Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore AMCP 706-210, Fuzes

AMCP 706-210, Fuzes

Published by nakrob1317, 2020-04-17 08:25:06

Description: AMCP 706-210, Fuzes

Search

Read the Text Version

AMCP 706210 l. S. Odierno, Information Pertaining to F u z e s , book, Fuzes, Proximity, Electrical, Part One Volume VI, Encyclopedia of U.S. Army Fuzes ( U ) , Picatin ny Arsenal, Dover, N.J., January m 1966, AD;371 076L (Confident id I). Introduces the various types of electrical fuze Tabulates the characteristics of all Army and presents basic philosophies involved in fuze fuzes. design. m. S. Ddierno, Information Pertaining to F u z e s , q. AMCP 706-212 (S), E n g in e e r in g Design H a n d ­ Volume VII, Fuze Design Testing Techniques, book, Fuzes, Proximity, Electrical, Part Two Picatinny Arsenal, Dover, N.J., November 1966, AD-801 678L. (uf Describes and reviews laboratory and field Discusses basic principles and design consider­ tests (MIL-STD-331) and the JANAF Journal ations for radio proximity fuzes operated in the articles on fuzes. VHF and UHF bands. n. JANAF Fuze Committee Journal Articles (see r. AMCP 70 6-213 (S), E n gin eerin g Design H a n d ­ Appendix II). book, Fuzes, Proximity, Electrical, Part Three Contains at present 53 articles covering various subjects dealing with fuzes. (V). Describes various types of radio proximity o. Gunther Cohn, Army, Navy, and A ir Force Fuze fuzes that operate at microwave frequencies. C a talog (U), The Franklin Institute, Report s. AMCP 706-214 (S), En gin eerin g Design H a n d ­ F-A2238, Philadelphia, Pa., March 1959, and Supplement F - A 2 2 3 8 - 1 , November 1959, AD-305 book, Fuzes, Proximity, Electrical, Part Four 024 and AD-313 702 (Confidential). (U). Compiles military and technical data on all Discusses various types of nonradio fuzing sys­ standard and developmental fuzes and fuze ex­ tems and describes the use of multiple fuzing plosive components. methods. p. AMCP 706-211 (C), E ngineerin g Design H a n d - t. AMCP 706-215 (C), Engineering Design Hand­ book, Fuzes, Proximity, Electrical, Part Five m Discusses fuze testing and various types of power sources used in the design of safing and arming devices.. R-2

AMCP 706-210 APPENDIX |. MATHEMATICS OF THE BALL ROTOR Fig. A -l show s a b a ll ro to r w ith a d ia m e tra l a n g u la r velocity of th e tria d in th e body. T he hole co n tain in g a d eto n ato r. A ty p ical x , y , z vector c o m p o n e n ts o f a n g u l a r v e lo c ity , m o m e n ­ triad is oriented with its z direction along the deb tum, and torque are o n a to r a n d is t u r n e d in s p a c e a t th e v e lo c ity ft exactly as the detonator axis turns. The ball may ft = 9 fu rth er rotate about th is tria d w ith th e velocity <f>. The ball is encased within the missile th at is as­ 0 y = -cusin (a - 6 ) (A-2) su m ed to be follow ing a s tra ig h t p a th alo n g its = Cocos (a - 0) + $ axis and to be spinning at the ra te c u o. h = Id (A-31 In the figure, the y , the z , and the spin axes are X in the plane of the paper which m akes the x axis p erp e n d icu la r to th e p ap er. T he m o m en t of in ­ h = -Icosin (a - 0) ertia with respect to the x and y axes is I and with y, re s p e c t to th e z a x is is J . T h e a n g u la r m o tio n of = J[u,cos (a - 0) + $ the ball is given by <j>about the z axis, co about the Gx = Yr - 2 Fdr = - p Z r - 2 Fd r missile spin axis, an d 0 about th e x axis. To solve for th e m o tio n of th e b a ll, one a s ­ Gy = -Xr cos (a ~ 6) = - p Z r c o s ( a - d) su m e s th e follow ing: T he b a ll is ac te d u p o n by G = - Xr s in fa - 6) = - t i Zr s in (a - 6) (A-4) th e s e tb a c k o r c re e p fo rces, Z, w ith X a n d y th e X frictio n al forces given by n Z , a n d Z resp ec­ tively and the detent forces, F d . z acts along the C o m b in in g E q s. A -2, A-3, a n d A -4 ac co rd in g to m issile axis, X is p a ra lle l to th e %axis, Y is p e r­ Eq. A-l, one obtains th e equations p e n d ic u la r to X , a n d Fd is in th e p lan e of th e paper. - uZr 2F dr ie - (J- I)co2c o s ( a - d js in ( a - 6 ) - (J-I)<pa>sin ( a - 6) For the dynamics of rotating bodies, the gen­ - fiZr c o s ( a - d ) = - I cos in(a- d) - (J-I) <j>6 eral differential equation for unbalanced torque is given in vector notation as —JOcocos (a - 6) + 21co6 cos (a - 6) - f i Z r s in (a - Q) = +0x h dt J<ocos(a - 0) + JcoO s i n (a - 0) + J<j> (A-5) w h e re h is th e v ec to r a n g u la r m o m e n tu m , G is w h e n t h e detents are e ffe c tiv e , 0 = 0 , Q = $ = 0, th e to rq u e ap p lied to th e body, a n d 0 is th e co = coo, and 6 = cf>= co = 0. Eq. A-5 become MISSILE /cZr + 2Fd r = (J - I)<o2o cosa sina (A-6) SPIN AXIS B efore th e d e te n ts drop out, th e p roblem is statically indeterm inate, and therefore, no value can be assigned to the friction torque about the x-axis. All th a t is known is th a t its absolute m ag­ n i t u d e m u s t b e le s s t h a n uZ\\ . I n p a r t i c u l a r , in E q. A-6 o nly th e su m fric tio n to rq u e a b o u t th e x-axis (+2Fdr ) is k n o w n . T o o b ta in a f i r s t a p pro x im atio n , assu m e a coefficient of friction u a n d t h a t is a p p lie d a t ra d iu s r. A n a p p ro x i­ m ate value of Fd can th an be solved for because all the other term s are known. (J-I) co2 sina cosa - “^r (A -71 r* 0 F t = ------------------------------------------------ 2r Figure A-l. Ball Rotor Nomenclature F rom Eq. 6-17 an d / = v Fd , th e approxim ate sp in a t w hich th e d e te n ts te n d to m ove w ill be A -1-1

AMCP 706.210 obtained by combining Eqs. 6-17 and A-6 never cause a change in d,(j>, or a>, the dynamic terms must drive the ball. 2 krx + u2Zr ------------ ;-------- 2-------------------------(A-8) Therefore, (J-I) o>2 sin a cos a m ust be > u Z r u ( I - J ) sin a cosa + 2r md (x q+ r g) for 0 to be greater than zero. W hen they are equal, the ball will be ready to move. Then, because 0 Does the ball rotate when the detents drop 0) I) sin a cosa out? Set F d = 0 in the first Eq. A-5. Since uZ can (A-9) REFERENCES 1. K. L. Nielson, and J. L. Synge, “On the Motion Dover, N.J., January 1955 (Confidential). of a Spinning Shell,” Q. Appl. Math. IV, 3 (Oc­ 3. W. Kizner, The Ball Rotor Problem —No. // (IT), tober 1946). Picatinny Arsenal, Research Memorandum No. 7, 2. W. Kizner, The Ball Rotor Problem (U), Pica- Dover, N.J., February 1955 (Confidential). tinny Arsenal, Researc h M em orandum No. 4, A-l-2

AMCP 706-210 IN D E X A fragmentation, 12-12 fuze action, 12-1 Acceleration impact fuze, 12-3 drop, 15-6 propeller gear train, 12-3 firing, 5-2 proximity fuze, 12-12 high, fuze design, 10-l time fuze, 12-8 low, fuze design, 11-l trajectories, 12-1 rocket, 5-3, 6-21 typical, 1-3 Actuator, 4-11, 7-3 B o m b le t fuze, 12-13 Adiabatic compression initiation, 3-4 Boobytrap, 13-5 Air force, 5-7 Booster Air gun test, 15-3 Alignment force, 5-7 M21A4, 10-7 Ambient pressure, 5-7 assembly, 4-11 9-7 Ammunition, typical 1-2 charge, 4-10 Analog computer use, 14-l 1 Bore safety, 9-2 Analysis of.data, 14-12 15-14 Antiremoval device, 13-2 C Arming Capacitor, 3-9, 14-10 bomb fuze, 12-1, 12-7 Centrifugal force, 5-6, 6-4 chemical, 8-10 Centrifugal pendulum, 6-14 consideratons, 8-2 Centrifuge test, 15-3 delay, 8-2, 8-7, 8-9, S-10, 12-6 Chemical arming delay, 8-l 1 electric, 7-1 Clockwork, 6-19, 10-8. See a Iso Escapement fluid, 8-1, 8-9 Clustering, bomb, 12-3, 12-11 mechanical Coanda effect, 8-l Coil spring, 6-1, 10-l concept, 5-l Combination fuze, 1-6 devices, 6-1 Command fuze, 1-6, 3-2, 8-11 rotary devices, 6-13, 9-8, 10-3, A-I-l Compatibility of common explosives and metals, sequential leaf, 6-16, 10-3 spiral unwinder, 6-12 4-3 motion-induced, 8-11 Components, 14-10. See also Explosive com­ pin, 1-7, 12-9 principles, 5-1 ponent process, 1-2 Compression spring data, 6-5 two-feature requirement, 9-3 Computer, analog, 14-11 Constant force spring, 6-5 B Construction techniques, 4-9, 14-5 Contact contamination prevention, 14-1 Bail rotor, bail cam rotor, 6-17, A-I-1 Contact sensing, 3-1 Ballistic environments, 5-2, 12-4, 15-5 Contour, 2-4 Battery, 3-8, 5-8 Cord, detonation, 4-12 Belleville spring, 13-1 Coriolis force, 5-6 Bellows motor, 7-3 Creep, 5-3 Bomb D bomblet fuze, 12-13 clustering, 12-3, 12-11 D ashpot, 8-7 depth, 12-11 Definition and purpose of fuzes, l-l explosive train, 12-5 I-1

AMCP 706210 Junghans, 6-22 runaway, 6-20 Delay spring design, 6-23 element, 4-9, 12-7 tuned, three center, 6-24 for arming, 8-1, 8-7, 8-9, 8-10, 12-5 tuned, two center, 6-21 for functioning, l-5, 3-9, 12-2, 12-10 untuned, two center, 6-20 mixture, 4-9 Explosive actuator, 4-11, 7-3 Depth bomb fuze, 12-11 compatibility, 4-3 Design component, 4-1, 15-2 detonation velocity, 4-2 explosive train, considerations for, 412 element initiation, 3-9 for high acceleration, 9-6, 10-1, 10-3 gas evolved, 15-10 initiation, 3-1, 3-5 for low acceleration, 11-1, 12-1 materials, 4-1, 4-4 motor, 7-3 for stationary ammunition, 13-1 precautions for safety, 4-3 general considerations, 2-1, 9-1, 14-1 properties, 4-4 guidance, 14-1 rules for handling, 4-4 human factors engineering, 2-6 sensitivity, 4-3 need for formality, 2-4 train, 4-1, 4-12, 12-5 trade-offs, 2-2 use of standard components, 2-3 F Detent, 6-10, 9-8, 10-5 Fault tree analysis, 14-12 Detonating cord, 4-12 Fin-stabilized projectile, fuzes for, 10-1 Detonation, 4-2 Firing pin, 3-3 Detonator, 4-6,. 9-8 Flash detonator, 4-6 Detonator safe, 5-1, 9-2 Fluerics, 8-l Development steps, 9-3 Fluid flow, 8-l Dimple motor, 7-3 Forces of the air stream, 5-7 Disk rotor, 6-13 Formality, need for, 2-4 Dock escapement 6-23 Fragmentation bomb, 12-12 Drag, 5-3 Friction initiation, 3-5, 13-5 Functioning, l-5, 3-9, 12-2, 12-10 E Fuse, 4-12 Fuze Economics, 2-2 Electric AN MARK 230, 12-11 M48A3, 6-4 arming, 7-l M198, 12-9 component, 14-10 M204A2, 11-4 component initiation, 4-6 M217, 11-4 fuze initiation, 4-6 XM218, 8-9 generator, 7-3 M404A1, 1-2 initiator, 4-6 M502A1, 10-8 power source M505A3, 10-11 M517, 14-8 battery, 3-8 M525, 1-7, 6-4 electrostatic generator, 3-7 M532, 10-3 piezoelectric generator, 3-6 XM539E4, 3-7, 9-10 test, 15-2 XM544E1, 4-12 timing circuit, 3-9 M551, 11-6 Electronic tube, 7-3 Electrostatic generator, 3-7 Encapsulation, 14-6 Environment, 5-5, 9-1, 15-10 Escapement clockwork, 6-19, 10-8 description, 6-22 gear train, 6-22, 6-24 1-2

AMCP 706-210 F u z e (C o n t’d) Interrupter, 6-7, 10-5, 11-2 X M 5 5 7 A 1 , 9-12 J X M 571, 2-6, 3-4 M 603, 1-3 J o u rn a l articles of JA N A F F u ze C om m ittee, X M 717, 8-7 A -II-1 M 9 0 4 E 2 , 3-3, 12-3 M 906, 12-7 J u n g h a n s escapement, 6-22 actio n , l-l c a lc u latio n s, 9-3 K ca te g o rie s, 1-5 d e fin itio n o f fu zes, 1-5 K n o b , 6-10 d e sig n co n sid e ra tio n s, 2-1, 9-3, 9-6 d ev elo p m en t steps, 9-3 L m o d e l d e s ig n a tio n , 1-6 p u rp o se , 1-5 L and mine fuze, 13-1 re q u ire m e n ts , 1-5, 9-1, 9-3 L aunched grenade fuze, 11-6 sp ecificatio n origin, 2-1 Lead, 4-10 Lever, 6-10 G 49 L inkage, 6-10, 14-9 L ogic te ch n iq u e s, co m p ared w ith flueric, 88 Gasless and gas producing delay mixture, Low explosive, 4-1 L ubrication, 14-7 G ear train, 6-22, 6-24, 12-3 Glass beads for arming delay, 8-10 M G lo ssary , G-l G renade fuze, 8-9, 11-3 M ain ten an ce, 14-13 Guided missile fuze, 11-2 M aterials, 14-3 H Mathematics of the ball rotor, A-I-l M echanical H airspring, 6-5 H and grenade fuze, 11-3 com ponents, 14-11 H igh explosive, 4-1 fuze initiation, 3-3 Hinge pin, 6-9 H u m an factors engineering, 2-5 tim e fu z e , 10-8 H u m id ity en v iro n m en t, 9-2 H ydrostatic pressure, 5-7 M ild detonating fuze, 4-12 M IL-STD te st, 15-1, 15-13 I Mine fuze, 1-3, 13-1 Model designation of fuzes, 1-6 Igniter, 4-11 M ortar projectile fu z e , 1-7, 10-3 Illustrations, list, ix M otion-induced arm ing, 811 Im pact fuze M ultiple fuzing, 2-3 ac tio n , 1-5 N bom b, 12-3 description of representative, N onexplosive fuze, 1-6 design, 9-5, 12-2 Impact sensitivity of explosives, 1-7 0 Influence sensing, 3-2 4-3 Inform ation sources, 2-7 In itia tio n O u tp u t characteristics of initiators, 4-8 electric fuze, 3-5 m echanical fuze, 3-3 P p rin cip les, 3-1 Initiator, 4-6, 9-7 Packaging, 14-2 3-4 Patenting, 2-5 Percussion initiation, l-3

AMCP 706-210 Semple plunger, 6-15 sequential leaf, 6-15, 10-3 Percussion prim er, 4-6 R o ta tio n a l velocity, 5-3 P erfo rm an ce te s t, 15-l R u e h lm a n n RC circu it, 7-6 Philosophy of design, 2-1 R unaw ay escapem ent, 6-20 Physical properties of expiosives,’ 4-5 P iezoeleckic tra n sd u c e r, 3-6 S Pin Safety arming, 1-7, 12-10 co n sid eratio n s, 2-2 firing, 3-3 features, 9-2 linkage, 6-10 requirem ents, 2-2, 9-2 shear, 6-9 tests, 9-4, 15-2, 15-6 Pivot, 6-10 Safing and arm ing mechanism, 11-2 Sea m ine fuze, 13-4 Pneum atic arm ing delay, 8-7 Sealing m aterial, 14-4 Secondary high explosive, 4-2 P opovitch escapem ent, 6-23 S e lf - d e s tr u c tio n , 1-6, 3-2, 11-2 P o ttin g com pound, 14-3 Semple plunger, 6-15 Power source, 3-5, 3-7, 15-2, 15-5 Sensitivity of explosives, 4-3 Power spring, 6-5 P resetting of tim e fuzes, 3-2 Sequential leaf arming, 6-15,10-3 Pressure, am bient, 5-7 P ressure-travel relation of projectile, 5-2 S etb ack , 5-5 P rim ary high explosive, 4-2 S etfo rw ard , 5-7 Prim er, 4-6 S etter com ponents linkage, 14-2 Projectile fuze S hear pin, 6-9 Shelf life factors, 15-10 design, 9-5, 9-10, 12-2 Shock m achine, 15-4 im p a c t , 1-5, 1 - 7 ,1 2 - 3 Slider, 6-8, 10-4, 11-2 S m all arm s fuze, 1 0 -1 0 m e c h a n ic a l tim e , 10-8 S older, 14-5 S pecifications, 2-1, 2-4, 9-l ty p ical, l-2 spin Proof test, 15-5 P ropeller, bom b fuze, 12-10 during assembly, 9-3 P ro x im ity fuze, 1-6, 3-2, 12-12 Pull-release device, 13-2 -stabilized projectiles, fuzes for, 10-3 Purpose of fuzes, 1-1 test, 15-3 R velocity, 5-3 Spiral unwinder, 6-12 R ain insensitive fuze, 9-11 S p rin g Rain te st facility, 15-12 B e lle v ille , 6-5, 13-1 RC circuit, 3-9, 7-4 References, R-l. See also the end of each c h ap te r coil, 6-1, 10-1 Relay, 4-10 R eliability, 2-2 com pression d ata, 6-5 R e q u ire m e n ts, 1-3, 9-l constant force, 6-5 R esistor, 14-10 design, 6-23, 10-1, 10-3, 12-10, 13-1 R ifle grenade fuze, 11-5 eq u atio n s, 6-2 R ocket escapem ent, 6-19 hair, 6-5 -assisted projectile, 10-8 motion of m asses of springs, 6-l f u z e , 1-2, 11-1 pow er, 6-5 types, 6-l sled test, 15-4 Squib, 4-6, 4-11 R otary device Stab initiation, 3-3 Stab initiator, 4-6 ball c a m ro to r, 6-18 S ta n d a rd iz a tio n , 2-3 b a ll rotor, 6-18, A -I-l cen trifu g al pendulum , 6-14 disk rotor, 6-13, 9-8 rotary shutter, 6-17, 10-7 1-4

AMCP 706-210 S ta tio n a ry am m u n itio n , 13-1 p ro ce d u re , 9-3, 15-1 6 -2 3 ,6 -2 4 Statistical data analysis, 15-13 safety, 9-4, 15-2 Storage life, 4-5 surveillance, 15-10 Superquick fuze, 1-5 Surveillance test, 15-10 Therm al battery, 3-8 Switch, 7-1, 14-1 T im e S y m b o ls, L is t of, x iv circuits, 3-9, 7-3 T fuze, 1-6, 12-8 presetting, 3-2 T a b le s, L is t of, x iii setting mechanism, 2-6 T actical purpose of bom b fuzes, 12-11 T olerancing, 14-9 T angential force, 5-6 T arget sensing, 3-1 Tooth design for escapements, T elem etry , 15-5 T orque, 5-6 T em perature environm ent, 9-2 Trade-offs in design, 2-2 T estin g T re m b le r s w itc h , 7-1 d ev elo p m en t step, 9-3 en v iro n m en t, 15-10 Trip lever, 6-11, 13-4 M IL-STD, 2-2, 15-13 T ube, electro n ic, 7-3 p erfo rm an ce, 15-1 V V ane, 12-10 V elocity of d eto n atio n , 4-2 l-5


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook