Quality Assurance Analysis for the Determination of Copper Ion in Synthetic Wastewater Using Flame Atomic Absorption Spectrometer (FAAS) z Presented in 3rd Regional IWA Diffuse Pollution Conference “Innovation and Frontier Technology for Water Security and Scarcity” 19-22 November 2018, Chiang Mai, Thailand.
OUTLINE 2 1. Introduction 2. Objectives 3. Scope z 4. Theory 5. Experimental 6. Results 7. Conclusion
Water Pollution 3 z The major sources in Thailand Be released by human activities Copper accumulated in water organisms.
Objective 4 1. To provide the quality assurance analysis for the determination of copper ion in synthetic wastewater by using Flame Atomic Absorption Spectrophotometer (FAAS). z
Scopes 5 1. The optimum condition will be improvement the atomization time and delay time of Flame Atomic Absorption Spectrometer (FAAS). 2. The metrological chemistry will be determined by a validation method and traceability. z
THEORY 6 z Figure 1 ICP AND FAAS
THEORY 7 z validation Traceability Uncertainty Figure 2 Metrology in chemistry Ref: EURACHEM/CITAC Guide CG4, 2000, Quantifying Uncertainty in Analytical Measurement
8 z Material and Methods
2.1 Material and Reagents 9 Diluted 20 times z Diluted 100 times 1 mg/L 5 mg/L Diluted 100 mg/L of Std. Cu 50 times 2 mg/L Diluted Diluted 33.33 times 25 times 3 mg/L 4 mg/L Figure 3 Standard dilution series for preparation of working standard
2.1 Material and Reagents 10 10 z2 ml. of 100 mgL-1 of working standard solution Adding conc. NH4OH Adjusting to 1L using de-ionized water. Table 1 The parameters used for copper-complex determination by FAAS Parameters Wavelength Fuel Oxidant Atomization Delay (nm) Type Type time (s) time (s) Copper- 324.8 Acetylene Air 7 7 complex
2.3 Method validation 11 2.3.1 Chz aracteristic concentration The characteristic concentration (mg/l) = [0.0044 Concentrations] / Abs Where, Concentrations = the concentration of standards (mgL-1) and Abs = measured absorbance
2.3.2 System suitability 12 z Table 1: Assessment for system suitability of copper analysis in wastewater using FAAS. Std. ten absorbance reading solution (mg/L) %RSD 1 2 3 4 5 2.3.3 Linearity Plotted on the graph of Concentration versus Absorbance.
13 2.3.4 Limzited of detection (LOD) LOD = Mean 3SD 2.3.5 Limited of Quantification (LOQ) LOD = Mean 10SD
14 2.3.6 Accuracy and Precision for Limited of Quantification z Accuracy = Precision =
15 z
3.1 Results of characteristic concentration 16 z Table 2 Results of characteristic concentration absorbance 123 4 5 average 0.2652 0.26418 Absorbance 0.2639 0.2642 0.2639 0.2637 Concentration of copper 1.3 1.3039 1.302 1.3007 1.3105 1.30342 (mg/l) 0.0217 Characteristic concentration cal. (mg/l) = (0.0044 x concentration) 0.025 /absorbance average 13.16 Characteristic concentration manual (mg/l) % Tolerances of instruments
3.2 Results of system suitability 17 Table 3 Assezssment for system suitability of copper analysis Copper standard Absorbance % Relative standard deviation (mgL-1) (mean) (%RSD) 1 0.104 1.28 2 0.210 0.57 3 0.305 0.50 4 0.395 1.22 5 0.496 0.57 Synthetic wastewater 0.190 0.62
3.3 Results of linearity 18 0.6 z Absorbance (mean) 0.5 y = 0.0969x + 0.0113 0.4 R² = 0.9993 0.3 0.2 0.1 0 6 012345 Copper standard solution (mgL-1) Figure 3 The linearity verification for copper measurement through FAAS
19 3.4 Results of limited of detection and limited of Quantification z Table 4 Results of limited of detection (LOD) and limited of quantification (LOQ) No. LOD LOQ (mg/l) (mg/l) 1 2 3 4 5 Mean SD = Mean = Mean 3SD 10SD Abs. 0.089 0.088 0.087 0.088 0.089 0.088 0.0008 0.1461 0.1461 ±0.0165 ±0.0550 blank 2 Concen 0.1513 0.1447 0.1382 0.1447 0.1513 0.1461 0.0055 tration
20 3.5 Result of Precision and Accuracy for Limited of Quantification z Figure 4 Precision and accuracy for limited of quantification %RSD=12.59 % %REC=95.39 % %REC between 80-100 %
CONCLUSION 21 z • The sensitivity analysis was 0.0217 mg Cu/L • The determination coefficient of linearity was closed 1. • The limited of detection and the limited of quantitative were 0.1461±0.0165 mg Cu/L and 0.1461±0.0550 mg Cu/L , respectively. • The percentage of recovery was between 80-110 %. • Thus, it is still that the procedure is optimized for FAAS determine of copper contamination in the wastewater.
22 Acknozwledgement ❖Faculty of science, King Mongkut’s Institute of Technology Ladkrabang . ❖ Rajamangala University of Technology Rattanakosin. For support of this research
References 23 z 1. Bader, N. R. (2011). Sample preparation for flame atomic absorption spectroscopy : an overview. Rasayanjournal, 4(1), 49-55. 2. Hu, j., Chen, Q., Hu, H., Chen, X., Ma, Q., & Yin, Z. (2012). Extraction behavior and mechanism of Cu (II) in ammoniacal sulfate solution with b-diketone. Journal of Hydrometallurgy, 127, 54-61. 3. Petrov, A., Gentscheva, G., Havezov, I., & Ivanova, E. (2009). Determination of the Uncertainty of the Flame Atomic Absorption Spectrometer for Copper, Cobalt, Cadmium, and Nickel. Analytical Letters, 42, 2509-2519. 4. Rattanadilok, S. (2017). Cupramonium rayon. From thailand textile institute
24 z Thank you for your attention
Flame Atomic Absorption Spectrophotometer 25 z ▪. Fig.2 FAAS Fig.3 Flame Atomizer หลกั การ FAAS : สารตวั อยา่ งซงึ่ อย่ใู นรูปสารละลาย ถกู ดดู เข้าไป capillary tube ผ่านเข้าสู่ nebulizer ซง่ึ ทา หน้าท่ีพน่ ละอองลอยของสารละลายตวั อยา่ งภายใน chamber จากนนั้ ละอองลอยผา่ นเข้าสเู่ ปลวไฟ ท่ีได้จาก การออกซแิ ดนซ์ และเชือ้ เพลงิ ทาหน้าท่ีอะตอมไมซ์สารตวั อย่างให้เป็นอะตอมอสิ ระท่ีเป็นไอ และอยสู่ ภาวะพนื ้ เม่ือมีรังสีจากหลอด hollow cathode ผา่ นเข้าชนอะตอมอิสระที่เป็นไอ และอยสู่ ภาวะพนื ้ อะตอมจะดดู กลืน ปริมาณรังสีไว้ทาให้ปริมาณรังสีผา่ นเข้าสู่ detector ลดลงเป็นสดั ส่วนโดยตรงกบั ความเข้มข้นของสารละลาย ตามกฎของเบียร์-แลมเบริ ์ท
24 z
Search
Read the Text Version
- 1 - 26
Pages: