. DQifuaerdernattiiactEioqnuations                                                                                      eLearn.Punjab                                                                                                                           eLearn.PunjabExample 3:  Find dy if y =                          a+ x +                  a-x        (x ≠ 0)                  dx                                a+ x -                  a-xSolution:   y=              a+ x +                 a-x                            a+ x -                 a-xMultiplying the numerator and the denominator by a + x - a - x , gives            (( ))(( ))y =                                       a+x+ a-x                       a+x- a-x                                       a+x- a-x                       a+x- a-x            ( ) ( )=                         (  a          +   a+x      -2 =-x=) -a2 -ax2 -2 x2        (a + x)  -(a - x)             2x                                          x) + (a                                  2a - 2    a2 - x2     ( )2 a - a2 - x2           that is, y =                    x                         a - a2 - x2Let f ( x) =x and g( x) =a - a2 - x2 , then( )f ( x)' =1 and -g'( x) =0- d-                                      1                     d1 - 1                                                                      2                                                                                            2                                                    =a2 x-2                      ( ) ( )1a2-x2       a2  x2                                                dx                               2 dx                                       -=           1                 -x (  2=x )    x                                             2     a2 - x2                         a2 - x2Using the formula                      dy  =    f  '( x)  g(x)- f (x)              g '(x),  we have                                       dx                  g ( x)2                 1. a -                a2 - x2     - x.               x                                                                    a2 - x2           ( )dy =           ( )dx                                                                   2                                       a - a2 - x2            ( )= a            a2 - x2 -                      a2 - x2  - x2              =         a a2 - x2 - a2                                                         2                       ( )2            ( )a2 - x2 a - a2 - x2                                                                             a2 - x2 a - a2 - x2                                                                                                                                   version: 1.1                                                                             31
12.. DQiufaedrernattiiactEioqnuations                                                                                eLearn.Punjab                                                                                                                     eLearn.Punjab      -a a - a2 - x2                                      =                      -a( )= 2                                                                    ( )2  ( )a2 - x2 a - a2 - x2                                                                      a2 - x2 a - a2 - x2Example 4:            ( )Find dy if y=                 1+ 2            33                                dx                                                                   x .x2( ) ( )Solution: + y =1 +2 =x 3 .x32  1                                 1      3                                                                              2                                                          2        x       x        ( )1                                                               (i)                                                                                  ( ii ) Let u= 1 + 2 x .x2Then y = u3Differentiating (ii) with respect to u, we have( ) ( )dd+yx==3u2 3+ =1 2 x                              1  2     31                         2                                                                                                                         x2                          2 x .xDiferentiating (i) with respect to x , gives( )du       =      0  +  2.         1         1  +  1+ 2        x        1                                                                              2xdx                              2         x       x2+ =1 1=+ 2 x 2 x +1=+ 2 x 1 + 4 x             2x 2x 2xUsing the formula dy = dy . du ,we have                          dx du dx                         x 3 .x 32+ =3 1 2                                                   +         ( ) ( )d         1+      2                                            x    2          x            1  2  4   x                                                                                                          xdx                                                                          .x                                             ( ) ( )+ =3 1 2 x+2 x 1 4 x                                                  2                                                  (+=1 2 x+) ( x 4x)Example 5:       If y = (ax + b)n where n is a negative integer, ind dy using quotient theorem                                                                                   dxSolution: Let n = -m where m is a positive integer. Then                                                                                                                     version: 1.1                                                                                           32
21.. DQifuaerdernattiiactEioqnuations                                                                              eLearn.Punjaby =(ax + b)n                       =  ( ax    +  )b -m  =( ax  1   b)m          (i)                                eLearn.Punjab                                                               +                                                     version: 1.1We first find d (ax + b)m . Let+u =ax b. Then                dx( ) ( )d (ax + b=)m d um= d um du                                       (using chain rule)dx dx dx dx   = +mum-1 x a=m(ax )b m-1.a                                                     d   (  ax   +  b  )  =a                                                                                       dxNow diferentiating (i) w.r.t.’ x ’, we have==dy             d    ( ax  1  b)m    d (1).(ax + b)m -1. d (ax + b)m             dx  dx             +                                              dx dx                                                      (ax + b)m 2                 0.( ax  +      b)m -1.m(ax      +      )b m-1 .a                                 (ax + b)2m( )=                                                                    m ( ax- =m+(ax )b m-1 .a x+(ax- )b=-2m+                                               )b m-1-2m .a=(-m ) ( ax + b )-m-1 . a+=n( ax b )n-1 .a =(-m n )Example 6:               Find dy if y = xn where n = p , q ≠ 0                               dx qSolution: Given that y =xn wher≠e n =p , q =0. putting n                                           p ,we have                                                    q                                              q                                                        p                                    (i)                        y = xqTaking qth power of both sides of (i), we get                       yq = xp                                                               (ii)Diferentiating both sides of (ii) w.r.t. ‘ x ‘ , gives( )d (yq ) = d (x p ) or d (yq ) . dy = d x p (Using chain rule)dx dx                                         dy dx dx⇒ q yq-1 dy = px p-1                                                                         (iii)            dx                                                                        33
12.. DQiufaedrernattiiactEioqnuations                                                                  eLearn.Punjab                                                                                                       eLearn.PunjabMultiplying both sides of (iii) by y, we have   q . yq dy = py x p-1 or q. x p dy = p. x x p-1                       (using (i) and (ii))         dx dx   ⇒ dy   =   p.           1           p       =p     × x p +p-1-p      dx      q            xp                    q           q                                  . x q x p-1              p         p  -1     nx n-1    p  =  n              q         q                       q          =      x             =   Thus d (xn ) n xn-1 .         dx2.5 DERIVATIVES OF INVERSE FUNCTIONS       If for each x d Df , f(x) = y and for each y d Dg, g(x) = x, then f and g are inverse of eachother, that is,   ( g o f=)( x ) g(=f ( x )) g=( y ) x                                 (i)and ( f o=g)(y) f (g=(y)) f=(x) y                                       (ii)Using chain rule, we can prove that   f '( x ). g'( y ) = 1⇒ f ' (x) = 1                g' (y)⇒  dy  =  1                                           and   f (x) = y ⇒ f ' (x)  = dy      dx     dx                                                      g(y) = x ⇒ g'(y) =       dx          dy                                                                            dx                                                                                        dy2.6 DERIVATIVE OF A FUNCTION GIVEN IN          THE FORM OF PARAMETRIC EQUATIONS       The equations x = at2 and y = 2at express x and y as function of t . Here the variable tis called a parameter and the equations of x and y in terms of t are called the parametricequations.                                                                                                                    version: 1.1                                                                    34
21.. DQifuaerdernattiiactEioqnuations                                                         eLearn.Punjab                                                                                              eLearn.Punjab       Now we explain the method of inding derivatives of functions given in the form ofparametric equations by the following examples.Example 1:     Find dy if x = at2 and y = 2at.                     dxSolution: We use the chain rule to find dy                                                    dx        Here dy = d (2at) = 2a.1=2a               dt dt        and dx = d (at2 ) = a (2t) = 2at              dt dt                                          dyso  dy      =  dy  .  dt               =  dt       =     2a   =  2a         (2a = y)    dx         dt     dx                  dx             2at     y                                          dtEliminating t, we get x =              a     y  2  =  a.   y2  =  y2 ⇒ y2 =  4ax  (i)                                               2a               4a2     4aDiferentiating both sides of (i) w.r.t. ‘ x ’ we haved (y2 ) = d (4ax)                                        ⇒ 2y dy = 4a (1)dx dx                                                           dxd (y2 ) . dy = 4a d (x)dx dx dx                                                 ⇒ dy = 2a                                                              dx yExample 2:     Find dy if x 1 - t2 and y = 3t2 - 2t3 .                     dxSolution: Given that x = 1 - t2 ...... (i) and y = 3t2 - 2t2                            (ii)Diferentiating (i) w.r.t. ‘t ’ ,we get                                                                                              version: 1.1                                                                        35
12.. DQiufaedrernattiiactEioqnuations                                                                             eLearn.Punjab( ) ( )dy =d 1- t2 =d (1)- d t2 =0- 2t =- 2t                                                                      eLearn.Punjab            dt dt                            dt dt                                                                   version: 1.1Diferentiating (ii) w.r.t. ‘t ’ ,we have( ) ( ) ( )dy= d 3t2 - 2t2 = d 3t2 - d 2t3            dt dt                                      dt dt( )=3(2t )- 2 3t2 =6t - 6t2 =6t (1- t )Applying the formula                                                dy=dy                d=y . dt                     dt  dx               dt dx                        dx                                                dt=6t-(12-t t ) =-3(1-t ) =3(t -1)Example 3:  Find=dy if x                                  11=+-tt22 , y      2t                  dx                                                        1+ t( )==Solution: Given that x                     1+ t 2               (i)          and    y       2t         (ii)                                                1+ t 2                                          1+ t 2Diferentiating (i) w.r.t. ‘t ’ ,we get( ) ( ) ( ) ( )=dx                  d        1- t 2     1+ t2      -  1- t 2  .d   1+ t2      dt                               dt                                            dtdd=t  11+-tt22                                                           (1 + t2 )2==(-2t )(1  )+ t2  -   (1-             t  2  )  (  2t  )  ( )2t -1- t2 -1+ t2                     -4t            (1 +   t2  )2                                    ( )1+ t2 2                                                                                                ( )1+ t2 2Diferentiating (i) w.r.t. ‘t ’ ,we have                                                                                  36
21.. DQifuaerdernattiiactEioqnuations                                                                        eLearn.Punjab                                                                                                             eLearn.Punjab                                         d   (  2t  )    (1  +  t  2  )  -  2t  x  d   (1  +  t  2  )                                            dt                                           dt==dy        d        2t                                      ( )1+ t2 2        dt  dt       1  + t2( ( ) ) ( )=                                                                                     2(1- t2 )            2=1 +1t=2+ t-2 22t (       2t  )=2 + 2t2           -   4t    2        2 - 2t2        ( )1+ t2 2                                                  1+ t         2   2              ( )1+ t2 2                              dy           2(1- t2 )( ) ( )dy=                    dd=yt                     2( )dx       dy . =dt          dx            1  +  t2               2 1--4tt=2            t2 -1            dt dx                                 4t   =                                  2t                                       -                                            1+ t2 22.7 Differentiation of Implicit Relations     Sometimes the functional relation is not explicitly expressed in the form y = f ( x)but an equation involving x and y is given. To ind dy from such an equation, we diferentiate                                                                             dxeach term of the equation and use the chain rule where it is required.The process of indingdy in this way, is called implicit diferentiation. We explain the implicit diferentiation in thedxfollowing examples.Example 1:              Find dy if x2 + y2 =4                              dxSolution: Here x2 + y2 =4                                                                        (i)Diferentiating both sides of (i) w.r.t. ‘ x ‘ , we get                                                                                                             version: 1.1                                                                                      37
12.. DQiufaedrernattiiactEioqnuations                                                                  eLearn.Punjab                                                                                                       eLearn.Punjab       2x + 2 y dy =0                 dxor x + y dy =0 ⇒- dy =x          dx dx ySolving (i) for y in terms of x, we have                                      (ii)y±=-4 x2                                                                      (iii)⇒ y = 4 - x2or y-=-4 x2dy found above represents the derivative of each of functions deined as in dxdx(ii) and (iii)From (ii)   dy = 1                               x  ( --2 x )  =       x  x2            dx 2 4 - x2                                                -                                                                    4( )=- x  4 - x2 =y    y                                                                       -x =- x                                                                       4 - x2 y( )From (iii) dy =-                     1             dx 2                      4 - x2                                                    x (-2x) =-                       -  4 - x =yExample 2:  Find dy ,if y2 + x2 - 4x =5.                   dxSolution: Given that y2 + x2 - 4x =5                                                     (i)Diferentiating both sides of (i) w.r.t. ‘ x ’ ,we get            d     y2                 +  x2  -  4x  =d      (5)            dx                                           dx                                                                    ( ) ( )=ddx y2         dy  or 2 y dy + 2x - 4=0                                                          d=y2 dy    2  y  dx            dx                                                                  dx dx                                                                                                       version: 1.1                                                                          38
21.. DQifuaerdernattiiactEioqnuations                                                                  eLearn.Punjab⇒ 2 y dy =4 - 2x ⇒ dy =2(2 - x) =2 - x                                                          (ii)   eLearn.Punjab                            dx                            dx 2 y                   y                     version: 1.1Note: Solving (i) for y , we havey2 =5 + 4x - x                                         ⇒ y =± 5 + 4x - x2Thus y = 5 + 4x - x2                                                                            (iii)or y =- 5 + 4x - x2                                                                             (iv)Each of these equations (iii) and (iv) deines a function.Let y = f1 ( x) = 5 + 4x - x2                                                                   (v)                                                                                                (vi)and y =f1 ( x) =- 5 + 4x - x2 .Diferentiation (v) w.r.t. ‘ x ‘ , we get            ( )f1' ( x)=    1                -      1  ×  (4  -    2x)=      2-x                                5 + 4x - x2         2                      5 + 4x - x2                            2From=(v)=, 5 + 4x - x2 y, so                                             f1' ( x)  2-x                                                                                     y( )Also            (     )      1                   -  1     (     -  2x)  =-       2-x            f2  '     x     =-  2      5 + 4x - x2     2  ×     4                  5 + 4x - x2From (vi) -=5 +=4x - x2 y, so                                         f2' (x)      2-x                                                                                     yThus (ii) represents the derivative of f1 ( x) as well as that of f2 ( x).Example 3:                  Find dy if y2 - xy - x2 + 4 =0.                                  dxSolution: Given that y2 - xy - x2 + 4 = 0                                               (i)Diferentiating both sides of (i) w.r.t. ‘ x ‘ , gives                                                                         39
12.. DQiufaedrernattiiactEioqnuations                                                                                    eLearn.Punjab                                                                                                                         eLearn.Punjab              d       y2  -  xy      -  =x2 + 4             d   (0=)                       0              dx                                                dxor            2y    dy      -  1.y     +  x  dy       -  2x   +      0   =0                    dx                          dx⇒          (  2  y  -   x)  dy       =+2x           y                                          ⇒      dy    =22xy +-  y                            dx                                                                        dx              xExample 4:                  Find dy if y3 - 2xy2 - x2 y + 3x =0.                                  dxSolution: Diferentiating both sides of the given equation w.r.t. ‘x’ we have              d       y3  -  2 xy 2      +    x2  y   +      3=x       d      (0)=             0              dx                                                           dxor         d     (  y3  )   -  d       (  2 xy 2  )    +    d   (  x2      y  )  +     d   (3x)   =0           dx                  dx                           dx                         dx              ( ) ( )d  y3     -  2  1.y  2  +    x      d   y2            +    2xy  +  x2  dy    +  3  =0                                                            dx                                   dx              dxUsing the chain rule on d y3 and d y2 , we have                     ( ) ( )dx dx              3y2   dy      -  2    y2    +  x   2    y  dy    +     2xy   +   x2  dy  +  3   =0                    dx                                         dx                              dx( )or 3y2 - 4xy + x2 dy = 2 y2 - 2xy - 3                            dx⇒                                            dy                 =32yy22--42xxyy+-x32                                             dxExample 5:              Diferentiate                            x2  +      1           w.r.t. x - 1                                                                           x2                        xSolution:     L+et y =x-2 x12=and u x                                                  1.   Then                                                                                       x                                                                                                                         version: 1.1                                                                                            40
21.. DQifuaerdernattiiactEioqnuations                                                                                          eLearn.Punjab                                                                                                                               eLearn.Punjab    ( ) ( )( )dy =    dx         2x  +  (  -2  )  .  1         =      2  x  -  1    =     2     x4 -1     =  2 x2 -1 x2 +1                             x3                           x3                   x3                  x3    and  du  =  1  -   (  -1)          .  1   =     1+    1   =      x2 +1         dx                               x2              x2          x2    ( )( ) ( )Thus d=y           du                             2      x2 -1        x2 =+ 1             x2       =2    x2 --1   2 x                        dy . d=x                           x3                      .  x2 +1            x               1                   dx du                                                                                          x                                                                        EXERCISE 2.41. Find dy by making suitable substitutions in the following functions deined as:               dx    (i)  y=     1- x                                          (ii) =y x + x                        (iii)     y=x          a+x                1+ x                                                                                                      a-x    ( )(iv) y= 3x2 - 2x + 7 6                                 (v)                a2 + x2                                                                                 a2 - x2. Find dy if:               dx       (i) 3x + 4 y + 7 =0 (ii) xy + y2 =2       (iii) x2 - 4xy - 5y =0 (iv) 4x2 + 2hxy + by2 + 2gx + 2 fy + c =0    ( )(v) x 1+ y + y 1+ x =0 (vi) y x2 -1= x x2 + 43. Find dy of the following parametric functions               dx    ( )(i)         x=  q  +  1         and              y = q +1               ==(ii) x              a 1-t2        ,y   2bt                   q                                                                        1+ t2            1+ t24.  Prove that y d=y + x                      0     =if x            1  -  t  2  =, y       2t                      dx                                             1  +  t  2            1+ t                                                                                                                                       version: 1.1                                                                                 41
12.. DQiufaedrernattiiactEioqnuations                                                                                                              eLearn.Punjab                                                                                                                                                   eLearn.Punjab5. Diferentiate(i)    x2  -   1       w.r.t x4                          ( )(ii) 1 + x2 n w.r .t x2               x2(iii)  x2 +1       w.r .t                 x -1           (iv)                 ax + b       w.r .t   ax2 + b       x2 -1                              x +1                                cx + d                ax2 + d(v)    x2 +1       w.r .t              x3       x2 -12.8 DERIVATIVES OF TRIGONOMETRIC          FUNCTIONSWhile inding derivatives of trigonometric functions, we assume that x is measured inradians. The limit th=e=orems lim sin x 1 and lim1 - cos x                                                            0 are used to ind the derivativeformulas for sin x and cos x. x→0 x                                                             x→0 xWe prove from irst principle that      d ( sin x) = cos x and d (cox x)= - sin x       dx dxLet y = sin x Then y+ d y = sin ( x + d x)and d y= sin( x + d x) - sin x=              2  cos    x          +  dx  +    x  =sin x +      dx  -        x     +2cos  x       dx         sin    dx                                             2                               2                                       2                       2       =dd xy  2       cos          x  +  dd=2xx  sin  dx         +cos  x        dx    sin   dx                                                                   2                               2          d      2                                                                                                                  x                                                                                                             2       =dlxi→m0 dd xy  lim                    x  +  dx       sin   dx                                           cos              2             d      2                              d x→0                                                  x                                        2                                                                                                                                                    version: 1.1                                                                                       42
21.. DQifuaerdernattiiactEioqnuations                                                                                                                            eLearn.Punjab                                                                                                                                                                 eLearn.Punjab    = +dlxim→0 cos  x                                   dx        lim      sin       dx              whd2exnd→x  0                                     2                           2                       d          2                                  →                                                                        d x →0                x                                      0                                                                         22=Thus =ddyx co=s x+.1.d xli/ 2m→0 cos  x                        dx                                                    sin d x     1                                                                          2                                                          2                                                                                              cos x and           lim             d  x                                                                                                                 d x / 2→0                                                                                                                                  2Let y= cos x, then y + d y= cos( x + d x)and d y = cos( x + d x)- cos x                 = cos x cosd x - sin x sind x - cos x-                =s-in x sind x                    cos     x    1  -  cos    d  x                                                                              dx       d   y  =( sin x). sidn xd-x                         cos x 1- cdo-xsd x        d   xlim    d  y   =d-lxi→m0 (           sin x) s-idndx x            cos   x    1  -    cos  d       x         d  x                                                                              dxd x→0              =  lim    (  -        sin   x  )  sin  d  x      -    lim    -  cos      x    1  -  cos  d  x                                                      d   x                                                 dx                 d x→0                                                  d x→0Thus d-y         =( si-n x).1                   (cos x)(0)                                            dlxi→mdlxi0→m01s-indcdoxdxxyd=x1a=nd0        dxor     d     (cos  x)      =           - sin x       dxNow using        d      (  sin         x  )  =  cos x         and        d      (cos          x)=       - sin x, we prove that                 dx                                                      dx==d (sec x) sec x tan x and d (cot x) cosec2 x                     dx dx                                                                                                                                                                 version: 1.1                                                                                         43
12.. DQiufaedrernattiiactEioqnuations                                                                                      eLearn.PunjabProof of        d   ( sec    x)         =   sec     x  tan  x.                                                             eLearn.Punjab                dx                                                                                                            version: 1.1Let =y s=ec x 1                                                                                    (i)                      cos xDiferentiating (i) w.r.t. ‘ x ’ , we have=ddx ( y)       dd=x  co1s x             d   (1)  cos x -1. d   (cos      x)     Using                                                      dx                    dx                  quotient                  =  0.cos x -1.(-                                                                formula                                           sin x)            (cos x)2                       cos2 x== 1 . sin x sec x tan x                cos x cos xThus  d         (  sec  x)   =         sec     x  tan  x      dxProof of d (cot x) = cos ec2 x            dxLe=t y c=ot x cos x                                                                                (i)                       sin xDiferentiating (i) w.r.t. ‘ x ’ , we get=d ( y)         dd=x  csoins xx        d   (cos    x )  sin x - cos  x  d   ( sin  x)    Using                                                     dx                                  dx                    quotient    dx                                                              (sin x)2                              formula         =      (-  sin  x)  sin x - cos               x  (cos  x)                               sin2 x      ( )=- sin2six-n+2         c-os2           x==sin12            x  cos ec2 x                                xThus d (cot x) = cos ec2 x         dx                                                                          44
21.. DQifuaerdernattiiactEioqnuations                                                                                                     eLearn.PunjabNow we write the derivatives of six trigonometric functions                                                                               eLearn.Punjab                                                                                                                                            version: 1.1(1) d (sin x) = cos x                                                               (2) d (cos x) = sin x     dx                                                                                   dx(3) d (tan x) = sec2 x                                                              (4) d (cot x) = - cosec2 x      dx                                                                                  dx(5) d (cosec x) = - cosec x cot x                                                   (6) d (sec x) = sec x tan x      dx                                                                                  dxExample 1: Find the derivative of tan x from irst principle.Solution: Let y= tan x, then +y =d x tan +( x d x) and               d y = y + d x - y = tan ( x + d x) - tan x    =                    sin( x     +    d  x)    -  =sin x   sin( x + d x)cos x - cos( x + d x) sin x                         cos( x     +    d  x)       cos x            cos( x + d x) cos x==                        sin( x + d x - x)                         sind x                         cos( x + d x).cos x                                                              cos( x + d x) cos x    d  y   =                             1                 .  sind  x    d  x                                 d                     dx                         cos  (  x  +       x  )  .cos  xor  lim    d          y  =  lim                      1                . lim     sin  d  x             d          x                                                                   d   x    d x→0                   d x→0        cos( x      +  d x).cos    x        d x→0==Thus dy                         1                                                   lim    cos      (  x  +  d  x)  =  cos  x                   dx                                                                                              x      1                                 x)(cos           x) .1       sec2 x                     d x→0                 d     =                                                                                                               x                      (cos                                                    and     lim        sin                                                                                                      d                                                                                         d x→0Thus dy = sec2 x                                              or d (tan x) = sec2 x       dx                                                                           dx                                                                            45
12.. DQiufaedrernattiiactEioqnuations                                                                                        eLearn.Punjab                                                                                                                             eLearn.PunjabExample 2: Diferientiate ab-initio w.r.t. ‘ x ‘(i) cos 2x                                   (ii) sin x                                (iii) cot 2 xSolution: (i) Let=y cos 2 x, then y+ d=y cos 2( x + d x)      and d y= cos(2x + 2d x) - cos 2x- =2 sin 2x + 2d x + 2x sin 2x + 2d x-- 2x =2+sin(2x d x) sind x                        22Now-   dy     =2+sin ( 2 x                d  x  ).  sind       x       dx                                            dxThus      dy  =lim-       2 sin(2+x              d  x    )  .  sind  x            dx     d x→0                                             dx-             =2+dlxi→m0( sin 2x                   d  x  )  . lim   sind        x                                                                     dx                                                             d x→0-=( 2 sin-2x=).1             2  sin    2  x    lim      sin ( 2 x   +  d    x)  =sin 2x   and lim       sind  x  1 =                                                                                                     d x→0   dx                                                   d x→0(ii) Let y +sin x , then y + d y = sin x d xand d =y sin x + d x - sin x              = 2cos                x+dx +          x  sin     x+dx -         x                                             2                                2( )( )As x + d x + x x + d x - x =( x + d x) - x =d x,So  d  y  =  2 cos        x+dx +                x . sin     x+dx -            x     d  x                          2                                       2            x                                                                        dx          ( )( )= 2cos    x+dx +                 x  sin     x+dx -                                  2                                       2                             x+dx +                 x x+dx - x                                                                                                                             version: 1.1                                                                                   46
21.. DQifuaerdernattiiactEioqnuations                                                                                                                                                              eLearn.Punjab                                                                                                                                                                                                   eLearn.Punjab                           cos       x    +    dx   +          x        sin            x  +   dx  -       x                                          +    d     2                                            +  d    2                                     x                        x            .                 x                 x                                                  x+                                                   x-                                                                                                       2                                                           x+dx             +             x   .         lim                             sin        x  +dx       -        x                                                                    2                                                       0                          +     2                                Thus dy                →lim              cos                                                     x+dx - x                dx                                            +dx +                                            2                                                 dx -                                d x→0                  x                                x                                                                  x      2              x                         cos       x+           x                                                           x    +  dx -              x  →                                                                  .1                                                                                    0==dy                                   2                             cos x                                                     2                           0  when                 dx                  +                                2x                                                       dx→                                x            x(iii) Let y = cot2x, theny + d=y cot2 ( x + d x)      d =y cot2 ( x + d x) - cot2=x cot ( x + d x) + cot x x c+ot ( x - d x) cot x      =       cot        (x   +d x)             +  cot      x    .  cos( x            ++dd-xx))     cos     x                                                                             sin ( x                         sin     x      =       cot ( x + d x) + cot x ×                                     sin x cos( x + d x) - cos x sin( x + d x)                                                                                       sin( x + d x) sin xd  y  =    cot ( x + d x) + cot x                    .  -  sind          x       sin         x cos(  x+     d    x) - cos x sin(                 x +d x)  x d  x           sin( x + d x) sin x                               dx                                    x-(x    +d     x                                                                                        =sin (                             )) =sin(-d x)                   =- sind         lim    d    y     -lim           cot ( x + d x)                + cot x              .(     1)  sind    x                  d    x                       sin ( x + d x                                                  dx         d x→0             d x→0                                           ) sin x      =Thus dy                          -cot x + cot x                     .(     1). 1                       andldxi→mdl0xi→mco0 tsi(nx(  +  d  x    ) =cot x                          dx                       sin x sin x                                                                                          x  +  d    x) =sin x                     =                                        -2cot x               .1  =  -2cot x                 co sec2       x                                         sin2 x                                                                                                                                                                                                   version: 1.1                                                                                                               47
12.. DQiufaedrernattiiactEioqnuations                                                                  eLearn.Punjab                                                                                                       eLearn.PunjabExample 3:           Differentiate sin3 x w.r.t. cos2 xSoluti=o=n: Let y sin3 x and u cos2 xNow=dy 3sin2 x co=s x and du -2cos x( sin x)          dx dx( )Thus=dy d=y . dx                                                           dx  1            du dx du                                                                   du  dx                                             3sin2 x cos x .=-2cos1x sin x              du                     = - 3 sin x.                         22.9 DERIVATIVES OF INVERSE          TRIGONOMETRIC FUNCTIONSHere we want to prove that1.  d       sin-1  x    =           1,                      x ∈(-1,1) or -1 < x < 1    dx                                 1- x2                    x ∈(-1,1) or -1 < x < 12.  d       Cos  -1  x      =      -      1,                x ∈R    dx                                       1- x2                                                               x ∈[-1,1]' , [-1,1]' = (-∞,-1) ∪ (1,∞)3.  d       Tan-1x      =          -    1         ,        x ∈[-1,1]' , [-1,1]' = (-∞,-1) ∪ (1,∞)    dx                                    1+ x2                                                               x ∈R4.  d       Cosec-1          x     =  -           1,    dx                                     |x|        x2 -15.  d         Sec-1x    =      -         1,    dx                              |x|      x2 -16.  d       Cot  -1  x      =      -      1    ,    dx                                       + x2                                          1Proof of (1). Let y = Sin-1x                             (i).                                                                                                       version: 1.1                                                               48
21.. DQifuaerdernattiiactEioqnuations                                                                                     eLearn.PunjabT=he=n x Sin ∈y o-r x                     sin y for        y             p  ,p               (ii)                   eLearn.Punjab                                                                            2   2                                           version: 1.1Diferentiating both sides of (ii) w.r.t. ‘ x ’ , we get=1  dd=x (sin y)  d   (=sin y) ddyx       cos y dy                  dx                            dx=⇒ dy ∈1- for                          y    p  ,p               dx cos y                          2   2      =1                                         cos   y  is  positive              for  y  ∈    -  p  ,p            1 - sin2 y                                                                                       2   2( )Thus =d sin-1 x - 1< < for 1 x 1       dx 1 - x2Proof of (2). Let y = Cos -1x                                                                      (i)                                                                                                   (ii)    =T=hen x Co∈s y or x cos y for y [0, p ]Diferentiating both sides of (ii) w.r.t. ‘ x ’ , gives1 = d (cos y) = d (cos y) dy= - sin y dy    dx dx dx dx⇒ -dy =1                               for y ∈(0,p )     dx sin y         =- 1                                   sin y is positive for y ∈(0,p )               1 - cos2 y                                               for -1 <x <1( )Thus d Cos-1x =- 1        dx 1 - x2Proof of (3). Let y = Tan-1x                                                                       (i).Then  x==Tan y or x ta∈n y-                       for         y             p  ,p            (ii)                                                                               2   2Diferentiating both sides of (ii) w.r.t. ‘ x ’ , we have                                                                       49
12.. DQiufaedrernattiiactEioqnuations                                                                    eLearn.Punjab=1 d=(tan y) d (=tan y) dy sec2 y dy                                                                     eLearn.Punjab                       dx                  dx dx                            dx                              version: 1.1=⇒ dy                       s∈ec12-y           for    y         p  ,p                       dx                                              2   2=        1=+ ta1n2 y                    1           for x ∈ R                                      1+ x2Thus  =ddx Tan-1x                      ∈    1  2  for x R                                           1   +xProof of (4). Let y = Co sec-1 x                                                                   (i)                                                                                                   (ii)The=n =x Co se∈c y -or x                       c-os ec y for y                p  ,p    {0}                                                                                 2   2         -  p       ,p     -  {0}    is  also   written  as  -  p    0 ∪ 0,p2                2        2                                                2Diferentiating both sides of (ii) w.r.t. ‘ x ’ , we get==1 d (cosec y) d (cosec y) dy                dx dx dx      =  (     -       cosec     y    cot  y)  dy                                               dx⇒ dy = -                              1                    for     y  ∈    -p    ,p    -{0}                                                                                2    2dx cosec y cot yWhen     y     ∈         0,p    ,  cos ec y     and  cot y   are positive.                              2As cosec y = x , so x is positive in this caseand cot y= co sec2 y -1= x2 -1 for all x > 1( )=Thus d Co sec-1 x > -1                                         for x 1          dx x x2 -1                                                                          50
21.. DQifuaerdernattiiactEioqnuations                                                                                               eLearn.PunjabWhen        y  ∈     -   p      ,0    ,cosec  y  and      cot     y  are       negative                                       eLearn.Punjab                            2                                                                                                         version: 1.1As cosec y = x, so x is negative in this caseand cot y = - cosec2 y -1 = - x2 -1 when x < -1                                            < - -1                                            x - x2 -1( )Thu=s ddx Co sec-1 x                                                (x             1)    =                                       <( --x )   -1       -  1            (x           1)                                                         x2d   cosec    -1  x      =      -        1                           for x ∈[-1,1]'dx                                   |x|    x2 -1Proof of (5). is left as an exerciseProof of (6). is similar to that of (4)Example 1:         Find dy if =y                                x  Sin     -1  x    +   a2 + x2                         dx                                                       aSolution:  Given that=y                        x  Sin  -1    x    +  a2 + x2                                                                aDiferentiating w.r.t. x , we have                             x                      a=2 + x2                    x             ( )=dy             d               Sin-1    x  +                                d            Sin-1  x       +  d              1/ 2     dx            dx                       a                                   dx                  a          dx                                                                                                                     a2 + x2    =       1 . Sin-1 x + x.                   1                .d      +ax    (1 .+a2        ) (x2   1 -1  d   +a2  )x2                     a                      1 -               dx                                         2                                                                                     2                                                       x  2                                                    dx                                                       a                                                                                          51
12.. DQiufaedrernattiiactEioqnuations                                                                              eLearn.Punjab                                                                                                                   eLearn.PunjabSin-1 x + x                            1 .1 +               1               .( -2 x )      a                                x2           a  2   a2 -       x2                      1-               a2Sin-1 x + x a . 1 - 1 =Sin-1 x     a a2 - x2 a a2 - x2                                                                     a==Example 2: If y                      tan    2  Tan-1  x    ,show    that        dy      4(1+ y2 )                                                           2                            dx       4 + x2Solution: Let u = 2 Tan-1 x , then                                     2y =tan u ⇒ dy =sec2 u =1+ tan2 u =1 + y2                duan=d ddux =ddx  2  Ta=n-1 2x                     2.1=+ 12x 2 .  d     x          2   .1    4                                                                            dx       2          1+ x2   2  4 + x2                                                                                                4( ) ( )Thus+dy  ==dy . du=1 y2 .                                  4   4  x    2  4 1+ y2 dx    du dx                                               +           4 + x2                                                                      EXERCISE 2.51. Diferentiate the following trigonometric functions from the irst principle,(i) sin x             (ii) tan3x                                      (iii) sin 2x + cos 2x (iv) cos x2(v) tan2 x            (vi) tan x (vii) cos x2. Diferentiate the following w.r.t. the variable involved(i) x2 sec 4x                                                         (ii) tan3q sec2 q(iii) (sin 2q - cos3q )2                                              (iv) cos x + sin x                                                                                                                   version: 1.1                                                                                52
21.. DQifuaerdernattiiactEioqnuations                                                                           eLearn.Punjab3. Find dy if                                                   (ii) x = y sin y                                eLearn.Punjab               dx                                                                                                 version: 1.1       (i) y = x cos y4. Find the derivative w.r.t. x    (i)       cos     1+ x                                   (ii)       sin  1+ 2x                      1+ 2x                                                  1+ x5. Diferentiate                                              (ii) sin2 x w.r.t. cos4 x       (i) sin x w.r.t. cot x6.  If   tan  y (1 +  tanx-)     =1 tan        x,show  that  -dy    =1                                                             dx7. If=y tan x + tan x + tan x + ...∞,prove that-(2 y=1) dy sec2 x.                                                                             dx8. If =x a cos3q =, y b sin3q , show t+hat a=dy btanq 0                                                           dx9.  Find      dy if   x =a(cos t + sin t ) ,        y =a(sin t - t cos t )              dx10. Diferentiate w.r.t. x    (i) Cos-1 x                                (ii) Cot-1 x                  (iii) 1 Sin-1 a                   a                                          a                      ax    (iv) Sin-1 1 - x2                          (v)  Sec-1    x2  +1    (vi)   Cot  -1       2x                                                                    x2  -1                               - x2                                                                                                  1    (vii)     Cos-1     1  -  x2                               1  +  x211=. dy y=if y Tan-1 x    dx x x                                  y( ) ( ) ( )12. If y t=an +p Tan-1-x , sho+w that 1 x2 y1 p 1 y2 0                                                                    53
12.. DQiufaedrernattiiactEioqnuations                                                                                                                  eLearn.Punjab                                                                                                                                                       eLearn.Punjab2.10 DERIVATIVE OF EXPONENTIAL FUNCTIONS:       A function f deined by      f (x) = ax        a > 0 , a ≠ 1 and x is any real number.is called an exponential function       If a = e , then y = ax becomes y = ex . ex is called the natural exponential function.       Now we ind derivatives of ex and ax from the irst principle:1. Let y = ex then        y + d y =ex+d x and d y =y + d y - y =ex+d x - ex =ex . ed x - ex( )That is,d y-=ex ed x 1                                          an=d dd xy              ex         .   ed x  -    1                                                                                                                d    x==Thus dlxi→m0 dd xy                       lim       e   x      ed x  -  1    ex     . lim               ed x  -  1                                                                        d    x                  d x→0                  d    x                                           d x→0d   lim  0  ex              = ex                    x→==dy                         e  x  .1        Using         lim        eh -1                  1                         dx                                                 h                                                              h→0( )or d ex = ex    dx2. Let       y = ax , then               y + d y= ax+d x and d y=                                      a x+d x - a x=                  ax . ad x - ax=            ( )ax ad x -1Dividing both sides by d x , we have        dy      =            a     x    ad x      -1          dx                                  d        x==Thus ddyx =dlxi→m0 ax  addx x-1                                  ax    .    lim      ad x  -1           d     lim  0  ax  ax                                                                                                  d    x                         x→                                                                                    d x→0                                                                                                                                                             version: 1.1                                                                                                      54
21.. DQifuaerdernattiiactEioqnuations                                                                                  eLearn.Punjab        =   ax .(ln a )  Using                           lim=ah -=1       log    a          ln a                 eLearn.Punjab                                                            h→0 h                                                        version: 1.1                                                                                       e( )or d ax = ax .(ln a)   dxExample 1:  Find dy if : (i) y = ex2+1                                                    (ii) y = a x                  dxSolution: (i) Let =u x2 +1 , then     ( )y = eu ....(A) and d=u d x2 +=1 2x                                   dx dxDiferentiating both sides of (A) w.r.t. 'x', we have=ddx ( y)   dd=x (eu )       d             (  eu  )  .  du          (Using the chain rule)                             du                         dx( )= eu .du                                    d     ex  ex                                 dx                dx                             UsingThus dy (=ex2+1 . 2x)                                               + u  x2           1    =a=nd du     2x                                                                                                       dx      dx==(ii) Let u x Then y au                                            ( A)( )and=du d =x1/ 2 1=x-1/ 2 1        dx dx                              2 2xDiferentiating both sides of (A) w.r.t. 'x', gives=dy     dd=x (au )  ddu=(au ) ddux                              dy       dy  .  du        dx                                                              dx       du     dx                    (au                       )   .du       ( )           d      ax         ax ln a                                        ln  a      dx                Using    dx( ) ( )Thus=d a x                                                   =u                                  2 1 x         dx                             a x ln a =. 1                                                     x and du                                         2x                                                           dx                                                                          55
12.. DQiufaedrernattiiactEioqnuations                                                                                     eLearn.Punjab                                                                                                                          eLearn.Punjab                      = ln a . a x . 1                          2xExample 2:        Differentiate y = ax w.r.t. x.Solution: Here y = ax                         = ex ln aDiferentiating w.r.t. ‘ x ‘ , we have            dy = ex ln a , d ( x ln a )                      dx dx            (ex In a            )a x                                       (ex In a            )a x== ax .(In a)== ax .(In a)2.11 DERIVATIVE OF THE LOGARITHMIC FUNCTIONLogarithmic Function:If a > 0 a ≠ 1 and x =a , then the function defind by=y >logax                              (x 0)is called the logarithm of x to the base a.The  logarithmic            functions         log e x  and        log      x    are     called      natural  and  common  logarithms                                                                            10respectively, y =logex is written as y = ln x .We  first   find  d   ( In  x).                  dxLet y = ln x Then                             and      y + d y= In ( x + d x)                  dy=  ln ( x + d x) - ln x =            x  +d  x    =  ln  1  +  dx                                                                  x                           x                                                                                                                          version: 1.1                                                                   56
                                
                                
                                Search
                            
                            Read the Text Version
- 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14
 - 15
 - 16
 - 17
 - 18
 - 19
 - 20
 - 21
 - 22
 - 23
 - 24
 - 25
 - 26
 - 27
 - 28
 - 29
 - 30
 - 31
 - 32
 - 33
 - 34
 - 35
 - 36
 - 37
 - 38
 - 39
 - 40
 - 41
 - 42
 - 43
 - 44
 - 45
 - 46
 - 47
 - 48
 - 49
 - 50
 - 51
 - 52
 - 53
 - 54
 - 55
 - 56
 - 57
 - 58
 - 59
 - 60
 - 61
 - 62
 - 63
 - 64
 - 65
 - 66
 - 67
 - 68
 - 69
 - 70
 - 71
 - 72
 - 73
 - 74
 - 75
 - 76
 - 77
 - 78
 - 79
 - 80
 - 81
 - 82
 - 83
 - 84
 - 85
 - 86
 - 87
 - 88
 - 89
 - 90
 - 91
 - 92
 - 93
 - 94
 - 95
 - 96
 - 97
 - 98
 - 99
 - 100
 - 101
 - 102
 - 103
 - 104
 - 105
 - 106
 - 107
 - 108
 - 109
 - 110
 - 111
 - 112
 - 113
 - 114
 - 115
 - 116
 - 117
 - 118
 - 119
 - 120
 - 121
 - 122
 - 123
 - 124
 - 125
 - 126
 - 127
 - 128
 - 129
 - 130
 - 131
 - 132
 - 133
 - 134
 - 135
 - 136
 - 137
 - 138
 - 139
 - 140
 - 141
 - 142
 - 143
 - 144
 - 145
 - 146
 - 147
 - 148
 - 149
 - 150
 - 151
 - 152
 - 153
 - 154
 - 155
 - 156
 - 157
 - 158
 - 159
 - 160
 - 161
 - 162
 - 163
 - 164
 - 165
 - 166
 - 167
 - 168
 - 169
 - 170
 - 171
 - 172
 - 173
 - 174
 - 175
 - 176
 - 177
 - 178
 - 179
 - 180
 - 181
 - 182
 - 183
 - 184
 - 185
 - 186
 - 187
 - 188
 - 189
 - 190
 - 191
 - 192
 - 193
 - 194
 - 195
 - 196
 - 197
 - 198
 - 199
 - 200
 - 201
 - 202
 - 203
 - 204
 - 205
 - 206
 - 207
 - 208
 - 209
 - 210
 - 211
 - 212
 - 213
 - 214
 - 215
 - 216
 - 217
 - 218
 - 219
 - 220
 - 221
 - 222
 - 223
 - 224
 - 225
 - 226
 - 227
 - 228
 - 229
 - 230
 - 231
 - 232
 - 233
 - 234
 - 235
 - 236
 - 237
 - 238
 - 239
 - 240
 - 241
 - 242
 - 243
 - 244
 - 245
 - 246
 - 247
 - 248
 - 249
 - 250
 - 251
 - 252
 - 253
 - 254
 - 255
 - 256
 - 257
 - 258
 - 259
 - 260
 - 261
 - 262
 - 263
 - 264
 - 265
 - 266
 - 267
 - 268
 - 269
 - 270
 - 271
 - 272
 - 273
 - 274
 - 275
 - 276
 - 277
 - 278
 - 279
 - 280
 - 281
 - 282
 - 283
 - 284
 - 285
 - 286
 - 287
 - 288
 - 289
 - 290
 - 291
 - 292
 - 293
 - 294
 - 295
 - 296
 - 297
 - 298
 - 299
 - 300
 - 301
 - 302
 - 303
 - 304
 - 305
 - 306
 - 307
 - 308
 - 309
 - 310
 - 311
 - 312
 - 313
 - 314
 - 315
 - 316
 - 317
 - 318
 - 319
 - 320
 - 321
 - 322
 - 323
 - 324
 - 325
 - 326
 - 327
 - 328
 - 329
 - 330
 - 331
 - 332
 - 333
 - 334
 - 335
 - 336
 - 337
 - 338
 - 339
 - 340
 - 341
 - 342
 - 343
 - 344
 - 345
 - 346
 - 347
 - 348
 - 349
 - 350
 - 351
 - 352
 - 353
 - 354
 - 355
 - 356
 - 357
 - 358
 - 359
 - 360
 - 361
 - 362
 - 363
 - 364
 - 365
 - 366
 - 367
 - 368
 - 369
 - 370
 - 371
 - 372
 - 373
 - 374
 - 375
 - 376
 - 377
 - 378
 - 379
 - 380
 - 381
 - 382
 - 383
 - 384
 - 385
 - 386
 - 387
 - 388
 - 389
 - 390
 - 391
 - 392
 - 393
 - 394
 - 395
 - 396
 - 397
 - 398
 - 399
 - 400
 - 401
 - 402
 - 403
 - 404
 - 405
 - 406
 - 407
 - 408
 - 409
 - 410
 - 411
 - 412
 - 413
 - 414
 - 415
 - 416
 - 417
 - 418
 - 419
 - 420
 - 421