Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore buku-pegangan-siswa-matematika-sma-kelas-11-semester-2-kurikulum-2013

buku-pegangan-siswa-matematika-sma-kelas-11-semester-2-kurikulum-2013

Published by Dina Widiastuti, 2020-01-01 01:57:00

Description: buku-pegangan-siswa-matematika-sma-kelas-11-semester-2-kurikulum-2013

Search

Read the Text Version

Hak Cipta © 2014 pada Kementerian Pendidikan dan Kebudayaan Dilindungi Undang-Undang MILIK NEGARA TIDAK DIPERDAGANGKAN Disklaimer: Buku ini merupakan buku siswa yang dipersiapkan Pemerintah dalam rangka implementasi Kurikulum 2013. Buku siswa ini disusun dan ditelaah oleh berbagai pihak di bawah koordinasi Kementerian Pendidikan dan Kebudayaan, dan dipergunakan dalam tahap awal penerapan Kurikulum 2013. Buku ini merupakan “dokumen hidup” yang senantiasa diperbaiki, diperbaharui, dan dimutakhirkan sesuai dengan dinamika kebutuhan dan perubahan zaman. Masukan dari berbagai kalangan diharapkan dapat meningkatkan kualitas buku ini. Katalog Dalam Terbitan (KDT) Indonesia. Kementerian Pendidikan dan Kebudayaan. Matematika/Kementerian Pendidikan dan Kebudayaan.-- Edisi Revisi. Jakarta: Kementerian Pendidikan dan Kebudayaan, 2014. vi, 230 hlm. : ilus. ; 25 cm. Untuk SMA/MA/SMK/MAK Kelas XI Semester 2 ISBN 978-602-282-095-6 (jilid lengkap) ISBN 978-602-282-098-7 (jilid 2b) 1. Matematika — Studi dan Pengajaran I. Judul II. Kementerian Pendidikan dan Kebudayaan 510 Kontributor Naskah : Bornok Sinaga, Pardomuan N.J.M. Sinambela, Andri Kristianto Penelaah Sitanggang, Tri Andri Hutapea, Lasker Pangarapan Sinaga, Penyelia Penerbitan Sudianto Manullang, Mangara Simanjorang, dan Yuza Terzalgi Bayuzetra. : Agung Lukito, Turmudi, dan Dadang Juandi. : Pusat Kurikulum dan Perbukuan, Balitbang, Kemdikbud. Cetakan Ke-1, 2014 Disusun dengan huruf Times New Roman, 11 pt. ii Kelas XI SMA/MA/SMK/MAK

Matematika adalah bahasa universal untuk menyajikan gagasan atau pengetahuan secara formal dan presisi sehingga tidak memungkinkan terjadinya multi tafsir. Penyampaiannya adalah dengan membawa gagasan dan pengetahuan konkret ke bentuk abstrak melalui pendefinisian variabel dan parameter sesuai dengan yang ingin disajikan. Penyajian dalam bentuk abstrak melalui matematika akan mempermudah analisis dan evaluasi selanjutnya. Permasalahan terkait gagasan dan pengetahuan yang disampaikan secara matematis akan dapat diselesaikan dengan prosedur formal matematika yang langkahnya sangat presisi dan tidak terbantahkan. Karenanya matematika berperan sebagai alat komunikasi formal paling efisien. Perlu kemampuan berpikir kritis-kreatif untuk menggunakan matematika seperti uraian diatas: menentukan variabel dan parameter, mencari keterkaitan antar variabel dan dengan parameter, membuat dan membuktikan rumusan matematika suatu gagasan, membuktikan kesetaraan antar beberapa rumusan matematika, menyelesaikan model abstrak yang terbentuk, dan mengkonkretkan nilai abstrak yang diperoleh. Buku Matematika Kelas XI untuk Pendidikan Menengah ini disusun dengan tujuan memberi pengalaman konkret-abstrak kepada peserta didik seperti uraian diatas. Pembelajaran matematika melalui buku ini akan membentuk kemampuan peserta didik dalam menyajikan gagasan dan pengetahuan konkret secara abstrak, menyelesaikan permasalahan abstrak yang terkait, dan berlatih berfikir rasional, kritis dan kreatif. Sebagai bagian dari Kurikulum 2013 yang menekankan pentingnya keseimbangan kompetensi sikap, pengetahuan dan keterampilan, kemampuan matematika yang dituntut dibentuk melalui pembelajaran berkelanjutan: dimulai dengan meningkatkan pengetahuan tentang metode-metode matematika, dilanjutkan dengan keterampilan menyajikan suatu permasalahan secara matematis dan menyelesaikannya, dan bermuara pada pembentukan sikap jujur, kritis, kreatif, teliti, dan taat aturan. Buku ini menjabarkan usaha minimal yang harus dilakukan peserta didik untuk mencapai kompetensi yang diharapkan. Sesuai dengan pendekatan yang dipergunakan dalam Kurikulum 2013, peserta didik diberanikan untuk mencari dari sumber belajar lain yang tersedia dan terbentang luas di sekitarnya. Peran guru sangat penting untuk meningkatkan dan menyesuaikan daya serap peserta didik dengan ketersedian kegiatan pada buku ini. Guru dapat memperkayanya dengan kreasi dalam bentuk kegiatan-kegiatan lain yang sesuai dan relevan yang bersumber dari lingkungan sosial dan alam. Implementasi terbatas pada tahun ajaran 2013/2014 telah mendapat tanggapan yang sangat positif dan masukan yang sangat berharga. Pengalaman tersebut dipergunakan semaksimal mungkin dalam menyiapkan buku untuk implementasi menyeluruh pada tahun ajaran 2014/2015 dan seterusnya. Walaupun demikian, sebagai edisi pertama, buku ini sangat terbuka dan terus dilakukan perbaikan untuk penyempurnaan. Oleh karena itu, kami mengundang para pembaca memberikan kritik, saran dan masukan untuk perbaikan dan penyempurnaan pada edisi berikutnya. Atas kontribusi tersebut, kami mengucapkan terima kasih. Mudah-mudahan kita dapat memberikan yang terbaik bagi kemajuan dunia pendidikan dalam rangka mempersiapkan generasi seratus tahun Indonesia Merdeka (2045). Jakarta, Januari 2014 Menteri Pendidikan dan Kebudayaan Mohammad Nuh Matematika iii

Kata Pengantar ................................................................................................................ iii Daftar Isi ............................................................................................................................ iv Peta Konsep Matematika SMA Kelas XI ......................................................................... viii Bab 7 Statistika ................................................................................................. 1 A. Kompetensi Dasar dan Pengalaman Belajar .............................................. 1 B. Peta Konsep ............................................................................................... 2 C. Materi Pembelajaran ................................................................................... 3 1. Ukuran Pemusatan ............................................................................. 3 2. Ukuran Letak Data ............................................................................... 12 3. Ukuran Penyebaran Data ..................................................................... 20 Uji Kompetensi 7 ................................................................................................ 26 D. Penutup........................................................................................................ 31 Bab 8 Aturan Pencacahan.......................................................................................... 33 A. Kompetensi Dasar dan Pengalaman Belajar .............................................. 33 B. Peta Konsep ............................................................................................... 35 C. Materi Pembelajaran ................................................................................... 36 1. Menemukan Konsep Pecahan (Perkalian, Permutasi, dan Kombinasi) ........................................................................................... 36 Uji Kompetensi 8.1 ............................................................................................. 62 2. Peluang ................................................................................................ 64 Uji Kompetensi 8.2 ............................................................................................. 71 D. Penutup ................................................................................................. 74 Bab 9 Lingkaran ................................................................................................. 75 A. Kompetensi Dasar dan Pengalaman Belajar .............................................. 75 B. Peta konsep ................................................................................................ 76 C. Materi Pembelajaran ................................................................................... 77 1. Menemukan Konsep Persamaan Lingkaran ........................................ 77 2. Bentuk Umum Persamaan Lingkaran .................................................. 82 Uji Kompetensi 9.1 ............................................................................................. 85 3. Kedudukan Titik terhadap Lingkaran ................................................... 87 4. Kedudukan Garis terhadap Lingkaran ................................................ 90 5. Persamaan Garis Singgung Lingkaran ............................................... 95 Uji Kompetensi 9.2 ............................................................................................. 102 D. Penutup ................................................................................................. 104 iv Kelas XI SMA/MA/SMK/MAK

Bab 10 Transformasi .................................................................................................... 105 A. Kompetensi Dasar dan Pengalaman Belajar .............................................. 105 B. Peta Konsep ............................................................................................... 106 C. Materi Pembelajaran ................................................................................... 107 1. Memahami dan Menemukan Konsep Translasi (Pergeseran) ............ 107 2. Memahami dan Menemukan Konsep Refleksi (Pencerminan)............. 113 Uji Kompetensi 10.1 ........................................................................................... 125 3. Memahami dan Menemukan Konsep Rotasi (Perputaran)................... 127 4. Memahami dan Menemukan Konsep Dilatasi (Perkalian).................... 137 Uji Kompetensi 10.2 ........................................................................................... 144 D. Penutup ................................................................................................. 146 Bab 11 Turunan.............................................................................................................. 149 A. Kompetensi Dasar dan Pengalaman Belajar .............................................. 149 B. Peta Konsep ............................................................................................... 151 C. Materi Pembelajaran ................................................................................... 152 1. Menemukan Konsep Turunan Suatu Fungsi ........................................ 152 1.1 Menemukan Konsep Garis Sekan dan Garis Tangen ................... 152 1.2 Turunan sebagai Limit Fungsi ....................................................... 156 1.3 Turunan Fungsi Aljabar.................................................................. 160 Uji Kompetensi 11.1 ........................................................................................... 166 2. Aplikasi Turunan ................................................................................... 167 2.1 Fungsi Naik dan Turun................................................................... 167 2.2 Aplikasi Turunan dalam Permasalahan Fungsi Naik dan Fungsi Turun ................................................................................................. 169 2.3 Aplikasi Konsep Turunan dalam Permasalahan Maksimum dan Minimun................................................................................... 177 2.4 Aplikasi Konsep Turunan dalam Permasalahan Kecepatan dan Percepatan.............................................................................. 188 3. Sketsa Kurva Suatu Fungsi dengan Konsep Turunan ......................... 191 Uji Kompetensi 11.2 ........................................................................................... 196 D. Penutup ................................................................................................. 198 Bab 12 Integral .............................................................................................................. 201 A. Kompetensi Dasar dan Pengalaman Belajar .............................................. 201 B. Peta Konsep ............................................................................................... 202 C. Materi Pembelajaran ................................................................................... 203 1. Menemukan Konsep Integral tak Tentu sebagai Kebalikan dari Turunan Fungsi ................................................................................... 203 Uji Kompetensi 12.1 ........................................................................................... 208 2. Notasi Integral dan Rumus Dasar Integral Tak Tentu .......................... 209 Uji Kompetensi 12.2 ........................................................................................... 224 D. Penutup ................................................................................................. 227 Daftar Pustaka................................................................................................................. 228 Matematika v

vi Kelas XI SMA/MA/SMK/MAK

Bab 7 STATISTIKA A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Pengalaman Belajar Setelah mengikuti pembelajaran ini siswa mampu: Melalui pembelajaran materi peluang, siswa memperoleh pengalaman belajar: 1. Menghayati dan mengamalkan ajaran agama • Berdiskusi, bertanya dalam menemukan yang dianutnnya. konsep dan prinsip statistik melalui pemecahan 2. Memiliki motivasi internal, kemampuan masalah autentik yang bersumber dari fakta bekerjasama, konsisten, sikap disiplin, rasa dan lingkungan. percaya diri, dan sikap toleransi dalam • Berkolaborasi memecahkan masalah autentik perbedaan strategi berpikir dalam memilih dan dengan pola interaksi edukatif. menerapkan strategi menyelesaikan masalah. • Berpikir tingkat tinggi dalam menyajikan, serta menga-nalisis statistik deskriptif. 3. Mampu mentransformasi diri dalam berprilaku jujur, tangguh mengadapi masalah, kritis • Mean dan disiplin dalam melakukan tugas belajar • Median matematika. • Modus • Simpangan baku 4. Menunjukkan sikap bertanggung jawab, • Varian rasa ingin tahu, jujur dan perilaku peduli • Histogram lingkungan. • Quartil • Desil 5. Mendeskripsikan dan menggunakan berbagai • Persentil ukuran pemusatan, letak dan penyebaran data sesuai dengan karakteristik data melalui aturan dan rumus serta menafsirkan dan mengomunikasikannya. 6. Menyajikan dan mengolah data statistik deskriptif ke dalam tabel distribusi dan histogram untuk memperjelas dan menyelesaikan masalah yang berkaitan dengan kehidupan nyata. Mampu mentransformasi diri dalam berprilaku jujur, tangguh mengadapi masalah, kritis dan disiplin dalam melakukan tugas belajar matematika.

B. PETA KONSEP BILANGAN MATERI PENGUKURAN PRASYARAT Masalah Statistika Otentik Pengumpulan Penyajian Data Pengolahan Data Tabel Diagram Grafik Wawancara Angket Observasi Rata-rata Median Modus 2 Kelas XI SMA/MA/SMK/MAK

C. MATERI PEMBELAJARAN 1. UKURAN PEMUSATAN Mean atau yang sering disebut sebagai rata-rata, median yang merupakan nilai tengah dari data yang telah diurutkan , dan modus yaitu data yang sering muncul merupakan nilai yang menggambarkan tentang pemusatan nilai-nilai dari data yang diperoleh dari suatu peristiwa yang telah diamati. Itulah sebabnya mean, median, dan modus disebut sebagai ukuran pemusatan. Untuk lebih memahami tentang ukuran pemusatan data, mari kita cermati dari masalah berikut ini. Masalah-7.1 Kepala Sekolah SMA Negeri 1 Bakara-Baktiraja ingin mengevaluasi hasil belajar siswa dan meminta guru untuk memberikan laporan evaluasi hasil belajar siswa. Data hasil penilaian yang dilakukan guru matematika terhadap 64 siswa/siswi kelas XI dinyatakan sebagai berikut. 61 83 88 81 82 60 66 98 93 81 38 90 92 85 76 88 78 74 70 48 80 63 76 49 84 79 80 70 68 92 61 83 88 81 82 72 83 87 81 82 81 91 56 65 63 74 89 73 90 97 48 90 92 85 76 74 88 75 90 97 75 83 79 86 80 51 71 72 82 70 93 72 91 67 88 80 63 76 49 84 Guru berencana menyederhanakan data tunggal tersbut menjadi bentuk data berinterval dan membuat statitistiknya, hal ini dilakukan untuk mengefisienkan laporan evaluasi hasil belajar siswa. Bantulah guru tesebut untuk menyusun laporannya! Alternatif Penyelesaian Untuk dapat memudahkan penggunaan data tersebut, susun data berdasarkan urutan terkecil hingga terbesar. Urutan data tersebut dinyatakan sebagai berikut. 38 48 48 49 49 51 56 60 61 61 63 63 63 65 66 67 68 70 70 70 71 72 72 72 73 74 74 74 75 75 76 76 76 76 78 79 79 80 80 80 80 81 81 81 81 81 82 82 82 82 83 83 83 83 84 84 85 85 86 87 88 88 88 88 88 89 90 90 90 90 91 91 92 92 92 93 93 97 97 98 Matematika 3

Setelah data diurutkan, dengan mudah kita temukan, data terbesar adalah 98 dan data terkecil adalah 38. Selisih data terbesar dengan data terkecil disebut sebagai jangkauan data. Untuk data yang kita kaji, diperoleh: Jangkauan Data adalah 60. Langkah kita selanjutnya adalah untuk mendistribusikan data-data tersebut ke dalam kelas-kelas interval. Untuk membagi data menjadi beberapa kelas, kita menggunakan aturan Sturgess. Aturan tersebut dinyatakan bahwa jika data yang diamati banyaknya n dan banyak kelas adalah k, banyak kelas dirumuskan sebagai berikut: k = 1 + (3, 3). log n Untuk data di atas diperoleh, Banyak Kelas = 1 + (3,3). log 80 = 1 + (3,3). (1,903) = 7,28 = 7 Jadi 80 data di atas akan dibagi menjadi 7 kelas interval. Pertanyaan kritis: Jelaskan mengapa angka pembulatan yang dipilih angka 7 bukan angka 8? Sekarang kita perlu menentukan berapa banyak data yang terdapat pada satu kelas interval. Banyak data dalam satu interval, disebut panjang interval kelas, yang dirumuskan sebagai berikut: Maka diperoleh: Panjang Kelas = Jangkauan data Banyak kelas dari data di atas dapat di peroleh Panjang Kelas = Jangkauan = 60 = 8,57 ≈9 Banyak Kelas 7 Selanjutnya, dengan adanya banyak kelas adalah 7 dan panjang kelas adalah 9 dapat kita gunakan untuk membentuk kelas interval yang dinyatakan sebagai berikut: Kelas I : 38 – 46 Kelas II : 47 – 55 Kelas III : 56 – 64 Kelas IV : 65 – 73 Kelas V : 74 – 82 Kelas VI : 83 – 91 Kelas VII : 92 – 100 4 Kelas XI SMA/MA/SMK/MAK

Dari hasil pengolahan data di atas dapat dibentuk ke dalam bentuk tabel berikut. Tabel 7.1. Tabel Frekuensi Kelas Frekuensi 38 – 46 1 47 – 55 5 56 – 64 7 65 – 73 12 74 – 82 25 83 – 91 22 92 – 100 8 80 Perlu dicermati bahwa pembentukan interval kelas tersebut harus memuat semua data. Jika ada satu data yang tidak tercakup pada interval kelas, maka terdapat kesalahan dalam mendistribusikan data. Bentuk histogram dari hasil pengolahan data nilai siswa di atas digambarkan sebagai berikut. Gambar 7.1 Histogram Data Nilai Siswa a. Menentukan Nilai Mean (Rata-rata) Sajian data pada tabel di atas, tentunya harus kita memaknai setiap angka yang tersaji. Dari Interval 38 – 46 dapat diartikan bahwa: 38 disebut batas bawah interval 46 disebut batas atas interval. Titik tengah interval, dinotasikan xi , diperoleh: xi = 1 ( batas bawah interval ke - i) + (batas atas interval ke - i) 2 1 [38 + 46]= 42 Sehingga: x1= 2 Matematika 5

Setiap interval memiliki batas bawah, batas atas, dan titik tengah interval ( xi ). Data hasil belajar siswa di atas, dapat diperbaharui sebagai berikut: Kelas Tabel 7.2 Tabel Frekuensi xi . F 38 – 46 xi F 42 47 – 55 42 1 255 56 – 64 51 5 420 65 – 73 60 7 828 74 – 82 69 12 78 25 1,950 83 – 91 87 22 1,914 92 – 100 96 8 768 Total 80 6,177 Titik tengah setiap interval diartikan sebagai perwakilan data setiap interval. Nilai ini digunakan untuk menentukan rata-rata data tersebut. Data yang diperoleh dari Tabel 7.2 dapat digambarkan kedalam bentuk histogram Gambar 7.2 Histogram Data Nilai Siswa Dengan mengembangkan konsep mean pada data tunggal, yakni, mean merupakan perbandingan jumlah seluruh data dengan banyak data. Dari tabel dan histogram dapat kita peroleh jumlah seluruh data, yakni, jumlah perkalian nilai tengah terhadap frekuensi masing-masing. Maka jumlah seluruh data adalah: = (1) 42 + (5) 51 + (7) 60 + (12) 69 + (25) 78 + (22) 78 + (22) 87 + (8) 96 Sehingga diperoleh rata-rata (mean): mean = (1) 42 + (5)51 + (7)60 + (12)69 + (25)78 + ( 22)87+ (8)96 1+ 5 + 7 +12 + 25 + 22+8 = 6177 = 77.21 80 6 Kelas XI SMA/MA/SMK/MAK

Dengan demikian, dengan tabel frekuensi di atas dan nilai rata-rata data, ditemukan: Ø Banyak siswa yang memiliki nilai matematika di bawah nilai rata-rata! Ø Banyak siswa yang memiliki nilai matematika di atas nilai rata-rata! Perhitungan rata-rata di atas dapat kita dirumuskan secara matematis menjadi: Mean ( x ) = f1x1 + f2 x2 + f3x3 + ... + fk xk f1 + f2 + f3 + ... + fk k ∑ ( xi . fi ) = i =1 k ∑ fi i =1 Nah, melalui pembahasan di atas, tentunya dapat disimpulkan bahwa rata-rata (mean) merupakan salah satu ukuran pemusatan data yang dinyatakan sebagai berikut. k ∑∑x = fi xi i=1 fi = f1x1 + f2 x2 + f3x3 + ... + fk xk k f1 + f2 + f3 + ... + fk i=1 dimana: fi : frekuensi kelas ke-i xi : nilai tengah kelas ke-i Selain cara di atas, ada cara lain untuk menghitung rata-rata. Dengan data yang sama, cermati langkah-langkah di bawah ini. Tabel 7.3 Perhitungan Rataan sementara Interval (xi) fi dxis==x7i-8xs fi. di 38 – 46 42 1 -36 -36 47 – 55 51 5 -27 -135 56 – 64 60 7 -18 -126 65 – 73 69 12 -9 -108 74 – 82 78 25 0 0 83 – 91 87 22 9 198 92 – 100 96 8 18 144 Total 80 -63 Matematika 7

Dengan cara memperkirakan bahwa nilai rata-rata sementara yang dipilih pada kelas yang memiliki frekuensi tertinggi dan letak rata-rata sementara tersebut adalah titik tengah kelas interval. Secara lengkap, langkah-langkah menentukan rata-rata data dengan menggunakan rata-rata sementara sebagai berikut Langkah 1. Ambil nilai tengah dengan frekuensi terbesar sebagai mean sementara xs Langkah 2. Kurangkan setiap nilai tengah kelas dengan mean sementara dHaitnuncgatahtahsail skilanlyi af,dadl,amdaknotloumliskdai n= xi – xs. Langkah 3. hasilnya pada sebuah kolom, dan hitung totalnya. Langkah 4. Hitung mean dengan menggunakan rumus rataan sementara. Sehingga diperoleh rata-rata adalah: k ∑( fi.di ) x = xs + i=1 k ∑ fi i =1 dengan: rata-rata sementara. xs : deviasi atau simpangan terhadap rata-rata. di : frekuensi interval kelas ke-i. fxis : nilai tengah interval kelas ke-i. : Maka untuk data di atas dapat diperoleh: k ( fi .di ) ∑∑ Mean = xs + i =1 = 78 + −117 = 77.21. k 64 fi i =1 b. Menentukan Nilai Modus Pada waktu SMP kamu telah membahas modus untuk data tunggal, untuk data berkelompok secara prinsip adalah sama yakni nilai yang sering muncul. Dalam hal ini frekuensi terbanyak menjadi perhatian kita sebagai letak modus tersebut. Misalkan dari sekumpulan data kita mengambil 3 kelas interval yakni kelas interval dengan frekuensi terbanyak (kelas modus) dan kelas interval 8 Kelas XI SMA/MA/SMK/MAK

sebelum dan sesudah kelas modus. Dengan bantuan histogram dapat digambarkan sebagai berikut: D Gambar 7.3 Penentuan Modus dengan Histogram Perhatikan ilustrasi diatas, terlihat bahwa ∆ ABG sebangun dengan ∆ DCG, dan panjang AB = d1 ; CD = d2 ; EG = ∆x dan FG = k - ∆x. Secara geometri dari kesebangunan di atas berlaku perbandingan berikut ini; AB = EG ⇔ d1 = ∆x CD FG d2 k − ∆x ⇔ d1 (k − ∆x) = d2∆x ⇔ d1k − d1∆x = d2∆x ⇔ d1∆x + d2∆x = d1k ⇔ ∆x (d1 + d2 ) = d1k ⇔ ∆x = ( d1k ) d1 + d2 ⇔ ∆x = k  d1 d1   + d2    Matematika 9

Sehingga dapat diperoleh modus adalah: M 0 = tb + ∆x = tb + k  d1 d1   + d2    M0 = tb + k  d1 d1   + d2    dimana: M0 : Modus tb : Tepi bawah kelas modus k : Panjang kelas d1 : Selisih frekuensi kelas modus dengan kelas sebelumnya d2 : Selisih frekuensi kelas modus dengan kelas sesudahnya Perhatikan tabel berikut. Tabel 7.4 Perhitungan Modus No Kelas Titik tengah (xi) Frekuensi (fi) 1 38 – 46 42 1 2 47 – 55 51 5 3 56 – 64 60 7 4 65 – 73 69 12 5 74 – 82 78 25 6 83 – 91 87 22 7 92 – 100 96 8 Dari data di atas dapat ditentukan sebagai berikut: Tampak modus terletak pada frekuensi terbanyak f = 25 yaitu kelas interval modus 74 – 82 dengan dan panjang kelas k = 9. Oleh karena itu, tb= 73,5, dan d1= 25 – 12 =13 serta d2= 25 – 22 = 3. Jadi modus data di atas adalah: Mo = tb + k  d1   + d2   d1  = 73, 5 + 9  13 3  13 +  = 73,5 + 7,31 10M o =Ke8l0a,s8X1I SMA/MA/SMK/MAK

Mo = tb + k  d1   + d2   d1  = 73, 5 + 9  13 3  13 +  = 73,5 + 7,31 M o = 80,81 c. Median Median dari sekelompok data yang telah terurut merupakan nilai yang terletak di tengah data yang membagi data menjadi dua bahagian yang sama. Untuk data berkelompok berdistribusi frekuensi median ditentukan sebagai berikut: Me = tb + k  n −F   2 fm       dengan : Me = Median tb = tepi bawah kelas median k = panjang kelas n = banyak data dari statistik terurut ∑ fi F = frekuensi kumulatif tepat sebelum kelas median fm = frekuensi kelas median Dari data sebelumnya diperoleh k = 9 ; tb = 73,5 ; N = 80; fm = 25 sehingga: Masih menggunakan data di atas maka kita bentuk tabel berikut ini. Tabel 7.5 Perhitungan Median Kelas Frekuensi fi Frekuensi Kumulatif F 38 – 46 1 1 47 – 55 56 – 64 56 65 – 73 74 – 82 7 13 83 – 91 12 25 92 – 100 25 50 22 77 8 80 80 Matematika 11

Median = tb + k  n −F   2 fm       = 73, 5 + 9  80 − 25   2     25   = 73,5 + 3, 705 = 77, 205 Pertanyaan kritis: Ÿ Dari ketiga pembahasan tentang ukuran pemusatan data pada data kelompok, dapatkah kamu menemukan hubungan antara ketiga pemusatan data di atas? Diskusikan dengan temanmu! Ÿ Dapatkah terjadi nilai ukuran=x M=o Me pada sekumpulan data, jelaskan. 2. UKURAN LETAK DATA Ukuran letak data yang dimaksud dalam subbab ini adalah kuartil, desil, dan persentil. Ingat kembali materi statistik yang telah kamu pelajari di kelas X, konsep kuartil dan desil untuk data berdistribusi analog dengan yang ada pada data tunggal. a. Kuartil Jika semua data yang telah diurutkan mulai dari data terkecil dan data terbesar, maka data tersebut dapat dibagi menjadi empat bagian. Ukuran letak yang membagi empat bagian dari sekumpulan data disebut kuartil. Untuk lebih memahami pengertian kuartil perhatikan ilustrasi berikut. Xmin Q1 Q2 Q3 Xmax Gambar 7.4 Letak Kuartil Untuk menentukan Kuartil data berdistribusi, dirumuskan:  i n− FQ   4 fQi  Qi = Li + k 12 Kelas XI SMA/MA/SMK/MAK

n : banyak data k : panjang kelas Qi : Kuartil ke-i data, untuk i = 1,2, 3. Li : Tepi bawah kelas ke-i. Li= batas bawah – 0.5. FQ : jumlah frekuensi sebelum kuartil ke-i. Fi : frekuensi kelas yang memuat Kuartil ke-i. Contoh 7.1 Perhatikan tabel berikut ini dan tentukan a. Kuartil bawah (Q1) Tabel 7.6 Distribusi Frekuensi b. Kuartil tengah (Q2) c. Kuartil atas (Q3) Kelas Frekuensi fi 42 – 46 2 47 – 51 5 52 – 56 5 57 – 61 15 62 – 66 7 67 – 71 4 72 – 76 2 Alternatif Penyelesaian Dengan melengkapi tabel 7.6 diperoleh: Tabel 7.7 Distribusi Frekuensi Kumulatif Kelas Frekuensi fi Frekuensi Kumulatif F 42 – 46 2 2 47 – 51 5 7 52 – 56 5 12 57 – 61 15 27 62 – 66 7 34 67 – 71 4 38 72 – 76 2 40 Matematika 13

a. Kuartil ke-1 Kuartil bawah dapat juga disebut kuartil ke-1 (Q1), dan untuk menentukan letak Q1 terlebih dahulu kita mencari kelas yang memuat Q1 yakni dengan menghitung nilai dar=i 1 n 1=( 40 ) 10. Hal ini berarti Q1 adalah data ke-10, 4 4 kelas interval 52 – 56, dan fi = 11. Dari tabel juga diperoleh L1 = 51,5, FQ = 7, fQ1 = 5, k = 5. Sehingga kuartil bawah diperoleh:  i n− FQ   4 fQi  Qi = Li + k (10 − 6) Q1 = 51,5 + 5 5 = 51,5 + 4 Q1 = 55,5 Sehingga kuartil ke-1 adalah 55,5 b. Kuartil ke-2 Analog dengan mencari Q1 maka diperoleh nilaFi Q2 , yakni: 2 n = 1 (40) = 20 . fQ2 44 = 5. Hal ini berarti Q2 berada pada kelas interval 57 – 61, dan = 15. Dari tabel juga diperoleh L2 = 56,5, FQ = 12, fQ2 = 15, k Sehingga dapat ditentukan kuartil tengah adalah:  i n− FQ   4 fQi  Qi = Li + k (20 −12) Q2 = 56,5 + 5 15 = 56,5 + 2,66 Q2 = 59,16 Sehingga kuartil ke-2 adalah 59,16 14 Kelas XI SMA/MA/SMK/MAK

c. Kuartil ke-3 Sama seperti menentukan Q1 dan Q2 maka diperoleh nilai-nilai yang kita perlukan untuk memperoleh nilai Q3 , yakni: 3 n = 3 (40) = 30 . Hal ini 44 berarti Q3 berada pada kelas interval 62 – 66, dan fQ3 = 7. Dari tabel juga diperoleh L1 = 61,5, FQ = 27, fQ3 = 7, k = 5. Sehingga dapat ditentukan kuartil atas adalah:  i n − FQ   4  Qi = Li + k fQi Q3 = 61,5 + 5 (30 − 27) 7 = 61,5 + 2,14 Q3 = 63,64 Sehingga kuartil ke-3 adalah 63,64 b. Desil Prinsip untuk mencari desil hampir sama dengan kuartil, jika kuartil mem- bagi data yang terurut menjadi empat bagian maka desil menjadi 10 bagian dengan ukuran data n > 10. Hal ini berarti sekumpulan data yang terurut memiliki 9 nilai desil, yakni D1, D2, D3, ..., D9 Untuk menentukan Desil, dirumuskan sebagai berikut: i n− FD   10 f Di  Di = Li + k i = 1,2, 3, … , 9 Di : Desil ke-i Li : Tepi bawah kelas yang memuat desil ke-i FD : jumlah frekuensi sebelum kelas desil ke-i fDi : frekuensi kelas yang memuat desil ke-i n : Banyak data k : panjang kelas. Matematika 15

Contoh 7.2 Dari 1.000 siswa peserta Olimpiade Matematika diperoleh data skor berupa tabel berikut. Tabel 7.8 Skor Olimpiade Matematika Skor Frekuensi 0-9 5 10-19 54 20-29 215 30-39 263 40-49 223 50-59 124 60-69 72 70-79 38 80-89 5 90-99 1 Tentukanlah desil a. Desil ke-1 b. Dan desil ke-8 Alternatif Penyelesaian Dengan melengkapi tabel 7.8 diperoleh: Tabel 7.9 Distribusi Frekuensi Kumulatif Skor Frekuensi Frekuensi Kumulatif F 0-9 5 5 10-19 54 59 20-29 215 274 30-39 263 537 40-49 223 760 16 Kelas XI SMA/MA/SMK/MAK

Skor Frekuensi Frekuensi Kumulatif F 50-59 124 884 60-69 72 956 70-79 38 994 80-89 5 999 90-99 1 1000 a. Desil ke-1 Untuk menentukan letak D1 terlebih dahulu kita mencari kelas yang 1 n = 1 (1000) = 100 . memuat D1 yakni dengan menghitung nilai dari Hal ini 10 10 berarti D1 adalah data ke-100 yaitu, kelas interval 20 – 29, dan fD1 = 215. Dari tabel juga diperoleh L1 = 19,5, FD = 59, fD1 = 215, k = 10. Sehingga kuartil bawah diperoleh:  i n − FD   10  Di = Li + k f Di D1 = 19,5 +10 (100 − 59) 215 = 19,5 + 43,76 D1 = 63, 26 Sehingga kuartil ke-1 adalah 63,26 b. Desil ke-8 Untuk menentukan letak D8 terlebih dahulu kita mencari kelas yang memuat D8 yakni dengan menghitung nilai dari 8 n = 8 (1000) = 800 . Hal ini berarti D8 adalah data ke- 10 10 800, kelas interval 40 – 49, dan fD8 = 223. Dari tabel juga diperoleh L8 = 39,5, FD = 573, fD8 = 223, k = 10. Matematika 17

Sehingga kuartil bawah diperoleh:  i n − FD   10  Di = Li + k f Di (800 − 573) D8 = 39,5 +10 223 = 39,5 +10,17 D8 = 49,67 Sehingga kuartil ke-8 adalah 49,67 c. Persentil Jika kuartil dan desil membagi data yang terurut menjadi empat dan sepuluh bagian maka desil menjadi 100 bagian data. Hal ini berarti sekumpulan data yang terurut memiliki 99 nilai persentil, yakni P1, P2, P3, ..., P99. Untuk menentukan persentil, dirumuskan sebagai berikut: i n− FP   100 f Pi  Pi = Li + k i = 1,2, 3, … , 9 Pi : Persentil ke-i Li : Tepi bawah kelas yang memuat persentil ke-i FP : jumlah frekuensi sebelum kelas persentil ke-i fPi : frekuensi kelas yang memuat persentil ke-i n : Banyak data k : panjang kelas. Contoh 7.3 Dengan menggunakan data pada contoh 7.2 Tentukanlah a. persentil ke-10 b. persentil ke-99 18 Kelas XI SMA/MA/SMK/MAK

Alternatif Penyelesaian Perhatikan tabel berikut Tabel 7.10 Distribusi Frekuensi Kumulatif Skor Frekuensi Frekuensi Kumulatif F 0-9 5 5 10-19 54 59 20-29 215 274 30-39 263 537 40-49 223 760 50-59 124 884 60-69 72 956 70-79 38 994 80-89 5 999 90-99 1 1.000 a. Persentil ke-10 Untuk menentukan letak P10 terlebih dahulu kita mencari kelas yang memuat P10 yakni dengan menghitung nilai dari 10 n = 10 (1000) = 100 . Hal ini berarti 100 100 P10 adalah data ke-100, kelas interval 20 – 29, dan fP10 = 215. Dari tabel juga diperoleh L10 = 19,5, FP = 59, fP10 = 215, k = 10. Sehingga kuartil bawah diperoleh:  i n− FP   10 f Pi  Pi = Li + k (100 − 59) P10 = 19,5 + 10 215 = 19,5 + 43,76 P10 = 63, 26 Sehingga persentil ke-10 adalah 63,26 Matematika 19

b. Persentil ke-99 Untuk menentukan letak P99 terlebih dahulu kita mencari kelas yang memuat P99 yakni dengan menghitung nilai dari 99 n = 99 (1000) = 990 . Hal ini berarti P99 100 100 adalah data ke-990, kelas interval 70 – 79, dan fP99 = 38. Dari tabel juga diperoleh L99 = 69,5, FP = 956, fP99 = 38, k = 10. Sehingga kuartil bawah diperoleh:  i n − FP   10  Pi = Li + k f Pi P99 = 69,5 + 10 (990 − 956) 38 = 69,5 + 8,94 P99 = 78, 44 Sehingga persentil ke-99 adalah 49,67 Dari ukuran letak data yang telah dibahas di atas tentu kita akan menemukan keterkaitan nilai ukuran satu dengan yang lainnya. Misalkan data yang dimiliki adalah sama maka akan ditemukan nilai median = Q2 = D5 = P50, dan Q1 = P2, dan Q3 = P75. Cobalah membuktikannya dengan teman kelompokmu. 3. UKURAN PENYEBARAN DATA Ukuran penyebaran data menunjukkan perbedaan data yang satu dengan data yang lain serta menunjukkan seberapa besar nilai-nilai dalam suatu data memiliki nilai yang berbeda. Adapun ukuran penyebaran data yang akan kita kaji adalah sebagai berikut. a. Rentang Data atau Jangkauan (Range) Masalah-7.2 Suatu seleksi perekrutan anggota Paskibra di sebuah sekolah diperoleh data tinggi badan siswa yang mendaftar adalah sebagai berikut: 20 Kelas XI SMA/MA/SMK/MAK

Tabel 7.11 Distribusi Tinggi Badan Siswa Tinggi badan (cm) Banyak siswa yang mendaftar (fi) 140-144 7 145-149 8 Tinggi badan (cm) Banyak siswa yang mendaftar (fi) 150-154 12 155-159 16 160-164 24 165-169 13 170-174 2 Tentukanlah rentang (range) dari data distribusi di atas! Alternatif Penyelesaian Range merupakan selisih antara data terbesar dengan data terkecil. Sedangkan untuk data berdistribusi, data tertinggi diambil dari nilai tengah kelas tertinggi dan data terendah diambil dari nilai kelas yang terendah, sehingga diperoleh: Nilai tengah kelas tertinggi = 170 +174 = 172 2 Nilai tengah kelas terendah = 140 +144 = 142 2 Sehingga dari kedua hasil di atas diperoleh range untuk data berdistribusi adalah: Rentang (R) = 172 – 142 = 30 b. Rentang Antar Kuartil (Simpangan Kuartil) Dengan pemahaman yang sama yakni rentang merupakan selisih data terbesar dengan data terkecil, maka rentang antar kuartil dirumuskan dengan selisih kuartil terbesar dengan kuartil terkecil yakni kuartil atas (Q3) dengan kuartil bawah (Q1), maka dapat dituliskan dengan: simpangan kuartil = Q3 – Q1 Dengan menggunakan hasil pada contoh 7.1 maka dapat kita peroleh rentang antar kuartil data tersebut adalah: Simpangan kuartil = 63, 4 – 55, 5 = 7,9 Matematika 21

c. Simpangan Rata-Rata Andaikan kita memiliki data x1, x2, x3, ..., xn maka dengan konsep nilai rentang data kita dapat menentukan rentang nilai rata-rata atau simpangan rata-rata sehingga diperoleh urutan data yang baru yaitu: ( x1 − x ), ( x2 − x ), ( x3 − x ), , ( xn − x ) Dalam urutan data di atas mungkin ada yang positif dan negatif namun konsep jarak atau rentang tidak membedakan keduanya, untuk itu diambil harga mutlak sehingga diperoleh: x1 − x , x2 − x , x3 − x , , xn − x Dan jika urutan nilai data tersebut dijumlahkan kemudian dibagi dengan banyak data (n) maka akan diperoleh simpangan rata-rata sebagai berikut: n ∑ xi − x SR = i =1 n dengan : SR = Simpangan rata-rata xx-i = nilai data ke-i = nilai rata-rata n = banyak data Formula di atas merupakan simpangan rata-rata untuk data tunggal. Data berdistribusi memiliki nilai frekuensi dalam tiap kelompok atau interval data dan nilai data pengamatan merupakan nilai tengah kelas sehingga untuk data berdistribusi diperoleh simpangan rata-rata yang dituliskan sebagai berikut: n ∑ fi xi − x SR = i =1 n ∑ fi i =1 dengan : SR = Simpangan rata-rata xx-i = nilai tengah kelas ke –i = nilai rata-rata fi = frekuensi kelas ke –i 22 Kelas XI SMA/MA/SMK/MAK

Contoh 7.4 Dengan menggunakan pembahasan masalah 7.3 diperoleh tabel distribusi sebagai berikut: Tabel 7.12 Distribusi Frekuensi Kelas Frekuensi 38 - 46 1 47 - 55 5 56 - 64 7 65 - 73 12 74 - 82 25 83 - 91 22 92 - 100 8 80 dan rata-rata = 77.21. Tentukanlah simpangan rata-rata dari data di atas! Alternatif Penyelesaian Dengan melengkapi tabel 7.12 agar dapat diperoleh nilai-nilai yang diperlukan, sehingga diperoleh tabel yang baru seperti berikut ini: Tabel 7.13 Distribusi Frekuensi Kelas Frekuensi Titik xi − x f xi − x (fi) Tengah (xi) 38 - 46 35.21 35,21 47 - 55 1 42 26.21 131,05 56 - 64 5 51 17.21 120,47 65 - 73 7 60 8.21 98,52 74 - 82 12 69 0.79 19,75 83 - 91 25 78 9.79 215,38 92 - 100 22 87 18.79 150,32 8 96 fi =80 Σ fi ǀ xi - ǀ=639.65 Matematika 23

Sehingga dari nilai-nilai yang diperoleh pada tabel di atas diperoleh: n ∑ ∑SR = i =1 fi xi − x = 639.65 = 7,99 80 n fi i =1 Jadi, simpangan rata-rata data di atas adalah 7,99 d. Ragam dan Simpangan Baku Penentuan nilai simpangan rata-rata memiliki kelemahan karena menggunakan harga mutlak yang berakibat simpangan rata-rata tidak dapat membedakan antara rentang yang lebih besar dan lebih kecil. Untuk mengatasi kelemahan tersebut ahli statistik menggunakan simpangan baku yang menggunakan kuadrat pada rentang datanya, simpangan baku dirumuskan sebagai berikut: ∑ ( )SB =1. r 2 n i=1 fi . xi − x Ragam, atau sering disebut varian merupakan kuadrat dari nilai simpangan baku, data berdistribusi dirumuskan sebagai berikut: = 1. r 2 n i=1 ∑ ( )S2 fi . B xi − x dengan: SB : Simpangan baku SB2 : Ragam/varian. fi : frekuensi kelas ke-i. xx-i : titik tengah interval ke-i. : rata-rata. n : ukuran data. Contoh 7.5 Masih dengan menggunakan pembahasan masalah 7.3 diperoleh tabel distribusi sebagai berikut: 24 Kelas XI SMA/MA/SMK/MAK

Kelas Frekuensi Titik xi − x ( xi − x )2 f ( xi − x )2 (fi) Tengah 1239.744 38 - 46 1 (xi) -35.21 1239.74 3434.821 42 -26.21 686.96 2073.289 47 - 55 5 -17.21 296.18 808.8492 51 -8.21 67.40 15.6025 56 - 64 7 0.79 2108.57 60 9.79 0.62 2824.513 65 - 73 12 18.79 95.84 Σ fi ǀ xi - 69 353.06 ǀ=12505.38 74 - 82 25 78 83 - 91 22 87 92 - 100 8 96 Σ fi =80 Sehingga dari nilai-nilai yang diperoleh pada tabel di atas diperoleh: Ÿ Simpangan baku ∑ ( ) 1. r 2 n i=1 SB = fi . xi −x =SB =1 .12505.39 12.5 80 Ÿ Ragam atau varian = 1. r 2 n i=1 ∑ ( ) S2 fi . xi − x B S 2 = 1 .12505.39=156.31 B 80 Untuk semua jenis ukuran penyebaran data ini, tentunya tidaklah sesuatu hal yang sulit untuk menentukan nilainya. Namun, yang penting dari semua adalah memahami makna setiap angka statistik yang diperoleh. Matematika 25

Uji Kompetensi 7 1. Perhatikan tabel penjualan 4 jenis mainan anak-anak pada sebuah toko pada periode 5 minggu berturut-turut. Minggu Mainan 1 Mainan 2 Mainan 3 Mainan 4 1 50 48 64 51 2 52 55 34 53 3 35 52 43 32 4 20 12 30 30 5 15 20 25 28 Jumlah 172 187 196 194 Dari tabel diatas, Ÿ Gambarkan diagram batang, garis, serta lingkaran pada masing-masing jenis mainan dalam 5 minggu. Ÿ Tentukanlah semua ukuran yang terdapat pada data tersebut! 2. Tentukanlah nilai mean, median, dan modus pada data penghasilan orang tua siswa di suatu yayasan sekolah swasta berikut ini. Pengahasilan tiap bulan (Rp) Banyak orang tua 1.000.000 – 2.000.000 300 2.000.000 – 3.000.000 590 3.000.000 – 4.000.000 750 4.000.000 – 5.000.000 150 5.000.000 – 10.000.000 70 > 10.000.000 40 26 Kelas XI SMA/MA/SMK/MAK

3. Suatu pertandingan karate mewajibkan setiap team yang akan masuk babak final harus memperoleh poin rata-rata 205 pada empat kali pertandingan. Pada babak semifinal diperoleh 3 tim dengan data sebagai berikut. Tim Nilai Setiap Pertandingan 123 4 I 210 195 200 x II 200 200 195 x III 205 198 218 x Tim yang manakah yang akan masuk babak final jika diperoleh nilai 215 pada pertandingan keempat? 4. Tentukanlah nilai a dan b dari tabel distrubusi frekuensi dibawah ini, jika median adalah 413,11 dan ∑ f = 1000 Nilai Frekuensi 200 - 234 80 235 - 249 9 250 - 274 17 275 - 299 a 300 - 324 88 325 - 349 b 350 - 374 326 475 - 499 5 Matematika 27

5. Data berikut mempunyai modus 162. Nilai Frekuensi 140-149 3 150-159 8 160-169 x 170-179 2 Tentukanlah : a. Nilai x b. Mean 6. Gaji karyawan suatu pabrik ditampilkan dalam tabel berikut. Gaji (×Rp 10.000) Frekuensi 66-70 3 71-75 12 76-80 x 81-85 36 86-90 24 91-95 y 96-100 9 a. Tentukan rata-rata gaji jika setiap karyawan mendapat tambahan sebesar Rp50.000,00. b. Jika modus data di atas adalah Rp830.000,00, dan banyak data 120, tentukanlah nilai x – y. 7. Dengan menggunakan tabel yang lengkap pada soal no.5, tentukan: a. Kuartil ke-1 b. Kuartil ke-2 c. Kuartil ke-3 28 Kelas XI SMA/MA/SMK/MAK

8. Dari grafik histogram di bawah ini, bentuklah tabel frekuensi realatif dan tentukan seluruh ukuran pemusatan data. 9. Dari tabel data di bawah ini tentukanlah : a. Simpangan kuartil b. Simpangan rata-rata c. Simpangan baku Nilai Frekuensi 40-44 5 45-49 8 50-54 7 55-59 4 60-64 4 65-69 3 70-74 2 75-80 1 Matematika 29

10. Suatu penelitian terhadap dua jenis baterai mendapatkan hasil pengukuran daya tahan pemakaian yang ditampilkan pada data berikut ini. Nilai statitik Jenis 1 Jenis 2 Banyak sampel 100 80 Rentang 240 120 Kuartil bawah 468 488 Kuartil atas 533 562 Simpangan baku 40 20 Simpangan kuartil 65 74 Rata-rata 500 600 Median 500 500 Berdasarkan data penelitian di atas jelaskan merek baterai mana yang memiliki ukuran penyebaran yang besar! Projek Kumpulkanlah data-data perkembangan ekonomi yang ada di indonesia, misal data pergerakan nilai tukar rupiah terhadap mata uang asing (dolar, ringgit, dll). Tabulasi dan gambarkan data tersebut kedalam diagram. Analisislah data tersebut dalam bentuk statistik deskriptif serta presentasikan di depan kelas. 30 Kelas XI SMA/MA/SMK/MAK

D. PENUTUP Berdasarkan materi yang telah kita uraikan di atas, beberapa konsep perlu kita rangkum guna untuk mengingatkan kamu kembali akan konsep yang nantinnya sangat berguna bagi kamu sebagai berikut. 1. Jangkauan Data = Data tertinggi – Data terendah = xmaks – xmin. 2. Statistik yang membagi data menjadi empat bagian disebut Kuartil. 3. Statistik terurut memiliki kuartil jika banyak data ≥ 4, sebab kuartil Q1 dan Q2 membagi data menjadi empat kelompok yang sama. 4. Statistik yang membagi data menjadi 10 bagian disebut Desil. 5. Jika banyak data ≥ 10, maka kita dapat membagi data menjadi 10 kelompok yang sama, dengan setiap kelompok memiliki 1 data. Ukuran statistik ini disebut 10 Desil. 6. Mean untuk data berkelompok didefinisikan dengan k ∑∑x = i =1 fi xi = f1x1 + f2 x2 + f3x3 +  + fk xk dengan fi = frekuensi kelas ke-i; xi = k fi f1 + f2 + f3 ++ fk i =1 nilai tengah kelas ke-i. 7. Mean untuk data berkelompok dengan rumusan rataan sementara didefinisikan k ∑ fidi i =1 x = xs + k dengan fi = frekuensi kelas ke-i; xi = nilai tengah kelas ke-i. ∑dengan fi 8. Modus untuk i =1 berkelompok didefinisikan dengan M o = tb + k  d1 d1   + d2  data   dengan tb = tepi bawah kelas modus; k = panjang kelas; d1 = selisih frekuensi kelas modus dengan kelas sebelumnya; d2 = selisih frekuensi kelas modus dengan kelas sesudahnya. Matematika 31

9. Median untuk data berkelompok didefinisikan dengan Median = tb + k  n −F   2 fm       Dengan tb = tepi bawah kelas median; k = panjang kelas; N = banyak data dari statistik terurut = ∑ fi ; F = frekuensi kumulatif tepat sebelum kelas median; fm = frekuensi kelas median. 10. Simpangan rata-rata untuk data berkelompok didefinisikan dengan: n ∑ fi xi − x SR = i =1 n ∑ fi i =1 11. Simpangan baku dan varian untuk data berkelompok di-definisikan dengan: ∑ ( ) 1. r 2 n i=1 • SB = fi . xi − x = 1. r 2 n i=1 ∑ ( ) • SB2 fi . xi −x 32 Kelas XI SMA/MA/SMK/MAK

Bab 8 ATURAN PENCACAHAN A. KOMPETENSI DASAR DAN PENGALAMAN BELAJAR Kompetensi Dasar Pengalaman Belajar Setelah mengikuti pembelajaran ini siswa mampu: Melalui pembelajaran materi aturan pencacahan, 1. Memiliki motivasi internal, kemampuan siswa memperoleh pengalaman belajar: • Berdiskusi, bertanya dalam menemukan bekerjasama, konsisten, sikap disiplin, rasa percaya diri, dan sikap toleransi dalam konsep dan prinsip aturan pencacahan melalui perbedaan strategi berpikir dalam memilih dan pemecahan masalah otentik yang bersumber menerapkan strategi menyelesaikan masalah. dari fakta dan lingkungan. 2. Mendeskripsikan dan menerapkan berbagai • Berkolaborasi memecahkan masalah autentik aturan pencacahan melalui beberapa contoh dengan pola interaksi edukatif. nyata serta menyajikan alur perumusan .• Berpikir tingkat tinggi dalam menyelidiki, aturan pencacahan (perkalian, permutasi dan memanipulasi, dan mengaplikasikan konsep kombinasi) melalui diagram atau cara lainnya. dan prinsip-prinsip aturan pencacahan dalam 3. Menerapkan berbagai konsep dan prinsip memecahkan masalah otentik. permutasi dan kombinasi dalam pemecahan masalah nyata. • Pencacahan 4. Mendeskripsikan konsep ruang sampel dan • Permutasi menentukan peluang suatu kejadian dalam • Kombinasi suatu percobaan. • Kejadian 5. Mendeskripsikan dan menerapkan aturan/ • Ruang Sampel rumus peluang dalam memprediksi terjadinya • Titik Sampel suatu kejadian dunia nyata serta menjelaskan • Peluang alasan-alasannya. 6. Mendeskripsikan konsep peluang dan harapan suatu kejadian dan menggunakannya dalam pemecahan masalah.

Kompetensi Dasar Pengalaman Belajar mSeatmelpauh: mengikuti pembelajaran turunan siswa Melalui pembelajaran materi aturan pencacahan, 7. Memilih dan menggunakan aturan pencacahan siswa memperoleh pengalaman belajar: • Berdiskusi, bertanya dalam menemukan yang sesuai dalam pemecahan masalah nyata serta memberikan alasannya. konsep dan prinsip aturan pencacahan melalui 8. Mengidentifikasi masalah nyata dan menerapkan pemecahan masalah otentik yang bersumber aturan perkalian, permutasi, dan kombinasi dari fakta dan lingkungan. dalam pemecahan masalah tersebut. • Berkolaborasi memecahkan masalah autentik 9. Mengidentifikasi, menyajikan model matematika dengan pola interaksi edukatif. dan menentukan Peluang dan harapan suatu .• Berpikir tingkat tinggi dalam menyelidiki, kejadian dari masalah kontektual. memanipulasi, dan mengaplikasikan konsep dan prinsip-prinsip aturan pencacahan dalam memecahkan masalah otentik.

B. PETA KONSEP Masalah Otentik Peluang dapat dihitung melalui dihitung menggunakan Kaidah Unsur Pencacahan Peluang Aturan Permutasi Kombinasi Perkalian Teorema Binomal Ruang Titik Sampel Sampel Matematika 35

C. MATERI PEMBELAJARAN 1. Menemukan Konsep Pencacahan (Perkalian, Permutasi, dan Kombinasi) a. Aturan Perkalian Setiap orang pasti pernah dihadapkan dalam permasalahan memilih atau mengambil keputusan. Misalnya: setelah tamat sekolah akan memilih program studi dan di perguruan tinggi yang mana? Ketika berangkat ke sekolah memilih jalur yang mana. Dalam matematika kita dibantu untuk menentukan banyak pilihan yang akan diambil. Untuk lebih memahami cermati masalah dan kegiatan berikut. Masalah-8.1 Beni, seorang siswa Jurusan IPA lulusan dari SMA Negeri 1 Tarutung Tahun 2013 ingin menjadi mahasiswa di salah satu perguruan tinggi negeri (PTN) yang ada di pulau Sumatera pada Tahun 2013. Ayah Beni menyetujui cita- cita Beni asalkan kuliah di Medan. Di Medan terdapat PTN dan juga memiliki jurusan yang digemari dan yang dipilih oleh Beni, yaitu Biologi atau Pendidikan Biologi. Panitia SNMPTN memberikan kesempatan kepada calon mahasiswa untuk memilih maksimum tiga jurusan di PTN yang ada di Indonesia. Bantulah Beni untuk mengetahui semua kemungkinan pilihan pada saat mengikuti SNMPTN Tahun 2013? Alternatif Penyelesaian Untuk mengetahui semua pilihan yang mungkin, kita harus mengetahui apakah semua PTN di Medan memiliki Jurusan Biologi atau Jurusan Pendidikan Biologi. Ternyata, hanya USU dan Unimed saja yang memiliki pilihan Beni tersebut. USU hanya memiliki Jurusan Biologi, tetapi Unimed memiliki Jurusan Biologi dan Jurusan Pendidikan Biologi. Sesuai aturan panitia SNMPTN, Beni diberi kesempatan memilih maksimal 3 dan minimal 1 jurusan. Mari kita uraikan pilihan-pilihan yang mungkin. Untuk 3 Pilihan 1. Seandainya Beni memilih 3 pilihan tersebut di satu kota, maka pilihannya adalah: Pilihan 1: Biologi USU Pilihan 2: Pend. Biologi UNIMED Pilihan 3: Biologi UNIMED 36 Kelas XI SMA/MA/SMK/MAK

Untuk 2 Pilihan 1. Beni hanya boleh memilih 2 jurusan di UNIMED, yaitu: Pilihan 1: Pend. Biologi UNIMED Pilihan 2: Biologi UNIMED 2. Beni juga memilih 1 jurusan di USU dan 1 di UNIMED, yaitu: Pilihan 1: Biologi USU Pilihan 2: Pend. Biologi UNIMED Ingat!!!! Atau Ada strategi memilih jurusan. Pilihan 1: Biologi USU Pilihan 2: Biologi UNIMED Untuk 1 Pilihan 1. Beni boleh hanya memilih Biologi USU. 2. Beni boleh hanya memilih Pend. Biologi UNIMED 3. Beni boleh hanya memilih Biologi UNIMED Jadi, banyak cara memilih yang mungkin yang dimiliki Beni sebanyak 7 cara. • Menurut kamu, seandainya tidak ada strategi memilih jurusan, berapa cara yang dimiliki Beni? • Coba kamu pikirkan, bagaimana pola rumusan untuk menghitung banyak cara yang mungkin untuk Masalah 8.1. Pernahkah kamu mengikuti pemilihan pengurus OSIS di sekolahmu? Mari kita cermati contoh berikut, sebagai masukan jika suatu saat kamu menjadi panitia pemilihan pengurus OSIS di sekolahmu. Contoh 8.1 Pada pemilihan pengurus OSIS terpilih tiga kandidat yakni Abdul, Beny, dan Cindi yang akan dipilih menjadi ketua, sekretaris, dan bendahara. Aturan pemilihan adalah setiap orang hanya boleh dipilih untuk satu jabatan. Berapakah kemungkinan cara untuk memilih dari tiga orang menjadi pengurus OSIS? Alternatif Penyelesaian Ada beberapa metode untuk menghitung banyak cara dalam pemilihan tersebut. Matematika 37

i. Cara Mendaftar Mari kita coba untuk memilih tiap-tiap jabatan, yaitu: a. Jabatan ketua OSIS Untuk jabatan ketua dapat dipilih dari ketiga kandidat yang ditunjuk yakni Abdul (A), Beny (B), dan Cindi (C) sehingga untuk posisi ketua dapat dipilih dengan 3 cara. b. Jabatan sekretaris OSIS Karena posisi ketua sudah terisi oleh satu kandidat maka posisi sekretaris hanya dapat dipilih dari 2 kandidat yang tersisa. c. Jabatan bendahara OSIS Karena posisi ketua dan sekretaris sudah terisi maka posisi bendahara hanya ada satu kandidat. Dari uraian di atas banyak cara yang dapat dilakukan untuk memilih tiga kandidat untuk menjadi pengurus OSIS adalah 3 × 2 × 1 = 6 cara. iI. Cara Diagram Untuk dapat lebih memahami uraian di atas perhatikan diagram berikut. Gambar 8.1 Diagram Pohon Pemilihan Ketua OSIS 38 Kelas XI SMA/MA/SMK/MAK

♦ Misalnya, Abdul merupakan siswa kelas X, Beny dan Cindy dari Kelas XI. Berapa banyak cara memilih pengurus OSIS jika Bendahara OSIS merupakan siswa dari kelas XI. Biasanya di kota-kota besar terdapat banyak jalur alternatif menuju suatu tempat dan jalur ini diperlukan para pengendara untuk menghindari macet atau mengurangi lama waktu perjalanan. Contoh berikut mengajak kita mempelajari banyak cara memilih jalur dari suatu kota ke kota lain. Contoh 8.2 Dari Kota A menuju Ibukota D dapat melalui beberapa jalur pada gambar 8.1. Berapa banyak kemungkinan jalur yang dapat dilalui dari Kota A ke Kota D? Gambar 8.2 Jalur dari Kota A ke Kota D Alternatif Penyelesaian • Perhatikan jalur dari kota A ke kota D melalui kota B Dari kota A ke kota B terdapat 4 jalur yang dapat dilalui, sedangkan dari kota B terdapat 3 jalur yang dapat dilalui menuju kota D. Jadi banyak cara memilih jalur dari kota A menuju kota D melalui kota B adalah 4 × 3 = 12 cara. • Perhatikan jalur dari kota A ke kota D melalui kota C Terdapat 3 jalur dari kota A menuju kota C dan 3 jalur dari kota C menuju kota D. Jadi banyak cara memilih jalur dari kota A menuju kota D melalui kota B adalah 3 × 3 = 9 cara. Jadi banyak jalur yang dapat dilalui melalui Kota A sampai ke Kota D adalah 12 + 9 = 21 cara. Matematika 39

♦ Seandainya ada satu jalur yang menghubungkan kota B dan kota C, berapa banyak jalur yang dapat dipilih dari kota A menuju kota D? Kegiatan 8.1 Catatlah baju, celana, dan sepatumu berdasarkan warna, kemudian isilah dalam bentuk tabel berikut ini: Tabel 8.1 Tabel Daftar Warna Pakaian Baju Celana Sepatu Putih Hitam Coklat Merah Abu-abu Hitam Biru Coklat Putih Salin dan lengkapi tabel di atas kemudian perhatikan data yang diperoleh dan cobalah menjawab pertanyaan berikut: 1. Jika diasumsikan setiap warna dapat dipasangkan, berapa banyak kemungkinan warna baju dan warna celana yang dapat dipasangkan? 2. Berapakah banyak kemungkinan pakaian lengkap yakni baju, celana, dan sepatu kamu yang dapat dipasangkan? Alternatif Penyelesaian 1. Jika diasumsikan setiap warna pada baju, celana dan sepatu dapat dipasangkan maka dapat ditentukan kemungkinan pasangan yang dihasilkan; yakni: Banyak warna baju × banyak warna celana = Banyak pasangan warna baju dan celana. 2. Banyak pemasangan baju, celana, dan sepatu untuk tabel di atas adalah: Banyak warna baju × Banyak warna celana × Banyak warna sepatu = Banyak kombinasi warna pakaian. Dalam dunia kerja seorang pemimpin atau karyawan juga pernah dihadapkan dengan bagaimana memilih cara untuk menyusun unsur atau memilih staff. Masalah berikut ini, mengajak kita untuk memahami bagaimana cara kerja pada suatu supermarket. 40 Kelas XI SMA/MA/SMK/MAK

Masalah-8.2 Seorang manajer supermarket ingin menyusun barang berdasarkan nomor seri barang. Dia ingin menyusun nomor seri yang dimulai dari nomor 3000 sampai dengan 8000 dan tidak memuat angka yang sama. Tentukan banyak nomor seri yang disusun dari angka 1, 2, 3, 4, 5, 6, 7, 8. Alternatif Penyelesaian Mari kita uraikan permasalahan di atas. Ÿ Setiap bilangan yang berada diantara 3000 dan 8000 pastilah memiliki banyak angka yang sama yakni 4 angka jika ditampilkan dalam bentuk kolom menjadi: Ÿ Perhatikan untuk mengisi ribuan hanya dapat diisi angka 3, 4, 5, 6, 7. Artinya terdapat 5 cara mengisi ribuan. Ÿ Untuk mengisi ratusan dapat diisi angka 1 sampai 8 tetapi hanya ada 7 yang mungkin (mengapa?). Ÿ Untuk mengisi puluhan dapat diisi angka 1 sampai 8 tetapi hanya ada 6 angka yang mungkin (mengapa?). Ÿ Untuk mengisi satuan dapat diisi angka 1 sampai 8 tetapi hanya ada 5 angka yang mungkin (mengapa?). Dengan demikan, banyak angka yang dapat mengisi keempat posisi tersebut adalah sebagai berikut: 5765 Banyak susunan nomor seri barang yang diperoleh adalah: 5 × 7 × 6 × 5 = 1.050 cara. Matematika 41

Berkaitan dengan Masalah 8.2, Ÿ Hitunglah banyak cara menyusun nomor seri barang, jika angka 1, 2, 3, 4, 5, 6, 7, dan 8 diperbolehkan berulang. Ÿ Seandainya manager supermarket tersebut ingin menyusun nomor seri barang adalah bilangan-bilangan ganjil yang terdiri dari 5 angka. Berapa cara menyusun nomor seri tersebut. Dari pembahasan masalah, contoh dan kegiatan di atas, dapat kita simpulkan dalam aturan perkalian berikut ini. Aturan Perkalian : Jika terdapat k unsur yang tersedia, dengan: n1 = banyak cara untuk menyusun unsur pertama = banyak cara untuk menyusun unsur kedua setelah unsur pertama tersusun n3 = banyak cara untuk menyusun unsur ketiga setelah unsur kedua tersusun : nk = banyak cara untuk menyusun unsur ke- k setelah objek- unsur sebelumnya tersusun Maka banyak cara untuk menyusun k unsur yang tersedia adalah: n1 × n2 × n3 × ... × nk. ♦ Dari pembahasan masalah, contoh dan kegiatan di atas, dapat kita simpulkan dalam aturan perkalian berikut ini. Matematika merupakan bahasa simbol. Oleh karena itu, penulisan aturan perkalian di atas dapat disederhanakan dengan menggunakan faktorial. Mari kita pelajari dengan teliti materi berikut. b. Faktorial Pada pembahasan di atas kamu telah melakukan perkalian 3 × 2 × 1 = 6. Coba anda lakukan perkalian berikut: 1) 5 × 4 × 3 × 2 × 1 = ... 2) 7 × 6 × 5 × 4 × 3 × 2 × 1 = ... 3) 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = ... 42 Kelas XI SMA/MA/SMK/MAK

Perkalian-perkalian semua bilangan bulat positif berurut di atas dalam matematika disebut faktorial, yang biasa disimbolkan dengan \"!\" Maka perkalian tersebut dapat dituliskan ulang menjadi: 1) 3 × 2 × 1 = 3! 2) 5 × 4 × 3 × 2 × 1 = 5! 3) 7 × 6 ×5 × 4 × 3 × 2 × 1 = 7! 4) 9 × 8 × 7 × 6 ×5 × 4 × 3 × 2 × 1 = 9! Secara umum faktorial dapat didefinisikan sebagai berikut: Definisi 8.1 a) Jika n bilangan asli maka n! (dibaca “n faktorial”) didefinisikan dengan: n! = n× (n -1)× (n - 2)× (n - 3)× ...× 3 × 2 ×1 atau n! =1× 2 × 3 × ...× (n - 3)× (n - 2)× (n -1)× n b) 0! = 1 Contoh 8.3 1. Hitunglah: c. 7! a. 7! + 4! b. 7! × 4! 4! Alternatif Penyelesaian a. 7! + 4! = (7 × 6 × 5 × 4 × 3 × 2 × 1) + (4 × 3 × 2 × 1) = 5.040 + 24 = 5.064 b. 7! × 4! = (7 × 6 × 5 × 4 × 3 × 2 × 1) + (4 × 3 × 2 × 1) = 5.040 × 24 = 120.960 = c. 7! 7=× 6 × 5 × 4 × 3 × 2 × 1 210 4! 4 × 3 × 2 × 1 Matematika 43

2. Nyatakan bentuk-bentuk berikut dalam bentuk faktorial. a. 7 × 6 b. (6!) × 7 × 8 c. n × (n – 1) × (n – 3) Alternatif Penyelesaian a. 7 × 6 = 7 × 6 × 5 × 4 × 3 × 2 × 1 5×4×3×2×1 = 7! 5! Maka dapat dituliskan bahwa 7 × 6= 7!. 5! b. (6!) × 7 × 8 = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 8! c. Kerjakan secara mandiri 3. Diketahui 14.(n −1)!.(n − 4)! = 4! , tentukanlah nilai n, dengan n bilangan asli. 5.n!.(n − 5)! 120 Alternatif Penyelesaian 14.(n −1)!.(n − 4)! = 4! ⇔ 14.(n −1)!.(n − 4)! 4)! = 4! 5.n!.(n − 5)! 120 5.n.(n −1)!.(n − 5).(n − 120 ⇔ 14 = 4! 120 5.n.(n − 5) ⇔ 14 = 5! 120 n.(n − 5) ⇔ n2 – 5n –14 = 0 ∴ n = 7. c. Permutasi 1) Permutasi dengan Unsur yang Berbeda Masalah-8.3 Seorang resepsionis klinik ingin mencetak nomor antrian pasien yang terdiri tiga angka dari angka 1, 2, 3, dan 4. Tentukan banyak pilihan nomor antrian dibuat dari: a. Tiga angka pertama. b. Empat angka yang tersedia. 44 Kelas XI SMA/MA/SMK/MAK


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook