44 Statistical Physics44.1 Introduction; Boltzmann-Gibbs ProbabilitiesConsider a quantum mechanical system (confined in a large volume), forwhich all energy values are discrete. Then Hˆ ψj = Ejψj ,where Hˆ is the Hamilton operator and ψl the complete set of orthogonal, nor-malized eigenfunctions of Hˆ . The observables of the system are represented byHermitian1 operators Aˆ, i.e., with real eigenvalues. For example, the spatialrepresentation of the operator pˆ is given by the differential operator pˆ = ∇ iand the space operator rˆ by the corresponding multiplication operator. =h/(2π) is the reduced Planck’s constant, and i the square root of minus one(the imaginary unit). The eigenvalues of Aˆ are real, as well as the expectationvalues ψj |Aˆ ψj ,which are the averages of the results of an extremely comprehensive series ofmeasurements of Aˆ in the state ψj. One can calculate these expectation val-ues, i.e., primary experimental quantities, theoretically via the scalar productgiven above, for example, in the one-particle spatial representation, withoutspin, as follows: ψj|Aˆ ψj = d3rψj∗(r, t)Aˆ(pˆ, rˆ)ψj (r, t) , where ψj|ψj = d3rψj∗(r, t)ψj (r, t) ≡ 1 .The thermal expectation value at a temperature T is then Aˆ = pj · ψj|Aˆψj , (44.1) T j1 more precisely: by self-adjoint operators, which are a) Hermitian and b) possess a complete system of eigenvectors.
344 44 Statistical Physicswith the Boltzmann-Gibbs probabilities pj = e− Ej . kB T e− El kB T lProof of the above expression will be deferred, since it relies on a so-called“ microcanonical ensemble ”, and the entropy of an ideal gas in this ensemblewill first be calculated. In contrast to quantum mechanics, where probability amplitudes are added(i.e., ψ = c1ψ1 + c2ψ2 + . . .), the thermal average is incoherent. This followsexplicitly from (44.1). This equation has the following interpretation: the sys-tem is with probability pj in the quantum mechanical pure state ψj2, andthe related quantum mechanical expectation values for j = 1, 2, . . ., whichare bilinear expressions in ψj , are then added like intensities as in incoher-ent optics, and not like amplitudes as in quantum mechanics. It is thereforeimportant to note that quantum mechanical coherence is destroyed by ther-malization. This limits the possibilities of “quantum computing” discussed inPart III (Quantum Mechanics). The sum in the denominator of (44.1), El kB T Z(T ) := e ,− lis the partition function. This is an important function, as shown in thefollowing section.44.2 The Harmonic Oscillator and Planck’s FormulaThe partition function Z(T ) can in fact be used to calculate “ almost any-thing ”! Firstly, we shall consider a quantum mechanical harmonic oscillator.The Hamilton operator is Hˆ = pˆ2 + mω02 xˆ2 2m 2with energy eigenvalues En = 1 · ω0 , with n = 0, 1, 2, . . . . n+ 2Therefore ∞ Z(T ) = e−β·(n+ 1 )· ω0 , with 1 2 β= . n0 kB T2 or the corresponding equivalence class obtained by multiplication with a complex number
44.2 The Harmonic Oscillator and Planck’s Formula 345Thus ∞ Z(T ) = β ω0 · Z˜(β) , with Z˜(β) := e−n·β ω0 . 2 e n=0From Z(T ) we obtain, for example: ∞∞ 1 ω0 · pn n+U (T ) = Hˆ T = pn · En = 2 n=0 n=0 ⎛⎧ ⎫ ⎞ ω0 ⎜⎜⎝⎪⎪⎪⎪⎨⎩ ∞ ne−(n+ 1 )β ω0 ⎪⎪⎬ ⎠⎟⎟ 2 ω0 ⎭⎪⎪ n=0 = · ∞ + 1 2 e−(n+ 1 )β 2 = ω0 × ⎜⎛⎝⎜⎧⎪⎪⎩⎨⎪⎪nn=∞=∞00 ne−nβ ω0 ⎫ + 1 ⎞ e−nβ ω0 ⎪⎪⎬ 2 ⎠⎟⎟ ⎭⎪⎪ n=0 = − d ln Z˜(β) + ω0 . dβ 2But Z˜(β), which is required at this point, is very easy to calculate as it is aninfinite geometric series: ∞ 1 1 − e−β Z˜(β) = e−nβ ω0 ≡ . ω0 n=0Finally we obtain U (T ) = ω0 · e−β ω0 1 = ω0 · 11 1 − e−β ω0 + 2 eβ ω0 − 1 + 2 = U˜ (T ) + ω0 , with U˜ (T ) = eβ ω0 . 2 ω0 − 1This expression corresponds to the Planck radiation formula mentioned pre-viously. As we have already outlined in Part III, Planck (1900) proceeded from theopposite point of view. Experiments had shown that at high temperaturesU˜ = kBT appeared to be correct (Rayleigh-Jeans) while at low temperatures U˜ (T ) = ω0e−β ω0(Wien). Planck firstly showed that the expression U˜ (T ) = eβ ω0 ω0 − 1
346 44 Statistical Physics(or more precisely: the related expression for entropy) not only interpo-lated between those limits, but also reproduced all relevant experiments in-between. He then hit upon energy quantization and the sequence En = n ω0 ,at that time without the zero-point energy ω0 . 2Indeed, the expression U˜ (T ) = eβ ω0 ω0 − 1describes the experimentally observed behavior at both high and low tem-peratures, for example, for kBT ω0 (high T ) we have: ω0 ω0 . kB T e kB T − 1 ≈The expression U˜ (T ) = eβ ω0 ω0 − 1is valid for a single harmonic oscillator of frequency ν = ω0 . 2πOne can regard ω0 as the excitation energy of an individual quantum ofthis electrodynamic oscillation mode (→ photons). In solids other vibrationalquanta of this kind exist (phonons, magnons, plasmons etc., see below), whichare regarded as “ quasi-particles ”. They have zero chemical potential μ, suchthat the factor n T := eβ ω0 − 1 −1can be interpreted as the thermal expectation value for the number of quasi-particles n. Thus U (T ) = ω0 · 1 . nT+2(Cf. one of the last sections in Part II, Sect. 21.1, dealing with dispersion, orSect. 53.5 below.) To summarize, plane electromagnetic waves of wavenumber k = 2π/λtravelling with the speed of light c in a cavity of volume V , together with therelation λ = c/ν = 2πc/ω0between wavelength λ and frequency ν (or angular frequency ω0) can be in-terpreted as the vibrational modes of a radiation field. Formally this field has
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
- 301
- 302
- 303
- 304
- 305
- 306
- 307
- 308
- 309
- 310
- 311
- 312
- 313
- 314
- 315
- 316
- 317
- 318
- 319
- 320
- 321
- 322
- 323
- 324
- 325
- 326
- 327
- 328
- 329
- 330
- 331
- 332
- 333
- 334
- 335
- 336
- 337
- 338
- 339
- 340
- 341
- 342
- 343
- 344
- 345
- 346
- 347
- 348
- 349
- 350
- 351
- 352
- 353
- 354
- 355
- 356
- 357
- 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 366
- 367
- 368
- 369
- 370
- 371
- 372
- 373
- 374
- 375
- 376
- 377
- 378
- 379
- 380
- 381
- 382
- 383
- 384
- 385
- 386
- 387
- 388
- 389
- 390
- 391
- 392
- 393
- 394
- 395
- 396
- 397
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409
- 410
- 411
- 412
- 413
- 414
- 415
- 416
- 417
- 418
- 419
- 420
- 421
- 422
- 423
- 424
- 425
- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434