ANSWERS 157 F [ F [ F Z F Z Z 40. (b) F Z FZ FZ = FZ f (x) = E UKP Z F EQU Z C EQU Z D UKP Z 16. (b) = Z . C UKP Z D EQU Z E EQU Z F UKP Z E UKP Z F EQU Z = CF DE . E UKP Z F EQU Z hl 41. (c) We have f (x) 0, g(x) 0, x (1, 10). h(x) = (gof)(x) = (g(f(x))) r = g(f(x)) f (x) 0 h(x) is a decreasing function on (1, 10). 17. (b) Let S be the area of curved surface. h(x) h(1) for x (1, 10) S = rl = r T J h(x) 1for x (1, 10). Also, h(x) = f(g(x)) [1, 10] x [1, 10] h(x) = 1 for x (1, 10). h(2) = 1. F5 = r. (r2 + h2) 1/2 (0 + 2h). NQI G Z NQI Z FJ 42. (b) f (x) = Z G Z 18. (a) Let A and B be the positions of men A and B NQI G Z after time t. B = G Z NQI G Z Z NQI Z Z G Z NQI G Z Now, e < e + x < + x Vt s (e + x) log (e + x) ( + x) log ( + x) < 0 f (x) < 0 (Q Denom. > 0) f (x) is decreasing on (0, ). 45° 43. (c) Let h(x) = f (x) g(x). O Vt A h(x0) = f (x0) g(x0) = 0 and h(x) = f (x) g(x) > 0 OA = OB = Vt Let AB = s h(x) > h(x0) for x > x0 h(x) > 0 for x > x0 cos 45° = 1# 1$ #$ f(x) > g(x) for all x > x0. 1# 1$ 44. (a) h(x) = f (x) 2f (x)f (x) + 3(f (x))2 f (x) 8V 8V U = f (x)[1 2f ((x)) + 3(f (x))2] 8V = = 3f (x) H Z H Z s = Vt. f (x) – 1 2 2 = 3f (x) 3 25. (a) Let x1, x2 R and x1 < x2. 9 f(x1) f (x2) g(f (x1)) g(f (x2)) h(x) and f (x) behave alike. (gof)(x1) (gof)(x2). 45. (a) Let f (x) = 3 sin x 4 sin3 x 27. (a) (/2, 3/2) and cosec is not defined. f (x) = sin 3x and f (x) = 3 cos 3x 0 if 3x [ /2, /2] 35. (c) f (x) = GZ Z Z FZ f(x) is increasing if x [ /6, /6]. f (x) = ex(x 1)(x 2).
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129