Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore Advanced Biomaterials and Biodevicess

Advanced Biomaterials and Biodevicess

Published by DentLib CMU, 2020-05-23 22:22:38

Description: Advanced Biomaterials and Biodevicess

Search

Read the Text Version

542 Advanced Biomaterials and Biodevices 27. A. Carlsen, and S. Lecommandoux, Self-assembly of polypeptide-based block copolymer amphiphiles, Current Opinion in Colloid & Interface Science, Vol. 14, Iss. 5, pp. 329–339, 2009. 28. D. Schmaljohann. Thermo- and pH-responsive polymers in drug delivery, Advanced Drug Delivery Reviews, Vol. 58, Iss. 15, pp. 1655–1670, 2006. 29. L.F. Zhang, H.W. Shen, and A. Eisenberg, Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly(acrylic acid) copolymers in solutions, Macromolecules, Vol. 30, Iss. 4, pp. 1001–1011, 1997. 30. W. Wang, J.X. Ding, C.S. Xiao, Z.H. Tang, D. Li, J. Chen, X.L. Zhuang, and X.S. Chen, Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery, Biomacromolecules, Vol. 12, Iss.7, pp. 2466–2474, 2011. 31. J.X. Ding, C.S. Xiao, Z.H. Tang, X.L. Zhuang, and X.S. Chen, Highly efficient “grafting from” an α-helical polypeptide backbone by atom transfer radi- cal polymerization, Macromolecular Bioscience, Vol. 11, Iss. 2, pp. 192–198, 2011. 32. J.X. Ding, C.S. Xiao, L. Zhao, Y.L. Cheng, L.L. Ma, Z.H. Tang, X.L. Zhuang, and X.S. Chen, Poly(L-glutamic acid) grafted with oligo(2-(2-(2-methoxye- thoxy)ethoxy) ethyl methacrylate): Thermal phase transition, secondary structure, and self-assembly, Journal of Polymer Science, Part A: Polymer Chemistry, Vol. 49, Iss. 12, pp. 2665–2676, 2011. 33. J. Cheng, J.X. Ding, Y.C. Wang, and J. Wang, Synthesis and characterization of star-shaped block copolymer of poly(ε-caprolactone) and poly(ethyl eth- ylene phosphate) as drug carrier, Polymer, Vol. 49, Iss. 22, pp. 4784–4790, 2008. 34. D. Li, J.X. Ding, Z.H. Tang, H. Sun, X.L. Zhuang, J.Z. Xu, and X.S. Chen, In vitro evaluation of anticancer nanomedicines based on doxorubicin and amphiphilic Y-shaped copolymers, International Journal of Nanomedicine, Vol. 7, pp. 2687–2697, 2012. 35. H. Otsuka, Y. Nagasaki, and K. Kataoka, PEGylated nanoparticles for bio- logical and pharmaceutical applications, Advanced Drug Delivery Reviews, Vol. 55, Iss. 3, pp. 403–419, 2003. 36. K. Kataoka, A. Harada, and Y. Nagasaki, Block copolymer micelles for drug delivery: Design, characterization and biological significance, Advanced Drug Delivery Reviews, Vol. 64, Supplement, pp. 37–48, 2012. 37. S. Kim, Y.Z. Shi, J.Y. Kim, K. Park, and J.X. Cheng, Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle- cell interaction, Expert Opinion on Drug Delivery, Vol. 7, No. 1, pp. 49–62, 2010. 38. J. Nicolas, S. Mura, D. Brambilla, N. Mackiewicz, and P. Couvreur, Design, functionalization strategies and biomedical applications of targeted bio- degradable/biocompatible polymer-based nanocarriers for drug delivery, Chemical Society Reviews, Vol. 42, Iss. 3, pp. 1147–1235, 2013.

Smart Polypeptide Nanocarriers for Malignancy Therapeutics 543 39. J.X. Ding, L. Zhao, D. Li, C.S. Xiao, X.L. Zhuang, and X.S. Chen, Thermo- responsive “hairy-rod” polypeptides for smart antitumor drug delivery, Polymer Chemistry, Vol. 4, Iss. 11, pp. 3345–3356, 2013. 40. R.P. Johnson, Y.I. Jeong, E. Choi, C.W. Chung, D.H. Kang, S.O. Oh, H. Suh, and I. Kim, Biocompatible poly(2-hydroxyethyl methacrylate)-b-poly(L- histidine) hybrid materials for pH-sensitive intracellular anticancer drug delivery, Advanced Functional Materials, Vol. 22, Iss. 5, pp. 1058–1068, 2012. 41. M.Q. Li, W.T. Song, Z.H. Tang, S.X. Lv, L. Lin, H. Sun, Q.S. Li, Y. Yang, H. Hong, and X.S. Chen, Nanoscaled poly(L-glutamic acid)/doxorubicin- amphiphile complex as pH-responsive drug delivery system for effective treatment of nonsmall cell lung cancer, ACS Applied Materials & Interfaces, Vol. 5, Iss. 5, pp. 1781–1792, 2013. 42. W.T. Song, M.Q. Li, Z.H. Tang, Q.S. Li, Y. Yang, H.Y. Liu, T.C. Duan, H. Hong, and X.S. Chen, Methoxypoly(ethylene glycol)-block-poly(L-glutamic acid)-loaded cisplatin and a combination with iRGD for the treatment of non-small-cell lung cancers, Macromolecular Bioscience, Vol. 12, Iss. 11, pp. 1514–1523, 2012. 43. J.X. Ding, C.L. He, C.S. Xiao, J. Chen, X.L. Zhuang, and X.S. Chen, pH- responsive drug delivery systems based on clickable poly(L-glutamic acid)- grafted comb copolymers, Macromolecular Research, Vol. 20, Iss. 3, pp. 292–301, 2012. 44. E.S. Lee, H.J. Shin, K. Na, and Y.H. Bae, Poly(L-histidine)–PEG block copo- lymer micelles and pH-induced destabilization, Journal of Controlled Release, Vol. 90, Iss. 3, pp. 363–374, 2003. 45. Z.G. Gao, D.H. Lee, D.I. Kim, and Y.H. Bae, Doxorubicin loaded pH-sensi- tive micelle targeting acidic extracellular pH of human ovarian A2780 tumor in mice, Journal of Drug Targeting, Vol. 13, No. 7, pp. 391–397, 2005. 46. Y. Bae, S. Fukushima, A. Harada, and K. Kataoka, Design of environment- sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change, Angewandte Chemie, International Edition, Vol. 42, Iss. 38, pp. 4640–4643, 2003. 47. Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro, and K. Kataoka, Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy, Bioconjugate Chemistry, Vol. 16, Iss. 1, pp. 122–130, 2005. 48. H. Yuan, K. Luo, Y.S. Lai, Y.J. Pu, B. He, G. Wang, Y. Wu, and Z.W. Gu, A novel poly(L-glutamic acid) dendrimer based drug delivery system with both pH-sensitive and targeting functions, Molecular Pharmaceutics, Vol. 7, Iss. 4, pp. 953–962, 2010. 49. J.C. Zhang, J.X. Ding, C.S. Xiao, C.L. He, X.L. Zhuang, Y.N. Yang, and X.S. Chen, Synthesis and characterization of tumor-acidity-sensitive poly(L- lysine)–doxorubicin conjugates, Chemical Journal of Chinese Universities, Chinese, Vol. 33, Iss. 12, pp. 2809–2815, 2012.

544 Advanced Biomaterials and Biodevices 50. H.Y. Wen, H.Q. Dong, W.J. Xie, Y.Y. Li, K. Wang, G.M. Pauletti, and D.L. Shi, Rapidly disassembling nanomicelles with disulfide-linked PEG shells for glutathione-mediated intracellular drug delivery, Chemical Communications, Vol. 47, Iss. 12, pp. 3550–3552, 2011. 51. T.B. Ren, W.J. Xia, H.Q. Dong, and Y.Y. Li, Sheddable micelles based on disulfide-linked hybrid PEG-polypeptide copolymer for intracellular drug delivery, Polymer, Vol. 52, Iss. 16, pp. 3580–3586, 2011. 52. C. Sanson, C. Schatz, J.F. Le Meins, A. Brulet, A. Soum, and S. Lecommandoux, Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly(L- glutamic acid) polymersomes: Size control and stability, Langmuir, Vol. 26, Iss. 4, pp. 2751–2760, 2010. 53. K.K. Upadhyay, J.F. Le Meins, A. Misra, P. Voisin, V. Bouchaud, E. Ibarboure, C. Schatz, and S. Lecommandoux, Biomimetic doxorubicin loaded poly- mersomes from hyaluronan-block-poly(γ-benzyl glutamate) copolymers, Biomacromolecules, Vol. 10, Iss. 10, pp. 2802–2808, 2009. 54. C. Sanson, C. Schatz, J.F. Le Meins, A. Soum, J. Thevenot, E. Garanger, and S. Lecommandoux, A simple method to achieve high doxorubicin loading in biodegradable polymersomes, Journal of Controlled Release, Vol. 147, Iss. 3, pp. 428–435, 2010. 55. D.E. Discher, and A. Eisenberg, Polymer vesicles, Science, Vol. 297, Iss. 5583, pp. 967–973, 2002. 56. B.M. Discher, Y.Y. Won, D.S. Ege, J.C.M. Lee, F.S. Bates, D.E. Discher, and D.A. Hammer, Polymersomes: Tough vesicles made from diblock copoly- mers, Science, Vol. 284, Iss. 5417, pp. 1143–1146, 1999. 57. A.E. Felber, M.H. Dufresne, and J.C. Leroux, pH-sensitive vesicles, poly- meric micelles, and nanospheres prepared with polycarboxylates, Advanced Drug Delivery Reviews, Vol. 64, Iss. 11, pp. 979–992, 2012. 58. J.X. Ding, C.S. Xiao, C.L. He, M.Q. Li, D. Li, X.L. Zhuang, and X.S. Chen, Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery, Nanotechnology, Vol. 22, No. 49, p. 494012, 2011. 59. J.X. Ding, C.S. Xiao, X.L. Zhuang, C.L. He, and X.S. Chen, Direct forma- tion of cationic polypeptide vesicle as potential carrier for drug and gene, Materials Letters, Vol. 73, pp. 17–20, 2012. 60. L.D. Mayer, M.B. Bally, and P.R. Cullis, Uptake of adriamycin into large unil- amellar vesicles in response to a pH gradient, Biochimica et Biophysica Acta, Vol. 857, Iss. 1, pp. 123–126, 1986. 61. C. Sanson, O. Diou, J. Thevenot, E. Ibarboure, A. Soum, A. Brulet, S. Miraux, E. Thiaudiere, S. Tan, A. Brisson, V. Dupuis, O. Sandre, and S. Lecommandoux, Doxorubicin loaded magnetic polymersomes: Theranostic nanocarriers for MR imaging and magneto-chemotherapy, ACS Nano, Vol. 5, Iss. 2, pp. 1122–1140, 2011. 62. H. Oliveira, E. Perez-Andres, J. Thevenot, O. Sandre, E. Berra, and S. Lecommandoux, Magnetic field triggered drug release from polymersomes

Smart Polypeptide Nanocarriers for Malignancy Therapeutics 545 for cancer therapeutics, Journal of Controlled Release, Vol. 169, Iss. 3, pp. 165–170, 2013. 63. A.V. Kabanov, and S.V. Vinogradov, Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities, Angewandte Chemie, International Edition, Vol. 48, Iss. 30, pp. 5418–5429, 2009. 64. J.X. Ding, X.L. Zhuang, C.S. Xiao, Y.L. Cheng, L. Zhao, C.L. He, Z.H. Tang, and X.S. Chen, Preparation of photo-cross-linked pH-responsive polypep- tide nanogels as potential carriers for controlled drug delivery, Journal of Materials Chemistry, Vol. 21, Iss. 30, pp. 11383–11391, 2011. 65. J.K. Oh, R. Drumright, D.J. Siegwart, and K. Matyjaszewski, The develop- ment of microgels/nanogels for drug delivery applications, Progress in Polymer Science, Vol. 33, Iss. 4, pp. 448–477, 2008. 66. G.R. Hendrickson, M.H. Smith, A.B. South, and L.A. Lyon, Design of multi- responsive hydrogel particles and assemblies, Advanced Functional Materials, Vol. 20, Iss. 11, pp. 1697–1712, 2010. 67. J.X. Ding, F.H. Shi, D. Li, L. Chen, X.L. Zhuang, and X.S. Chen, Enhanced endocytosis of acid-sensitive doxorubicin derivatives with intelligent nano- gel for improved security and efficacy, Biomaterials Science, Vol. 1, Iss. 6, pp. 633–646, 2013. 68. T. Zhou, C.F. Xiao, J. Fan, S.M. Chen, J. Shen, W.T. Wu, and S.Q. Zhou, A nanogel of on-site tunable pH-response for efficient anticancer drug deliv- ery, Acta Biomaterialia, Vol. 9, Iss. 1, pp. 4546–4557, 2013. 69. S.J. Lee, K.H. Min, H.J. Lee, A.N. Koo, H.P. Rim, B.J. Jeon, S.Y. Jeong, J.S. Heo, and S.C. Lee, Ketal cross-linked poly(ethylene glycol)-poly(amino acid)s copolymer micelles for efficient intracellular delivery of doxorubicin, Biomacromolecules, Vol. 12, Iss. 4, pp. 1224–1233, 2011. 70. H.J. Lee, and Y. Bae, Cross-linked nanoassemblies from poly(ethylene gly- col)–poly(aspartate) block copolymers as stable supramolecular templates for particulate drug delivery, Biomacromolecules, Vol. 12, No. 7, pp. 2686– 2696, 2011. 71. H.J. Lee, and Y. Bae, Pharmaceutical differences between block copolymer self-assembled and cross-linked nanoassemblies as carriers for tunable drug release, Pharmaceutical Research, Vol. 30, Iss. 2, pp. 478–488, 2013. 72. J. Sun, X.S. Chen, J.Z. Wei, L.S. Yan, and X.B. Jing, Application of the bio- degradable diblock copolymer poly(L-lactide)-block-poly(L-cysteine): Drug delivery and protein conjugation, Journal of Applied Polymer Science, Vol. 118, Iss. 3, pp. 1738–1742, 2010. 73. J.X. Ding, F.H. Shi, C.S. Xiao, L. Lin, L. Chen, C.L. He, X.L. Zhuang, and X.S. Chen, One-step preparation of reduction-responsive poly(ethylene glycol)– poly (amino acid)s nanogels as efficient intracellular drug delivery platforms, Polymer Chemistry, Vol. 2, Iss. 12, pp. 2857–2864, 2011. 74. T. Xing, B. Lai, X.D. Ye, and L.F. Yan, Disulfide core cross-linked PEGylated polypeptide nanogel prepared by a one-step ring opening copolymerization

546 Advanced Biomaterials and Biodevices of N-carboxyanhydrides for drug delivery, Macromolecular Bioscience, Vol. 11, Iss. 7, pp. 962–969, 2011. 75. T. Xing, B. Lai, and L.F. Yan, Disulfide cross-linked polypeptide nanogel con- jugated with a fluorescent probe as a potential image-guided drug-delivery agent, Macromolecular Chemistry and Physics, Vol. 214, Iss. 5, pp. 578–588, 2013. 76. T. Xing, C.Q. Mao, B. Lai, and L.F. Yan, Synthesis of disulfide-cross-linked polypeptide nanogel conjugated with a near-infrared fluorescence probe for direct imaging of reduction-induced drug release, ACS Applied Materials & Interfaces, Vol. 4, Iss. 10, pp. 5662–5672, 2012. 77. Y.L. Cheng, C.L. He, C.S. Xiao, J.X. Ding, K.X. Ren, S.J. Yu, X.L. Zhuang, and X.S. Chen, Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry, Polymer Chemistry, Vol. 4, Iss. 13, pp. 3851–3858, 2013. 78. J. Dai, S.D. Lin, D. Cheng, S.Y. Zou, and X.T. Shuai, Interlayer-crosslinked micelle with partially hydrated core showing reduction and pH dual sen- sitivity for pinpointed intracellular drug release, Angewandte Chemie, International Edition, Vol. 50, Iss. 40, pp. 9404–9408, 2011. 79. L.L. Wu, Y. Zou, C. Deng, R. Cheng, F.H. Meng, and Z.Y. Zhong, Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions, Biomaterials, Vol. 34, Iss. 21, pp. 5262–5272, 2013. 80. D.F. Zhou, H.H. Xiao, F.B. Meng, S.Y. Zhou, J.S. Guo, X.Y. Li, X.B. Jing, and Y.B. Huang, Layer-by-layer assembled polypeptide capsules for platinum- based pro-drug delivery, Bioconjugate Chemistry, Vol. 23, Iss. 12, pp. 2335– 2343, 2012.

Index 2,4,6-trinitrotoluene (TNT), 413 Bel-7402 cells, 537 3-(triethoxysilyl) propyl isocyanate, Bio-advance material, 243–247 Biochemical quantities, 452 394 Biocompatibility, 8, 11, 16, 21, 25, 28, A2780 cells, 527 525–526, 528, 539 A549 cells, 525 Biocompatible/biocompatibility, 147, Actively-targeted liposomes, 88 Advance material, 243–247 150, 155–157, 159, 163, 165 Al- doped zinc oxide (AZO), 325 Biodegradability, 525–526, 539 Allopurinol (AP), 420 Biodegradable, 147, 149, 156–157, Allosteric system, 385 Amperometric, 291, 296, 303 166–167 Amperometrical channel, 477.479 Biodegradation, 490 Amphiphilic copolymers, 525 Biofilm, 54, 66, 69–72 Amylase, 396 Biomaterial, 4, 6, 10, 11, 25, 27, 56, Antibodies (Ab), 453–463, 465–466, 63–66, 70–71, 246, 261, 278, 279 468–469, 471–472, 477, 479 ceramics, 55–56, 62–65 Antibody, 244, 260, 263–264, metals, 55–56, 60, 63–65, 70 Biomedical, 147–149, 151–152, 156, 268–278 Antibody-targeted liposomes, 90 158, 160, 163–166, 171, 173, 175 Antigen, 263, 268–275, 277–278 Biopolymer, 147–149, 159, 169, 173 Anti-insulin Ab, 469, 472, 477–479 Biosensor, 244, 250, 256–262, 264, Antimicrobial, 29, 147, 149, 154, 157, 266–267, 275 163–166, 171–174 Biosensor based on Prussian Blue, Antitumor drugs, 523–525, 527, acetilcholinesterase, 438 530–531, 535, 539 alcohol oxidase, 435 APTES, 460 butyrylcholinesterase, 438 ASTM standards, 13, 22, 23 cholesterol oxidase, 434 Atomic force microscope (AFM), choline oxidase, 437 diamine oxidase, 436 160–162 glucose oxidase, 432 ATP, 480–481 lactate oxidase, 433 AZO integrated SU-8 NADH oxidase, 436 Bis-phenol A (BPA), 392, 407–408 microcantilevers, 325 Boron neutron capture therapy, 92 Ashutosh Tiwari and Anis N. Nordin (eds.) Advanced Biomaterials and Biodevices, (547–554) 2014 © Scrivener Publishing LLC 547

548 Index Bovine hemoglobin (BHB), 395–416 Clinical application of liposomes, 81, 82 Bovine pancreas ribonuclease A, 396 Clinical trials, Bovine serum albumin (BSA), magnesium, 27, 28 396–397, 410–412, 453–454, titanium, 11, 15, 16 458, 461–462, 465, 470 CMOS, 295, 303 B-Phyco, 453, 455, 458 CNT, 266 BrCN, 460 Co-Cr alloys, Bulk acoustic wave, 297–299 biomedical applications, 4, 24 Bulk Polymerization, 387, 389–391, MP159 alloy, 26 397, 399, 403, 405, 409, 418, 421 MP35N alloy, 26 superalloy, 24–25 Calyx[4]arenas, 451, 484 Colchicine, 84 Cancer, 487 Combination therapy, 99, 100 CantiFET, 319–324 Composite, 245, 264–267, 274 Co-polymer, 154–156, 167, 174 characterization, 322–324 Core-shell nanocomposites, 128–129 fabrication process, 320–322 Core-Shell nanoparticle, 403, 404, Carbon black, 310 Carbon nanotube, 415–419, 403–404 Creatinine, 397 422, 425 Cross linker, 386, 411, 429 Carbon nanotubes, 140–141 CT-26 cells, 538 Carbon paste electrode (CPE), 392, Curcumin, 83 Cyclic peptides, 155 431–432 Cytocompatibility, 13 Cationic liposomes, 83 Ceramic carbon electrode (CCE), 418 Degree of Deacetylation (DDA), Ceramides, 85, 91 148–149, 152–153, 171 Chemical reduction method of Ag Dendrimers, 157 NPs, 132–134 Diagnostic agents, 151 Chemiluminescence (СhL), 452, 458, Dibenzothiophene (DBT), 393 Differential scanning calorimetry, 153 459, 461–463 Digitoxin, 457 Chemistry, 150–151, 169, 173 Digoxin, 457 Chemotherapy, 491, 497, 527, 530, Dipicolinic acid (DPA), 404–406, 534, 539 412–413, 426 Chitin, 147–149, 173 Dipyridamole, 432 Chitosan, 147–175 DNA, 256, 260–262, 267, Chlortetracycline (CTC), 424 Cholesterol-vinyl ether–PEG 294–297 Doxorubicin, 81, 82, 85, 86, 88, 90–94, conjugate, 86 Chorionic honadotropine (ChH), 96, 97, 99, 100 Drug delivery, 487, 54, 56–59, 63, 461.462 Circulatory systems, 525 65–68, 147, 151, 156, 159, 165, Cisplatin, 85, 87 169–170, 174 Classical liposomes, 83 Drug efflux pumps, 91 Classification, 124–125 Click chemistry, 150–151, 169

Index 549 Drug loading efficiency (DLE), 528, Evaluation, 247, 277 534, 537 Evanescent wave, 454, 456–457 Dual-targeted liposomes, 94 Fatigue, 13, 20 Dynamic molecular recognition, Ferritin, 457 Fibre optic, 452 384–385 Field effect transistors (FET), 294–297 Fluorescein isothiocyanate (FITC), Echogenic liposomes, 87 Elastic modulus, 16, 21, 26 455, 457–458 Electrochemical impedance Fluorescence, 452–454 Fluorescence resonance energy spectroscopy, 261 Electrochemiluminescence transfer (FRET), 413 Fluorescent labels, 453–455 (ECL), 405 Folic acid, 430, 91 Electrospinning, 158–159 Folic acid receptor, 91 Elemental analysis (EA), 153 Forging, 8, 9, 12, 13, 20 ELISA-method, 461 Fucosylated liposomes, 92 Enhanced chemiluminescence (ChL), Gemcitabine, 83, 93, 96 455, 458–459, 461–463 Gentamicin, 457 Enhanced permeability and retention Glassy carbon electrode (GCE), 406, effect, 83 408, 415, 419–420, 423 Enhanced permeation and retention Glucose, 452, 473–477 Glucose oxidase, 453.475 effect, 525 Glucose-semsitive liposomes, 88 Enzyme, 244, 249–264, 267–268, Glutar aldehyde (GA), 453, 458, 460, 275, 285 469, 473 activity, 253–254, 256 Gold nanoparticle (Au-Nps), 391–392 assays, 254, 258–259 Gold nanoparticles, 347–350, 492 biomaterial, 261 Grain boundary sliding, 8 bio-receptor, 260 bio-sensor, 261 Health care, 243, 245 catalyzed, 255 HeLa cells, 528–529, 534–535, 537, 539 concentration, 252, 254–256 HepG2 cells, 527–528, 537–538 electrode, 259 Honokiol, 85, 99 immobilization, 257 Horse radish peroxidase (HRP), inhibitor, 251, 256 instability, 257 453–455, 458–459, 461–462, molecule, 250 465, 479 preparation, 253 Horseradish peroxidase (HRP), 392 product, 255 Human Ig, 453, 455, 457 reaction, 250–252, 255, 263 Hyaluronic acid-modified liposomes, 93 solution, 252–253 Hydrogel, 165–169 substrate, 250–252, 255, 263 Hydrogen peroxide (H2O2), 455, 459, Enzyme-sensitive liposomes, 87 462, 475 Estradiol-17, 460.462 Estrone, 394, 416, 426–427 Ethambutol, 496

550 Index Hydroquinone (HQ), 392 Isoniazid, 493 Hyperthermia-triggered liposomes, 88 Immuno, 256 Label-free, 291–293, 297, 302–304 Laser, 453–454, 456–457, 464 assay, 264, 268, 273 Layer-by-layer, 86 chemical, 268, 272 Lidocaine, 457–458 complex, 267 Lipase, 394 globin, 263, 265, 269–272 Liposomes, 487, 490, 493, 499 logical, 264, 269 Lock and key mechanism, 385 sensor, 256, 264–265 Luminol, 455, 458–459, 461 Lysozyme (Lyz), 396 Immunoliposomes, 90 Immunosensor based on Prussian Blue, M. avium, 490 Machinability, 8, 26 carbohydrate antigen 19–9, 442 Macrophages, 492, 494 carcinoembryonic antigen, 441 Magnesium, carcinoma antigen 125, 443 hepatitis B antigen, 445 AE alloys, 28 human chorionic gonadotropin AM alloys, 27 AZ alloys, 26–29 antigen, 444 bioabsorbable, 28–29 neuron-specific enolase antigen, 443 formability, 29 prostate specific antigen, 445 global production, 27 α-fetoprotein antigen, 440 human need for, 27 Impedance spectroscopy, 293, 295, stents, 27–29 strength, 26 300, 303 Magnetic fluid hyperthermia, 88 Impedimetric, 296, 303 Magnetic liposomes, 88 Implant, 54, 56, 60–71 Magnetic nanoparticle (MNps), Imprinting, 384 Indium tin oxide (ITO), 480 391–392, 397 Indole, 435 Magnetic nanoparticles, 155 Infection, 54, 61–62, 66, 68–72 Malignancy, 523, 525, 531, 534 Mannose liposomes, 92 candida albicans, 71 Manufacturing, 4, 6, 7, 8, 11, 15, 29 staphylococcus aureus, 66 Material, 243–248, 257, 261, 264–267, Inflammation, 54, 68, 70 Influenza virus, 461 278–279 Infra-red spectroscopy (IR), 153 Matrix metalloproteinase, 87, 97 Initiator, 386, 387, 415, 425, 429, Medical devices, 4, 7, 8, 9, 11, 27, 29, 432–435 343, 346, 350, 355 Inorganic nanoparticles, 188 Melamine, 422 Interferon, 462 MEMS, 291–29, 297, 302–303 Internalization, 527–528 Mercury, 415 Intracellular delivery, 528 Metal nanoparticles, 343–347, 351 Irinotecan, 82, 97 Methotrxate, 457 ISFET, 471, 473, 475 Isoluminol, 462

Index 551 Metronidazole (MNZ), 405–407 Nanoparticle, 487, 488, 491, 492, 493, Metsulfuron-methyl (MSM), 400 -402 497, 505, 153, 156–158, 161–162, Micelles, 524–530, 538–539 165, 169–171, 173–174 Microcantilever, 307 Microelectromechanical systems Nanoparticle coatings, 153 Nanoprecipitation, 527–528, 530, 532, (MEMS), 306 Microenvironments, 524, 526, 539 538–539 Mie theory, 127 Nanoscale, 156, 160, 162 Milatuzumab, 90 Nanoshells, 177 Molecular recognition, 384, Nanosphere, 397, 398, 424, 425, 430, 385, 391, 399, 408, 425, 435, 432–434 436 Nanostructured, Molecular weight, 148–149, 152–153, 158, 171, 175 co-cr alloy, 24–25 Molecularly imprinted polymer (MIP), magnesium, 25–29 384–389, 391–393, 395–402, materials, 404, 406–414, 419–421, metals, 424–425, 427, 429–436 stainless steel, 22–24 Monoclonal Ab, 454, 461–462, 465, tantalum, 29 466, 468, 472 titanium, MRI scanning nanoparticles, 170 zirconium, 29 Multidrug-resistant tumor cells, 524 Nanotechnology, 122, 150 Multifunctional liposomes, 95 Nanotraps, 394 Multi-parametrical, 452, 478–479 Nanowire, 387, 391, 415, 416, 428 Multivalent binding, 94 Nitrocellulose (NC), 460–461 Mycobacterium tuberculosis, 495 Normal cells, 525 Myoglobin (Mb), 464–468, 472 Nuclear Magnetic Resonance Nalidixic acid, 430 Spectroscopy (NMR), 152–153 Nano, 147, 160, 175 Nano composite material, 421 Organic field effect transistor Nano thin film, 428 (OFET), 319 Nanobeads, 415 Nanoemulsions, 173 Orthopedic device, 4, 9, 11, 16, 21, Nanofibers, 174 23–27, 29 Nanofibre, 147, 158–161, 165, 174 Nanogel, 434–435 Osseointegration, 8, 13, 15–16 Nanogels, 524, 530–535, Osteoconductivity, 29 Oxaliplatin, 85, 99 537–539 Oxytetracycline (OTC), 424 Nanoimaging, 187 Nanoimprint lithography, 435 Paclitaxel, 84, 85, 92–94, 97 Nanomaterial, 147, 160–161 Papain, 429 Nanomedicine, 149, 150 Peptide-targeted liiposomes, 92 pH, 253–254, 256, 259, 262–263 Phage-coat peptide libraries, 92 Pharmaceutical, 490 Phase, 257, 262, 266, 278

552 Index Phase inversion, 396–397 Polystyrene sulphate hydrochloride Phenatoine, 457–458 (PSS), 470–471, 477 Phenobarbital, 457 Phosphate buffer (PhB), 453, 458, Polyvinyl alcohol-coated liposomes, 86 Porous Silicon (PS), 463–465, 468, 476 Phosphate buffer saline (PBS), 453, 460, 467, 487 Potentiometric, 294, 296, 303 462, 465, 467, 470, 472–473, 476 Preparation methods of Au NPs, Photodynamic therapy, 84, 91 Photolumijnescence, 463 135–137 Photo-oxidative degradation, 404 Promethazine (PMZ), 431 Photo-sensitive liposomes, 88 Properties of nanomaterials, 123 pH-sensitive liposomes, 86 Prussian blue, Piezoelectric Nanocomposite chemical and structure, 426 (SU-8/ZNO), , 328–331 deposition methods, 427 Piezoresistor, 309 hydrogen peroxide electrocatalysis, p-iodophenol, 460.462 Platinum, 244, 267, 244, 267 428–430 Platinum nanoparticles, 344, 346 overview, 426 Poly(hydroxypropyl) pH stability, 427 Pyrazinamide, 496 methacrylamides, 87 Pyrogallol, 392 Polyethylenamine chloride (PAA), Quantum Dots, 403, 409, 410, 413, 179 470–471, 477 Quantum wires, 415 Polyethylene glycol, 84–86 Quaternary, 174 Polyethylene glycol (PEG), 155–156, 170 Quaternized/quaternization, 150, 157, Polyethyleneimine, 96 Polymer, 343–346, 351–354, 147–161, 170, 174 163–175 Ractopamine, 413 Polymer (SU-8) Piezoelectric (ZnO) Regenerative medicine, 155 RGD peptide, 93, 94 Composite MEMS Cantilevers, Rifampcin, 493 characterization, 332–334 Ring-opening polymerization (ROP), fabrication, 331–332 Polymer composite, 310 534, 537 Polymer nanocomposite (SU-8/CB) Rule of six, 387–388 microcantilevers, Salbutamol, 430 application:detection of explosives, Salmonella thyphimorium, 462 SBC-3 cells, 527 334–337 Scaffold, 159–160, 164–168 characterization, 316–318 Selective sites, 452, 478, fabrication, 314–316 Polymer nanomechanical 480, 482, 485 Self-assemblies, 525 sensors, 308 SERS, 139 Polymer-coated liposomes, 84–86 Severe Plastic Deformation, Polymerization, 154–155, 169, 175 Polypeptides, 525–528, 530, 534, continuous, 7 538–539

Index 553 ECAP, 6, 7, 12, 13, 17–20, 22, SU-8, 308 24, 27, 28 SU-8/CB Nanocomposite, 310 ECAPT, 24 electrical characterization, 314 I-AS, 24 nanoindentation, 311–313 I-ECAP, 24 thn film mechanical SMAT, 25 Sialyl Lewis X, 92 characterization, 311 Side effects, 524, 539 Sulfonylurea herbicides, 400–401 Silica nanoparticle, 399–400, 402–403, Surface, 13 405, 407, 433 biological response, 12, 21, 27 Silver (Ag), 157–158, 162, 171, cell attachment, 12, 14, 16 coating, 8 173–174 confined SPD-techniques, 24–25 Silver nanoparticle (Ag-Nps), 392 etching, 13–14 Silver nanoparticles, 343, 344, finish, 8 functionalization, 4 350–357 mechanical attrition, 25 Single ligand-targeted liposomes, 91 modification, 5, 8, 28 SiO2@Ag nanocomposites, 138 nanostructured, 6, 29 SiO2@Au nanocomposites, 138 oxide, 21 Size exclusion chromatography roughness, 13 topography, 14 (SEC), 152 Surface Acoustic Wave (SAW), 297, Solid phase extraction, 398, 400, 300–302 407, 413 Surface Plasmon Resonance (SPR), Specific Ab, 456, 459, 460, 462, 392, 452, 468–470 471–472 Srface- barrier structures (SBS), Template sensor, 480 Tetrabromobisphenol A (TBBPA), 412 466.468 Tetracycline antibiotics, 398 Stainless steel, Tetramethylrhodamine iso- annealing, 22 thiocyanates (TRIC), 453.455 applications, 22 Theophylline, 415, 457 ASTM standards, 22 Therapeutics, 487, 488, 502 austenitic, 22 Therapy, 344–346 carbides, 22 Thermo metrical channel, 477, cell growth, 23 martensite, 22 478–479 nanostructured, 22–23 Thermogravimetric Analysis recrystallization, 22 SPD strengthening, 22 (TGA), 153 twins, 22 Thifensulfuronmethyl (TFM), 405 Static Molecular Recognition, 384–385 Thiol/thiolated, 151, 157, 170 Stent, 27–29 Thixotropic, 165 Stober's method, 130 Titanium, Strength, 5, 7–8, 11–13, 15, 16, 18, alloys, 16–21 19–27, 29 annealing, 17–19 Streptomycin(STR), 397–398

554 Index Tuberculosis, 487, 503 Tumor tissues, 524 cell attachment, 13, 14 Tyramine, 422 commercial purity, cytocompatibility, 13, 21 Ultrasound-triggered liposomes, dental implant, 15 87, 100 fatigue, 13, 20 oxide, 14, 21 Ultraviolet Spectroscopy (UV), strength, 11–13, 15, 16, 18, 19–21 153–154 WE alloys, 27, 29 ZK alloys, 26 Uranium, 433 Topical liposomes, 84 Urea, 397, 400, 411–412, 452, 455, 463, Toxicity, 344, 350, 353, 357, 493 Transactivating transduction peptide 473–475 (TATp), 93, 95–97 Vasoactive-intestinal peptide, 84, 85 Transducers, 452, 472, 485, 487 Vesicles, 524, 529–531, 539 Transferrin, 91 Vincristine, 81, 83, 97, 99 Transferrin receptor, 91 Viscometry, 152 Transmission electron microscopy Wound healing, 147, 159–160, (TEM), 158, 161–162 163–164, 166–168 Trastuzumab, 90, 97 Tribenuron-methyl, 428 X-ray diffraction, 153 Tris-HCl buffer (TB), 455, 461–462, Zoledronic acid, 85 465, 470 Trypsin, 429

Also of Interest Check out these published and forthcoming related titles from Scrivener Publishing Books marked with an * denote a title in the Advanced Materials Series *Advanced Materials for Agriculture, Food and Environmental Safety Edited by Ashutosh Tiwari and Mikael Syväjärvi Forthcoming July 2014. ISBN: 978-1-118-77343-7 *Advanced Biomaterials and Biodevices Edited by Ashutosh Tiwari and Anis N. Nordin Published ISBN 978-1-118-77363-5 *Biosensors Nanotechnology Edited by Ashutosh Tiwari and Anthony P. F. Turner Published ISBN 978-1-118-77351-2 *Advanced Sensor and Detection Materials Edited by Ashutosh Tiwari and Mustafa M. Demir Published ISBN 978-1-118-77348-2 *Advanced Healthcare Materials Edited by Ashutosh Tiwari Published 2014 ISBN 978-1-118-77359-8 *Advanced Energy Materials Edited by Ashutosh Tiwari and Sergiy Valyukh Published 2014. ISBN 978-1-118-68629-4 *Advanced Carbon Materials and Technology Edited by Ashutosh Tiwari and S.K. Shukla Published 2014. ISBN 978-1-118-68623-2 Ashutosh Tiwari and Anis N. Nordin (eds.) Advanced Biomaterials and Biodevices, (555–557) 2014 © Scrivener Publishing LLC

*Responsive Materials and Methods State-of-the-Art Stimuli-Responsive Materials and Their Applications Edited by Ashutosh Tiwari and Hisatoshi Kobayashi Published 2013. ISBN 978-1-118-68622-5 Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering Edited by Ashutosh Tiwari and Atul Tiwari Published 2013. ISBN 978-1-118-29032-3 Solar Cell Nanotechnology Edited by Atul Tiwari, Rabah Boukherroub, and Maheshwar Sharon Published 2013. ISBN 978-1-118-68625-6 Biomimetics Advancing Nanobiomaterials and Tissue Engineering Edited by Murugan Ramalingam, Xiumei Wang, Guoping Chen, Peter Ma, and Fu-Zhai Cui Published 2013. ISBN 9781118469620 Biomedical Materials and Diagnostic Devices Devices Edited by Ashutosh Tiwari, Murugan Ramalingam, Hisatoshi Kobayashi and Anthony P.F. Turner Published 2012. ISBN 978-1-118-03014-1 Intelligent Nanomaterials Processes, Properties, and Applications Edited by Ashutosh Tiwari Ajay K. Mishra, Hisatoshi Kobayashi and Anthony P.F. Turner Published 2012. ISBN 978-0-470-93879-9  Integrated Biomaterials for Biomedical Technology Edited by Murugan Ramalingam, Ashutosh Tiwari, Seeram Ramakrishna and Hisatoshi Kobayashi Published 2012. ISBN 978-1-118-42385-1 Integrated Biomaterials in Tissue Engineering Edited by Murugan Ramalingam, Ziyad Haidar, Seeram Ramakrishna, Hisatoshi Kobayashi, and Youssef Haikel Published 2012. ISBN 978-1-118-31198-1

Introduction to Surface Engineering and Functionally Engineered Materials By Peter Martin Published 2011 ISBN 978-0-470-63927-6 Encapsulation Nanotechnologies Edited by Vikas Mittal Published 2013. ISBN 978-1-118-34455-2 Introduction to Industrial Polypropylene: Properties, Catalysts, Processes by Dennis P. Malpass and Elliot Band. Published 2012. ISBN 978-1-118-06276-0 Introduction to Industrial Polyethylene: Properties, Catalysts, Processes by Dennis P. Malpass. Published 2010. ISBN 978-0-470-62598-9 Handbook of Bioplastics and Biocomposites Engineering Applications Edited by Srikanth Pilla Published 2011. ISBN 978-0-470-62607-8 Biopolymers Biomedical and Environmental Applications Edited by Susheel Kalia and Luc Avérous Published 2011. ISBN 978-0-470-63923-8 Renewable Polymers: Synthesis, Processing, and Technology Edited by Vikas Mittal Published 2011. ISBN 978-0-470-93877-5 Polymer Nanotube Nanocomposites Synthesis, Properties, and Applications Edited by Vikas Mittal. Published 2010. ISBN 978-0-470-62592-7


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook