Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore MIL-HDBK-757

MIL-HDBK-757

Published by nakrob1317, 2020-04-17 07:52:03

Description: MIL-HDBK-757

Search

Read the Text Version

Downloaded from http://www.everyspec.com ImmiiEl q MIL-HDBK-757(AR) 15 April 1994 MILITARY HANDBOOK .. FUZES @ AMSC N/A FSC 13GP DISTRIBUTION STATEMEIXIL% Approved for public re[easq distribution is unlimi[ed

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) FOREWORD 1. This military handtmok is approved for use by all Activities and Agencies of lhc Department of the Army and is available for use by all Deparunents and Agencies of lhc Department of Defense. 2, Beneficial comments (recommendations. additions, and deletions) and any pertinent data tit may be of use in improving Ibis document should be addressed m Commander, US Army Armament Research, Development, and Engineering Center, A7TN: SMCAR-BAC-S, Picatinny Arsenal, NJ 07806-5020. by using the self-addressed Standar&ation D&ument improve- ment Proposal (DD Form 1426) appearing at the end of his document or by letter. 3. This handbook wzs developed under the auspices of tic US AmY Materiel Command’s Engineering Design Handbook Program, wKlch is under the direction of the US AnnY Industrial Engineering Activity. Research Triangle fnstitute (RTf) was the prime contractor for tie preparation of this handbook, which was prepared under Contract No. DAAA09-86-D-0Q09, Advanced Technology and Research Corporation was a subcontractor to RTf for tie preparation of this handbook. The princi- pal investigator was Mr. William C. Pickier. The development of lhk handbook was guided by a technical working group, which was chaired by Dr. Frederick R. Tepper of tie US &my Annmnem Research, Development, md Engineering Center. I I ii

Downloaded from http://www.everyspec.com PART ONE FUNDAMENTAL PRINCIPLES OF FTJZES l-l I .2 1-3 I .4 I -5 1-6 m

I Downloaded from http://www.everyspec.com I MIL-HDBK-757(AR) I I-6.2 DESCRIPTION OF A REPRESENTATIVE PYROTECHNIC TIME FUZE .............................................. 1-33 I-6.3 DESCRIPTION OF A REPRESENTATIVE PROX3MITY ~~ ............................................................... 1-34 I 1-7 DESCR1PTION OF A REPRESENTATIVE TANK MAIN ARMAMENT ~= ................................................... 1-36 I -8 DESCRIPTION OF REPRESENTATTVE FUZES FOR SMALL CALIBER AUTOMATIC CANNON ................1-39 1 1-8,1 DESCRIPTION OF A REPRESENTATIVE POINT-DETONATING, SELF-DESTRUCT (PDSD) I FUZE FOR SMALL CALIBER AUTOMATIC CANNON ...................................................................... 1-39 I 1-8.2 DESCRIPTION OF A REPRESENTATIVE POINT-DETONATING SQ/13LY FUZE FOR MEDIUM CALIBER AUTOMATIC CANNON ........................................................................................................ 1-40 1-8.3 DESCRIPTION OF A REPRESENTATIVE PROXIMITY W= ............................................................... 1-41 I-9 DESCRIPTION OF REPRESENTATIVE ROCKET m=S .................................................................................... I-43 1-9. I DESCRIPTION OF A REPRESENTATIVE MECHANICAL FUZE .......................................................... I-43 1-9.2 DESCRIPTION OF A REPRESENTATIVE ELECTRICAL FU~ ............................................................. I-44 1-10 DESCRIPTION OF REPRESENTATIVE MISSILE FUZES .................................................................................. 1-44 1-10.1 DESCRIPTION OF A REPRESENTATIVE IMPACT FUZE (TOW) S&A MECHANISM ..................... 1-45 1-10.2 DESCRIPTION OF A REPRESENTATIVE PROXIIWTY FUZE (PATR1OT) ........................................ 1-45 1-11 DESCRIPTION OF REPRESENTATIVE MUfE ~~ ........................................................................................ 1-47 1-11.1 DESCRIPTION OF A REPRESENTATIVE MECHANICAL FUZE ........................................................ 1-47 1-11.2 DESCRIPTION OF A REPRESENTATIVE ELECTRICAL = ........................................................... 1-47 1-12 DESCRIPTION OF REPRESEhTATIVE GRENADE F=S ............................................................................... 1-49 1-12.1 DESCRIFIION OF A REPRESENTATIVE HAND GRENADE FLEE ................................................... I-49 1-12.2 DESCRIPTION OF A REPRESENTATIVE LAUNCHED GRENADE FAZE ...................................... 1-49 1-13 DESCRIPTION OF A REPRESENTATIVE SUBMUNITION FUZE .................................................................... 1-49 50 54 .54 GENERAL CHAPTER 2 q! DESIGN CONSIDEIL4TIONS SECTION 1 2-1 .2-1 2-1. i INTRODUCTION ..................................................................................................................... ............ 2-1 2-1.2 ORIGIN OF A FUZE SPECIFICATION ....................................................................................................... 2- I 2-1.3 STRUCTURE OF RESEARCH. DEVELOPMENT, TEST, AND EVALUATION (RDTE) PLANS .........2-1 2-1.3.1 Research (6.1) ........................................................................................................................................ 2-2 2-1.3.2 Exploratory Development (6.2) ............................................................................................................. 2-2 2-1.3.3 Advanced Development (6.3) ................................................................................................................ 2-2 2-1.3.4 Engineering Development (6.4) ............................................................................................................. 2.2 2-2 SAFETY ...................................................................................................................................................................... 2.2 2-3 WLIABILI~ ............................................................................................................................................................. 2.3 2-4 ECONOMIC CONSIDEUnONS ............................................................................................................................. 2-4 2-5 ST~D~D~mON ................................................................................................................................................ 2-5 2-5,1 USE OF STANDARD COMPONENTS ........................................................................................................ 2-5 2-5.2 NEED FOR FOWM~ ............................................................................................................................. 2-6 2-5.3 FUZE ST~DA~S ...................................................................................................................................... 2.7 2-5.4 FORMAL FUZE GROUPS ............................................................................................................................ 2-7 2-6 HUMAN FACTORS ENGINEERING ....................................................................................................................... 2-8 2-6.1 SCOPE OF HUMAN FACTORS ~G~~G ....................................................................................... 2-8 2-6.2 APPLICATION TO FUZE DESIGN PROBLEMS ....................................................................................... 2-8 SECTION II RELATIONSHIP OF FUZING WITH THB ENVIRONMENT 2-7 2-8 2-9 iv —

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) q I I I q 3-5.2 ELEC3TtOMECHANlC& POWER SOURCES ......................................................................................... 3-20 3-5.2.1 Turboaltcmators .................................................................................................................................... 3-21 3-5.2.2 Fluidic Generators ................................................................................................................................. 3-22 3-5.2.3 Piezoclectic Transduce ..................................................................................................................... 3-22 3-5.2.4 Electromagnetic Generators .................................................................................................................. 3-24 3-5.3 THERMOELECTRIC POWER SOURCES .................................................................................................. 3-25 v ~._—

M=WNCES Downloaded from http://www.everyspec.com 3-26 MIL-HDBK-757(AR) .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. .. ... .. .. .. .. .. ... .. .. .. ... .. .. .. ... .. .. .. .. .. .. .. ... .. .. .. .. .. ... .. ................................................ CHAFTER 4 4-o 4-l 4-2 4-3 I I I I I I 4-4 I I 1 vi

Downloaded from http://www.everyspec.com 5-o 5-l 5-2 5-3 5-4 5-5 5-6 vii

Downloaded from http://www.everyspec.com MIL-I’IDBK-757(AR) CHAPTER 6 MECHANICAL ARMING DEVfCES 6-O LIST OF SYMBOLS ...................................................................................................................................................&l 6- I INTRODUCTION .................................................................................................................................................. 6-3 6-2 SPRfNGS ................................................................................................................................................................... 6-3 6-2,1 TYPES OF SPWNGS ..................................................................................................................................... 6-3 b2.2 ELEMENTARY EQUATfONS OF MOTION FOR A SPRfNG MASS SYSTEM ...................................... b3 6-2.2.1 Inclusion of Friction ............................................................................................................................... 6-5 6-2,2.2 Effect of Centrifugal Force .................................................................................................................... 6.6 b2.3 SPRfNGS USED fN FUZES .......................................................................................................................... 6-6 6-2.3.1 Power Springs ........................................................................................................................................ 6-6 6-2.3.2 Leaf and Torque Springs ........................................................................................................................ 67 6-2.3,3 Constant-Force Springs .......................................................................................................................... 6-8 6-2.3.4 Helical Volu[e Spring ............................................................................................................................ 6.8 6-3 A SLIDfNG ELEMENT IN AN ARITLLERY W~ ................................................................................................ 6-!3 6-4 MISCELLANEOUS Mechanical COMPONENTS ........................................................................................... &lo 6-4.1 HALF-SHAFT RELEASE DEVICE ..............................................................................................................610 6-4.2 SHEAR PINS .................................................................................................................................................. 6- I } 6-4.3 DE~~S ...................................................................... . ........................................................................ 6-11 6-4.4 ACllJATfNG LINKAGE ............................................................................................................................ 6-11 6-4.5 SPIRAL UNWfNDER .................................................................................................................................... 6-1 I 6-4,6 ZIGZAG SETBACK PfN ............................................................................................................................. 6.13 6-4.7 ROLWI~ .................................................................................................................................................... &15 6-4.8 BALL LOCK AND RELEASE MECHANISMS .......................................................................................... 6.15 6-4.9 FORCE DISCfUMINATfNG MECHANfSM (~M) .................................................................................... 6-15 6-5 ROTARY DEvICES ................................................................................................................................................... 6-16 6.5.1 DISK ROTOR ................................................................................................................................................. 6-16 6-5.2 THE SEMPLE FuUNG PM ........................................................................................................................... 6-17 6-5.3 SEQUENTIAL ELEMENT ACCELERATION SENSOR ............................................................................ 6-17 6-5.4 ROTARY SH~R ..................................................................................................................................... 6-21 6-5.5 6-5.6 BALL-CAM ROTOR ..................................................................................................................................... 6’21 6-5.7 BALL ROTOR ............................................................................................................................................. 6-22 ODOMETER SAFETY AND ARMING DEVICE (SAD) ............................................................................ 6-23 6-6 MECHANICAL TfMfNG DEVICES .......................................................................................................................... 6-23 6-6.1 ESCAPEMENTTYP~ ................................................................................................................................. 6-24 6-6.1.1 Untuned, Two-Center Escapement ........................................................................................................ .5-24 6-6.1 .1,1 Gened ............................................................................................................................................ 6.24 6-6.1 .1,2 Gearless Safely and Arming Device (SAD) ................................................................................... 6-27 6-6.1.2 Tuned, Two-Center Escapement .......................................................................................................... 6-27 66.1,2,1 Description of Cylinder Escapement Mechtisms ......................................................................... 6-27 6-6.1 .2,2 Description of Spring Design .......................................................................................................... 6-29 6-6.1.3 Twmd, Three-Cen!er &apment .......................................................................................................... 15-30 6-6.2 CLOCKWORK GSARS AND GEAR ~S ............................................................................................ 6-31 6-7 OSCfLLATfNG DEVICES DRfvEN BY RAM AfRFLOW .................................................................................... 6-32 6-7.1 FLUIDIC GE~WTOR ................................................................................................................................ 6-32 6-7.2 m=UNCES FLU’fTER ARMfNG MECHANfSM ............................................................................................................ 6-32 .. .. .. .. .. .. .. .. ... .. .. .. .. .. .. ... .. .. .. ... .. .. .. .. .. ... .. .. ... .. .. .. .. ... .. .. .. ... .. .. .. ... .. .. .. .. ... .. .. .. .. .. ... .. .. .. .. .. .. ... .. .. .. .. .. .. .. .. .. .. .. . 6-34 CHAFTER 7 ELECTRICAL ARMING, SELF-DESTRUCT, AND ~G DEVICES 7-o LIST OF SYMBOLS .......................................................................... ....................................................................... 7- I 7-1 INTRODUCTION ................................................................................................................................................ 7- I 7-2 COMPONENTS ............................................................................. .......................................................................... 7-2 7-2.1 SWTC~S ..................................................................................................................................... 7-2 7-2.2 ELECTROEXPLOSfVE ARMfNG DEVI~S .............................................................. .............................. 7-4 0 .1 Viii !

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) 7.2.2.1 Explosive Molors ................................................................................................................................... 7-4 q 7-2.2.2 Electmcxplosive Switches ..................................................................................................................... 7-4 7.2.3 ELECTRONICALLY CONTROLLED FUZING FUNCTfONS .................................................................. 7.5 7-2.3.1 Electronic Logic fivices ....................................................................................................................... 7-5 7-2.3.2 Typical Application of Electronic Logic ............................................................................................... 7-7 7-2.3.3 Fast-Clock Moti[or ................................................................................................................................ 7-9 7-2.3 .3.1 Fas!-Clmk Monitor CircuiIs ........................................................................................................... 7-9 7-2.3.4 Sensor lntemgation ............................................................................................................................... 7-11 7-3 DIGITAL ~E~ ...................................................................................................................................................... 7-1 I 7-3,1 THEORY AND CURRENT TECHNOLOGY BASE ................................................................................... 7-11 7-3,2 POWER SWPLES ........................................................................................................................................ 7-13 7.3,3 TfME BASES (OSCfLLA7YXlS) FOR DIGfTAL TfMERS ......................................................................... 7-13 7-3.3.1 Relaxation Oscillator Using a Programmable Unijunction Tmnsistor (PLJT 7...................................... 7-13 7-3.3.2 RC Multivibmtor Using Integrated Cmcu,I Inveflem ............................................................................. 7.14 7-3.3.3 RC Multivibrmor Using CD 4047 In!cgrntcd Circuit ............................................................................ 7-16 7-3.3.4 RC Multivibrator Using a 555-TYPc Integrated Circuit ........................................................................ 7-16 7-3.3.5 Cemmic Resonator Oscillator ................................................................................................................ 7-16 7-3.3.6 Quartz Crystal Oscillators Using D]scrc!e CVsmls ............................................................................... 7-17 7-3.3.7 Imegrated Qunnz Crystal Oscillators. FIxed Frequency and programmable ........................................ 7-17 7-3.3.8 Time Base Accmcy ............................................................................................................................. 7-17 7-3.4 COUNTERS ................................................................................................................................................... 7-17 7-4 OUTPUT cRcums ................................................................................................................................................... 7-19 1-5 STERILIZATION CIRC~S ..................................................................................................................................... 7-21 7-6 MICROPROCESSORS ............................................................................................................................................... 7-23 7-7 ELECTRONIC SAFETY AND ARMING SYS~S ............................................................................................... 7-23 7-8 MICROMECHANfCAf- DEVI= ............................................................................................................................ 7-27 7-9 ELECTROCHEMICAL TfMERS ............................................................................................................................... 7-27 7-9.1 ELECTROPLATING TfMER WfTH ELECTRICAL OUTPUT .................................................................. 7-27 7-9.2 ELECTROPLATING TfMER WfTH MECHANICAL OWm .............................'................................... 7-30 7-10 REDUNDANCY AND fkELLABfLITY ~C~IQ~S .......................................................................................... 7-30 M=~NCES ...................................................................................................................................................................... 7-32 CHAPTER 8 OTHER ARMING DEV3CES 8-O LIST OF SYMBOLS ................................................................................................................................................... 8-I &l fNTRODUCTION ....................................................................................................................................................... 8-1 fL2 FLLffD DEVICES ........................................................................................................................................................ 8-1 8-2.1 FLUID FLOW ................................................................................................................................................ 8-1 8.2.2 ~~WCS ...................................................................................................................................................... 8-1 g-2.2.l Fiuidic and Flueric Systems ................................................................................................................... 8- I 8-2.2.2 Flueric Compnncmts Used for hing ................................................................................................... g-2 g-2.2.3 Flueric System fitiuliOns .................................................................................................................... 8-3 8-2.3 PNEUMATIC AND FLUID TIMERS ........................................................................................................... 8-3 8-2.3,1 Pneumatic Anmdar.Chilicc Dasbpnt (PAOD) ....................................................................................... 8-4 8-2.3.2 Internal Bleed DashPot .......................................................................................................................... 8-5 8-2.3.3 External Bled Dashpnt ......................................................................................................................... 8-5 8-2.3.4 Liquid Annular-GriIice Dmh~t ............................................................................................................ 8-5 8-2.4 DELAY BY FLUIDS OF HIGH VISCOSITY .............................................................................................. 8-6 8-2.4.1 Silicone Grease ...................................................................................................................................... 8-6 8-2.4.2 Pxudofluids ........................................................................................................................................... g-7 8-3 CHEMICAL ARMING DEVIC= .............................................................................................................................. 8-9 8-4 DELAY BY SHEARING A LEAD ALLOY .............................................................................................................. g-9 ix . . ..—

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) PART 111 PUZE DESIGN CHAPTER 9 CON.WDERATIONS IN FUZE DESIGN 9- I INTRODUCTION ............................................................................................................................... .... . .. .. ... 9-1 9-2 REQUIREMENTS FOR A N~ ............................................................................................................................... 9.2 9-2.1 ENVIRONMENTAL REQUIREMENTS ...................................................................................................... 9-2 9-2.2 GENElL4f. SAFETY EQU~ME~S ...................................................................................................... 9-2 9-2.3 OVERHEAD SAFETY ~QUIWME~S ................................................................................................... 9.4 9-3 STEPS IN DEVELOPMENT OF A ~= ................................................................................................................. 9-4 9-3.1 DEFINITION OF THE REQUIREMENTS AND Objectives ................................................................. 9.5 9-3,2 CONCEPTUAL DESIGN, CALCULATIONS, AND LAYO~ .................................................................. 9-5 9-3.3 MODEL TESTS AND REVISIONS .............................................................................................................. 9.6 9-3,4 DEVELOPMENT AND OPERATIONAL ~S~G ................................................................................... 9-7 9-3.5 TECHNICAL DATA PACKAGE (~P) ....................................................................................................... 9-7 9-4 APPLICATION OF FUZE DESIGN PRINCIPLES ................................................................................................... 9.9 9-4.1 REQUIREMENTS FOR THE W~ ............................................................................................................. 9-9 9-4.2 DESIGN CONSIDERATIONS ...................................................................................................................... 9.10 9-4.2. I Booster Assembly .................................................................................................................................. 9.I2 9-4.2.2 Detonator Assembly ............................................................................................................................... 9-13 9-4,2.3 Initialing Assembly ................................................................................................................................ 9-15 9-4.3 TESTS AND REVISIONS ............................................................................................................................. 9.I5 9-5 CHAFTRR 10 — @ PUZES LAUNCHED WITH HIGH ACCELERATION 10-0 LIST OF SYMBOLS ................................................................................................................................................. 10-1 1o-1 INTRODUCTION ..................................................................................................................................................... 10-2 10-2 FUZE COMPONENTS FOR FfN-STABILfZED PROJECTILES .......................................................................... IO-2 10-2.1 COIL SPRING DESIGN .............................................................................................................................. 10.2 10-2.1.1 Restraining Motion .............................................................................................................................. 10.2 10-2.1.2 Wire ~meter ...................................................................................................................................... 10.3 10-2.1.3 Number of Coils ................................................................................................................................... 10.3 IO-2,1.4 Controlling Motion .............................................................................................................................. IO-4 10-2,2 SEQUENTIAL LEAF ARMfNG ................................................................................................................. I&5 IO-2.3 OTHER COMPONENTS ............................................................................................................................. 10-6 10-3 FUZING FOR SPIN-Stabilized PROE~= .............................................................................................. 10-7 10-3.1 SLIDERS ...................................................................................................................................................... 1o-7 10-3.2 ROTOR DETENTS ...................................................................................................................................... 10.8 IO-3.3 ROTARY SH~RS ................................................................................................................................. 113.113 IO-3.4 FDUNG PfN DE~~S ............................................................................................................................... IO-I 1 IO-3.5 SPECfAL CONStDERATfONS FOR ROCKET-ASSISTED PRO~~~ ........................................... 10-11 10-4 MECHANICAL TIME FUZES @~) ..................................................................................................................... IO-12 10-4.1 CLOCKWORK DW ................................................................................................................................ 10-12 IO-4.2 DESIGN OF ONE COM~H ............................................................................................................... 113-13 10-4,3 M565 FU~ .................................................................................................................................................. 10-13 IO-4.4 M577 FU~ .................................................................................................................................................. l@]4 10-5 ELECTRONIC TLUE FUZES @~ ........................................................................................................................ 10-15 10-5. I TIMER OPTIONS AND DESIGN ............................................................................................................... IO-IS x

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) q 10-6 10-5.2 M724 FUZE .................................................................................................................................................. 10-15 10-7 IO-5.3 M762.TYPE FU~ ....................................................................................................................................... 10-15 I 10-8 AUTOMATIC CANNON FUZES ............................................................................................................................ 10-15 I o-9 10-6.1 TYPICAL AUTOMATIC CANNON FUZES ............................................................................................. 10-16 I IO-6.2 AUTOMATIC CANNON FUZE M758 (FAMmY) .................................................................................... 10-16 * FUZE TECHNOLOGY FOR CANNON-LAUNCHED GUIDED PROIECIUES (CLGP) .................................. 10-17 10-7. I UNIQUE CONSIDEWmONS .................................................................................................................... 10-17 10-7.2 EXAMPLE OF A CLGP .............................................................................................................................. 10-17 ELE(XRONIC PROXIMITY FUZES ...................................................................................................................... 10-17 10-8.1 SENSING TECHNIQUES> OPTIONS, AND DESIGN .............................................................................. 10-18 10-8.2 M732 FU~ .................................................................................................................................................. 10-19 SUBMUNITION FUZES .......................................................................................................................................... 10-20 CILO’TER 11 FUZES LAUNCHED WITH LOW ACCELEIbiT50N II-o LIST OF SYMBOLS ................................................................................................................................................. 11-1 1)-1 INTRODUCTION ..................................................................................................................................................... I l-l II-2 ROCRET FUZES AND SAFETY AND ARMING DEVICES (SAD) .................................................................... 11-2 11-2.1 THE 2.75-in. ROCKET FUZE FAMILY ..................................................................................................... 1I-2 11-2.2 SAFETY AND ARMING DEVICE WITH DRAG SENSOR ..................................................................... 11-2 11-2.3 MULTIPLE LAUNCH ROCKET SYSTEM (MLRS) ~~ ...................................................................... 11-2 II-3 GUIDED MISSILE FUZES ...................................................................................................................................... 11-4 11-3.1 PATRIOT S&A DEVICE ............................................................................................................................. 11-7 11-3.2 HELLFIRE FLEE M820 .............................................................................................................................. 11-7 11-3.3 HARPOON FUZE ........................................................................................................................................ 1I-7 I-4 GRENADE FUZES ................................................................................................................................................... i I-S 11-4.1 HAND GWN~ES ..................................................................................................................................... 1I-8 11-4.2 LAUNCHED GRENADES .......................................................................................................................... 11-12 I.5 SCATTERABLE M~S .......................................................................................................................................... 11-12 11-6 I 2.0 12-1 12-2 xi

Downloaded from http://www.everyspec.com 13-I 13-2 13-3 13-4 13-5 13-6 13-6.2 ENCAPSULATION ..................................................................................................................................... 1;-;5 13-6.3 SUPPORTING S~UC~~ ...................................................................................................................... 13-16 13-7 LUBIUCATION ........................................................................................................................................................ 13.16 I 13-8 TOLERANCfNG ....................................................................................................................................................... 13.17 13.9 COMPONENTS ........................................................................................................................................................ 13-IS 13-9.1 SELECflON OF COM~~~S ............................................................................................................... 13-18 I 13-9,2 ELECTRICAL COMPONENTS .................................................................................................................. 13.18 13-9.3 MECHANICAL COM~~~S ................................................................................................................ 13-19 I I3-10 COMPUTER-AfDED DESIGN AND COMPUTER-AIDED ENG~E~G .................................................... 13-19 13-1 I FAULT TREE ANALYSIS (~A) .......................................................................................................................... 13.20 I 13-12 FAILURE MODE, EFFE~S, AND CRfTfCALfTY ~tiYSIS ........................................................................ 13.20 13-13 MAINTENANCE AND STOWGE ....................................................................................................................... 13-20 13-14 MfLfTARY WBOOKS .................................................................................................................................... 13-22 I E~~NCES ...................................................................................................................................................................... 13-23 I CHA$TER 14 FUZE TESTING 14.1 D4TRODUCTION ..................................................................................................................................................... 14.I 14-2 TECHNICAL EVWUA~ON .................................................................................................................................. 14.1 14-2.1 LABORATORY ANO FIELD TESTS ........................................................................................................ 14.2 I 14-2.1,5.2 @ 14-2.1 ,5.3 14-2.1 .5.4 14-2.1.5.5 14-2.1 .5.6 14-2.1 .5.7 14-2.1.5.8 14-2.1 .5.9 14-2.1.6 Elecfmmagnetic Effcms @E) ........................................................................................................... 14-14 14-2,1 ,6.1 RF Susce@biliV ........................................................................................................................... 14-15 xii L

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) 14.2.1.6.2 Lightning Susceptibility ................................................................................................................ 14-15 14-2.1.6.3 Electmmagnctic Interferencfllecmomagnetic Compatibility (EM f/EMC) ................................. 14-16 14-2, [,6.4 Electronic Coumermeauefilectronic Counter.CounlemeSws ............................................. 14-16 14.2.1 .6.5 ~MPEST ..................................................................................................................................... 14-16 14-2.1 .6.6 Elecuostmic Dkcharge (ESD) ...................................................................................................... 14-16 14-2.1 .6.7 Electromagnetic Pulse ~P) ....................................................................................................... 14-16 14-2.1.7 Rain ...................................................................................................................................................... 14-16 14-2.1.8 BulleI fmpact md Cook.Off Tesu ....................................................................................................... 14-16 14-3 ARMY FUZE SAFETY REVfEW BOM ............................................................................................................. 14-17 14-4 ROLE OF TECOM .................................................................................................................................................... 14-18 14-5 OPERATfONAL TEST AND Evaluation (OT&E) .......................................................................................... 14-18 14-6 PRODUCT ACCE~~CE ...................................................................................................................................... 14-18 14-6.1 FfRST ARTfCLE ~STS ............................................................................................................................. 14-19 14-6.2 LOT ACCEPTANCE ~SM ....................................................................................................................... 14-19 14-7 SURVEILLANCE ~STS ......................................................................................................................................... 14-19 I 14-7. I FACTORS AFFECTfNG SHELF L~ ....................................................................................................... 14-20 14-7.2 ACCELERATED ENVIRONMENTAL TESTS ......................................................................................... 14-22 14-8 PRODUC7 MPRO~E~~TS ...................................................................................................................... 14-23 14-9 ANALYSIS OF DATA .............................................................................................................................................. 14-23 E=MNCES ...................................................................................................................................................................... 14-25 I X111 ‘m I

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) LIST OF ILLUSTRATIONS Figure Tide ‘“8’ q No. 1-1 Fuze Arming fiocess .............................................................................................................................................. 1-3 —- 1-2 APERS-T, Fixed Artillery Round, 105 mm, M494 ................................................................................................ I-4 1-3 .%milixed timunition ........................................................................................................................................... I-4 I-4 Separate Ammunition ............................................................................................................................................. 1.4 1-5 CarIridge, 120 mm. HEAT-MP-T, M830 ............................................................................................................... 1-5 I-6 155-mm Cannon-Launched Guided Projectile (CLGP) COPPERHEAD .............................................................. 1-5 1-7 155-mm SADARM, XM898 Projectile .................................................................................................................. 1-6 I -8 Mortar Camidge, 81 mm. M374A2 ........................................................................................................................ 1-6 1-9 Typical 25-mm Round, M792 ................................................................................................................................. 1-8 1-1o Ammunmon, Automatic Cannon, 75 mm and 76 m ............................................................................................ 1.8 1-11 228-mm (9.in.) Multiple Launch Rocket System ................................................................................................... 1.9 1-12 Rocket-Launched Submunition D@ensing Wwhmd ............................................................................................ I-9 1-13 70-rnm (2.75-in.) FoldingFin Aircraft Rocket (FFAR) With M151 Warhead ...................................................... 1-10 1-14 66-mm (2.60-in.) Light Antitank Weapon Rwkel .................................................................................................. 1-11 1-15 152-mm (6-in.) TOW Warhead, HEAT, M207E2 .................................................................................................. 1-12 1-16 STINGER Warhead. HE, M258E5 Mod 1 ............................................................................................................. I-13 1-17 Function Diagram for STINGER Missile ............................................................................................................... 1.14 1-18 HELLFIRE Missile, GM, HEAT, KM265 ............................................................................................................. 1-15 1-19 Mine. Antitank, HE, Heavy, M21 ........................................................................................................................... l-I6 1.20 Remote Anlimmor Mine (W) ......................................................................................................................... I-18 1-21 155-mm (6-in.) Cargo Projectile, M718 for AntitarA Mines .................................................................................. 1.19 1-22 Fragmentation Grenade, M26 ................................................................................................................................. 1.20 1-23 Grenade Launcher, 40 mm. M203 Attached to M16E1 Wfle ................................................................................. 1-20 1-24 Grenade Launcher, 40 mm, M79 ............................................................................................................................ 1-21 1-25 Canridge, 40 mm, HEDP, M433 ............................................................................................................................ 1-21 e!! 1-26 Dual-Purpose Grenade M42 ................................................................................................................................... 1-22 1-27 Antipersonnel Grenade M43 ................................................................................................................................... 1-22 I-28 53-MM (2.1 -in.) Submunition MK 118-0, Aircraft Released ................................................................................. 1-23 1-29 345-mm (13.6-in.) Surface-Launched Fuel-Air-Explosive System KM130 .......................................................... 1.23 1-30 Fuze, PD. MK 26-1 for 20-mm Rojectile .............................................................................................................. 1-26 1-31 Fuze, PD. M739 ...................................................................................................................................................... 1.27 I 1-32 FUZG PD. M739AI ................................................................................................................................................. 1-28 1-33 Fuze, MT, M577 ..................................................................................................................................................... 1.30 1-34 Fuze, Elecmonic Time, M762 ................................................................................................................................. 1.31 1-35 Fuzc, Proximity, M732AI ...................................................................................................................................... 1-32 I 1-36 Fuze, PD. M567..,,,,,.., ............................................................................................................................................ 1.34 1-37 Fuze, Pyrotechnic Time, ~768 ............................................................................................................................ 1-35 1-38 Fuze. Multioption, M734 ....................................................................................................................................... 1-35 1-39 Fuze PLBD, M764 ................................................................................................................................................... I-37 1-40 Fuze, M764, Opmadomd Cycle Da@ ............................................................................................................... I-38 I 1-41 Schcma[ic D@mm of !he Fuzing System for t-he M830 H~TCtidge ........................................................... 1-39 J-42 Fuze, PDSD. 25 mm, M758 .................................................................................................................................... 1.40 1-43 Fuze, PDSQ and DLY, MK 407 Mod l .................................................................................................................. 1-41 I 1-44 Fuze, Proximity, XM766 for40mm (SGT YORK) projectile .............................................................................. 1-42 1-45 Fuz,, PD. M423 ...................................................................................................................................................... 1-44 1-46 Fuze, Electronic Time, M445, for MLRS Cargo R=ket ........................................................................................ 1-45 1-47 Safely and Arming Device Ml 14 ........................................................................................................................... 1-46 1-48 Safety and Arming Mechanism for RAAM M70 Mine .......................................................................................... I-48 1-49 German Hand Grenade Fuze, DM82 ...................................................................................................................... 1-50 1-50 Fuze, Grenade, M551. for 40-mm buncher .......................................................................................................... 1.51 1-51 Fuze, Grenade, M223 .............................................................................................................................................. I-52 0)

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) 1.52 Safely and Arming Device for Fuze. ET, ~750 .................................................................................................. 1-53 2-1 Phases and Milestones of tie Acquisition Process ................................................................................................. 2-2 2.2 Two Out ofllree Voting Arrangement for Safety Switches ................................................................................. 2-4 2.3 SUmkard Contour for 2-in. Nose Fuzes Wih Booster and Matching Cavity for Artillery and Mortar HUWP Projectiles (Spin and Fin Smbilized) ................................................................................................................... 2-6 2-4 Linear and Digital Metlmds for Display of MT and ET Fuzes ............................................................................... 2-8 2-5 Typical Sc[back Pin and Spin Locks on a Projectile Fuze S&A Mecbism ......................................................... 2-11 2-6 Safety and Arming Mechanism for a Rncket Fuze ................................................................................................. 2-II 2-7 Fluidic Generator With Ring Tone Oscillator ........................................................................................................ 2-12 2-8 Grenade Fuze M219AI ...........................................................................................................................................2.l4 2-9 Arming Action for Fuze, PD M717 ........................................................................................................................ 2-14 3- I protruding Firing Pins ............................................................................................................................................. 3-2 3-2 Wad Cutter hxngcmenu ...................................................................................................................................... 3-3 3-3 Deformable Systems ............................................................................................................................................... 3-3 3-4 Inertial Delay Systems ............................................................................................................................................ 3-3 3-5 Fuze, M739A2 Whh Impacl Delay Mndule (IDM) ..............................................................................................3.4 3-6 Reaction Plunger of Fuze M739A2 ........................................................................................................................ 3-5 3-7 Inductive Sensing .................................................................................................................................................... 3-7 3-8 Shon-Circuil Longimdinal Probe Configuration for Electrostatic Fuze ................................................................. 3-7 3-9 Schematic DIngrams of Signal Processing and Fking Chcuitry of MK 404 Fuze .................................................3.9 3-1o Atmosphere Allenuation Wndows ......................................................................................................................... 3-10 3-Ii Fuze, XM588, Proximity ........................................................................................................................................ 3-)0 3-12 Schematics of Circuitry of Fuze ~58g ................................................................................................................ 3-12 3-13 Pressure-Sensing Mechanism ................................................................................................................................. 3-12 3-14 Typical Firing Hns .................................................................................................................................................. 3-12 3-15 ,.. Imtnmon by Adiabatic Compression ...................................................................................................................... 3-13 3-16 Standard Firing Pin for Stab Inlttatom .................................................................................................................... 3-13 3-17 Firing Device, M2 ................................................................................................................................................... 3-14 3-18 Spin-f3cpendcnl Reserve Battery, PS 416 .............................................................................................................. 3-17 3-19 Lithiufionyl Chloride Reserve Cell ................................................................................................................. 3-18 3-20 Dkcharge Curve of a LithiumflTionyl Chloride Reserve Batte~ ......................................................................... 3-18 3-21 Generic Thermal BntIcV ......................................................................................................................................... 3-20 3-22 Discharge Curve of a Spin-Resistan! Lithium-Annde Tbumal Batte!y ................................................................. 3-21 3-23 Key Elements of a Tutiodtemator ......................................................................................................................... 3-22 3-24 Magnetic Circuit of Six-Pole Alternator Showing flux Path ................................................................................. 3-23 3-2S Performance Characteristics of Tutiodtemator ..................................................................................................... 3-23 I 3-26 Frequency and Power Output of Fluidic Generator ...............................................................................................3.24 I 3-27 Piezoelectric Control-Power Supply, ~22E4 ...................................................................................................... 3-24 3-28 Setback Generator, M509 ....................................................................................................................................... 3-25 I 3-29 O~rating Principle of Thcrmmkric Mtiulc ...................................................................................................... 3-25 3-30 Power Density versus Hot lunctinn Temperature ................................................................................................. 3-26 4- I Burning Pymtcchnic ...............................................................................................................................................&2 4-2 Detonating High Explosives ...................................................................................................................................+2 4-3 Examples of Gnod and Poor klonations ...............................................................................................................42 4-4 Typical Mechanical Primers and htonators ..........................................................................................................49 4-5 Typical Electrical Primers md Demnators .............................................................................................................49 I 4-6 Electrical fFnkoidmoinr,-LmSqeuiblnl.Mua2tor..............................................................................................................................................................................................................................................................44lO-1o 4-7 Explnding 4-8 Energy Power Relationship for Various lnitiatom ..................................................................................................4l 1 4-9 Projection Welding .................................................................................................................................................4l3 I 4-10 Laser Welting .........................................................................................................................................................+l5 4-11 Induction Soldering .................................................................................................................................................4l5 4-12 Delay Element, M9 .................................................................................................................................................&l7 4-13 Sealing Methods for Vented ~lays .......................................................................................................................&l7 4-14 Prxssure-TyW ~laY ...............................................................................................................................................4l8 xv

4-15 Downloaded from http://www.everyspec.com 4-16 xvi 4-17 4-18 4-19 5-l 5.1 5-3 5-4 5-s 5-6 5-7 5-8 5-9 5-1o 5-II 5-12 5-13 5-14 6- I 6-2 6-3 6-4 6-5 6-6 6-7 b8 6-9 6-1o I 6-)1 6-12 I 6-13 6-14 I b15 6-16 6-17 6-18 6-19 b20 6-21 6-22 6-23 6-24 6-25 6-26 6-21 I 6-28 b29 6-30 6-31 6-32 6-33 6-34 635 636

Downloaded from http://www.everyspec.com MIL-HDBIG757(AR) 637 PopovitchMdlfication of Jungbmm fica~ment ..................................................................................................&29 6-38 639 Detached Lever =apment ................................................................................................................................... 6-30 6-40 q 6-41 Folded Lever Eaca~mcnt W1~TO~iOn BW SPrinK ........................................................................... ’31 7-1 I 7-2 Flutter Arming Mectiism .....................................................................................................................................&33 7-3 a 7-4 True Flutter vs Contmllcd Hutter ...........................................................................................................................&34 7-5 I 7-6 Trembler Switch ......................................................................................................................................................7.2 7-7 I 7-8 Low-Cost Biased Impact Switch (300-100+2 g) ...................................................................................................... 7-2 I 7-9 7-1o Mounting Techniques for fMPaCI Switcbcs fOr Spin~nS ~d NOmpinning MufitiOn$ ...................................... 7-3 7-11 Switch for Rotated Fuzes ........................................................................................................................................ 7-3 7-12 7-13 ‘fhernml Delay Arming Switcb ............................................................................................................................... 7-3 7-14 7-IS Thennnl Delay Self- f3cstmction Switch ................................................................................................................. 7-4 7-16 7-17 Dimple MoIor T3EI ................................................................................................................................................7.5 7-18 7-19 Bellows Motor, T5El ..............................................................................................................................................7.5 7.20 7-2 I Piston Acmalor Used in M762 Fum ....................................................................................................................... 7-5 7-22 7-23 Switch, Electroexplosivc, MK 127 MOD O............................................................................................................7.6 7-24 BSSICLogic Invener ................................................................................................................................................ 7-6 7-25 7-26 Quad-Two Input NOR GaIe ....................................................................................................................................7.7 7-27 7-28 Generic Bomb Fuzc Logic D1agm ....................................................................................................................... 7-8 7-29 7-30 Phase Lock Lnnp Fns!-Clnck Monitor .................................................................................................................... 7-9 7-31 7-32 Redundant Tlmem ................................................................................................................................................... 7-9 7-33 7.34 Fast-Clock RC Monitor Circuit .............................................................................................................................. 7-10 7-35 7-36 Fast-Clnck Multivibmtor Monitor Ckcuit ..............................................................................................................7.lO 7-37 7-38 M934 STINGER prototype C Fuze Functional ~a~ ....................................................................................... 7-12 7-39 7-40 14-Second Recision Ordnance Timer ....................................................................................................................7.l3 7-41 7-42 Programmable Unijunction Transistor (PUT) Oscillator ........................................................................................7.l4 7-43 8-l RC Multivibrator Configurations Using hxegratcd CmmM Invcncm .....................................................................7.l5 8-2 8-3 RC Mul[ivibmtor Using CD W7 ...........................................................................................................................7.l6 8-4 8-5 RC Multivibsmor Using a 555 Timer Cfip .............................................................................................................7.l6 8-6 8-7 Ceramic Resonator Oscillator (380 kHz IO 12 MHz) ............................................................................................. 7-16 Qua-u Ciysml GscNatnm (10 kHz to 2.2 MHz) ....................................................................................................7.l7 Integrated Quanz Crystal Oscillator, Fixd Frequency md RO~ble ........................................................... 7-18 A Crystal Clock (40.96 kHz) Driving a CD WCounkr .......................................................V.............................7.l8 Rogrmmnable Timer Whb Pulse Output ............................................................................................................... 7-19 Progmmmable Timer With J%pFlop nnd Latched Outpui ....................................................................................7.2O MC14521 Timer Output Latcbcd With FlipFfop and Transistor Buffer ...............................................................7.22 Fking Cmuit With Tmnsistomd Buffered Capacitor Discbargc OutpuC................................................................7.~ Firing Circuit With Shorl Dumtion Output .............................................................................................................7.23 High- and Low-Energy Capacitive Discharge Fting Circuits ...............................................................................7.24 Energy Bleed Resistor Example ............................................................................................................................. 7-24 Functional Block fXagmm MC146WG2 8-Bit Micrwompu@r .............................................................................7.M Functional Blnck D@am MSM80C4g Family K-Bit Microcomputer .................................................................7.26 Generic El@rcmic Safery and Arming Uvice .......................................................................................................7.27 Accelerometer Using Microme.cbanicd Technology WI* fntcgmted CMOS Circuiby ....................................... 7-28 Bissett-Bennnn E-Cell ............................................................................................................................................7.29 operating Curve of Coulombmeter at Constant Curmm ........................................................................................7.29 Coulombmetcr DC.wctor Clmuit .............................................................................................................................. 7-29 Typical E-Cell Coulombmeter Voltsge-Cumnt fi.Uristics ............................................................................7.3O Inurvnl Timer MK 24 MOD 3................................................................................................................................7.3l Schematic of Flueric tiplificm ............................................................................................................................. S-2 Schematic of Flueric Counter Stnge ....................................................................................................................... 8-3 Pneumatic Ammlar-tifice DAPI ....................................................................................................................... 8-4 Fuze, Rnckct, @f431 With Pneumatic Ann@u-Orifice Dasbpnt .........................................................................8.5 [ntemal Bleed Dasbpnt Design, Fuze M75g ...........................................................................................................M Exmmrd Bh%d Dasbpm Used in Fuzz M717 ..........................................................................................................&7 Two-Smgc Liquid Annular-Cnifice D=h@ (LAOD) Timer ................................................................................. 8-7 xvii ,4 . ——

Downloaded from http://www.everyspec.com MIL-IIDBK-757(AR) 8-8 LAOD Performance as a Function of Low Vkcosity-Cleamnce Relationship ...................................................... 8-8 8-9 LAOD Perfommnce as a Function of Viscosity-Clearance Relations~p ...............................................................8.9 8-1o Effect of Temperature on LAOD Petiommces ..................................................................................................... 8.10 q) 8-11 Delay Assembly of Fuze M218 .............................................................................................................................. 8-11 8-12- Cbemicai Long-Delay System ................................................................................................................................ 8-I I 8-13 Delays by Shearing Lead Alloy .............................................................................................................................. 8-12 9- I Generalized Life Cycle Histories for Militaiy Hardware .......................................................................................9.3 9-2 Application of MU--STD-13I6 m a Typical ArdOery Fuze ...................................................................................9.4 9-3 Drawing Wilfmm Positicming Controls .................................................................................................................. 9.8 9-4 Possible Resul& of Failing to Rovide Positioning Controls ..................................................................................9.9 9-5 Illustration of Proper Positioning ConuOls ............................................................................................................. 9-10 9-6 Comparison of a Theoretical Ideal Sampling Plan Wkh an Actuaf Sampling Plan ...............................................9.lO 9-7 Caliber Drawing of 4Gmm %ojectile ..................................................................................................................... 9-11 9-8 Ballistic Drawing for 40-mrn Gun ..........................................................................................................................9.l 1 9-9 Outline of Fuze Contour .........................................................................................................................................9.t2 I 9-1o Reliminary Space Skmch ....................................................................................................................................... 9-12 9-II Booster and Detonator Assemblies ......................................................................................................................... 9.I3 9-12 Initiating Assembly ................................................................................................................................................. 9-15 9-13 Complete Fuze Assembly ....................................................................................................................................... 9-15 9-14 M577 MTSQ Artillery Fuze ...................................................................................................................................9.l6 9-15 KM773 Muhioption FuzeJArdOery Future Weapon Interface ...............................................................................9.l7 9-16 M36E1 Fuze Setter Operational Features ...............................................................................................................9.l8 10-1 Fuze Head Assembly ............................................................................................................................................. 10-2 10-2 Minimum Tensile Strengths of Spring WIrc ........................................................................................................... 10.4 10-3 Interlocking Pin ...................................................................................................................................................... 10.5 10-4 Nut and Helix Setback Sensor ................................................................................................................................ 1O-6 10-5 Negator Spring Setback Sensor .............................................................................................................................. 10-6 10-6 Pull-Away Ma.ss./Llnbiased Setback Sensor ............................................................................................................ 10-6 10-7 Transverse Motion of Centrifugally Driven Slider ...............................................................~ ............................... 10-8 10-8 SAD Mechanism With M732-Type Detent Lmk ................................................................................................... 10-9 10-9 Se{back Pin Design ................................................................................................................................................. lIJ-10 1o-1o Booster M21 A4 ....................................................................................................................................................... 10.I I 10-11 Hourglass Detent Design ....................................................................................................... ............................. 1O-12 10-12 Rocket-Assisted Mjectile ...................................................................................................................................... 10-13 10-13 Centrifugal Drive for Mecbanicaf T]me Fuze ......................................................................................................... 10. I3 10-14 Parts Schematics of MT Fuzcs ................................................................................................................................ 10.I4 I 10-15 Mechanical Backup Initiation ksign ..................................................................................................................... 10. I6 IO-16 M724 Spin Swi!ch ................................................................................................................................................... 1w17 I 10-17 20-mm Fuze MK 78 ............................................................................................................................................... ]&18 IO-18 35-mm Fuze, Oerlikon &sign ................................................................................................................................ 10-19 10-19 Block Diagram of M740 Fuze Arming Squence ................................................................................................... 10-20 10-20 Fuze M732 .............................................................................................................................................................. 10-20 I 10-21 Projectile M483 Wib Submunition M.42 .............................................................................................................. ]0-21 11-1 M754 Fuze., f.hag Sensor ........................................................................................................................................ 11.3 II-2 Blcwk Diagram of M445 Fuze ................................................................................................................................ 11.4 II-3 M445 Fuze Safe[y and Arming Device; Safe Position and Armed Position .......................................................... 11-5 I 11-4 Antimafasscmbly Feature for M445 FuZ ............................................................................................................... 11.6 11-5 Safety and Arming Mechanism .............................................................................................................................. 11.6 I 11-6 PATRIOT Safety and Arming kvi~ .................................................................................................................... 11.8 11-7 Functional Logic Diagram of M820 Fuze .............................................................................................................. 11.9 I 11.8 HARPOON GM Fuzc FMU-109/B ........................................................................................................................ I 1-1o 11-9 Rcssure Robe FZU-30M Assembly on Wai-bead Fuze for f-MRPOON GM ....................................................... 11.11 11-10 Hand Grenade Fuze, M217 ..................................................................................................................................... 11-12 11-11 Gmund-Emplaced Mine-Scattering System Dkpcnser .......................................................................................... 11-13 11-12 Fuze Action for vOLC~O Mines ........................................................................................................................ 11.14 XVIII — —

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) ‘o 11-13 ADAM Mine and Fuze ........................................................................................................................................... 11-15 11-14 Grenade Fuze M230 ................................................................................................................................................ 11-16 I 12-1 Remote Amiwmor Mine ......................................................................................................................................... 12-2 12-2 Action of Reversing Belleville Spring .................................................................................................................... 12-2 I 12-3 Claymore Triggering Device .................................................................................................................................. 12-3 12-4 Mine BLU 91/B (Xl-1) .......................................................................................................................................... 12.4 o 12-5 AP Mine Wifh Trip Lines ....................................................................................................................................... 12-4 12-6 AT Mine Fuzc, M607 ............................................................................................................................................. 12-5 I 12.7 Pressure Release Firing Device .............................................................................................................................. 12-6 12-8 firing Device. M2 ................................................................................................................................................... 12-7 I 12-9 Improvised Boobytrap ............................................................................................................................................ 12-7 13-1 Level A Unit Package, Nonpropagating (Plastic Tubes) ........................................................................................ 13-5 13-2 Level A Exterior Pack (Sepanmely Loaded Fuzes) ................................................................................................. 13-6 13.3 Level A Unit Exterior Pack (FUZCAssembled 10 81-mm Mow) .......................................................................... 13-6 13-4 Interrelationship of Design, Material Selection, and Manufacturing Rwes=s ..................................................... 13-g 13-5 Cascade Soldering ................................................................................................................................................... 13-11 13-6 Electronic Module for a Missile Fuze ..................................................................................................................... 13-16 t3-7 A-Frame Supporting SUucture form Electronic Ardlley Fuze ............................................................................ 13-16 13-8 MK I Fuzing System, Bearing, and Contact Plate Assembly ................................................................................ 13-19 13-9 Simplified Fault Tree Analysis for Hypothetical Weapon System ......................................................................... 13-21 13-10 Example of a Failure Mode, Effects, and Criticality Analysis Worbheet ............................................................. 13-22 14-1 Typical Laboratory Tesf Plan for Projec[ite Fuze ................................................................................................... 14-3 14-2 Typical F!cld Test program for projectile Fuze ...................................................................................................... 14-4 14.3 Ammgement for Detonator Safety Test .................................................................................................................. 14-6 I 4-4 Electric Detonator Evaluation Test program .......................................................................................................... 14-7 14-5 Air Guns and hunches ......................................................................................................................................... 14-11 14-6 Naval Surface Warfare Center 5-in. Air Gun Selback-Spin Characteristics .......................................................... 14-12 14-7 Setback-Spin Adapter for Naval Surface Warfare Center 5-in. Air Gun ............................................................... 14-12 14-8 Parachute Recovev Round for 5-in./54 Guns ........................................................................................................ 14-13 14-9 Parachute Recovery Sequence of Even~ ................................................................................................................ 14-14 14-10 First ti,cle Tests for MK 395 MOOS O and 1 and MK 396 Mcdc Auxiliary Detonating Fuzcs ......................... 14-20 14-11 Quality Conformance Test for MK 407 Mode Poim.Delonming Fuze .................................................................. 14-21 14-12 Periodic Quality Conformance Tests for MK 407 MOD O Poim-kmnating Fum ................................................ 14-22 xix

Downloaded from http://www.everyspec.com . . —. MIL-HDBK-757(AR) LIST OF TABLES Table Tide Page No. 1.1 FASCAM Concepl And Delivery Matix ................................................................................................................. 1.17 1-2 Fuze Ca[egOries ......................................................................................................................................................... 1.24 2-l Compilation of Fuze Standmis Providing Guidance in Fuze Design ...................................................................... 2-7 2-2 Forces on Fuzes During Launch and Free Hight ......................................................................................................2.lO 3-l Fuze Bmwy Sys\\em Characteristics ........................................................................................................................ 3.I6 4-1 Relative Sensitivities of Fuze Explosives ................................................................................................................. 4.4 4-2 Compatibility of Common Explosives nnd Metis ................................................................................................... 4-5 4-3 Physical Propaties of Fuze Explosives ....................................................................................................................4.6 4-4 Common Explosive Mamials and Additives ...........................................................................................................4.8 4-5 Ak Gap Sensitivity Related to Acoustic Impedance of Acceptor Confining Medium ............................................. 4.I2 4-6 Burning Rntes of Gasless Delay Compositions ........................................................................................................GI9 5-1 Approved Explosives for All Semiccs ...................................................................................................................... s.2 61 Spring @uatiOns ....................................................................................................................................................... 6-4 6-2 Design Equations for Constant-Force Negator Springs ............................................................................................ 6-9 7- I Programmable Timer with Pulse Output .................................................................................................................7.2O 7-2 programmable Timer Wilh Latched Output ............................................................................................................. 7.21 8- I Functioning Times of MR237 and MR238 Fuzes .................................................................................................... 8.I2 9-l Requirements and Design Dam for.%mple Fuze ..................................................................................................... 9-12 9-2 Computations of Moment of Inerlia ......................................................................................................................... g.I4 1o-1 Summary of Conditions and Calculations for De!ennining Angular Spin Velncity to Ann a Fuz.e ........................ 10:8 13-1 Compatible Couples .................................................................................................................................................. 13-3 13-2 Potting Compounds Used Successfully in Fuzes ...................................................................................................... 13.9 13-3 Failure Rates for Soldering ....................................................................................................................................... 13.10 I 3-4 Mechanical Properties of Selec[ed Plmtics ........... .............................................................................................. 13.12 13-5 Selection Guide for Zinc and Aluminum Dk-Casting Alloys .................................................................................. 13.14 13-6 Properdes of Aluminum and Zinc Die-Casting Alloys ............................................................................................. 13-15 I [3-7 Common Timer Lubricmfi ....................................................................................................................................... 13.17 I 14-1 MfL-STD-331 Tesu .................................................................................................................................................. 14.s 14-2 MfL-STD-810 Tesl Melbcds .................................................................................................................................... 14.9 14-3 RF Hazard Susceptibility Criteria (’Tag Criteria’”) ...T&........................................................................................... 14.15 14-4 Lower 95% Confidence Bounds on Reliability Based;on Z.cro Failures In N Triafs ............................................... 14.24 xx I

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) q LIST OF ABBREVIATIONS AND ACRONYMS q AA . antiaircraft ECM = electronic counmmeasure ac = almmating currenl ED = energy density Acc = accumulator EED = elecmcxplosive device ADAM = area-denial artillery munition EEPROM = elecrncally erasable programmable ROM AD PA . American Defense preparedness Associa- EFJ = explnding fnil initimor tion E-head = electxnnic head AGC = aummalic gain CnnUOl AIS1 = Amcricm fmn and Steel Insti!utc EM = electromagnetic ALU = arhhmetic logic unit EMC = clecmmagnetic compatibility AMC . US AIMY Materiel Command EME = electromagnetic effects AMRAD . Joim-Scrviccs Fuzx Managcmem Board emf = electromotive force Armamen@funiticms Requirements, EMI = electromagnetic interference Acquisition, and Development EMP = electromagnetic pulse AMSAA = US AIMy Materiel Systems Anafysis EMR = electromagnetic radiation Activity ANSI = American National Stmxlards Institute EO = electm-opticd AP = armor-piercing EOD = explosive ordnance disposal APA = Army S40curemcnt Appropriation ESD . electrostatic discbnrge APC = armored personnel carrier ESR = effective series resistance APERS = antipersonnel AQL = acceptable quafily level H’ = electronic time ARDEC . US Army Rcsearcb, Development, md ETF = electronic time fums Engineering Center EUTE . Early User Test and Evacuation AT = amimnk FAE = fuel-air-explosive ATIAV = antimnk-nntivebicular FASCAM = family of scatterablemines BCD . Binat-v Cndcd Decimal FAST = Fairchild advanced Schouky Tfl BD = base detonating FASTS = fuzc mm spin tesl :yslem CAD = computer-aided design FDM = force discriminating mechanism CAE = computer-aided engineering CB = cbcmical and biological FF = flip-flop C’E = continuous comprehensive evnfuation FFAR = folding-fin aircdt rnckct CEP = Concept Evaluation Pmgmm CG = center of gravity FM = flight motor CKT = circuit FMEA = failure mnde and effects armfysis CL = clcck FMECA = failure mnde, effects. and criticality analy- CLGP = cnnnon-launchti guided projectiles sis CMOS = complemenlnV metal oxide semiconductor FMU = fuzc munition unit FOGM = fiber-optic guided missile CP = concrete-piercing FOT = follow-on tests CPU = central processing unit FOTE = follow-on operational test and evaluation CTE . cnefficiem of thermnl expansion FOV = field of view CVT = commlled variable time ITA . fault tree analysis CW = continuous wave GaAs = gfdlimn arsenide GA7TIR = ground laid interdiction minefield dc = duect current GEMSS = ground-emplaced mine xatw’ing system diff-anp = difkentiaf.amplifier GM . guided missile DIP = dual in-line package GNO = ground DLY = delay DoD = Department of Defense GP = geneml-purpnsc DTUPC = design 10 unit production cost HCMOS = high-sfxul CMOS EBW = explnding bridgewirc ECCM = elecwonic counter couotermensures HDL = Harry Dhmond Labnrmory ECL = emit[cr<ouplcd logic HE = high explosive HE-AP = high-explosive armor-picming HEAT . bigb-explosive antitank HEAT-MP-T = high-explosive amiumk, multipurpose, tracer HE-CP = high-explosive concrete-piercing xxi

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) HEDP = high-explosive dual purpose MTF . mechanical time fuze HEI = high-explosive incendiary MTSQ = mecbnnicnl time superquick HELT = high-explosive incendia,w, tracer mv = muzzle velncity HEP = bi~h-explosive plastic NATO . North Atlantic Treaty Orgtmim[ion HE-T = high-explosive. tracer NBC = nuclear, biological, and chemictd lC = integrated circuit NC . no change ICM = improved conventional munitions NSB . near-surface burst ICOMS = improved conventinnd mine system NSWC . Naval Surface Warfare Center fDM = impact delay md.de OMA . Operations and Maintenance, AMIy fEEE = Institute of Electrical and Elecwonics Engi. OMEW = Office of Missile Elecuonic Warfare neers OpAmp = operational nmplifier fEP = independent evaluation plan ORATMS . off-route antitank mine system fER = independent evaluation report ORD . t@rationaJ Requiremems Dncunmm 1>L = integrmed injection logic OSC = oscillator JMPAIT = imp;ctavalanche andvrmsiltime OSC = oscillator controlled timer I Im = internml OSC-AMP = oscillator-amplifier fNV = invene; OSTR . one shot transformed response IOT = inilial operational test OT&E = operational test and evaluation lPR = in-process review OTEA . US Army Operational Test and Evaluation IQR = interrupt request Agency IR = infrared PA = FScatinny Arsenal IR&D = independen! resenrch anddevelopmem PAOD = pneumatic annular-orifice dashpot IRQ = imerruptrequest PCB = printed circuil board fTL = intent tolaunch PD = pnint detomxing JOCGIFSG = Joint Ordnance Commanders’ Group/Fuse PDSD = point-detonating, self. deslmc[ Sub-Group PDSQ = pnint-detonating, superquick ISOR = Joint Service Ordnance Requirement PHA . prelimituuy hazard analysis RE = kinetic energy PIBD = point-initiating, base-detonating LAOD = liquid annular-orifice dashpot PIP = prnduct improvement pmgmm Laser = light amplification by stimulated emission Pla = programmable logic array of mdhion PLL . phase Inck Ionp LAW = Light Antitank Weapon PPT = Production Pmveout Test LCC = life cycle cost PROX = prOXitity LCD = liquid crystal display PS = pnwer supply LLNL = Lawrence Livermore National Laboratory ~ = pyrotechnic time LRIP = Lnw-RaIe Jnitial Production PUT = progmmmable unijunction transistor LSI = large scale integration PYROTJME = pyrotechnic time LSlll- = low-power Schottky ‘lTL QAP = quality assurance provision MANPRINT = manpower and personnel integration QT = Qualification Test MCD = magnetic coupling device R = reset MDF = mild detonating fuse RAAM . remote amiarmor mine MIL-SPEC = military specification RAM . random access memory MJL.STD = dhary standard RAP = rocket-assisted projectile MLRS = multiple launch rncket system RC = resistor-arpacitor mmw = millimeter wave RCR = rnlmion counterrmmion MNOS = metal nitride oxide semiconductor R-C-R = resistance-capaciwnce-resismnce MOPMS = mndular pack mine system ROTE = research, development, test, and evaluation MOPP = Missinn-Oriented protective Posture RF . radio frequency MOS = metal oxide semiconductor ROM . read-only memory MOSFET = metal oxide semiconductor Iield-effec! ROTAC . romy actuator tmmsismr rpm = revolutions per minute I MT = mechanical time rps = revolutions per second MTBF = mean time before failure S&A . safety and arming xxii

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) SAD = safety and arming device TDP = technical dam package SADARM = search and destroy mmor projectile TDP = test design plan T&E = IeSl and .WiUtiOn SAM = surface-lo-air missile TECOM = US Army Test and Evaluation Command SCR = silicon-controlled rcc[ifier TEMP = test and evaluation master plan TEMPEST = electromagnetic fields inadvertently emn- SD = self-destmc[ SES = second environment sensor nating from operating equipment SESE = secure echo-sounding equipmeni TfWG = Tes( Integration Working Group SHA = system hazard analysis ToW = utbe-lmmched, optically wscked, wirc- SIP = single in-line package SLUFAE = Surface-Launched Uni~ Fuel-Ak-Expla- guided antitank missile TRADOC = US Army Training and Doctrine Command sive SNORT = Supersonic Naval Ordnmce Research TT&E = technical testing and evalumion TTL = transistor hansistor logic Track SOIC = small outline integrated circuits UMfDS = universal mine dkpensing system US = United States SOP = standard operating pr~edurc SOS = silicon-on-sapphire VARfCOMP = variation of explosive compasilion SOT = small outline wansismrs VCO = vohage-controlled oscillmor SPST = single-pole, single-lhmw VT = variable time WP = white phosphorus SQ = su~rquick SQ-DLY = selectable supequick delay action WSESRB = Navy Weapon System Explosives Safely Review Board SW = switch TDD = mrge[-detecting device WSMR . White Sands Missile Range WW . World War o XXIII

q Downloaded from http://www.everyspec.com I MIL-HDBK-757(AR) I I PART ONE I FUNDAMENTAL PRINCIPLES OF FUZES I Pan One presentsthe fundamental principles of fuzes. The dkcussian includes (he purpose and apcration of a fuze. de- I sign considerations, principles of fuze initimion and explosive train design. Chapter 1 provides a comprehensive discussion of all types of fuzes for the various types of ammunition used hy the services. Chapter 2 discusses the philosophy of fuzz q design md general guidelines on the conduct of a fuze development program. Chapter 3 describes the methods of target sensing and fuzc initiation. Chapter 4 provides information on the design of componentswhich make up the fuze explosive 1 train I CHAPTER 1 INTRODUCTION This chapter begins wilh rhe definition of a fuze in terms of ifs application 10 munitions of providing safety during rhe factory-to-function sequence and itsjlrtal mission of effsxring initiation at the required time and place to op(imize damage to the forger. The wide variety and intended use of munitions, which controf the design and configuration offizes, are ex- plained along with the grahtian in complexity from the very simplejize used in small caliber roundz IO Jhe highfy sophisticated radar jitze of the guided missile. Components related mjkes, such as power sources, explosive items, timing, and safety and arming devices (SAD), are covered in some detai[. Fuze action is described in terms of the jimctioning of its explosive train beginning wirh the initiating stimu- lus and proceeding by explosive amplification slages rofinal detonation of the munitian. The ratiomle for iso. [citing the initiating element (detonator) until arming is described. Fuze design philosophy employed by the United States as a means to attain the required safety level is dis- cussed along wi:h the balance required between safety and reliability. The arming process is shown in graph i- cd form. Beginning with artillery ammunition, typical ammunition items in stockpile and tinder development by the Army are listed and described.’ Rif7ed and smooth bore guns, guns of small through large caliber, automatic and single fire systems, high-anglejire guns (such as howitzers and mortars), and long-range rifles are discussed. A specific munition used as tank main armament is described in some detail to illumimte such highlights az (he use of a shaped charge for armor penetration, requirement of a nonspin projectile, and the use of a conzbuz- tib[e cartridge case to reduce clutter within the tank. Rocket ammunition, which has the unique characwristic of low faunch setback (acceleration), or recoil, retiive to the launch platform, is discussed. A nillery rockets, aircrafi-delivered rockets, and man-portable rockets are explained as they relate to fuzing requirements. “Guided missiles, although for the most pan rockel propelled, area separate category that pbzces high demands on fuze design. Categories covered are su~ace-jo-surface, surface-to-air, and air-ro-sutface. Guidance by la. ser, infrared (lR), radar, and wire is explained. Requirements pIaced on fuzes by the statiomzw munitions, e.g,, mines and boobytraps, which mus! wail for the target to come to them and which have little or no environment to arm a jize, are also covered. The emer- gence of the mine as a vitally important andjlexible weapon of modern battlefield war@re is described. The radical changes in convenrioszal mine design as eflected ursder the family of scatterable mines (FASCAM) are explained as a quick strike emplacement capability thraugh air, anillery, and special purpose groutzd delivesy techniques. Since this zystem offers a uzable arming environment, fuzes for such mines have taken on greater capabilities, and they are covered herein. Target sensing by seismic, acoustic, radio frequency (RF), and ntag- neric infhsences is described. Like mines, the hand grenade+tiginating in its present form in World War I—has been VOSIIYexpanded to include propellant-launched grenades with greater range than the obsolete rifle grenade astd delivery of anti- tank and antipersonnel grenodes by cargo-carrying rounds. In the [after capacity the grenade is clazsl~ed az a submunition. 1-1 —

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) A fuel-air-explosive (FA E) weapon capable of detonating minefield and incapacimring enemy troops who are under cover of foxholes and bunkers is also discussed. This weapon consists of a ffammable gas contained as a liquid and mixed with air to form an explosive mixture. The inlricate fizing system needed to effect use of this weapon is described and illustrated. The categorization of fizes is discussed by end-item, by purpose, by mclicai application, by functioning ac- tion, and by locarion in the munition. Detailed description of fuzes is given by functioning action, such as im - pact, time. proximity, command, and combination. Fuze nomenclature for the Army, Navy, and Air Force is described and examples are given. The remainder af rhe chapter is devoted to a detailed description and ifhwrarion of representative fuzes for such functioning modes os impact; time, i.e., mechanical, electronic, and pyrotechnic; and proximity in artillery weapons, aircraft-delivered weapons, and guided missiles. 1-1 DEFINITION AND PURPOSE OF A role. which in effect is to constitute the brain of the muni. e) FUZE tion. This handbook is concemcd with some of Ihe basic principles underlying the design of fuzes. The final design q) The word fuze is used to describe a wide variety of de- of any fuze will depend upon the role and performance re- quired of it rind upon the ingenuity of the designex thus vices used with munitiom to provide basically the functions attention in thk handbnnk is focused on basic principles. 11- of ( 1) safety, i.e.. keeping the munition safe for storing, Iustrntions of applications arc purposely kept as simple m handling (including accidental mishandling), tr’ansporta- possible in order to leave the final design approaches, m [ion, and launching or emplacing. (2) arming, i.e.. sensing they must be, m (he fuze designer. the environment(s) associated with actual use including safe separation and, thereupon. aligning explosive trains. 1-2 FUZE ACTION closing switches andlor establishing other links or logic to prepare (he muniiion for functioning. and (3) firing, i.e., Inherent to the understanding of fuze design is the sensing the point in space or time a! wbicb initiation is to concept of the progression of tic action of the explosive occur and effecting such initiation. See Ref. 1 for nomen- train (Ref. 4). which begins wilb initiation and progresses clature md definitions in the ammunition mea. Distinct [o the functioning of the main charge in the warhead. Ini. timion. as the word implies. starts with an input “signal”. fuze terms arc defined in the gloss~. such as tnrget sensing, impacl, or other stimulus. Tfis %ig- There is a very wide variety of munitions in exis[ence, naY then must be amplified by such devices as n detonator (first stage of amplification). a lead (second stage of ampli- and new ones are continually being developed. They in- fication). and a booster (third stage of amplification). The clude artillery ammunition (nuclear and nonnuclear), tsnk bnoster has am explosive output of sufficient force to func- ammunition, mortar ammunition. mines, grenades, pyro- tion the main charge. The detonator contains explosives that technics, rockets, missile warheads (nuclear and non- are very sensitive because it is required to respond m [he nuclear), and other munition items, Because of the variety initial weak signals. The basic role of the fuze is not only of [ypm and the wide range of sizes. weights. yields, and (o indicate the presence of the target and m iniiiate the ex- intended uses, it is natural that the configuration, size, and plosive train but also to provide safety by separating the complexity of fuzes also vary over a wide range (Refs. 2 detonator from the remainder of the explosive train until and 3). Fuzes extend from a relatively simple device such arming is acceptable. Significant casualties to pmpmty and m a grenade fuze m a highly sophisticated system m sub- life in the past have been directfy traceable toinadequate system such m a radio frequency (RF) proximity fuze for built-in fuze safety. a missile warhead. In many instances tbe fuze is a single physical emity. such as a grenade fuze, whereas in other As an approach to providing adequate safely. present instances two or more imcrconnccted compcments placed in design philosophy CSIIS for a fuse to have at least IWOin- various locations within or even outside the munition make dependent safety features wherever possible, each of which up the fuzc or fuzing system. is capable of preventing an unintended detonation. At leasi one of these features must provide delayed mming (safe There is also a wide variety of fuze-related component-s. separation). This and other aspects of safety are dkcussed such as power sources. explosive initiators, timers, safety in detail in Chapter 9. Reliability of functioning is afso a and arming devices (SAD). cables, and control boxes. primary concern of tie fuze designer, details of which arc These components are sometimes developed. shacked, and covered in par. 2-3. issued as individual end-items but in the overall picture comprise a part of the fuzing system. Fig. 1-1 is a diagrum of the steps involved in a typical arming prncess. At the left the fuze is represented as un- Leading nations employ the most advanced tccbnology azsned so that it may be smred, tmnsported, handled, snd available in tbe design of modem weapons and are con- stantly advancing [be SWICof dw wt. This fact is pssticu- larly true of fuzes because of their importnnt md exacting I-2

Downloaded from http://www.everyspec.com Committed to - Function— MIL-HDBK-757(AR) unarmed+paflalyArmed4Armed- C!3Instant Fuze Ceases to be Unarmed [=!DelayJ ~ Arming Plus Commit to Function Delay— Time . Figure 1.1. Fuze Arming Prncess safely launched.The arming prnccssstartsat “a’”by adding AP). high-explosive concrete-piercing (HE-CP). hlgh=x- energy m the system in a proper manner. AI “b enough plosive-plast~c (HEP), high-explosive antitank (HEAT). energy has been added so that the device will continue to imprnved conveminnal munitions (fCM), illuminating, completion of the arming cycle. At any [ime between “a” smoke, and chemicaf (Refs. 5 and 6). By and huge these and “b the device will return [o or remain in the unarmed munitions follow a baflistic tmjectory ahlmugh guided pro- condition if the energy is removed or the threshold level is jectiles now exist in the invento~. insufficient to sustain arming. After ‘W’ the fuzc is cmnmit- ted 10 continue the smdng process; tierefore. “b is termed Anodmr classification is according m usage, such as the commitment pnim. The explosive b-sin is ahgncd at “c”, smiaircraft (AA), mtiwmk (AT), antipersonnel (APERS), nnd the fuze is considered armed. fn some fuze designs. and armor-piercing (AP). however, other functions, such az switch closure, must nc. cur before the fuze can function az intended. fn these cnzss Some projectile launch platforms induce spin (rifled the fuzc is said to be explosively and elecrricnfly commit. bare). whereas orhers do not (smcah bum). The nonspin ted to function after switch closure is completed at ‘W’. tYpCs usu~ly mUim fins for flight [email protected]; however, tank main armament CM be smcmIb bcne and not rcquim fin 1-3 TYPICAL ARMY AMMUNITION stnbllization. Rifled launchers w cannon (amnmatic). bow- ITEMS itzerz. snd rifles. The moruu generally is launched fmm a smooth bore platform. Some Iin-stabilized rnumls are Depending upnn its taclicnl puzpnse. ammunition can adapmblc 10a rifled barrel. CWIYa fuzc in ifs nose, its base. or my interior Inca[ion. To illuslmte this verzatilily, severnl common fuze carrierz arc 1-3.1.1 Astfllery described. Artillery ammunition is classified accordhg to form as 1-3.1 PROJECTILES fixed. semifixcd, sepam!ed. and separate loading. In fixed ammunition. az shown in Fig. I-2. the cnmidge cazs is rig- Ardllery munitions can be classified according to [he idly attached m the projectile nnd tie propelling charge is payload carried. such az high explosive (HE). high-sxpln- nonadjuswbks (Refs. 5 and 6). h =mifixcd ammunition, ss sivc incendkwy (HEf), high.explosive armor-pieming (HE- zfmwn in Fig. 1-3, rhe increment-zsstioned cartridge cazs- which contains the propelling chnrge-is not permanently 1-3

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) fixed m tie projectile so that the chwge is accessible for sd- rated ammunition is used when the ammunition is too large q justmem for zone firing. In separated ammunition, as shown 10 handle as fixed ammunition. A)] of tie previously dis- in Fig. 1-4(A), the propelling charge is sealed in a meld cussed types are loaded into the gun in one operation, and cartridge case by a closing plug and is nonadjustable. Sepa- the cartridge case is fitted with a primer. In separate load. ing ammunition-m shown in Fig. 1-4( B)-the projectile. (!Fuzo propelling charge, and primer are loaded into the weapon Pmjecti 10 separately. The projectile is inserted into the breech and Rotating Band crimp cartridge case Cddge Ceae propellant Propelling Charges (Nonadj”stnbla] Palmer Figure 1-2. APERS-T, Fixed Artillery Round, Figure 1-3. Semifixed Ammunition 105 mm, M494 \\ Nonad@table \\cfad”g plug Pmpdllng Charge (A) Separate Ammunition IAdjusleble PmpdIktg Charge Contained In Cloth &ags (B) Separate fading Ammunition Figure 14. Separaate Ammunition 1-4

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) q rammed so that the rotating band seals, md [he propelling aluminum and magnesium salmt. ‘flmse projectiles contain charge, which is adjustable, is placed in the chambsr imme- no explosives and use kinetic energy az dre principal means I diately to the rear of tie projectile. The primer is inserted of defeating an armored target. into the breechblock after it has been closed. o Other AP projectiles usc a shaped charge (See Refs. 9 The cartridge caze primer consistz of an electric wrcus- and 10 for detailed discussions of shaped cbargcs.). as sion primer and a black powder igniler charge. which ig- shown in Fig. 1-5, whkh. when dstonaed. pmdumz a jet of nites the propellant directly or by means of a black pnwder high-velncity metal. The energy of the jet causes failure of igniter bag fixed [o [he propellant envelope. The resulting the ntmor, and metal panicles penetrate [be interior of tbe gm.es propel the projectile out of tie gun tube. Largel. Most vroiectiles are equipped with a rmating bad dw. A new family of impmved conventiomd mrmiiions haz when rarnm”ed into the gun”b.mel. cemerz the base of the been developed m deliver submunitions. Thezc projectiles projectile in the bnrc and helps prevent escape of pmfdml comnin a payload of either duaf-purpnse grenades or anli- gases. As the projectile moves fommrd. rhling in Ibe bore tank or antipersonnel mines. s illustrnicd in Fig. 1-21. An of the gun barrel (Ref. 7). which is helical, engraves the expulsion charge is contained in the nose of the projectile band and imparts spin to the projectile. This rmation srnbi- m eject the payload, and the payload is dkperzed over a lizes Ihe projectile in flighl. wide area by centrifugal force induced by Ihe spinning pm- jecli le. Although they differ in charac~eristic details, ivtillc~ projectiles are of the same general shape, i.e., they have a Both the Army and the Navy have fielded a new genem- cylindrical body and generally an ogival or conical head. tion of “smnrt weapons” (Ref. 11) designed 10 fxrmi[ highfy Some special purpnsc projectiles (Ref. 8). such nz armor accurate dclivay of rutillery prnjcctilcs. The Army’s COP- piercing, have a hardened steel penetrator encased in an PERHEAD. shown in Fig. 1-6. nnd the Navy’s 5-in.154 CMdgo Cass Pftnw obm~ Sam! S.I-mu!dIorre\\@ Wtch / ml 1 ///Fln?amAz50.t.ly / PrweJtii.Sws PIBUi+o M764 \\_iCanOunw Wavs Sh‘a$ar COMPA.3Slwsd Chame stud @se Eam ConIh@bh case Figure l-S. Cattridge, 120 mm, HEAT-MP-T, M830 6 I oirscf lmpacl Switch 4 Coppar Cone 7 Conlrol Fins 2 Gyro 5 Shaped Charge 6 Slip Obtumtar ,0. 3 Roll Rate Sensor 6 Fixed Wings 9 Control Actuator Figusw 1-6. 155-mm Cannon-Launched Guided Projectile (CLGP) COPPERHEAD 1-5

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) Guided Projectile contain a seeker and electronic package and stabilized by tbe &agues. The submunitions scan the in the forward sectinw, the warhead and fuze in the midsec- target area and. upon s-msing the Ioca[ion of a target, deto. [ion: and tbe guidsnce and control section, power supply, NW their warhea&. A self-forging fragment forms, which and control tins in the rear section. These munitions conttin impacts and destroys tbe target. The SADARM projectile guidance and fuzing elemems that can be activated by tar- is one of several smart projectile weapon systems that are get signatures which are psssive infrared (IR) or externally in development. induced (laser designated). Tbrec types of fuzing arc used with srcillery projectiles. An extension of the major thrust of the Army toward They are direct target impact, proximity to [he target, and development of sman weapons is tie search nnd destroy ar- time preset prior to kmncb, Multioption fuzing concepts mor (S ADARM) projectile (Ref. 11) for the 155.mm how- (PW. 1-6.3) combhing afl of these melhcds of initiation into ilzcr. When fielded, lhc SADARM projectile will give the a single fuze are under development. Army a fire-and-forget capability against moving and sla- [ionary targets. The SADARM projectile, shown in Fig. 1- 1-3.1.2 Mortars 7, contains two submuni[ions, each equipped witi a milli- memr wave rind/or IR sensor, a drogue, a SAD. and an ex- Mortars (Ref. 6) are generally smooth bore, muzzle plosive cbmge with a self-forging fragment lens. Upon ex- Inaded. high-angle fire weapons. The 81-mm round shown pulsion from tbe projectile, the submunitions are deployed in Fig, I-8 bas a nose fuze, a high-explmive payload. ~d rge Base P q!!!Fuze Fin As Fo&ard Submunition Figure 1-7. 155-mm SADARM, XM898 Projectile d Propellant Incremmt HE ~ler \\ (CharUe A) I P;mer Flash Holes Ignilio> Camidge Ob;ralor Po :Uze Figure 1-8. Mortar Cartridge, 81mm, M374A2 1-6

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) * a tail-fin assembly with ignition and propellant charges al- effective fragmentation capability and is, tfrercfore, a mul- mched. As the cartridge slides down the mortar mbc, a per. tipWpOsc projectile. A contact switch, conrained in the nose I cussion primer in the tin assembly is initialed by striking a spike, acts as one of rhree means of oiggering initiation of fixed firing pin in the base cap of rhe mortar Nbc. The bur- the fuze explosive tin. haled in the shoulder is another I ningprimer flashes through a hole in the cartridge housing contact switch that, combined with the nose switch. pm- to ignite the ignition cartridge. This in tum ignites the pm- vidcs a grind fmmal MM impact sensor system. The third q pellmm charge. which propels the caruidge toward the Iar- impact sensor is located in the base fuze. and it consists of ( get under fin stabilization. Range is controlled by the angle an inertia spring mass, wh]ch triggers fuze initiation cm of elevation andlor the number of propellant increment gmze impwas. A detailed description of the fuze is in par. I charges used. 1-7. Ammunition for mormrs is classified as HE, illuminat- 1-3.1.4 Automatic Cannon ing, whk phosphoms (WP) smoke, and training or target practice. HE cartridges me used mainly against light ma[e- Automatic cannons are rifled guns thm arc noted for their riel md personnel and function with both fragmencntion aad severe envirvnmems of loading forces, spin, and launch .ac- blast effects. Smoke carh-idges conmin n WP tiller and arc celemtion. The ammunition is essentially all HE and tilted used [o provide a screening smoke or as an incendk+cy de- with nose fuzes (Ref. 12X however, some foreign rounds vice against personnel and materiel. Illuminating cartridges have base fuzcs. The main uses of the= cannons wc for an- contain a parachute and an ilhrminam charge capable of liaircraft. amivehicle. and air-m-air and air-to-ground mr- burning up to 60 s with n minimum of 500.000 candle- gets. The nirbume cmnons do not generally exceed 30 mm power. They arc used m night to illuminable a desired pninl became the airframe is normally limited to rhe recoil of rtds or area. caliber. A maximum tire raw of 30 rmrnd.dmin is allowable for Launch platforms for this class of ammunition consist of a l-rein fxriod. 18 rounddmin for pcrinds not exceeding 4 helicopter. high-speed jet aircraft. and towed and tracked min. nnd 8 mundsfmin indefinitely. armored gun systems. A development effort is ongoing to provide a hybrid gun system consisting of an amomntic Mortar sizes uc 60 mm. 81 mm, 4.2 in., and 120 mm. cannon comhirwd with a ground-to-air missile to engage air 4.2-in. mortars do not have tins. bm they arc tired from targets. This combination will provide extended ctcnge and rifled tubes and are therefore spin stabilized. To permit a high &gree of lethality m rhe system, and the cannon will free-fall in the tube, the rotating band is recessed snd then provide quick reaction time. countermeasure immunity, and expanded by the pmpellnnt pressure to engage the rifling. close-in encounter capabilities. Mortars use point-detonating. time, and multiopiion Fuzes for automatic cannon-launched rcmnds genecntly use disc or ball rotor mechanisms—lo be discussed later— (proximity. near-surface burst, instantaneous. and delay) which arm relatively close to the launch vehicle—10 to 100 fuzes. Arming delay is achieved by clnck mechanisms. air m. A self-desuwct feature usually is employed in gmund- bleeds. pyrotechnic delay. or air vane and gear reduction Iauncbed. smafl-csfibcr rounds for mtiaircmft use to pre- systems. Setback forces range from 300 to 10.000 g and clude hazards tn friendly troops and materiel deployed muzzle velocities (rev) fmm 47 to 302 mfs (156 to 990 fti nearby from armed rounds that miss the target. s) with ranges fmm 274 to 5669 m (300 to 6200 yd). Range is controlled by tube elevation and by increments of pmpcl- Iant that are attached m lhe fin assembly, 1-3.1.3 Tank Main Armament 1-3.1.4.1 20 Through 40 mm A typical prnjectilc for tank main armament is the Higb- A typical 25-mm round is shown in Fig. I-9. The round Explosivc Amitank. M.hipurpuse, Tracer (HEAT.MP-T) is used in the M242 BUSHMASTER gun agnirrst ground Mg30 cartridge shown in Fig. t-5. Thk round is tired from and air targets. The fuze provides supcrquick. graze, and the 120-mm smooth bore cannon M256. II is nnnspin m selfdestmct modes of function. The gun environments am prevent degradation in performance of Ibe shaped charge setback, 104,OY3 g: spin, 1734 revolutions per second (rps): (Refs. 5,9, md 10) md has a combustible cartridge cnsc to muzzle veluciIy. 1097 mfs (3599 ftk), and creep 63 g. minimize clutter within the tank. The complete round con- sists of a pmjectilc fixed m rfcecaruidge case. This contigu- Functioning occurs at target impact by means of a slab rmion is diffcrwn from earlier tank ammunition. which used tiring pin driven into the detonator or on graze by means of separate cartridge cases. The projectile contains a shaped an inertia plunger, which drives the detonator onto the tir- charge: a spike nose; a pnim-initiating, base-detonating ing pin. Selfdc-m-action occus at o predetermined ncnge if fuzc: n tracer element (Iucated m [he base of the projectile no target is encountered ad thus pmtccts friendly tmnps and no[ shown in [be tigucc); and fins. Although used pri- rind/or installations. A detailed description of the M758 marily as an armor-dcfealing round, the M830 pussesses fuze used with this cmrnd is contained in par. 1-8.1. 1-7

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) Steel CZiItfidg~Case Case Crimpad to Pm@li!o The Navy uses the 76-mm “Oto-Melara” automatic Primer Ml 15 \\ / F.ze. POSO. M758 rapid-tire cannon mounted on hydrofoil craft designed for high-speed to~do attack on unarmored or ligh!ly armored surfnce ships. Tbe HEmund shown in Fig. I-IO(B) is nose fuzed and has supm-quick and delay function op!ions. The fuze, MK407Mod l.shown in Fig. l-43 anddescribedin 1 Tra&r HE~ Pmjmtile par. l-8.2, differs from tieconventional Amypoint-deto. PrOpknl nating (PD) fuze in tbal it has a bnrdened steel penetrating body m enhance mrgel penetration. Figure 1-9. Typical 25-mm Round, M792 1-3.2 ROCKETS 1-3.1.4.2 Larger Than 40 mm Rocket ammunition (Ref. 13) has the unique advantage A medium caliber (75-mm), automatic rapid-fire canon of zero setback or recoil rclalivc to the Iauncber. This per. mounted in a tracked armored gun carrier is designed m mits the launching of large warheads from light structures. I defeat medium- and heavy-armor threats, Two types of such as fixed and rotary wing aircraft, mucks. and fmm the ammunition have been developed; a telescoped kinetic en- shoulders of troops. Rockets range in caliber from 66 to 345 ergy round, xM885, shown in FQ. I-10(A) and an HE mm (2.6 10 13.58 in.) and can deliver a large variety of round, XM884, wilh a multipurpose f“ze. TIW XWK?4 payloads includhg HE. shaped chtige. fleche![e. grenade. round is intended for use against light armor, buildings, and smoke, incendiary. illuminating. and fuel-air-explosive bunkers. (Refs. 14 and 15). propelling Charge Windshield Pfiiner Cariridge Ca;e Crimped Body Core (A) to Projectile 75-mm Kinetic Energy (KE) Round (Army) Antitank -7 — ——. — Cafiridge Case Crimped Fuze, PD DLY MK407 to Projectile (B) 76-mm High-Explosive (HE) Round (Navy) Antiship (Lightly Armored) Figure 1-10. Ammunition, Automatic Cannon, 7S mm and 76 mm 1-8 —.

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) q Essentially all rockets are fin stabilized. provide thrust second independent I.wk cm the out-of-line explosive (rain for only a short period of time. and by comparison are less in order to comply with MlL-STD. 1316. Safety Criteria for accurnle than tube. fired ammunition. F@r these reasons. Fu:e Design. most rockets arc fired (mm relatively shon mnges. The only notable exccpdon is tbe Multiple Launch Rocket System 1-3.2,1 Artillery Rockets (MLRS). shown in Fig. I-l I, wh]ch is used for Iong.rnngc area covemge missions. Rockets used as artillery arc launched from multiple launchers mounted on vehicles. One such system is the ??8- Most rocket fuzes usc acceleration m one environment mm cargo-camying rocket. The M42 submunitions with 10 remove a lock from [he out-of-line explosive train and an shapsd charge and fragmenting case arc dispensed from the accelcmtion.integrating device 10 achieve safe separation warhead shown in Fig. 1-12 by m! electronic time fuzc (par. from the launch plalform. Current rocket fuze designs usc I -9.2) ngainsl ground personnel and light materiel. mm nir. air drag. or elccuocxplosive devices to activate a <-,-., ’’”.. Launch Position <? -=========--3. cs Figure 1-11. 228-mm (9-in.) Multiple Launch Rocket System 15 —— - —-—. _ AB c D I b 7 7 1 Fuze M445 /’ 2 Wameaa 3 ssMts 4 Wt Mmm 5 Fobjlno Fins 6 R&et Nozzle 8 7 M42 SubmunlIJQn \\ o 8 centmI ExPEIIlngC4mqe (@ L. Section AA Se&on SS Section CC + .%aion DD Pigure 1-12. Rocket-Launched Submunition Dispensing Warbead 1-9

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) The fuze for the submunition (par. 1- 13) is a simple, 1-3.2.2 Akcraft Rockets q mechanical, inertia-tired, impact fuze axmed by the rcstrainl of a trailing ribbon. The dkpensing fuzc M445 (par. 1-9.2) The 70-mm (2.75-in.) folding-tin aircraft rocke! (lTAR) is an electronic time fuze Incmed in tbe nose of the rocket. (Ref. 13) is the smafles racket cmried by high-spscd, fixed- wing aircrafl snd rntmy-wing aircrnfc. h is carried in quan- Ilk munition rmates al 12 rps. experiences 100 g accel- tirim in jenisormble pnds, which are usunlly fixed to smn- eration, and has a velocity of 1000 MA (3281 ftis). To dnrd bomb racks or special attacbmenls. A number of achieve fuze arming, the rncket must sustain motor bonst launched rocket payloads—such as HE. smoke, tlechette, for 1.25 s m 31 g minimum. A second safety environment and illuminating-can be delivered by aircraft. MOSI air- used for arming of (be M445 fuze is sustained airflow of 70 crafl rockets arc composed of four major assemblies: the 11’lk(230 ftis), fuze (may be nose or base), the warhead. rncket motor. and is folding-fin assembly, as shown in Fig. 1.13. The rncket The purpose of lhe cargo rocket is m masimize the area of coverage. Rocket Motor I I Fin Assembly Fuze \\ warhead (A) In-Flight Fuze (B) Prelaunch HE Comp B4 t————— “cm(“gin) -1 (C) Warhead and Fuze Figure 1-13. 70-mm (2.7S-in.) Folding-Fin Aircraft Rocket (FFAR) With M151 Warhead 1-10 @ —,

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) q motor is ignited by an electric igniter (hat uses on-board ‘fherc is a kwgc vsuiccy of guidance systems. and in some aircraft power. Aircraft rocket fuzes cen bc of the fOllow- cescs hey arc used in combination. Wicc guidance is used  ing types PD. time (electric or pyrotechnic). proximity. and in surface-t-surface md air-to-surface (from helicopters) combinations of these. Pm. 1-9.1 provides a detailed de- applications. laser guidance is used in surface-to. stwfacc I scription ofa typical mcchmiczd fuze used with an airmaft- and air-m-surface applications. and heat-seeking IR guid- lmmchcd HE warhead. ance is used on tergets wilh heat-emitting signatures. Some I hem seekerz arc used againsl tanks, but their effectiveness o 1-3.2.3 Man-Portable Rocket is degraded afier one tank is hh and burning because other missiles may home-in on the burning tenk. Other metfmds I The 66-mm (2.60 .in. ) rocket Lighl Antitank Weapon are used in missiles lhat home-in on the electronic emis- I (LAW) IF@. I-14). M72A3 HEAT with elccsromechanical sions frnm she target. e.g.. an enemy radac complex. Some fuze M4 12E I is a means available m the individual foot long-range surface-[o-air missiles (SAMS) have ground I soldier m attack armored vehicles. The weapon is shoulder consml guidance with the missile picking up (he target and fired. The principle evolved from lhe World War 11 “BA- supplying data to ground control for final inn-in. I ZOOKA”’ weapons. Improved fuze and improved accuracy I in target acquisition have been introduced along wilh a sig- Fuzing systems for guided missiles WYsophisticated and nificant increase in mrget damage. The round consists of a compmetively complex and provide redun&rKy to impmve light cmc shaped-charge warbmd wiih an mmor-penetrm- the reliability of costly and impormnl weapons. As prcvi- ing capability of 230 to 280 mm (9 to 1I in. ) and a single- OUSIYnnted. decoys. such as heal. fire. aluminum chaff, aed smge molor [hat produces 283 nds (928 ftis) velocity at memllic-cnmed tibcrghsss needles. can sometimes bc used 8000 g selback. The round is packaged in n telescoped effectively against shese missiles. Tbc wire and fiber-optic launcher tube. which can be considered expendable. guidance mcthcxt is immune to decoys and electronic coun- lwmeasures (ECM). The fuze is point initiating with a nose piczo crysta~ power source and is base detonating. An inertia trigger 1-3.3.1 Sccrf8ce-tn-Sucface weight provides graze sensitivity. Arming is controlled by setback action on a falling leaf mechanism, which is de- The TOW. M207E2. m shown in Fig. )-15. is a fielded. scribed in par. 6-5.3. wire-guided. fin-stabilized. heavy antitank missile. The shaped-charge warhead, 152 mm (6.0 in.) in diameter. is 1-3.3 GUIDED MISSILES point initimed (cmsh switch) and base detonated. Leunch can bc from a lube mounted on tie M 1I 3 Armored Person- Guided missiles IIS a class we mcke[ powered wi[h the nel Cwricr (APC), on a vehicle with a pop-up [urrc[, or exception of [hc Cruise missile. which is powered by o jet frum a ground-mounted mipud manned by a crew of four. en8ine. Guidance is necessary to provide a high probabi- lity of one-shot kill icgainsl fare-moving targets (tirwaft). er- Somdoff inifialion is accomplished by a spring-extended. ratically moving Iargels (vehicles and belicopterz), radial- 0.4 I-m (16.0+1.) probe containing a crosh switch, und de- ing targets. and under conditions of poor visibility, e.g., ployment is criggercd by c!bore rider pin in the fuze. The clouds. fog. smoke. and darkness. TOW missile uses !he Ml 14 Safety and Arming Device 6 /’ /2 /3 /4 I Piezoelecvfc Element 5 Igniter 9 Propellant c+rebw 2 Lead Wire Conduit s Foldiig Fm 10 Fuze 3 HE Bonecer 7 ~sh Tube 11 HE Cha~ 4 Closure 12 Capper Cone 8 Motw 8dy Figure 1-14. 66-snm (2.60-in.) Light Antitank Weapon Rocket 1-11 —.

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) (par. I-10. I). Fuze safety is achieved by an electrocxplosive improper signals arereceived. lltesys[em istimegatcdby piston that locks an acceleration-sensing leaf mechanism. using digital timer systems. (See Figs. l-16( B)mtd 1-17.) TMs kxked mechanism in tum keeps the out-of-line explo- sive train in the safe position. Fired arming and safe sepa- Adclayed arming distance of 305 m(l OOOft) is pro- ration are ocbieved by an acceleration-integrating device. vialed. l%ctirs[ safe[yis alaunchsignnl from umbilicalre. which requires sus!ained rocket boost. Iraclion. The second safety is breed on a 30-g setback ac- celeration from the launch motor. The final safety uses Ballistic dnln for Lhe TOW missile are 390-g launch and launch motor separation and a 22-g (minimum) acceleration 2 I -g boost accelermian. Velocity m the end of bcmst is 330 boost from the flight motor for 22 ms (minimum). The mis- Mrs (1083 fth). sile power supply is a thermal battery. 1-3.3.2 Surface-to-Air The rotor is secured in the armed position by hardened, spring-powered, detett[ pins tomrert misalignment during The STINGER is a shoulder-launched, forward air de- target penetration. The pencoation delay is electronically determined by flight time. which roughly determines the fense, lR-homing, two-stage, rocket-propelled, antiaircraft impact velocity, Tbefuze has aninstmmaeouso vemidem protect against warhead breakup if the missile strikes a hard missile. The dtanium-cased M2SLIE5 wmhead, as shown in smcturttl member. A tension band sensor switch around dte warhead o~nson warhead deformation. Target impact is Fig. I -16(A), comttins the M934 electmmechnnical fuze and sensed byamechanictd ineniaswi!ch thNiscapableofi”i- liating the wnrbead 8( angles of obliquity up 1080 deg. .4 uses blast as the predominant damage mechanism. self-destmct circuit destroys the warhead in IS*2 sif it target is not engaged. Thesafety mdarming (S&A) mcchtmism cmttainsan unbalanced rotor. which is spring biased away from the armed pmsitiom Thermorpmition is monitored by anelcc- tronic in femogzting system tha{dlows the rotor to arm if proper gcondilionsexis! or locksit in a safe position if /7 /’3/“ 5 / 2 Booster Pellet 3 Copper Cone, Trumpet Shape 4 Shaped Charge 5 Probe Extension Springs (3) 6 Extendible Probe Figure 1-15. 152-mm (6-in.) TOW Warhead, HEAT, M207E2 1-12

51 Downloaded from http://www.everyspec.com MIL.HDBK-757(AR) Iq 1 Connector 2 Fuze GM 934E5 3 PBX Booser Pellet 4 Main Charge 5 Hard Target Sensor, Printed Wiring 6 Sate/Ann Mewing Window I 543 2 6 (A) 70-mm (2.75-ii Warhead q Launch + Flight Motor Ignition 22-g Rotor Lock Rebacted piston Actuator Untocks Rotor at Accalerstion >30 g cd of E@ctmnic Timing Phase ———-—-—- --—— ——-—. -— —-.-— -t i Acceleration Arms Unbalanced Fuze Armed Mechanicelfy Function Occura by 1 Rotor, Closing Arming Switch and Eleetrfcelly ) , ———-— —— -—-. ——---—---——- 7 r SD af Predetermined TIma Deceleration at Impacf Deformation on Impact Acting by Circuit Tuner Through Veriable Defay Timer on Had Targal Sand SwitCfI (B) Fuze Function WMroatic Figure 1-16. STINGER Warhead, HE, M258E5 Mod 1 1-13 —=.. —

Fring u Tri er Environ o #1 & #2 isslle w“ -25Batiery E!a/ dFm Fuze@%r Q Downloaded from http://www.everyspec.com I I LI @= i / -rIi-?,, - ,W. U. ,1. 3. 0.25 100 I Time, s J_ Figure 1-17. Function Diagram for STINGER Missile 1 ~ooo q q u ‘d

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) 1-3.3.3 Air-to-Surface mechaaism. An etsctrictdly initialed delay launch latch con- stitmes the first safely fcaturs. The second safety femurs is The HELLFIRE missile. shown in Fig. I-18(A). is used the requirement for an environment of 7.5 to 10 g to release the setback weight and power the rotor to the mmed posi- on advanced attack helicopters. II is a heavy antitank ticm. Delayed arming is 150t03LM m(492!0984fOfmm wemp-m of a 178-mm (7-in.) dhmeter wi~h a shapsd<hnrge lhe launch pesition. wmhcad and an electromechanical fuzing system. as shown in Fig. I-18(B). Initiation is by cOnt@ through ~c~sh TM fuze is berrnetically staked and contains an inen til- switch m the end of a fixed sbmdoff probe. Thc sensitivity mospberc of 959$ dry nitrogen and 5% helium to previdc ofthk switch issuch thatthe werhcad crm penetrate light long-term storage life. An imemul red and green indicator foliage wilhout being initiated. In this respect. no-fire on flag shows the armed or safe SIXUS of the fuze. ~,~.mm (Ilg.i”) Plyweod md all-tire on 25-mm f l-in.) 1-3.4 MINES plywood has been selected for test purposes as represent Fig. I-19 is n sectioned illustration of {he M2 I heavy tive of thk capability. Guidance is pm~idcd by lm.er i}lu- minxtionof lhe Iargel. antimnk mine. A land mine is a charge of HE, incendiary mixture. or chemical composition encased in n me[allic or The M820 fuze is point initiating. base dmonming nonmetilic housing with an appropriate fuze, firing device. (PlfkD) and conmins an S&A mechanism with a double-in- or beth that is designed to be acturned. unknowingly. by tegrating accelerometer. This accelerome[cr has a setback enemy personnel or vehicles (Ref. 16). Although a land responsive weight that unlecks an unbalanced rotor whoss rotational rate is governed by a runaway escapement 8 1 25 q .. 34 1 Double D@ve Crush Swkch (A) Warhaed and Bcdy 5 Actuation Gas Bottfe 6 Autopilot Unit 2 Lsser Seeker 4 3 Shaped-Charge Warhead 7 Ccntrol Unit 4 S&A Mechaniam B Guidance VEneS 8’ Rotary Solenoid Crush switch Firing Circuit Launch Latch , 3 RoW With Elednc CSetorWOr 7 Lead 4 Runaway Eacapamem Pinion (B) Fuze, PIBD, M820 8 g Weight ,* Figure 1-18. HELLFIRE Mwsile, GM, HEAT, XMZ65 1-15

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) Cotter Pin Stoo / Band ~ E*ension Rod Pressure Ring ~ 1’El / Fuze, Mine, Antitank, M6137 Tilt Rod Tx Pull Ring Plastic Collar \\Oy Belleville spring IL Seal 9 L O-Ring Seal 9!! ? Firing Pin 4 ~ Detonator M46 ..* 3 Black Powder Expelling Charge Concave Steel _ Plate Booster / - “—~ I \\ HE Charge Flgurs 1-19. Mine, Antitank, HE, Heavy, M21 mine is meant to damage or destroy enemy vehicles and expelling charge that projects tie fragmenting component other materiel or 10 kill or incapacitate enemy pcrscmnel, its Of the mine above-ground kforc detonation Amita”k and primary function is [o delay and resirict she movements of antivehicular mines are used against tanks. other tracked the enemy. vehicles, and wheeled yehlcles. llmse mines may b of the hla.st type or may employ the shaped-charge effect. Mines Land mines are divided into two general classes desig- are emplaced maaually or mechanically by mine dispenser nated antipersonnel and antitank. Antipersonnel mines may or delivered aeriatly. be of fragmentation or blast type. Bo:h types may bs de- signed to explode in place. whether buried or emplaced Land mines arc Iriggemd mechanically by pressure. pull. m a release of tension, Pressure-operated antipersonnel abovegmund. Others. known as bounding mines. comai” an 1-16

Downloaded from http://www.everyspec.com MIL-HDBK.757(AR) 0 mines are designed m Lwaiggered by loads of about I I I N ftne M607. h is ttpproximatdy 229 mm (9 in.) in diameter (25 lb). An[imnk’ mines are designed w that they will not by 76 mm (3 in.) thick. Tbc Misznny-Scbardin shaped- I initiate when a person w,nlks on them. They arc triggered by charge effect (Ref. 4) is employed to direct the explosive a force of 890 to 3336 N (200 10750 lb). Hidden trip wires energy into the tank. The mine is buried m a nominal depth I can k used 10 set off the mine when Lhey are pulled (ten- of 152 mm (6 in. ) and is activated by pressure exerted by I sion) or CU[(tension released). tanks. other lmcked vehicles. or wheeled vehicles. The ex- pelling charge is necessmy to clear the e~h cover in front 0 Influence devices. such as magnedc dip tmedles or mag- of the steel plate kill mechanism. A description of the fuze netometers. mtty also bc used to fire antitank mines when for (his mine is presemcd in pm. 1-II. 1. I it is desimblc for firing to occur between tbe treads of the I vehicle. Here technology must be applied tbm involves the 1-3.4.2 Scatterable Mhes study of the disturbances in the magnetic field of the earth I produced by the weight mtd speed of the moving armor [o A new FASCAM emplaced on the surface by hand, be intercepted. cmgo-cnnying artillery. rockets. aircraft. and towed dis- pensers has evolved. Due to the latest state-of-the-an elec- Modem tactics have threatened [he effectiveness of our tronic technology, scatterable mines have significantly conventional mines. Radical change in mine design has oc- greater utility than conventional mechanical mines. Deploy- curred because ment is rapid and requires subsmntially less manpower. FASCAM mineficlds automatically clear themselves for 1. The permanent nature of conventiomd mincfields use by friendly forces bccmws each mine contains a self-de- restricts Imer mobiliiy of friendly !roops. stmct or sterilization feature. Z New mtd more effective cottntermeasureshave re- Although anhrrnor and antipersonnel mines can be de- duced the conventional mine threat. ployed in mincliclds of a single type. considerable syner- gism results when they are deployed [ogether. Anliarmor 3. The accelermed pace of modern combat restricls mines deny easy breaching mtd ckwing with armored ve. and Iimim the mwpmver and time ‘available for placement h~cles. nnd antipersonnel mines deny clearing attempts by and clearing of conventional mines. enemy maps. Table 1- I lists the cm-mm FASCAM concept and delivery matrix. To overcome these Iimitntions. a family of scatterable mines (FASCAM) has been developed with quick-strike One example of n FASCAM system is the remote emplacement capabilities Ihrough air. artillery. mtd special uminrmor mine (RAAM). a magnetic influence. nnillery- purpose ground vehicle delivery techniques. These mines delivered. imtiarmor mine, us shown in Fig. 1-20. Nine of are described in par. I -3.4.2. these mines arc carried in tbe M7 1g cargo projectile. as shown in F!g. 1-21, for 155-mm (6-in.) artillery imd arc 1-3.4.1 Manually Emplaced Mines One of ihe fielded mmtwtlly emplaced mines is [he M2 I hewy. antimnk. HE land mine. as shown in Fig. I-19. wi~h TABLE 1-1. FASCAM CONCEPT AND DELIVERY MATRIX OELIVERY MODE DELIVERY ANTIARMOR ANTIPERSONNEL Artillery MECHANISM WEAPON WEAPON 155-mm Howitzer RAAM ADAM* Ground Vehicle MI09, M198 M718{M741 M6921 M73 I Remowly Activated ‘OwedM?iimr Ground Dispenser GEMSS”” GEMSS Tw~Man M75 N174 A ircrafl Hand Cany MOPMST ~jP,y2s Helicopter SUU-13 Dispsnscr XM131 GATOR GATORr? BLU-921 B BLu-91/B N{A M56 “ADAM = area denial artillery munition .. GEMSS = greund+mp!.aad mine scattering system t MOPMS = modular pack mine system ttGATOR = ground laid interdiction mincfidd 1-17

1 Assembly Show in 155.mm Projectile Downloaded from http://www.everyspec.com 2 Mine Body end Cover 3 Electronic Lens Assembly 4 Mild Steel Plete, Concave 5 SAD 6 Mild Detonating Fuse and Clearing Charge 7 C-Rings . 8 Booster 9 HE Charge 10 Impact Lens 11 Cover 12 Retaining Fting Figure 1-20. Remote Antiarmor Mine (RAAM)

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) * Figure 1-21. 155-mm (6-in.) Cargo Projectile, M718 for Antitank Mhes I dkpensed from the rear of the projectile while over the cM- 1-3.5.1 Hand Grenades I geI. Ten projectiles cm produce a minefield of 250 by 3@l m (819 by 98-f ft). The hand grenade. shown in Fig. I-22. weighs approxi- I mately 454 g ( 1 lb) rind. as the nmmc implies. is lhlOwn by i, These warheads employ the Misznay-Schntiin effect, hand without the use of auxiliary equipment. I which results in a very high-velocity slug capable of pen- etrating tank belly armor. Such penetration leads to almost Tbe range of the hand grenade is limited to approxi- I certain tank destruction. The slugs cm form from each cnd motel y 40 m (13 1 ft). Tbe lethal range for a fmgmcmation 1 of ihe mine to avers m orientation problcm. The tiring takes grenade is a radius of 1g m (60 ft). The danger zone, how- I place in (WOstages. In the first stage a clearing charge re- ever. extends outward such that tic user must take cover. moves (he upward-oriented mine cover and any debris thni may have covered [he mine. The high-explosive de!onmion. All sbmdmd hand grenndc fuzes contain in-line explo. [he second stage. occurs 30 MS afler clcnring. sive trains and arc of a pyrotechnic delay typs. This type of fuzc employs a delay column of slow-burning powder Ihat The S&A mechanism in each mine senses (he spin, ini. is ignited when the grenade is released by [he Ibrower. tid gun setback. and rearward-ejecting environments for Smoke and incendiary grenade fuzes typically have a arming. Par. 1-11.2 provides a detailed description of the shorterignition time (0.7 to 2.0s) than fragmenting grenade S&A mechmism. fuzes (4 105 s). 1-3.5 GRENADES The delay-type grenades have n number of tnctical limi- tations.The most impoftant art(l) an enemy might be able A grenade is a small munition for close mnge infantry m take cover before the grenade demnatcs.(2) the g~nade combat (Ref. 17). Among all the weapons usrd in infamy might mll back downh]ll and delomuenear friendly psrson- combat. grenades have a unique position because they are nel. and (3) the grenade might be picked up and thrown the individual infantryman’s area-fire weapon of opporm- back by an enemy. Accordingly, impact fuzes have been nity. developed, but in view of their complexity and expense, (hey have not repirtced the simple pyrotechnic time deloy The payload of a grenade may bs broadly clrt.ssified as eilhcr explosive or chemical. Explosive grenades arc ei[hcr fuzes. of the fragmentation or shaped-charge IYF. Fragmentation grenades arc used primarily to inflict personnel casualties 1-3.S.2 Launched Grenades but can also lx used against light materiel witi limited ef- fectiveness. Shaped-charge grenades arc used primarily to The original meaning of “’rifle grenade” was a grenads defeat armored vehicles but have antipersonnel effectivc- ness as well. Chemical grenades arc of three basic types: launchedfmm a standardinfamry rifle by meansof a blank irrhani, incendiary, and smoke. Irritant grenades am used to cartridge. Tbc grenades were fragmenting, chemical, or harass or incapacitate enemy pcraonncl. They are also used shapsdcharge. Adapters. attached to the grenade m n.spart for riot comml. Incendiary grenadescontain WP that bums of the grenade. wers usedto mount the munition centerline with a vew high Iemtwmture. They we used primarily 10 to centcrfineon the rifle muzzle. This system.now obsoleu, destroy eq_uip~enl by tire. Smoke grenndcs are used for was used on the M-l rifle. screening and for signaling. Current launchedgrenadesmay be projectedeither by an Grenades may be projected either by hand Or by asps- adapter that is auached to the M 16 rifle, shown in Fig. 1- cial launcher. 23, or by a special single-shot,40-mm ( 1.57-in.). shoulder- firsd, shotgun IYP of weapon, with brmk-opsn action, as illustrated in Fig. 1-24. 1-19

Downloaded from http://www.everyspec.com 0) MIL-HOBK-757(AR) A Iypical launched grenade cartridge is the HE, dual. purpose type, which uses bolh setback and spin m effect nrming. The prnpellzmt for the grenade is in the grenade cartridge, as shown in Fig. 1-25. Chamcwistics nre 7S m/ s (245 ftk) muzzle velocity. 3675 rpm spin, and a mttxi- mum range of 400 m (1312 ft). 1-3.6 SUBMUMTIONS Conventional munitions, such as HE projectiles, bombs, and rockets, are primarily suited 10 destruction of hardened or semihardened point targets. On Iighier targets of dkpcr. sion. such as personnel and small groups of vehicles. the Incalization of energy amounts m overtill. Successful attempts m overcome ihcse shortcomings have been made. These munitions are designmed as im- proved conventional munitions (lCM), or cargo-carrying rounds, Two basic types of submunition have evolved m form the payload of such wnrheads, The M42 grenade. shown in Fig. 1-26, is m mttimatericl (shaped-charge) and amiperso”ncl (fmgmenti”g) submtmition Ihat tires on impact and is capable of pcmwat- ing 70 mm (2.75 in.) of homogeneous armor plate and ra- I diating fragments from the point of impact. Eighty-eight of Mo 11 these grenades are contained in the M483 155-mm (6-in.) projectile, 1 1 striker The M43 grenade. shown in Fig. 1-27. consists of a frng- 2 Pull Ring Assembly menling spherical wnrhead thm pops up after impact and 3 Spring detonates at 1.22 [o 1.83 m (4 to 6 ft) abovcground, The 01 I 4 Primer 155-mm (6-in.) cargo projectile M449 contains 60 M43- 5 Primer Holder Assembly !YPe grenades. Both Vpes of submunition are dispensed 6 Expansion Volume over the target area by an electronic or mechanical time 7 Body fuze in the nose of the lCM round. 8 Oelay An example of an aircraf~-released submunition is the 9 Sheet Metal Case ROCKEYE bnmblet, illustrated in Fig, I-28. Two hundred 10 Booster Pellets forty-seven of these submunitions are ccmmined in a 227- 11 Detonator kg (500.lb) cluster bnmb. fXspcrsion of these submunitions 12 Safety Lever is effected by a mechanical time fuze that opens the dis- 13 Notched Wire penser over the target at a pilot-controlled time (Iwo selec- 14 HE filler tions) depend!ng on the delivery mnde. Figure 1-22. Fragmentation Grenade, M26 I ‘ Grenade Launcher Figure 1-23. Grenade Launcher, 40 mm, M203 Attached to M16E1 Rffte 1-20 -.

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) Pigure 1-24. Grenade Launcher, 40 mm, M79 Fuzes for submunitions must be very simplistic in de- sign, yet hey must conmin ufl of the essen(id safety fea- N~ and be capable of mass pmduclion al low cost. De- layed arming is generrdly a requimmeni for submunition 1 fuzing to ach!eve safe separation and to prevent premature detonation from submuoition collision on ejection from heir cmistets. Delayed arming has been achieved in a num- ber of ways including escnpcmems, rotation of an arming screw mmed by a ribbon in tie ahream (par. I-13), flul- ter arming mechanisms (par. 6-7.2). or by air bleeding 11 through a porous plug. E 1-3.7 FUEL-AIR-EXPLOSIVES 10 Fuel-Air-Explosives (FAE) (Ref. 14) operate on the same principle as the internal combustion engine, i.e., a 9 fuel, which in this case is propylene oxide, is mixed with air 7 in proportions that enable detraction. The resulting detona- tion pruduces overpressurm in the order of 2.1 MPa (300 8 psi) in an ambien! atmosphere.This prc-$smcis sufficient to neutralize buried or surface-laid mioes aad is also effective Fuxa, Spit Back3oa5fer against personnel and light materiel. ; ProJaclileBody The technique employed to realize dtis damage mecha- nism requires a cylindrical container of propylene oxide, 3 @par Cam liquid at ambient temperature, and a delivery system ca- pable of positioning the canister over the uuget arm in a 4 near-vetiical pmitinn at a tilgbt of 1.8 m (6 ft) at the time of dispersion into a dehmable cloud. 5 L-zYm The canister is explosively ruptured in such a nuutner as 6 Prapallant Cup,l+igh to obtain a cloud of air and fuel mix in the form of m ob- Iate sphere with the flattened surfaces parallel to the Prea6ure Charnbfn ground. A typical cloud diameter is 15 m (50 ft) with a thickacss of 3.5 m (12 ft). The cloud is tien detnnmed by 7 Primer detnnatnm explosively launched 10 ms prior to canister burst and into a positinn to effca two paints of ignition for 8 Cladng Plug maximum reliability. 9 vent Two types of Iauncb platforms have been used: (1) tmmbs containing rluu canistem released fium rutary-wing 10 Low-preaaura Chamber or high-spscd. fixed-wing aircraft and (2) rucket-delivemd canistem fmm a tracked vehicle. 11 - we Figure 1-25. Cartridge, 40 mm, IIEDP, M433 1-21 .. . -

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) 1 -%... .-., ‘-> ,, --- .L 2 11 10 ... .. . .. . ... ..-. 9 1 Fuze M223 8 2 Fabric Loop Stabilizer 3 Housing 4 Firing Pin 5 Slider Assembly 6 Lead Cup Assembly 7 ExplosiveCharge 8 Cone 9 Steel Body 10 Fabric Loop Stabilizer 11 Weight (A) Full View M42 Grenade (B) Cross Section M42 Grenade Figure 1-26. Dual-Purpose Grenade M42 ,] DetonatorN (a) Grensde with Vanes Open (A) Cross Section Figure 1-27. Antipersonnel Grenade M43 1-22 I—

Downloaded from http://www.everyspec.com MIL-HOBK-757(AR) ‘“eq 123 /4 — / // I \\ ’10 I 11 7 Fuze Booster Fuze q 1 Stab Firing Pin, Shear-Mounted 2 Stab Detonator : Air-Driven Arrnhg Vane 3 Plezo Crystal 10 Plastic Tail Vane 4 Standoff Probe 11 wire Conductor to Electric 5 Copper Cone 6 shaped Charge Detonator in Fuze Rotor Figure 1-28. 53-mm (2.1 -in.) Submunition MK 118-0, Aircratl Released The345-mm (13.6-in.) Surface-hunched Unit Fuel-Air- cnrrier. Normal employment will be to progmm and fire up 1030 rounds to breach an 8-m (26.2-ft) wide pmh for a Explosive (SLUFAE) Syslem (XM 130), as shown in Fig. 1- mi”inwm distice of 100 m (328 ft). The maximum range 29. is m all-weather syslem intended primarily for assault is 1000 m (3280 ft), The SLUFAE system consists of the breaching during daylight or darkness of defended enemy round and the launcher. minelields. Rocket-pmpclled. FAE canisters am ripple tired from n launch module mounted on an M548 Iracked cargo 4 3 / 9 i ?6 P 5 Fuze (XM750) w“th Slowed Nose Probe ; Wltd Detonating Fuse (MDF) 3 Rocket Motor 4 Tail Shroud 5 Parachute 6 Fuze Communication Wire and MDF 7 Ejection Tubes (2) with Cloud Detonator Assemblies 8 Fuel 9 Central Burster Charge Figure 1-29. 345-mm (13.6-in.) Surface-Launched Fuel-Air-Explosive System XM130 1-23

Downloaded from http://www.everyspec.com T%e complete SLUFAE ruund is 2.55 m ( 10Q.4 in.) long, Typical nomenclmure for a fielded fuze would be Fuze, 0) 0.35 m ( 13.6 in.) in diameter, weighs 84.8 kg (187 lb). and PD. M739: rhe experimental designmion would& XM739. a) . is ready for loading immediately after unpacking and in- Afthough identifying features, such as projectile, nose, and e spection. h is rmke[ propelled. tin md parachute stabilized, rail, formerly were added to fuze nomenclature, the current and consists of a fuze plus associmd electric wiring har- trend is 10 minimize such descriptive terms, ness and mild detonating fuse (MDFI cords, warhead, para- chute, and rocket motor. The warhead contains fuel, a 1-4.1 BY FUNCTIONING ACTION burster charge, and IWOcloud detonators, The fuzing sys- tem for SLUFAE is described in Ref. 14. 1-4.1.1 Impact Fuzes 1-4 FUZE CATEGORIES Thesearefw..cs in which action is created widin the fuzc Fuzes may be identified by their end-item. such as by actual contact wi[h a target; the action includes such mcke[. mortar. or projectile; by the purpose of the ammu. phenomena as impact, cmsh. tilt, nnd electrical contact. nilion, such m armor-piercing or Iraining; by Iheir tactical Among (he fuzes opcrming by impact action—alternatively appl~ cation. such USair-to-aic or by the functicmi”g ac~o” referred to as conract fuzes—are ( I ) point-detonating (PD), of the fuze, such as point detonating or mechanical time. fuzes Iecmed in the nose of the munition. which function Fuzes may also be grouped according [o location. such as upon impact with the target or by a lime delay initiated m nose or base: according to functioning [ype, such as me- impact. and (2) base-detonating (BD), fuzes located in tbe chanical or electrical; or accordng to cafiber. Table 1-2 Iis& base of the munition, which funclion with inherent short common fuze categories. Sublides wirfin grnups, however, delay after initial contact. The delay depends on the desired are not mutually exclusive. mrge[ penetration and may vary from as little as 250 ps to as much as 250 ms. The base location is selected to prorec! TABLE 1-2. FUZE CATEGORIES rhe fuze during perfomtion of the target. as in the case of AP projectiles. In shaped-charge projectiles the fuze is By End-Item By Functioning Action PIBD. In this case rhe target-sensing element is in !be nose Bomb Impact of the projectile. and rhe S&A mechanism of the fuze is in Grenade the base. Base initiation is required [o permit lhe explosive Guided M issilc Point Detonating (PD) wave [o move over the shaped.charge cone in the proper Mine Bu.scDcmna(ing (ED) direction and m preclude rhe need for heavy fuze compo- Mortar Point Initiating, Base nents in the nose, which would degrade pmformance, Projectile Rocket Detonating (PIBD) Contact fuzes am conveniently divided according tn re. Graze spunscimo supmprick, nondelay, and delay. A superquick By Purpose Ttme (SQ) fuze is a nose fuze in which the sensing element Pyrotechnic Time (PT) causes immediate initiation of the bursting charge (typically Antipersonnel (APERS) Mechanical Time (MT) less than 100 w). The mcthnds employed arc stab initimion Armor Piercing (AP) Electronic Time (ET) of a primer or detonator, crushkrg of a piezoelectric crys. Chemical Self-Destruction (SD) wd, or closure of a cmsh-type swilcb. Initiation of [he Concrete Piercing (CP) Delay (shorr or long) shaped charge must uccur prior 10 significant degra&tion High Explosive (HE) Proximity of the round from impact damage; consequendy. M impact High-Explosive Antitank Pressure velocities where times less than 50 ps could induce such (HEAT) H ydros!mic damage. elecuical initiation must be used and the sensing Illuminirtiun Barometric element mus! be located in rhe exrreme nose end of rhe fuze Signal or round. Smoke By Lumtion Tdrgcl PracIicc A nondelay fuze does not have an intentionally designed Training Bust delay, but them is some inherent delay because of inertial Internal components rhat initiale the explosive train. Nondelay e]. By Tactical Application Nose emems (inerdal mechanisms) may be incorporated into ei- Air-to-Air Tail ther PD or BD fuzcs. The inertial device is used when a Air-lo-Surface small degree of target penetration is acceptable or desired Emplaced and for graze action. Surface-lo-Air Surlace-to-Surface Delay (DLY) fuzes contain deliberately built-in delay elements (Refs. 4 @d 18)-pyrwtecbnic. inertiaf, or elec- tronic time—which delay initiation of rbe main charge un. til after target impact. Delay elemenrs may be incorporated into either PD or BD fuzes; however. fuzes for very hard targets generafly use BD functioning. 1-24

Downloaded from http://www.everyspec.com 1-4.1.2 Time Fuzes mortar projectiles, m prevent mazking of the fragments by deep grnssand brush. Time fuzes are used to initiate the munition at a desired time after launch. drop. impacl, or emplacement. The lime 1-4.1.4 Command Fuzes on tiese fuzcs is genendl y set just prior to use. and the tim- ing function is performed by such medmds as mechanical Thesearefuzcs in which action is created externally m clnckwork, analog or digitd electronic circuiu-y. pneumalic devices. m chemical and pyrotechnic reactions. OriginzIly, the fuze and its associated munition and is deliberately time fuzes were used in HE projectiles for antiaircraft fire communicated to the fuze by electrical, mechanical (wire). and bursts at low level over enemy woops; however. lhe optical, or other means involving control from a remote proximity fuze has supplanted this usage. Their main uses point. An example is the surface-to-air missile (SAM) PA- now are in illuminating, chaff-dispensing. smoke. and TRIOT. This missile uses charged capacitors for self-de- cargo-dispensing rnunds. Time fuzcs at’s atso used in carge struction, which can be miggered by inadvertent loss of the dispensing rockets. and they range from those having set RF ground control signal or on command frnm ground con- times as low m fmctions of a serond to as high as several trol. hours or days. The latter use is in bombs or demolition charges. Typically, tie time on current projectile fuzes can Another example, nhbough it is not sirictly a munitions be set up to 200s. fuze, is tie modular pack mine system (MOPMS). This sys- tem is a portzble container (bat can be initialed by remote Self-destruction (SD) is m auxilinry timing feature pr- RF command to eject amiarrnor mines (aclivated by mag- ovided in the fuzes of certain munitions tired over the heads netic influence) or mtiperzonnel mines (activated by trip of friendly trmps, primarily to explnde or “clean up” sur- lines). A distinct advamage of this system is that it can bc face-to-air munition in case of mrget miss or failure of the retrieved for reuse if it haz not been deployed. primary functioning mode. Selecmble SD times are pr- ovided in all of the new FASCAM [o clear the area for use 1-4.1.5 Combination Fuzts by friendly troops and vehicles. SD may be accomplished by various timing mechanisms or. in tie case of more so- Fuzes designed wicb muhioption capabilities nrc now in phisticated munilions. by command destruct tdugh a ~- the inventory. nnd new ones are under development. In ad- dio or mdx link. dition 10 supplementing che bzsic function. there is ads- creaze in logistic pmbhns and an improvement in responzc 141.3 Pmximit y Fuzes time nmd versatility of gun crews. Thexc am fuzes in which action is crzated withh the fum Some time fuzcs, both elecnnic time (ET) nnd mecbani- from sensing characteristics other than actual contact or ctd time (MT), have been equipped wjtb m nmoma!ic point- elapsedtime. Proximity fuzes—altematively referred to as detonating capability. The M134 fuzz for the new 60-mm influence fuzes—initiate the munition when they senss that mortar is a multioption system tbm bas proximiiy mode nz they uc in the proximity of the target. which is typically its basic function. Near-surface burst, impact, delay, or around 4.5 [o 6 m (15 to 20 ft) for artillery projectile appli. proximity cm bz selected prior m tiring. cmiom. ‘Ilk action is ptiicularly effective against pcrzOn - nel, light ground largets. aircraft. and su~rstmctums Of 1<.1.6 Other Fuzes ships. These fuzes arc the subjecl of separate Engineering Design Handbooks. A simple element, such as a stab tiring pin. held, for ex- ample, by a shear wire. dnd a primer comprise o fuzc. An The mnde of target sensing is largely by radio frequency even simpler armngemen[ is found in the MK 26- I PD fuu, reflection nkbough [here mw proximity fuzcs that employ fR shown in Fig. 1-30. for 20-mm cannon rounds where only dection or direct IR emissions from the target. The d=t- a detonator is used. Obviously, these systems lack adcqaatc IR-emission-acdvated fuzez arc not affected by electronic zafety fcstums. countermeasures but can bc influenced by decoy sourccz of heal. Recent develovmentz md studies have addmscd tri- Mcxicm fuze design requires an intcrmption in the pmb boelecuic (electroslntic). millimeter wave, capacitive, in- of the explosive tin wbercver primary (sensitive) explo- ductive, and magnetic tnrget zznsing. The magnetic method sives nre used and provisions for aligning the explosive requires n ferrous uarget. The capacitive. inductive, and unin by environmental stimuli szsnciated with a launch magnetic methods arc useful oaly for CIOZCproximify. ?he systcm. A fmcher refinement is ddaying the arming until a close-in proximity (Ref. l?) SSTWCMZ s~dO~ fm s~- safe =paration distance fmm the launch platform haz km charge cnunds. certain chemicnl rounds, and, in the case of attained. ‘The distance between the shnped charge and the target at rbe GmernflY. the S&A mccbanism is m integml part of Ou time of initiation. fuzc. Men tie sbapd-charge weapon was in!roduccd. the fuzs waz divided into two widely sepmated pztfz. The Uig- gcr is Iocatcd in the very forward pari of h ogive or PM& in the interest of rapid rszpcmzs. and the S&A mcchaaiam is located at the b= of the warhcnd to nchieve initiadonof 1-2s

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) the warhead m an op:imum point. Accordingly, PIBD ter- Developmental Army fuzes hove (he letmrs “XM pre- minology has evolved. ceding a numerical designation. e.g.. XM200. When stan- In guided missiles [he S&A mechanism is gemrally far dardized. the “X is dropped. Earlier developmental Army 0) removed from the trigger. and the fuzc often lakes on m fuzcs were idemitied by a separate ‘“T” number. e.g.. T3CrL unrecognizable physical appearance. such as a bermeticnlly which was discarded when the fttze was adopted for mmm- sealed can filled with electronics. microci~uitry, digiwd fitcture. Although many fuzes with “T numbers are still in timers, and an S&A mechanism freed with mechanical and existence, they arc obsolete or obsolesce. photoelectric switches. The trigger cm be a simple cmsh Current Navy service projectile md older bomb. rocket. switch or a complex radar-emitting proximity system. and submunition fuzes [hat are still in rhc inventory carry Another category is the stationary fuzes used in muni. a ‘“MARK number, and their modifications are followed [ions that wait for the mrge! to come into range, i.e., mines by a “MOD number. such as MK 100 MOD 1. or [his can (Ref. 16) and booby traps. Such fuzes are sel apart fmm the be shortened m MK 100-1. Experimenml Navy pmjcctile mhers along with the hand grenade fuze in that there is gen- fuzes carry ‘“EX m part of their nomenclmure. e.g.. erally a lack of suimble e“vimmnental stimuli associated EX200. Prior m World War If some Army service fuzes and with Iheir arming cycle m effect safety, Special methods projectiles also carried MARK numbers. and items of Army musl be employed to arm them safely, ammunition so marked may still exist. Air Force mrd currr.m Navy bomb. rocket. s“bmunition. 14.2 TRAINING AND PRACTICE FUZES and missile service fuzes use Fuze Mtmiiion Uni[ (FMU) These fuzes are generally nonexplosive and have spe- numbers, such M FMU-100. I cialized uses. A dummy fuze is completely inert and is an 1-5 DESCRIPTION OF REPRESENTA- TIVE ARTILLERY FUZES accurme replicn of a service fuze. For ballis[ic .o,urooses il may duplicrde the weight. center of gravity. and contour of the service f“ze. A practice, or training, fuze is a service ArriOery fuzes can be subjected m high setback ~CCXIera. fuze that is mcdiiied far use in training exercises. It maybe tions ( 10,tX)Ctco 43.000 g) and therefore must haven strong completely inert (n dummy fuze), may have its booster structure. Exceptions me fuzes for mormrs and recoilless charge (See Chfipter 4.) replaced by a spolting charge, or rifles, wti!ch cm experience setbacks as low as 1000 g and qJ may differ in other significant ways from a service fuze. cm use plastic, dfie-ciwt. and other low-strength materials to a greater degree. Atlillery fuzcs arc used mainly in spin-sta- 1-4.3 MODEL DESIGNATION bilized rounds in the range of 20 to 1730 rps: exceptions arc the nonspin. fin-smbilized rounds. Accordingly. for most Army service fuzes am assigned the Ieller “M followed zulillery fuzcs significant environmental forces arc available by a number, e.g., MloO. Modifications of “M fuzes are to operme safely mechanisms adequately. For the excep. given suffix numbers starting with “A, e.g.. MIOOAI. lions, other means, such as safety wires and bore riding Nose or Body pins, must be devised to provide safety. The fuzes can be ignition (flame-prtiucing) types or detonating types and (Zinc Die can tit the categories of PD. BD. PIED. ET, MT. pyrotech- nic time (PYRO TIME), proximi[y. or multioption. f-mCasting) Tetryl 1-5.1 DESCRIPTION OF A REPRESENTA- TIVE IMPACT FUZE The M739 PD Fuze. shown in Fig. I-31, and the M739A1 PD Fuze. shown in Fig. I-32, are used with 105- mm (4-in.), 108-mm (4.2-in.), 155-mm (6-in.). and 2CtCLmm Teoyl Booster (S-in.) HE projectiles. The fuze body is a one-piece design of an aluminum alloy and has a standard 51-mm (2-in. ) Felt Disc. ~ ~ rhreaded base to mmch rbc projectile nose. Both fuzes con- sist primarily of five modular assemblies (Refer to Ftgs. 1- 31 and I-32.): (2) crossbar and holder assembly, (4) tiring pin and detonntor assembly. (6) setting skve assembly, (7) impam delay element assembly. and (9) the S&A assembly. TTraveI The crossbar and holder assembly is a rain desensitizing sleeve wi{h nose cap that allows tiring in heavy ntin with Figure 1-30. Fuze, PD, MK 26-1 for 20-mm a reduced pmbabtlity of downrange premature functioning o Projectile due to raindrop impact. The assembly is in the nose xction of (be fuze md consists of a nose cap over five crossbam I -26 .

Downloaded from http://www.everyspec.com MIL-HDBK-757(AR) ; 3 4 5 6 7 8 9 10 11 Figure 1-31. Fuze, PD, iM739 that break up raindrops and foliage in event of nose cap pin support cup, which prevems initiation of the M99 Stab erosion and thus reduce fuze initiation sensitivity witiout ‘Detonator until impact. affecting ground or tmget impact ~nsi!ivity. FOr sOfl tlM- gels the large cavity in this a.wmbly must become packed The wtting sleeve assembly (interrupter) is Iwalti in tie full of target medium to drive [he firing pin into the detn- side of the fuze body, extends through, and thus blocks the nmor. flash path of the M99 detonator. The selection of a PD mode is made by allowing centrifugnf force to move this in- The firing pin and detonatnr assembly m-c located below terrupter from [he path of the nose detonator. Tfw delay the rain desensitizing sleeve and provide the supmquick mode is activated by allnwing the setting sleeve to block the action impact. The firing pin is held in pnsition by a firing flash hole regardless of interrupter pnsition. Blocking the 1-27


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook