29 บทท่ี 3 เซต สาระสาํ คัญ 1. เซต โดยท่วั ไปหมายถงึ กลมุ คน สัตว สง่ิ ของ ทร่ี วมกนั เปนกลมุ โดยมสี มบตั บิ างอยา ง รว มกนั และบรรดาสิ่งท้ังหลายท่อี ยใู นเซตเราเรยี กวา “ สมาชกิ ” ในการศกึ ษาเรือ่ งเซตจะ ประกอบไปดว ย เซต เอกภพสมั พัทธ สบั เซตและเพาเวอรเ ซต 2. การดาํ เนนิ การบนเซต คอื การนําเซตตาง ๆ มากระทํารวมกนั เพอื่ ใหเ กดิ เปน เซตใหม ซ่ึง ทาํ ได 4 วิธคี ือ การยูเน่ยี น การอนิ เตอรเซคชัน่ ผลตางระหวางเซต และการคอมพลเี มนต 3. แผนภาพเวนน – ออยเลอร จะชว ยใหก ารพจิ ารณาเกี่ยวกบั เซตไดง า ยข้นึ โดยใชหลกั การคือ 3.1 ใชรูปสเ่ี หล่ียมผืนผาแทนเอกภพสัมพทั ธ “U” 3.2 ใชว งกลมหรอื วงรแี ทนเซตตา ง ๆ ทเ่ี ปนสมาชกิ ของ “U” และเขียนภายในสเี่ หลยี่ มผนื ผา ผลการเรียนรทู ่ีคาดหวงั 1. อธบิ ายความหมายเก่ียวกับเซตได 2. สามารถหายเู นี่ยน อนิ เตอรเ ซกช่ัน ผลตางของเซต และคอมพลีเมนต ได 3. เขยี นแผนภาพแทนเซตและนําไปใชแ กป ญ หาท่เี กย่ี วกบั การหาสมาชกิ ของเซตได ขอบขา ยเน้อื หา เรอ่ื งที่ 1 เซต เร่อื งท่ี 2 การดําเนนิ การของเซต เรอื่ งที่ 3 แผนภาพเวนน - ออยเลอรแ ละการแกป ญ หา
30 เรอื่ งที่ 1 เซต (Sets) 1.1 ความหมายของเซต เซต หมายถึง กลมุ สงิ่ ของตาง ๆ ไมว าจะเปน คน สัตว ส่งิ ของหรือนิพจนท างคณติ ศาสตร ซึ่งระบุสมาชิกในกลุม ได ยกตวั อยา ง เซต เชน 1) เซตของวิทยาลยั เทคนิคในประเทศไทย 2) เซตของพยญั ชนะในคาํ วา “คุณธรรม” 3) เซตของจาํ นวนเต็ม 4) เซตของโรงเรียนระดบั มธั ยมศึกษาในจงั หวดั สกลนคร เรยี กส่ิงตา ง ๆ ท่ีอยูใ นเซตวา “สมาชิก” ( Element ) ของเซตน้นั เชน 1) วทิ ยาลัยเทคนิคดอนเมืองเปนสมาชิกเซตวทิ ยาลัยเทคนิคในประเทศไทย 2) “ร” เปน สมาชิกเซตพยญั ชนะในคาํ วา “คุณธรรม” 3) 5 เปนสมาชกิ ของจํานวนเตม็ 4) โรงเรยี นดงมะไฟวทิ ยาเปนสมาชกิ เซตโรงเรยี นระดบั มธั ยมศึกษาในจงั หวดั สกลนคร 1.2 วิธกี ารเขยี นเซต การเขียนเซตเขยี นได 2 แบบ 1. แบบแจกแจงสมาชิกของเซต โดยเขยี นสมาชกิ ทกุ ตัวของเซตลงในเคร่ืองหมายวงเลบ็ ปกกาและใชเครื่องหมายจุลภาค (,) ค่นั ระหวา งสมาชกิ แตล ะตวั น้นั ตวั อยา งเชน A = {1, 2, 3, 4, 5} B = { a, e, i, o, u} C = {...,-2,-1,0,1,2,...} 2. แบบบอกเง่ือนไขของสมาชิกในเซต โดยใชต วั แปรแทนสมาชิกของเซต และบอก สมบตั ขิ องสมาชิกในรปู ของตวั แปร ตัวอยา งเชน A = { x | x เปน จาํ นวนเต็มบวกท่ีมคี านอยกวาหรอื เทา กับ 5} B = { x | x เปนสระในภาษาอังกฤษ} C = {x | x เปน จาํ นวนเต็ม} สญั ลกั ษณเซต โดยท่วั ๆ ไป การเขยี นเซตหรอื การเรยี กชอ่ื ของเซตจะใชอ ักษรภาษาองั กฤษตวั พิมพ ใหญไ ดแก A , B , C , . . . , Y , Z เปน ตน ทงั้ นเ้ี พ่ือความสะดวกในการอางองิ เมื่อเขียนหรือกลาวถงึ เซต นัน้ ๆ ตอ ไป สาํ หรบั สมาชิกในเซตจะเขียนโดยใชอกั ษรภาษาองั กฤษตวั พิมพเล็ก
31 มสี ัญลักษณอ กี อยา งหนงึ่ ทีใ่ ชอยเู สมอ ๆในเร่ืองเซต คือสญั ลกั ษณ ( Epsilon) แทนความหมายวา อยูใน หรอื เปน สมาชิก เชน กาํ หนดให เซต A มสี มาชกิ คอื 2 , 3 , 4 , 8 , 10 ดงั นั้น 2 เปน สมาชิกของ A หรืออยูใ น A เขยี นแทนดวย 2 A 10 เปน สมาชิกของ A หรืออยใู น A เขยี นแทนดวย 10 A ใชส ญั ลกั ษณ แทนความหมาย “ไมอ ยู หรอื ไมเ ปนสมาชกิ ของเซต เชน 5 ไมเ ปน สมาชิกของเซต A เขยี นแทนดว ย 5 A 7 ไมเ ปน สมาชกิ ของเซต A เขยี นแทนดว ย 7 A ขอ สงั เกต 1. การเรยี งลาํ ดับของแตละสมาชกิ ไมถ ือเปนสิ่งสําคญั เชน A = { a , b , c } B = {b,c,a} ถอื วาเซต A และเซต B เปน เซตเดยี วกัน 2. การนับจาํ นวนสมาชกิ ของเซต จํานวนสมาชกิ ทเ่ี หมือนกนั จะนับเพยี งคร้ังเดยี ว ถงึ แมจ ะเขียนซํา้ ๆ กนั หลาย ๆ คร้ัง เชน A = { 0 , 1 , 2 , 1 , 3 } มีจาํ นวนสมาชกิ 4 ตัว คอื 0 , 1 , 2 , 3 เปนตน 1.3 ชนดิ ของเซต 1.3.1 เซตวาง ( Empty Set or Null Set ) บทนิยาม แทนเซตวาง เซตวาง คือ เซตทีไ่ มมีสมาชิก ใชสญั ลกั ษณ หรือ { } ( เปนอกั ษรกรกี อา นวา phi) ตวั อยา ง เชน A = { x | x เปนชอื่ ทะเลทรายในประเทศไทย } ดังนั้น A เปนเซตวา ง เนือ่ งจากประเทศไทยไมมที ะเลทราย B = { x | x I+ และ x + 2 = x } ดังนนั้ B เปน เซตวาง เนอื่ งจากไมมจี าํ นวนเต็มบวกทนี่ าํ มาบวกกบั 2 แลว ได ตวั มนั เอง เซต B จึงไมม ีสมาชิก ขอสงั เกต 1. เซตวา งมจี ํานวนสมาชิก เทากบั ศนู ย ( ไมมสี มาชิกเลย ) 2. 0 Ø 3. { 0 } ไมเ ปน เซตวาง เพราะมจี ํานวนสมาชิก 1 ตัว
32 1.3.2 เซตจาํ กดั ( Finite Set ) บทนยิ าม เซตจาํ กดั คือ เซตทสี่ ามารถระบจุ าํ นวนสมาชิกในเซตได ตัวอยา งเชน A = { 1 , 2 , {3} } มีจาํ นวนสมาชกิ 3 ตวั หรือ n(A) = 3 B = { x | x เปน จาํ นวนเตม็ และ 1 ≤ x ≤ 100 } มีจํานวนสมาชกิ 100 ตัว หรอื n(B) = 100 C = { x | x เปนจํานวนเต็มที่อยูระหวา ง 0 กบั 1 } ดงั นนั้ C เปนเซตวา ง มจี าํ นวนสมาชกิ 0 ตัว หรือ n(C) = 0 D = { 1 , 2 , 3 , . . . , 99 } มีจํานวนสมาชกิ 99 ตวั หรอื n(D) = 99 E = { x | x เปน วนั ในหนึง่ สปั ดาห } มจี ํานวนสมาชิก 7 ตัว หรือ n(E) = 7 หมายเหตุ จาํ นวนสมาชกิ ของเซต A เขียนแทนดว ย n(A) 1.3.3 เซตอนนั ต ( Infinite Set ) บทนิยาม เซตอนันต คอื เซตทไ่ี มใชเซตจาํ กดั ( หรือเซตทีม่ ีจาํ นวนสมาชิกไมจาํ กดั น่นั คอื ไมส ามารถนับจาํ นวนสมาชกิ ไดแ นน อน ) ตัวอยา งเชน A = { -1 , -2 , -3 , … } B = { x | x = 2n เมอื่ n เปนจํานวนนับ } C = { x | x เปนจาํ นวนจรงิ } T = { x | x เปน จํานวนนับ } ตวั อยา ง จงพจิ ารณาเซตตอ ไปน้ี เซตใดเปน เซตวาง เซตจาํ กดั หรอื เซตอนนั ต เซต เซตวา ง เซตจํากดั เซตอนันต 1. เซตของผทู ี่เรยี นการศกึ ษานอกโรงเรียน / / / ปก ารศึกษา 2552 2. เซตของจาํ นวนเตม็ บวกค่ี 3. เซตของสระในภาษาไทย / 4. เซตของจํานวนเตม็ ท่ีหารดว ย 10 ลงตวั 5. เซตของทะเลทรายในประเทศไทย / /
33 1.3.4 เซตท่ีเทากัน ( Equal Set ) เซตสองเซตจะเทากนั กต็ อ เมื่อท้งั สองเซตมสี มาชิกอยางเดยี วกนั และจํานวนเทากัน บทนิยาม เซต A เทากบั เซต B เขียนแทนดว ย A = B หมายความวา สมาชกิ ทกุ ตัวของเซต A เปนสมาชิกทกุ ตวั ของเซต B และสมาชิกของเซต B เปนสมาชกิ ทุกตัวของเซต A ถา สมาชิกตัวใดตัวหน่งึ ของเซต A ไมเปนสมาชิกของเซต B หรอื สมาชกิ บางตวั ของเซต B ไมเ ปน สมาชิกของเซต A เซต A ไมเทากับเซต B เขยี นแทนดว ย A ≠ B ตัวอยางเชน A = { 0 , { 1,2 } } B = { { 2 ,1 } , 0 } ดังนน้ั A = B ตัวอยา ง กําหนดให A = { 2 , 4 , 6 , 8 } B = { x | x เปน จํานวนเต็มบวกเลขคทู ่ีนอยกวา 10 } วิธีทาํ A = { 2 , 4 , 6 , 8 } พิจารณา B เปนจํานวนเตม็ บวกคูท ่ีนอ ยกวา 10 จะได B = { 2 , 4 , 6 , 8 } ดงั น้นั A = B ตัวอยาง กาํ หนดให A = { 2 , 3 , 5 } , B = { 5 , 2 , 3 , 5 } และ C = { x | x2 – 8x + 15 = 0 } วิธีทํา พจิ ารณา x2 - 8x + 15 = 0 ( x – 3 ) (x – 5 ) = 0 X = 3,5 C = {3,5} ดงั นนั้ A = B แต A ≠ C เพราะ 2 A แต 2 C B C เพราะ 2 B แต 2 C
34 1.3.5 เซตท่เี ทียบเทา กนั ( Equivalentl Sets ) เซตทีเ่ ทยี บเทา กัน คอื เซตทมี่ ีจํานวนสมาชิกเทา กันและสมาชิกของเชตจับคกู นั ไดพอดี แบบหน่ึงตอ แบบหน่ึง สญั ลักษณ เชต A เทียบเทา กับเชต B แทนดวย A ↔ B บทนิยาม เซต A เทยี บเทากบั เซต B เขียนแทนดว ย A ~ B หรือ A ↔ B หมายความวา สมาชิกของ A และสมาชิกของ B สามารถจบั คูห นง่ึ ตอหนง่ึ ไดพอดี ตัวอยา งเชน A = { 1 , 2 , 3 } B = {4,5,6} จะเหน็ วา จํานวนสมาชกิ ของเซต A เทากับจาํ นวนสมาชิกของ B ดังนน้ั A ↔ B C = { xy , ab } D = {0,1} ดังนั้น C ~ D เพราะจํานวนสมาชกิ เทา กนั ตวั อยาง จงพิจารณาเซตแตละคูตอ ไปนวี้ า เซตคใู ดเทากนั หรือเซตคใู ดเทยี บเทา กนั 1) A = { x / x เปนจํานวนเต็ม x2 – 10x + 9 = 0 } B = {1,9} 2) C = { a , { b, c } , d } D = {1,2,{3}} 3) E = { 1 , 4 , 7 } F = {4,1,7} วิธที าํ 1) A = B และ A B เพราะมีจาํ นวนสมาชิกเทา กัน และสมาชิกเหมือนกนั ทกุ ตวั 2) C D แต C D เพราะมีจาํ นวนสมาชกิ เทา กนั แตส มาชิกแตละคูไมเหมือนกนั ทุกตวั 3) E = F และ E F เพราะมีจํานวนสมาชิกเทา กนั และสมาชิกเหมือนกนั ทกุ ตัว ขอ สงั เกต 1.312...6 เถถอาากภAAพส=ัมพBBทั แธแลลว ว A B B A ไมจ ําเปน ตอ งเทา กบั
35 บทนิยาม เอกภพสมั พัทธ คอื เซตท่กี ําหนดขน้ึ โดยมีขอ ตกลงกันวาจะไมกลาวถึง สิง่ อนื่ ใด นอกเหนือไปจากสมาชกิ ของเซตทีก่ ําหนด ใชส ัญลกั ษณ U แทน เอกภพสัมพทั ธ ตวั อยา งเชน กําหนดให U เปนเซตของจาํ นวนนับ และ A = x | x2 4 จงเขียนเซต A แบบแจกแจงสมาชิก ตอบ A = 2 กําหนดให U เปนเซตของจาํ นวนนับ และ A เปนจาํ นวนคู ตอบ A = 2,4,6,8,10 ขอสังเกต ถาไมมกี ารกําหนดเอกภพสมั พัทธ ใหถอื วา เอกภพสัมพทั ธนั้นเปนเซตของจํานวนจรงิ
36 แบบฝก หดั ที่ 1 1. จงเขยี นเซตตอไปนี้แบบแจกแจงสมาชกิ 1) เซตของจังหวดั ในประเทศไทยท่มี ีช่ือขน้ึ ตนดวยพยญั ชนะ “ส” 2) เซตของสระในภาษาอังกฤษ 3) เซตของจํานวนเต็มบวกทมี่ ีสามหลัก 4) เซตของจาํ นวนคูบ วกทีม่ ีคา นอยกวา 20 5) เซตของจํานวนเตม็ ลบทมี่ คี า นอยกวา – 120 6) { x|x เปน จาํ นวนเตม็ ทีม่ ากกวา 5 และนอยกวา 15 } 7) { x|x เปนจาํ นวนเตม็ ท่ีอยูระหวาง 0 กบั 0 } 2. จงบอกจาํ นวนสมาชิกของเซตตอไปน้ี 1) A = {3456} 2) B = {a,b,c,de,fg,hij,} 3) C = { x|x เปนจาํ นวนเตม็ บวกที่อยรู ะหวาง 10 ถึง 35 } 4) D = { x|x เปนจาํ นวนเตม็ บวกทน่ี อ ยกวา 9 } 3. จงเขียนเซตตอไปน้แี บบบอกเง่อื นไข 1) K = { 2,4,6,8} 2) P = { 1,2,3,...} 3) H = { 1,4,9,16,25,...} 4. จงพจิ ารณาเซตตอไปน้ี เปนเซตวางหรือเซตจาํ กดั หรอื เซตอนนั ต 1) เซตของสระในภาษาไทย 2) เซตของจาํ นวนเต็มท่ีอยรู ะหวาง 21 และ 300 3) A = { x | x เปนจาํ นวนเตม็ และ x 0 } 4) B = { x | x เปนจาํ นวนเต็มคทู ่นี อ ยกวา 2 } 5) C = { x | x = 9 และ x – 3 = 5 } 6) A = { x | x เปน จํานวนนับทน่ี อยกวา 1 } 7) E = { x | x เปน จาํ นวนเฉพาะ 1 x 3 } 8) F = { x | x เปนจํานวนเตม็ 4 x 5 } 9) B = { x | x เปน จํานวนนับ x2 + 3x + 2 = 0 } 10) D = { x | x เปน จํานวนเต็มทีห่ ารดวย 5 ลงตัว }
37 5. เซตตอไปนี้เซตใดบางท่เี ปนเซตทเ่ี ทากนั 1) A = { 2,4,6,8,10 } B = {x| x เปนจาํ นวนคูบ วก 2 ถึง 10 } 2) D = { 7,14,21,28,......343} E = {x|x = 7r และ r เปน จาํ นวนนบั ทม่ี ีคา นอ ยกวา 50 } 3) F = { x|x =3n และ n และ n } G = { 3,6,9} 4) Q = {4} H = { x|x เปน จาํ นวนเต็มและ x2 16 }
38 เรื่องท่ี 2 การดําเนนิ การของเซต การดําเนนิ การที่สาํ คญั ของเซตท่จี าํ เปนตอ งรูแ ละทาํ ความเขา ใจใหถ อ งแทม ี 4 ชนดิ ไดแ ก 1. การยเู นียนของเซต 2. การอินเตอรเ ซคชน่ั ของเซต 3. คอมพลเี มน ทข องเซต 4. ผลตางของเซต 2.1 การยูเนยี นของเซต ใชส ญั ลกั ษณ “ ” บทนิยาม A B = { x | x A x B } เรียกวา ผลบวก หรอื ผลรวม (union) ของ A และ B ตัวอยา ง 1. ถา A = {0 , 1 , 2 , 3} และ B = {1 , 3 , 5 , 7} จะได A B = {0 , 1 , 2 , 3 , 5 , 7} ตัวอยาง 2. ถา M = {x | x เปน จาํ นวนเตม็ บวก} และ L = {1 , 2 , 3 , 4} จะได M L = M ตวั อยา ง 3. ถา W = {a , s , d , f} และ Z = {p , k , b} จะได W Z = {a , s , d , f , p , k , b} ตวั อยาง 4 A ={1,2,3} , B= {3,4,5} จะได A B = {1,2,3,4,5} 2.2 การอนิ เตอรเซคชนั ใชสัญลักษณ “ ” บทนยิ าม A B = { x|x A xB } เรยี กวา ผลตดั หรือผลทเี่ หมอื นกัน (Intersection) ของ A และ B ตวั อยา ง 1. ถา A = {0 , 1 , 2 , 3} และ B = {1 , 3 , 5 , 7} จะได A B = {1 , 3} ตัวอยา ง 2. ถา M = {x | x เปน จาํ นวนเตม็ บวก} และ L = {1 , 2 , 3 , 4} จะได M L = L
39 ตวั อยา ง 3. ถา W = {a , s , d , f} และ Z = {p , k , b} จะได W Z = { } 2.3 คอมพลเี มน ตข องเซต ใชสัญลักษณ “ / ” บทนยิ าม ถา U เปนเอกภพสัมพทั ธ คอมพลีเมนตของ A คอื เซตทีป่ ระกอบดวยสมาชกิ ทอี่ ยูใน แตไ มอยูใน A เขยี น A แทนคอมพลีเมน ทของ A ดงั น้ัน A = { x | x A } ตัวอยาง 1. ถา U = {0, 1, 2, 3, 4, 5} และ A = {0 ,2} จะได = {1, 3,4, 5} ตัวอยาง 2. ถา U = {1, 2, 3, ... } และ C = { x|x เปน จํานวนค}ู จะได = { x |x U และ x เปนจาํ นวนค่ี } 2.4 ผลตางของเซต ใชส ญั ลักษณ “ – ” บทนยิ าม ผลตา งระหวา งเซต A และเซต B คือ เซตท่ีประกอบดว ยสมาชกิ ของเซต A ซงึ่ ไมเปนสมาชกิ ของเซต B ผลตางระหวา งเซต A และ B เขียนแทนดวย A – B ซง่ึ A - B = { x | x A xB} ตวั อยา ง 1. ถา A = {0, 1, 2, 3, 4} และ B = {3 , 4 , 5 , 6 , 7} จะได A - B = {0, 1, 2} และ B - A = {5 , 6 , 7}
40 ตัวอยาง 2. ถา U = {1, 2, 3, ... } และ C = { x|x เปน จํานวนคบู วก} จะได U – C = {x|x เปนจํานวนคบ่ี วก} สมบัติของเซตทค่ี วรทราบ ให A,B และ C เปน สบั เซตของเอกภพสมั พทั ธ U สมบัตติ อ ไปน้เี ปน จรงิ 1) กฎการสลับท่ี AB B A AB B A 2) กฎการเปลยี่ นกลมุ A B C A B C A B C A B C 3) กฎการแจงแจง A B C A B A C A B C A B A C 4) กฎเอกลักษณ A A A U A AU A 5) A A U 6) U และ U 7) A A 8) A A A และ A A A 9) A B A B 10) A และ A A
41 แบบฝก หดั ท่ี 2 1) ถา A = { 0,1,2,3,4,5}, และ B { 1,2,3,4 } จงหา 1) A B ……………………………. 2). B A …………………………..…… 3). A B ............................................. 4). B A ……………………………..… 5). A – B……………………..…………. 6). B – A……………………………….…. 2). กาํ หนดให U = { 1,2,3, ... ,10 } A = { 2,4,6,8,10 } B = { 1,3,5,7,9} C = { 3,4,5,6,7 } จงหา 1. A B ……………………………………………………………………………………… 2. B C ……………………………………………………………………………………… 3. B C …………………………………………………………………………………….… 4. A C ..………………………………………………………………………………..…… 5. C ..………………………………………………………………………………..…………. 6. C A ………………………………………………………………………………..…….. 7. C B ..………………………………………………………………………………..…… 8. (A ……………………………………………….…………………………………
42 เร่อื งท่ี 3 แผนภาพเวนน - ออยเลอรและการแกป ญ หา 3.1 แผนภาพเวนน - ออยเลอร การเขียนแผนภาพแทนเซตชว ยใหเขาใจเก่ียวกับความสัมพนั ธระหวา งเซตชดั เจนยงิ่ ขึน้ เรยี ก แผนภาพแทนเซตวา แผนภาพของเวนน- ออยเลอร เพื่อเปน เกียรติแกน กั คณติ ศาสตรชาวองั กฤษ จอหน เวนน (John Venn พ.ศ.2377-2466) และนักคณติ ศาสตรชาวสวสิ เลโอนารด ออยเลอร (Leonard Euler พ.ศ. 2250-2326) ซง่ึ เปนผูคดิ แผนภาพเพอื่ แสดงความสัมพนั ธร ะหวา งเซต การเขยี นแผนภาพของเวนน- ออยเลอร (Venn-Euler) เพือ่ แสดงความสัมพนั ธระหวางเซตนิยม เขยี นรูปสีเ่ หลย่ี มมุมฉากแทนเอกภพสมั พทั ธ (U) และใชรปู วงกลม วงรี หรอื รูปปดใด ๆ แทนเซต ตา ง ๆ ซ่ึงเปนสบั เซตของ U ลักษณะตาง ๆ ของการเขยี นแผนภาพ มดี งั น้ี ซ่ึงแผนภาพเวนน- ออยเลอร เมอ่ื นํามาใชก บั การดาํ เนินการบนเซตแลว นน้ั จะทาํ ใหผ ูเรยี นเขา ใจ ในเรอ่ื งการดาํ เนินการบนเซตมากขนึ้ ดังตวั อยา งตอ ไปนี้ ยเู นียน (Union) สามารถใชแ ผนภาพของเวนน- ออยเลอร แสดงใหเ ห็นกรณตี า ง ๆ ของเซตใหมท เ่ี กิด จาก ไดจากสว นที่แรเงา ดังน้ี (ระบายพื้นทข่ี องท้งั สองเซตไมวา จะมพี ้ืนทซี่ ้ํากันหรอื ไมซ ้ํากนั )
43 อนิ เตอรเซกชนั (intersection) สามารถใชแ ผนภาพของเวนน- ออยเลอร แสดงใหเหน็ กรณีตา ง ๆ ของเซตใหมท ีเ่ กิดจาก ไดจ ากสวนท่ีแรเงา ดงั นี้ คอมพลเี มนต (Complement) กําหนดให เซต A เปนสับเซตของเอกภพสมั พัทธ U คอมพลเี มนตของ A คือ เซตทีป่ ระกอบดว ย สมาชกิ ของเอกภพสัมพัทธ (U) แตไ มเปน สมาชิกของ A เขยี นแทนดว ย (อา นวา เอไพรม) และ เพอ่ื ใหม องภาพไดช ดั ข้นึ อาจใชแผนภาพของเวนน- ออยเลอรแสดงการคอมพลเี มนตข องเซต A ได ดังน้ี A คือ สวนท่ีแรเงา ผลตาง (Relative Complement or Difference) สามารถใชแผนภาพของเวนน- ออยเลอร แสดงใหเห็นกรณตี า ง ๆ ของเซตใหมท ่ีเกดิ จาก A - B ไดจากสว นที่แรเงา ดังน้ี (ระบายสีเฉพาะพน้ื ท่ีของเซต A ท่ไี มใ ชพื้นทข่ี องเซต B)
44 3.1 การหาจาํ นวนสมาชกิ ของเซตจาํ กดั ถาเซต A และ B ไมมสี มาชกิ รวมกันจะได n (A B) = n (A) + n (B) ถาเซต A และ B มสี มาชิกบางตวั รว มกนั จะได n (A B) = n (A) + n (B) – n (A B) พิจารณาจากรปู ตวั เลขในภาพแสดงจํานวนสมาชิกเซต จะได 1) n (A) = 16 2) n (B) = 18 2) n (A B) = 6 4) n (A B) = 28 5) n ( A/ ) = 12 6) n ( B / ) = 10 7) n (A B)/ = 22 8) n ( A/ B/ ) = 22 ตัวอยางที่ 3 กําหนดให A มีสมาชิก 15 ตัว B มีสมาชิก 12 ตวั A B มสี มาชกิ 7 ตวั จงหาจํานวนสมาชิกของ A B วิธีทํา n (A) = 15 , n (B) = 12 , n (A B ) = 7 จากสูตร n ( A B ) = n ( A ) + n (B) - n ( A B) = 15 + 12 – 7 = 20 ดงั น้นั จํานวนสมาชกิ ของ A B เทา กบั 20 ตวั
45 ตัวอยางท่ี 4 กําหนดให A และ B เปนสับเซตของ U โดยท่ี U = ( 1 , 2 , 3 , . . . , 10 } ถา n (A/ B/ ) = 5 , n (A/ ) = 3 , n (B) = 6 แลว จงหา n ( A B) / วิธที ํา จาก n ( U ) = 10 , n (A/ B/ ) = 5 , n (A/ ) = 3 , n (B) = 6 n (A B) = n (A B/) n ( A B) = 10 – 5 = 5 n (A) = 10 – 3 = 7 n ( A B ) = n ( A ) + n (B) - n ( A B) n(A B) = 7+6–5 = 8 n ( A B) / = 10 - 8 = 2 ถา เซต A เซต B และเซต C มสี มาชิกบางตัวรวมกนั n (A B C ) = n (A) + n (B) + n (C) - n (A B) – n (B C) - n (A C) + n (A B C) ตัวอยางท่ี 5 พิจารณาจากรูป ตัวเลขในภาพแสดงจํานวนสมาชกิ ของเซต จะได = 60 1) n (U) = 26 2) n (A) =7 3) n (B C) =8 4) n (A C) =3 5) n (A B C )
46 3.2 การนาํ เซตไปใชในการแกป ญ หา การแกป ญ หาโจทยโดยใชค วามรูเ ร่ืองเซต สิง่ ท่ีนาํ มาใชประโยชนม ากกค็ อื การเขียนแผน ภาพเวนน - ออยเลอร และนําความรเู รอ่ื งสมาชิกของเซตจาํ กดั ดงั ที่จะศกึ ษารายละเอียดตอไปนี้ ตัวอยา งท่ี 1 บริษัทแหง หนง่ึ มีพนักงาน 80 คน พบวา พนักงาน 18 คนมีรถยนต พนกั งาน 23 คน มบี า นเปน ของตวั เอง และพนกั งาน 9 คน มบี านของตัวเองและรถยนต จงหา 1) จาํ นวนพนกั งานทงั้ หมดทีม่ รี ถยนตห รือมีบานเปนของตวั เอง 2) จํานวนพนกั งานทีไ่ มม รี ถยนตห รือบา นของตวั เอง วธิ ีทาํ ให A แทนเซตของพนกั งานท่ีมีรถยนต B แทนเซตของพนักงานทีม่ บี านเปน ของตวั เอง เขยี นจาํ นวนพนักงานที่สอดคลองกบั ขอมลู ลงในแผนภาพไดดังน้ี 1) n (A) = 18 , n (B) = 23 , n (A B) = 9 พิจารณา n (A B) = n(A) + n(B) - n (A B) = 18 + 23 – 9 = 32 ดังน้นั จาํ วนพนักงานที่มรี ถยนตหรอื มีบานของตวั เองเปน 32 คน 2) เนือ่ งจากพนักงานท้งั หมด 80 คน นนั่ คอื พนกั งานทไี่ มมรี ถยนตห รือบา นของตวั เอง = 80 - 32 = 48 คน ดงั นนั้ พนกั งานทไี่ มมรี ถยนตห รือบานของตัวเองเปน 48 คน
47 ตวั อยางท่ี 2 ในการสํารวจเกย่ี วกับความชอบของนักศกึ ษา 100 คน พบวา นกั ศึกษาท่ีชอบเรยี น คณติ ศาสตร 52 คน นกั ศกึ ษาที่ชอบเรยี นภาษาไทย 60 คน นกั ศกึ ษาทไ่ี มชอบเรยี น คณติ ศาสตรและไมชอบเรียนภาษาไทยมี 14 คน จงหานักศกึ ษาทช่ี อบเรยี นคณติ ศาสตร และภาษาไทย วธิ ีทํา แนวคดิ ท่ี 1 ให A แทนเซตของนักศกึ ษาทีช่ อบเรียนคณิตศาสตร B แทนเซตของนกั ศกึ ษาท่ีชอบเรียนภาษาไทย จาก n (A) = 52 , n(B) = 60 n ( A/ B/ ) = 14 = n ( A B )/ [A/ B/ = ( A B ) / ] n ( A B ) = 100 n ( A B ) = n(A) + n(B) - n (A B) 100 – 14 = 52 + 60 - n (A B) 86 = 52 + 60 - n (A B) n (A B) = 112 - 86 = 26 ดังนั้น จํานวนนกั ศกึ ษาท่ีชอบเรยี นคณติ ศาสตรแ ละภาษาไทย มี 26 คน แนวคดิ ท่ี 2 ให x แทนจาํ นวนนกั ศกึ ษาทช่ี อบเรยี นคณติ ศาสตรและภาษาไทย จากแผนภาพเขยี นสมการไดด งั น้ี ( 52 - x ) + x + ( 60 - x ) = 100 - 14 112 - x = 86 x = 112 - 86 = 26 ดังน้นั จาํ นวนนักศกึ ษาที่ชอบเรยี นคณิตศาสตรแ ละภาษาไทย มี 26 คน
48 ตวั อยางท่ี 3 นกั ศึกษาสาขาหนงึ่ มี 1,000 คน มนี กั ศกึ ษาเรยี นภาษาอังกฤษ 800 คน เรยี น คอมพวิ เตอร 400 คน และเลือกเรียนทง้ั สองวชิ า 280 คน อยากทราบวา 1) มนี ักศกึ ษากคี่ นทเี่ รยี นภาษาอังกฤษเพยี งวชิ าเดียว 2) มีนักศกึ ษากค่ี นที่เรยี นคอมพวิ เตอรเพียงวชิ าเดยี ว 3) มนี ักศกึ ษากค่ี นที่ไมไดเรียนวชิ าใดวิชาหนึง่ เลย 4) มีนักศกึ ษากคี่ นทไี่ มไดเ รียนท้ังสองวชิ าพรอ มกัน วธิ ีทาํ ให U แทนเซตของนกั ศกึ ษาท้ังหมด A แทน เซตของนักศกึ ษาทเี่ รียนวชิ าภาษาอังกฤษ B แทน เซตของนักศึกษาทเ่ี รียนวิชาคอมพวิ เตอร A B แทน เซตของนกั ศกึ ษาทีเ่ รียนทั้งสองวชิ า n ( U ) = 1,000 , n ( A ) = 800 , n ( B ) = 400 , n (A B) = 280 เขยี นแผนภาพไดดงั น้ี 1) นักศกึ ษาทเ่ี รยี นภาษาอังกฤษเพยี งวชิ าเดียวมจี าํ นวน 800 - 280 = 520 คน 2) นักศกึ ษาทเ่ี รียนคอมพวิ เตอรเพียงวชิ าเดียวมีจํานวน 400 - 280 = 120 คน 3) นักศกึ ษาทีไ่ มไดเรยี นวชิ าใดวชิ าหน่งึ เลย คือสว นที่แรเงาในแผนภาพซงึ่ มีจํานวน เทากับ 1,000 - 520 - 280 - 120 = 80 คน
49 4) นักศกึ ษาทไ่ี มเรยี นทงั้ สองวชิ าพรอมกนั คอื นกั ศกึ ษาท่ีเรียนวชิ าใดวิชาหนงึ่ เพยี งวชิ า เดยี ว รวมกบั นกั ศกึ ษาทไ่ี มเรียนวชิ าใดเลย คอื สวนที่แรเงาในแผนภาพ ซึง่ มจี าํ นวน เทากบั 1,000 - 280 = 720 หรือ 520 + 120 + 80 = 720 คน ตัวอยางที่ 4 ในการสํารวจผใู ชสบู 3 ชนดิ คือ ก , ข , ค พบวา มผี ใู ชชนดิ ก. 113 คน, ชนดิ ข. 180 คน, ชนิด ค. 190 คน, ใชช นิด ก . และ ข. 45 คน, ชนดิ ก. และ ค. 25 คน, ชนดิ ข. และ ค. 20 คน, ท้ัง 3 ชนิด 15 คน, ไมใ ชท ั้ง 3 ชนดิ 72 คน จงหาจาํ นวนของผเู ขา รับการสาํ รวจทง้ั หมด วิธที ํา แนวคิดท่ี 1 ให A แทนผใู ชสบูช นิด ก. B แทนผใู ชสบูชนิด ข. C แทนผูใ ชส บูช นดิ ค. จาก n (A B C) = n (A) + n (B) + n (C) - n (A B) – n (B C) - n ( A C ) + n (A B C) โดยที่ n (A) = 113 n (B) = 180 n (C) = 190 n (A B) = 45 n (A C) = 25 n (B C) = 20 n (A B C) = 15 n (A B C ) = n (A) + n (B) + n (C) - n (A B) – n (B C) - n (A C) + n (A B C) n (A B C) = 113 + 180 + 190 - 45 – 20 – 25 + 15 = 408
50 จาํ นวนผูท ใี่ ชสบู ก. หรือ ข. หรือ ค. = 408 คน จํานวนผทู ี่ไมใ ชท้ัง 3 ชนิด = 72 คน ดังนั้น จํานวนของผเู ขารับการสาํ รวจทงั้ หมด 408 + 72 = 480 คน แนวคิดท่ี 2 ให A แทนผใู ชส บูช นิด ก. B แทนผใู ชสบชู นิด ข. C แทนผใู ชสบูชนิด ค. จาํ นวนผูท ใี่ ชสบู ก. หรอื ข. หรือ ค. = 58 + 30 + 10 + 15 + 160 + 5 + 130 = 408 คน จํานวนผทู ี่ไมใ ชท งั้ 3 ชนิด = 72 คน ดังนัน้ จาํ นวนของผเู ขา รับการสาํ รวจทั้งหมด 408 + 72 = 480 คน
51 แบบฝกหดั ท่ี 3 1. จงแรเงาแผนภาพที่กาํ หนดใหเ พอื่ แสดงเซตตอไปน้ี 1) B 2) A B 3) A 4) A B 5) A B 2. จากแผนภาพท่ีกาํ หนดให จงหาคา 1) A 2) A B 3) AU B 4) A B
52 3. จากแผนภาพ กาํ หนดให U , A, B และ AB เปน เซตทม่ี จี าํ นวนสมาชกิ 100 ,40,25, และ 6 ตามลําดบั จงเตมิ จํานวนสมาชกิ ของเซตตา ง ๆ ลงในตารางตอ ไปน้ี เซต A-B B-A AB A B ( A B จํานวนสมาชกิ 4. จากการสอบถามผเู รยี นชอบเลนกฬี า 75 คน พบวา ชอบเลนปง ปอง 27 คน ชอบเลนแบตมนิ ตัน 34 คน ชอบเลนฟุตบอล 42 คน ชอบท้งั ฟุตบอลและปง ปอง 14 คน ชอบทง้ั ฟตุ บอลและ แบตมนิ ตัน 12 คน ชอบทัง้ ปงปองและแบดมนิ ตนั 10 คน ชอบท้งั สามประเภท 7 คน จงหาวานกั ศกึ ษาท่ชี อบเลนกฬี าประเภทเดยี วมกี คี่ น
Search
Read the Text Version
- 1 - 24
Pages: