Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore _Properties of Materials (1)

_Properties of Materials (1)

Published by affan usman, 2020-09-03 10:33:56

Description: _Properties of Materials (1)

Search

Read the Text Version

  INTRODUCTION TO   ALKALI METALS, HALOGENS  AND INERT GASES ~    BY AFFAN BIN USMAN  8TH GREEN                                       

The  alkali  metals  consist  of  the  chemical  elements  lithium,  sodium,  potassium,  rubidium,  caesium,  and  francium.  Together  with  hydrogen  they constitute group 1, which lies in the s-block of the periodic table.      Alkali Metals, sorted by Atomic Number:    Atomic  Symbol  Atomic Mass  Name  Number    3  Li  6.941  Lithium  11  Na  22.98977  Sodium  19  K  39.0983  Potassium  Rb  85.4678  Rubidium  37  Cs  132.9054  Cesium  Fr  (223)  Francium  55  87                             

                    The Group 1 elements have similar properties because of the electronic  structure of their atoms - they all have one electron in their outer shell.  The  alkali  metals consist of  the chemical elements lithium (Li), sodium  (Na),  potassium  (K),  rubidium (Rb), caesium (Cs), and  francium  (Fr). All  alkali metals have their outermost electron in an s-orbital.                                     

Relationships between different Alkali metals:    Alkali metals share common characteristics. They are all soft, silver metals. Due to their low  ionization energy, these metals have low melting points and are highly reactive. The  reactivity of this family increases as you move down the table. The Group 1 elements have  similar properties because of the electronic structure of their atoms - they all have one  electron in their outer shell.     Reactivity:-   Increases or decreases down the group 1?    ~ Yes the reactivity of ​group 1 elements increases as you go down the group because: the  atoms become larger. the outer electron becomes further from the nucleus. the force of  attraction between the nucleus and the outer electron decreases.     

Why do alkali metals get more reactive going down group 1?  Alkali metals from lithium to potassium get more reactive because the force of attraction  between the nucleus (core) and the outer electron gets weaker as you go down group 1  elements.              The distance \"c\" is greater than \"a\" and the force of attraction between the nucleus and the  outer shell (rings) diminishes with distance. 

The more electron shells (rings) between the nucleus and outer electron also creates  shielding and again this weakens the nuclear attraction.     The outer electron is more easily transferred to say an oxygen atom, which needs electrons  to complete its full outer shell.                   

REACTIONS OF THE GROUP 1  ELEMENTS WITH WATER    Lithium  Lithium's density is only about half that of water so it floats on the surface, gently fizzing  and giving off hydrogen. It gradually reacts and disappears, forming a colourless solution  of lithium hydroxide. The reaction generates heat too slowly and lithium's melting point is  too high for it to melt   Sodium  Sodium also floats on the surface, but enough heat is given off to melt the sodium (sodium  has a lower melting point than lithium and the reaction produces heat faster) and it melts  almost at once to form a small silvery ball that dashes around the surface. A white trail of  sodium hydroxide is seen in the water under the sodium, but this soon dissolves to give a  colourless solution of sodium hydroxide.  The sodium moves because it is pushed around by the hydrogen which is given off during  the reaction. If the sodium becomes trapped on the side of the container, the hydrogen  may catch fire to burn with an orange flame. The colour is due to contamination of the  normally blue hydrogen flame with sodium compounds.  Potassium  Potassium behaves rather like sodium except that the reaction is faster and enough heat  is given off to set light to the hydrogen. This time the normal hydrogen flame is  contaminated by potassium compounds and so is coloured a faintly bluish pink.   

  Rubidium  Rubidium is denser than water and so sinks. It reacts violently and immediately, with  everything spitting out of the container again. Rubidium hydroxide solution and hydrogen  are formed.  Caesium  Caesium explodes on contact with water, quite possibly shattering the container. Caesium  hydroxide and hydrogen are formed    Atomic Number, Mass, and Melting and Boiling  Points of the Alkali Metals:  -Lithium (Li) Melting Point: 180.5°C | Boiling Point: 1,347°C  -Sodium (Na) Melting Point: 97.8°C | Boiling Point: 883°  -Potassium (K) Melting Point: 63.28°C | Boiling Point: 759°C  -Rubidium (Rb) Melting Point: 39.31°C | Boiling Point: 688°C  -Cesium (Cs) Melting Point: 28.4°C | Boiling Point: 671°C  -Francium (Fr) Melting Point: 27°C | Boiling Point: 677°C 

      HALOGENS (7)    The halogens are a group in the periodic table consisting of five  chemically related elements: fluorine, chlorine, bromine, iodine (I),  and astatine.         Key Points  ○ Halogens are nonmetals in group 17 (or VII) of the periodic table.  Down the group, atom size increases. As a diatomic molecule,  fluorine has the weakest bond due to repulsion between  electrons of the small atoms. 

○ Due to increased strength of Van der Waals forces down the  group, the boiling points of halogens increase. Therefore, the  physical state of the elements down the group changes from  gaseous fluorine to solid iodine.  ○ Due to their high effective nuclear charge, halogens are highly  electronegative. Therefore, they are highly reactive and can gain  an electron through reaction with other elements. Halogens can  be harmful or lethal to biological organisms in sufficient  quantities.           

Physical Properties  Atoms  get  bigger  down  the  group  as  additional  electron  shells  are  filled.  When  fluorine  exists  as  a  diatomic  molecule,  the  F–F bond is  unexpectedly weak. This is because fluorine atoms are the smallest of  the  halogens—the  atoms  are  bonded  close together, which leads to  repulsion between free electrons in the two fluorine atoms.  The  boiling  points  of  halogens  increase  down  the  group  due  to  the  increasing  strength  of  Van der Waals forces as the size and relative  atomic  mass  of  the  atoms  increase.  This  change manifests itself  in a  change in the phase of the elements from gas (F2​ ​, Cl​2​) to liquid (Br​2)​ ,  to solid (I​2​). The halogens are the only periodic table group containing  elements  in  all  three  familiar  states  of  matter (solid, liquid, and gas)  at standard temperature and pressure.   

Chemical Properties  Electronegativity  is  the  ability  of  an  atom  to  attract  electrons  or  electron  density  towards  itself  within  a  covalent  bond.  Electronegativity depends  upon  the  attraction  between  the nucleus and bonding electrons in the outer shell.  This,  in  turn,  depends  on  the  balance between the number of protons in the  nucleus,  the  distance  between  the  nucleus  and  bonding  electrons,  and  the  shielding  effect  of  inner  electrons.  In  hydrogen  halides  (HX,  where  X  is  the  halogen),  the  H-X  bond  gets  longer  as  the  halogen  atoms  get  larger.  This  means  the  shared  electrons  are  further  from  the  halogen  nucleus,  which  increases  the  shielding  of  inner  electrons.  This  means  electronegativity  decreases down the group.  Halogens  are  highly reactive, and they can be harmful or lethal to biological  organisms  in  sufficient  quantities.  This  reactivity  is  due  to  high  electronegativity  and  high  effective  nuclear  charge.  Halogens  can  gain  an  electron by reacting with atoms of other elements.     

The halogens have the following properties:  ○ They are non-metals stable as ​diatomic molecules​ (this means at room  temperature and pressure, they exist as ​molecules made of two atoms​, e.g.  Cl2).  ○ They have a valence of 1 and form covalent bonds with nonmetals atoms, or  ionic bonds with metal atoms. H​ alogen ions will usually have a single  negative charge (X-​ ​), where they are known as halides​.  ○ They are colored.  ○ They have relatively l​ ow melting and boiling points​ compared to other  non-metals (except the noble gases).  ○ Halogens in elemental form are relatively toxic, reactive substances.  ○ They ​do not conduct heat or electricity​.  ○ They are b​ rittle as solids.​   As we go down the group, the ​properties​ of the elements c​ hange in the following ways​:  ○ The ​melting and boiling point gets higher​ – starting as gases, bromine is a  liquid while iodine is a solid.  ○ The color of the halogens gets darker – fluorine is pale yellow, followed by  green chlorine, brown/purple bromine and purple iodine.  ○ Electronegativity decreases down the group. The smallest halogen, fluorine,  is the most electronegative element in the periodic table.  ○ The halogens get l​ ess reactive​ – fluorine, top of the group, is the most  reactive element known. Iodine is the least reactive halogen (besides  astatine which is often ignored because it is extremely rare).  ○ As one of the more reactive groups of elements, there are a variety of  reactions the halogens take part in:  The halogens react well with group 1 and 2 metals​ because these have electron  configurations that complement the halogens. The metals react by losing electrons;  the halogens react by gaining them. These are vigorous, exothermic reactions. 

  INERT GASES (8)    The  noble  gases,  also  known  as  the  inert  gases  or  rare  gases,  are located in Group VIII or  International  Union  of  Pure  and  Applied  Chemistry  (IUPAC)  group 18 of t​ he periodic table​.  This is the column of elements along the far right side of the periodic table. This group is a  subset  of  the  nonmetals. Collectively, the elements are also called the helium group or the  neon group. The ​noble gases​ are:  1. Helium (He)  2. Neon​ (Ne)  3. Argon (Ar)  4. Krypton (Kr)  5. Xenon (Xe)  6. Radon (Rn)  7. Oganesson​ (Og)  With the exception of oganesson, all of these elements are gases at ordinary temperature  and pressure. There haven't been enough atoms produced of oganesson to know its phase for  certain, but most scientists predict it will be a liquid or solid.  Both radon and oganesson consist only of radioactive isotopes.  Noble Gas Properties  The noble gases are relatively non-reactive. In fact, they are the least reactive elements on  the  periodic  table.  This  is  because  they  have  a  complete  v​ alence  shell.​   They  have  little  tendency to gain or lose electrons. In 1898, Hugo Erdmann ​coined the phrase \"noble gas​\" to  reflect the low reactivity of these elements, in much the same way as the ​noble metals are  less reactive than other metals. The noble gases have high ionization energies and negligible 

electronegativities.  The  noble  gases  have  low  boiling  points  and  are  all  gases  at  room  temperature.        The Atomic and Physical Properties  ● Atomic mass, boiling point, and atomic radii INCREASE down a group in the periodic  table.  ● The first ionization energy DECREASES down a group in the periodic table.  ● The noble gases have the largest ionization energies, reflecting their chemical  inertness.  ● Down Group 18, atomic radius and interatomic forces INCREASE resulting in an  INCREASED melting point, boiling point, enthalpy of vaporization, and solubility.  ● The INCREASE in density down the group is correlated with the INCREASE in atomic  mass.  ● Because the atoms INCREASE in atomic size down the group, the electron clouds of  these non polar atoms become increasingly polarized, which leads to weak van Der  Waals forces among the atoms. Thus, the formation of liquids and solids is more 

easily attainable for these heavier elements because of their melting and boiling  points.  ● Because noble gases’ outer shells are full, they are extremely stable, tending not to  form chemical bonds and having a small tendency to gain or lose electrons.  ● Under standard conditions all members of the noble gas group behave similarly.  ● All are monoAtomic gases under standard conditions.  ● Noble gas atoms, like the atoms in other groups, INCREASE steadily in atomic radius  from one period to the next due to the INCREASING number of electrons.  ● The size of the atom is positively correlated to several properties of noble gases. The  ionization potential DECREASES with an INCREASING radius, because the valence  electrons in the larger noble gases are further away from the nucleus; they are  therefore held less tightly by the atom.  ● The attractive force INCREASES with the size of the atom as a result of an INCREASE  in polarizability and thus a DECREASE in ionization potential.  ● Overall, noble gases have weak interatomic forces, and therefore very low boiling and  melting points compared with elements of other groups.  Summary of Common Properties  1. Fairly nonreactive  2. Complete outer electron or valence shell (oxidation number = 0)  3. High ionization energies  4. Very low electronegativities  5. Low boiling points (all monatomic gases at room temperature)  6. No color, odor, or flavor under ordinary conditions (but may form colored liquids and  solids)  7. Nonflammable 


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook