ASKHSEIS I1. Na brejeÐ to pedÐo orismoÔ twn paraktw sunart sewn: √ 1 − x − 2. √ x+1(1) f1(x) = x2 − 5x + 6, (2) f2(x) = x − 1 , (3) f3(x) =2. Na parastajeÐ grafik h sunrthsh 5 x + 7, en − 4 x < −2, en − 2 x < 3, 2 en 3 x < 5. f (x) = 2, x − 1,3. Na melethjeÐ wc proc th monotonÐa kai ta akrìtata h sunrthsh f (x) = 3x2 − 1.4. DÐnontai oi sunart seic f (x) = x + 4 kai g(x) = x2 − 9.(1) Na apodeiqjeÐ ìti h sunrthsh f eÐnai 1 − 1.(2) Na brejeÐ h antÐstrofh sunrthsh f −1 thc f .(3) Na brejeÐ h sunrthsh g ◦ f −1 kai na parastajeÐ grafik.5. Na upologisjoÔn ta paraktw ìria:(1) lim( √ x + 5x), lim x2 − 1 (3) lim x2 − 3x + 2 lim 3 lim 3 x→4 x→2 (2) x→1 x−1 , x2 − 4 , (4) x→0 x4 , (5) x→0− x7 ,(6) lim ln x, lim 3 (8) lim 1 x (9) lim ef x, (10) lim (2x3 + 5x − 7), x→0+ (7) x7 , x→+∞ 2 x→−∞ x→−∞ , π − 2 x→ lim 2(x − 1)(x2 − 3) (12) lim √ 4x2 − x + 1 − 2x . x→+∞(11) x→−∞ 5x2 + 7 − 2x3 + , 2x6. Na apodeiqjeÐ ìti lim (x − 3) · sun 2013 = 0. x−3 x→37. DÐnetai h sunrthsh en x < 2, αx + 6, en x = 2, en x > 2. f (x) = 4α, x2 + βx,Na prosdioristoÔn oi timèc twn α kai β ètsi ¸ste h f na eÐnai suneq c sto shmeÐo x0 = 2.
Search
Read the Text Version
- 1 - 1
Pages: