14.4 AN ILLUSTRATIVE EXAMPLE 435     EFFECTS OF EXOGENOUS CONSTRUCTS ON INDICATORS OF THE ENDOGE-     NOUS CONSTRUCTS. The y indicators of 171 are indirectly affected by gh and the     indirect effect is given by the product of YII times the respective loading. For example.     the indirect effect of ~I on )'1 is given by I'll A{'I and is equal to 0.900 (Le., .90 x 1.00)     [Ia, Id] which is also equal to the total effect of ~I on)'1 [6k]. The indicators of 1'/2 are   indirectly affected by ~I through 171 and 17~, and also through 1'/2. For instance. the total     effect of gl on)'4 is given by     and is equal to [la, Ie, Id, 6k]                                .90 x .40 x 1.0 + .225 x 1.0 == .585.     The first tenn in this expression gives the indirect effect of ~I on Y4 through 711 and 712,     and the second term gives the indirect effect of ~I on y~ through 172.     Completely Standardized Solution     In the completely standardized solution the estimates are standardized with respect to   the variances of the constructs and also with respect to the variances of the indicators   [7]. In reporting the results. most researchers typically provide a summary of the results,   which includes the fit statistics, and results of the measurement and structural model.   Table 14.7 presents an example of such a reporting.    14.4 AN ILLUSTRATIVE EXAMPLE    In this section we present an application of structural equation modeling with unob-  servable constructs by discussing its application to coupon usage behavior. Shimp and  Kavas (1984) postulated a model to study this facet of consumer behavior. The model  is presented in Figure 14.4 and a brief discussion follows (for the time being ignore the  dotted paths). The model suggests that actual coupon usage behavior (B) is affected by  behavioral intentions (BI), which in turn is affected by attitude towards the act (AACT)  and subjective norm (SN). AACT is the outcome of cognitive structures (AACTCOG)  and SN is the outcome of nonnative structures (SNCOG). The cognitive and normative  structures are measured by single items. Data collec.ed from a two-state consumer panel  resulted in a total sample size of 533 respondents. Exhibit 14.3 gives partial LISREL  output.    14.4.1 Assessing the Overall ~lodel Fit    rThe statistic is significant; howeveor. as discussed in Chapter 6. one typically resorts    to other fit indices such as the GFI, AGFI. NCP. MDN. RNI, and TLI for assessing    model fit [1 J. Table 14.8 gives the values of the fit indices. Since the fit indices are less    orthan the recommended cutoff value 0.90. the researchers concluded that the model    could be improved based on theory and the modification irIdices given in the output.    Model Respecification    The modification indices can be used to respecify the hypothesized model. As noted    rin Chapter 6, the modification index of a fixed parameter gives the approximate de-    crease in the if the fixed parameter is freed (i.e., it is estimated). Examination of the
t                                                                                                                                 til                                                                                                                                    £IJ  CD                                                                                                                                £14                                                                                                                                    tiS                                                                                                                      £1 '\"2 t) £4                                                       81                                                      &2    Figure 14.4                                        1'6 \"                 Coupon usage model. Source: Shimp, T. A. and A. Kavas (1984). \"The Theory of               Reasoned Action Applied to Coupon Usage,\" Journal of Consumer Research; 11               (December). p. 797.
14.4 &'1 ILLUSTRATIVE EXAMPLE 437    Exhibit 14.3    LISREL output for coupon usage model    ~o            =CHI-SQUARE WI7H 115 DEGREES OF FREEDCM             775.43  =IF .000)         o                 GOOCNESS OF FI T INDEX :0.8 -; 4                  ADJUSTED GCODNESS CF FIT INCEX =0.d32                  =ROO~ MEAN SQUARE RESIDUAL                 0.183    (~)O          MODIFICATION INDICES FOR BE7A         o        fuI.CT SN BI                                     B       +          MCT   -------- -------- --------        --------      a         (LOOO    210.298        176.803      o                                              25.541          SN 165.862     0.000          64.462       19.978       +          BI 0.000 0.000 O.COO                         0.5!?                                                       0.000          B 0.096 0.477 0.000                  MODI=ICATION INDICES FOR GA.\"1MA                  AACTCOG  SNCOG            MCT   -------- --------                0.000    53.053            SN 9.059 0.000            BI    2.742    11.192            B 0.026 2.210    OND NON-ZERO MODIFICATION INDICES FOR PHI  ONO NON-ZERO MODIFICATICN INDICES FOR PSI  ONO NON-ZERO I'~ODIFICATICN INDICES FCR 7~ETA E!?S    o MODIFICATION INDICES FOR THETA DELTA  o Xl X2    +                  53.051   9.059    o MAXIMUM ~ODIFICATION INDEX IS 210.30 FOR ELEMENT                :, 2) OF BETA    modification indices suggests that inclusion of the crossover paths between AACT and    SN (i.e., /312 and fhd. and a crossover path between BI and AACT (i.e.• 1313) would    improve model fit [2]. Obviously, these paths must have a theoretical support. Shimp    and Kavas (1984) provide a theoretical reasoning for the inclusion of 1hz and /311,    The dotted paths in Figure 14.4 represent these crossover paths. It is important that all  model extensions be well grounded in theory. The analysis was rerun by freeing (i.e.,  estimating) the two parameters. We do not provide the LISREL output as all the relevant  information can be summarized in a table. Table 14.9 gives the overall goodness-of-  fit measures, the measurement model results, and the structural model results for the  respecified model. The fit indices suggest a good model fit, implying that the data fit  the hypothesized model.    14.4.2 Assessing the Measurement Model    All the factor loadings are quite high and statistically significant. The reliabilities of  the constructs and their indicators are also acceptable. The construct reliabilities were  computed using Eq. 6.17. Note that reliabilities of single-item constructs are one, as they  are assumed to be measured without error. Overall, the measurement model appears to  be acceptable.
· 4S8 CHAPTER 14 COVARIANCE STRUCTURE MODELS    Table 14.8 Goodness-of-Fit Indices for  the Coupon .Usage Model    Statistic   Value Statistic Value    Chi-square  775.430           df     115                0.874                      .896  GFI           0.832           RGFI       .860  AGFI           1.239          RAGFI                0.892                    0.538  NCP           0.183           MDN      0.872    RNI                           TLI    RMR    Table 14.9 Summary of the Results for  the Respecified Coupon Usage Model    Overall Model Fit    Statistic   Value Statistic Value    Chi-square  446.280           df     113                 0.914                     .936  GFI           0.884           RGFI       .913  AGFI          0.625           RAGFI                0.945                    0.732  NCP           0.044           MDN      0.934    RJ'fI                         TLI    RMR    Structural Model Results    Parameters                    Standardized Estimate    Exogenous paths                      0.025                                       0.387°     I'll                                       0.343°      1'21                             0.387°                                       0.696°  Endogenous paths                     0.262°                                       0.683°      (331      (332                             0.482      f343                             0.631      (321                             0.501                                       0.480      f312                             0.484    Coefficient of detennination                (continued)    All structural equations     1'/1     172     1'/3     1'/4    Assessing the Structural Model    All the hypothesized paths are statistically significant, supporting the hypotheses re-  lated to the structural equations. The variances accounted for by structural equations  range from a low of 48% to a high of 63.1 % and the overall variance accounted for by  the system of structural equations is 48.2%. These results suggest that all the relation-  ships are quite strong.
14.4 AN ILLUSTRATIVE EXAMPLE 439    Table 14.9 (continued)    Measurement Model ResulJs    Constructs and Indicators Completely Standardized Loadings  Reliabilities    7}1 (AACD                  0.868\"                             0.941      YI                     0.796\"                                0.754      Y'!                    0.8154                                0.634      Y3                     0.8934                                0.766                             0.929\"                                0.797       )'4                                                         0.863                             0.821\"      Ys                     0.74-4-\"                           0.760                                                                   0.673  1'/2 (SN)                  0.76C)'l                              0.554                             0.784\"      )'6                    0.851\"                             0.873                             0.837\"                                0.591     y.,                                                           0.615                             0.758\"                                0.725  7}3 (BI)                   0.7934                                0.701     YII                     0.7734                             0.689\"                             0.840      )'9                                                          0.574      YIO                    1.000                                 0.629                                                                   0.597     }'JI                    1.000                                 0.475                             0.085a  714 (B)                                                       1.000        )'12                                                      1.000       YI3        Yl4      YI!l    EI (AACTCOG)    6. (SNCOG)    cP    aSignificant at p < .01.        An obvious question is whether the improvement in the fit of the respecified model is  statistically significant. That is, are the additional parameters statistically significant?    The statistical significance of the improvement in fit, and therefore the estimates of the    radditional parameters, can be assessed by the difference tests for nested models.    Two models are said to be nested if one of the models can be obtained by placing re-  strictions on the parameters of the other modeL In the present case the original model    is nested within the respecified model. That is, the original model can be obtained from    the respecified model by constraining the parameters f321 and f312 to be equal to zero.  The chi-square difference test is described below.       The difference in the,r values and the degrees of freedom for the two models are    equal to 329.15 (775.430 - 446.280) and 2. respectively. For nested models, the differ-    rence in the chi squares is distributed as a statistic with degree of freedom equal to  rthe difference in the degrees of freedom of the two models. If the difference value is    statistically significant, then the respecified model with the additional paths is assumed    x:to have a statistically significant improvement over the original model. Since the of    329.150 with 2 df is statistically significant. the respecified model has a statistically    significant improvement over the previous model. Furthermore, each of the crossover  paths included in the respecified model is statistically significant, suggesting that there    are significant crossover effects between AACf and SN.
440 CHAPTER 14 COVARIANCE STRUCTURE MODELS    14.5 SUMMARY    This chapter discussed structural models. Structural or path models depict the relationship among    a number of constructs. If the constructs in the structural model are measured without measure-    ment error, then the parameters can be estimated using the standard statistical packages (e.g.,    SAS). This chapter. however, discussed the use of USREL, a well-known computer program    for estimating the parameters of the model. In the case when model constructs are measured    with error, the resulting model is a combination of a factor model and the struct!Jral model and    is typically referred to as the structural model with unobservable variables. The factor model    depicts the relationship between the unobservable constructs and its measures (i.e., indicators)    and the structural model presents the relationships between the unobservable constructs. Once    again. the use ofLlSREL for estimating the parameters of the structural model with unobservable    constructs is illustrated.                     .    QUESTIONS    14.1 What are the assumptions that must be made (about observed variables, error terms. causal          relationships, etc.) for an effective use of structural models?    14.2 Figure Q14.1 shows a structural model. Substitute standard notation for the letters A            through D and a through w. Use the standard notation to represent the model in equa-          lion form. Classify the parameters as belonging to either the measurement pan or the          structural pan of the model.                                                k                     de  r    Figure Ql4.1    14.3 File INTPERF.DAT gives the covariances between 12 indicators used to measure various          aspects of intelligence and class performance of 347 high school juniors.              Indicators 1 to 4 are scores from tests designed to test the quantitative ability of the          students. Indicators 5 to 8 are scores from tests designed to test the verbal ability of stu-         dents. Indicators 9 to 12 are scores on four variations of a general intelligence test. It is          believed that the performances of students on the general intelligence tests are a function         of the students' quantitative and verbal abilities.             The structural model shown in Figure Q14.2 was proposed to test the above theory         and determine the relative strength of the effects of quantitative .and verbal abilities on
QUESTIONS 441    Figure Q14.2 Note that Xl to Xa correspond to indicators 1 to 8 and Y 1 to Y\"                        correspond to indicators 9 to 12.             general intelligence levels. Estimate the parameters of the model shown in the figure and           interpret the results.                How can you modify the model to improve the overall fit? Provide support for any          modifications suggested by you.  14.4 In a study conducted to examine consumer ethnocentric tendencies (CET). 667 subjects          were asked to indicate their attitudes toward importing products. The ethnocentric ten-          dencies of these consumers were measured using seven indicators. File CE1NEW.DAT          gives the covariances among the indicators (X1-X7 measure ethno'centric tendencies and           Y1-Ys are attitudinal measures).                It is proposed that CET affect the attitudes toward imponing producrs. Draw a struc-          tural model that represents the relationship between CET and consumer attitudes toward          importing foreign products. Use the covariance data to estimate the parameters of the          model. Interpret the results.  14.5 Compare the results obtained in Question 14.4 with those obtained using canonical corre-          lation analysis in Question 13.7. What are the conceptual differences between canonical          correlation analysis and structural equation modeling?  14.6 File PERFSAT.DAT gives the Pearson correlations for eight observed variables. The data          carne from a study on perfonnance and satisfaction. Bagozzi (1980) formulated a struc-          tural equation model to study the relationship between performance and satisfaction in an         'industrial sales force. His model was designed to answer such questions as: \"Is there a          link between perfonnance and job satisfaction? Does perfo11llance influence satisfaction.          or does satisfaction influence perfonnance?\" Figure Q14.3 presents the path diagram for          the causal model finally adopted by Bagozzi.                The latent constructs shown in the figure are as follows:                                     €l == achievement motivation                                   €z = task specific self-esteem                                   €J = verbal intelligence                                         .\" 1 = perfonnance                                       '12 = job satisfaction.
442 CHAPTER 14 COVARIANCE STRUCTURE MODELS        Os    Figure Q14.3          According to the modeL ~l is measured by two indicators (Xl and X:!), S2 is measured by        two indicators (X) and X4), g is measured by a single indicator (Xs), 111 is measured by            a single indicator (Yd. and TI:! is measured by two indicators (r2 and l'3).              Estimate the model parameters and interpret the results.    14.7 In a study designed to determine the predictors of drinking and driving behavior among          18- to 24-year-old males, the model shown in Figure Q14.4 was proposed.              The constructs shown in the figure are as follows:                              ~I = attitude toward drinking and driving                            Q = social norms pertaining to drinking and driving                           g - perceived control over drinking and driving                                 TIl = intentions to drink and drive                               112 = drinking and driving behavior.         Attitude is measured by five indicators (Xj-Xs). social norms are measured by three indi-         cators (X6-XS). perceived control is measured by four indicators (X9-XI2). intentions are          measured by two indicators (YI-Yz). and behavior is measured using two indicators (Y)-            l'4). File DRINKD.DAT presents the covariance matrix between the indicators (sample         size = 356).               Use the covariance data (0 estimate the parameters of the structural model. Comment         on the model fit. What modifications can you make to the model to improve the model fit?         Interpret the results.
QUESTIONS 443     &.    &z    ~    'I&~ '2                                                                                                       tJ~1    &S    Figure Q14.4    14.8 XYZ National Bank conducted a survey of 423 customers to detennine how satisfied          they are with their credit cards. The bank believes that overall satisfaction with credit          cards is a function of customer satisfaction with the following four processes: application,          billing, customer service, and late payment handling. The bank also believes that ol'eralJ          satisfaction in tum determines whether the customer intends to continue using the credit          card (intent to continue) and whether the customer will recommend the card to a friend          (recommendation). Draw a structural model representing the relationships between th,e          consUUcts, as proposed by the bank.             In its survey, the bank used four indicators to measure satisfaction with application          (XI-X.j.), three indicators to measure satisfaction with billing lXs-X7), four indicators to          measure satisfaction with customer service (Xs-XII ), two indicators to measure satisfac-          tion with late payment handling (XI'l-X13). two indicators to measure overall satisfac-         tion (Yl-Y2). two indicators to measure recommendation (Y3-Y.j.), and two indicators to         measure intent to continue tYS-Y6). Fil~ BANKSAT.DAT gives the covariance matrix         between the indicators.             Use the covariance data to estimate the parameters ofthe structural model and interpret          the results.
444 CHAPTER 14 COVARIANCE STRUCTURE MODELS    14.9 Assume that the study described in Question 14.4 was replicated in Korea and in the          United States using a sample size of3oo. File CEf.DAT gives the covariance matrices for          the two samples. Do a group analysis to compare the structural model of the two samples.          What conclusions can you draw from your analysis?    Appendix    In this appendix we discuss the procedures for computing the implied covariance matrix and  model effects (e.g.. direct. indirect, and total effects).    A14.1 IMPLIED COVARIANCE MATRIX    In this section the computational procedures for obtaining the implied covariance matrix from the  parameters of a given model are discussed. We first discuss models with observable constructs  and then discuss models with unobservable constructs.    A.14. 1.1 Models with Observable Constructs    Consider th·e model given in Figure 14.3. which is represented by the following structural equa-  tions (also see Eqs. 14.1 and 14.2), and assume that the error terms are uncorrelated with the  latent constructs. 1                                      111 = 'YlJfJ + ~I                  (AI4.I)                                                                       (A14.2)                                    112 = 'Y:!l~l +f3:!I111 +~2.    The variance of 11 1 is given by              F(11d = E(11i)                                             (AI4.3)                   = E[('YIJ~r + (ri]                   = E['Yil~f + (f + 2Yl1~I(d                     = 'YiIE(~f) + EU'r) + 2'YIIE(~I(I)                      ::::: 'YircPlI +'1'11 +0                     = 'YIJtPII + 'I'll.    The covariance between ~r and 111 can be obtained by taking the expected value of Eq. A 14.1  after multiplying it by fJ. That is,                                      CO\"(~I'11d - E['YJI~f + (l~rJ      (AI4.4)                                                 = 'YIIE(e) + E(lr~l)                                               :: 'YJJ<b\" + 0                                                    = 'YJI<bIJ.    ITo be consistent with most £e:>\\rbooks. we use Greek Jeners 10 represent conSlrUC'rs and Roman Jeners (0  represent measures or indicatorll of the constructs. Therefore. T/ I. T/l. and ~l. respectively. represent )'1 • y~.    and XI'
A14.1 IMPLIED COVARIANCE MATRIX .us    The variance of 112 is given by        V(772) = E(11i)        = E[(')'21~1 + 1321111 + '2)2]        ,i= E[rll~l + f3?I11I + + 2')'2If321~1111 + 2')'21fl(2 + 21321111(2)      f3i= ')'~IE(~r) + IE(11T) + E(,/> + 2')'1If32IE(~1111) + 21'2IE(~1!:-2) + 2f32IElTJI(2)        = ')'~lcPll + f3i\\ V(11d + 'i'21 + 2'Y:H,821COV(t'I11d + 0 + 0        = ')'~lcPII + MI()'IlcPlI + 'I'll) + 2')';zdhI1utPlI + 'I':!:!.          (A14.5)    The covariance between 771 and 771 can be obtained by mUltiplying Eq. A14.2 by 771 and taking  its expected value                         COv(111111) ;: E[')'21~ITJI + f311TJr + '2TJd           (A14.6)                                   == 'Y2I E (gl111) + i32I E(TJT) + E(C2TJI)                                   \"'\" ')'21111cPII + 1321 V(111) + 0                                   = ')'21111tPll + f321(1rl¢1I + 'I'll).    The covariance matrix between ~1 and 112 is obtained by taking the expected value ofEq. A14.2    after multiplying it by fl. That is,                         COV(~1112) = E('Y21~l + i321~ITJI + fl'2)               (AI4.7)                                  = ')'2IE(~f) + /32IE(~1 TIl) + E(~1'2)                                    = ')'2ltPlI + f3z1')'lIcPlI.    Equations A14.3 to A14.7 give the necessary elements of the covariance matrix implied by the    model parameters, and are the same as given by Eq. 14.5, except that }'I. )\"2. and XI. respectively.    represent TJ I. 112. and ~I'    Implied Covariance Matrix Using Matrix Algebra    Equations A14.1 and A14.2 can be represenred in matrix form as                                                                                 (A14.8)    or                                'l) = ~ + BTJ + t                                (A14.9)                       'l) - B'l) = ~ + t                       (I - B)'l) = ~ + t                                \"l - (1 - B)-I ~ + (1 - B)-It.    The covanance matrix. :Il1l1' between the endogenous constructs (Le., 111 and TJ~) is given by        :I\".\". :: E(\"l'l) ')                                                     (A14.1O)             = Er(1 - B)-Ill + (I - B)-ltU(1 - B)-Irs + (1 - B)-Itl'             = (I - B)-lrE(~~')r'(I- B)-I' + (I - B)-IE(tt')(1 - B)-I'           = (I - B)-I:fc)f'(I- B)-I' + (I - B)-I\"'(I - B)-\"             = (I - B)-I[:fc)f' + \"'](1- B)-I'.    The covariance matrix between the exogenous constructs, ~!i~' is given by                                        :I~~, \", E(~~')                          (A14.11)                                              :: ell.
448 CHAPTER 14 COVARIANCE STRUCTURE MODELS        The covariance matrix, :I~, between exogenous and endogenous constructs is given by        :I~ = E(1]~')                                                                  (AI4.12)             = E[(I - B)-Illf + (1- B)-It~']          = (1- B)-lrE(~~') + (1- B)-lE(t~')           = (I - B)-I£'fI) + 0              = (I - B)-IJlI).    The covariance matrix, I. of the model is equal to                             :I = (~\"l\"l :I~).                                         (A14.13)                                   :It\"l Iu    or  _((1- \"'](1-B)-I [J)I)r' +                                                        B)-I' (I - Bl-IJ)I))           (A14.14)        1: - r'(I- B)-I'cJ)                                                cJ) •.    The preceding equations can be used to obtain the covariance matrix of any structural model  with observable constructs. The following section presents an example.    An Illustrative Example    Figure A14.l gives the structural model represented by Eqs. A14.1 and A14.2. The figure also  gives a hypothetical set of parameter values. The values of these parameters were used to gen-    erate the hypothetical covariance matrix given in Table 14.2. The parameter matrices are        (1.60).4> = (4);      r=                                              •                  =  (  5.76     0)                                                                                0    10.752'              0.40 '    The PROC IML procedure in SAS can be used for computing the covariance matrix. Exhibit  A14.1 gives the resulting output. Note that the covariance matrix is the same as that given in  Table 14.2.    A14.1.2 Models with Unobservable Constructs    The model given in Figure A14.2. which is the same as that given by Figure 14.3, can be repre-  sented by the following equations:                             1] = q + B'I) + t                                         (AI4.15)                           x == A.~ + 8                             =Y Ay1] + E.    The first equation gives the structural model and the last two equations give the measurement  part of the model. Since the constructs in the model are unobservable and are measured by their  respective indicators. the implied covariance matrix contains covariances among the indicators  of the constructs. The covariance matrix. ~n. among the indicators of the exogenous constructs        \"21 = 0.40                                                        \\'c;:!) =10.752                             fJ~1 = 0.40                                                           \\'(';1) = S.76    Figure A14.1 Structural model with observable constructs.
A14.1 IMPLIED COVARIANCE MATRIX 447    Exhibit A14.1                                                                1  Covariance matrix for structural model with observable constructs    SAS 14:43 TUESDAY, DECEMBER 22, 1992    CYY   COL1               COL2    ROW1 16.0000 8.9600  ROW2 8.9600 16.0000    CYX      COLl    ROWI  6.4000  ROW2  4.1600    CXX COL1              4.0000    COY   COLI          COL2          COL3    ROWI 16.0000 8.9600            6.4000  ROW2 8.9600 16.0000            4.160(J  ROW3 6.4000 4.1600             4.0000    Note:  CYY: Covariance matrix among the endogenous constructs.  CXX: Covariance matrix among the exogenous constructs.  CYX: Covariance matrix between the exogenous and the endogenous constructs.          V(O.) V(~) V(03)   V(E.) VeE:!) V(EJ)  V(E,) V(ES) V(e6)          1.440 1.440 1.440  .760 .760 .760      .760 .760 .760    Figure A14.2 Structural model with unobservable constructs.
448 CHAPrER 14 COVARIANCE STRUCTURE MODELS    is equal to                     :In = Coven:) = E(n:')                                                (A14.16)                                   = E[(A](~ + 8)(A](~ + 8)']                                     = A](E(~f)A~ + A](E(~8') + A](E(~) + E(88')                                     = AxCP~ + 0 + 0 + 8.                                    = AxCP~ + 9 •.    The covariance matrix. :Iyy • among the indicators of the endogenous construct is given by                     :Iyy = C ov(yy) = E(yy')                                   = EI(Ay'l} + E)(Ay'l} + E)']                                      = AyE('I}'I}')A;. + AyE('I}E') + AyE(E'I}) + E(EE')                                  = Ay:I\"\",A; + 0 + 0 + e~.    Substituting Eq. A I4. lOin this equation. we get                                      (AI4.17)                       :Iyy = Ay[(I - B)-I (nt»r' + '1')(1 - B)-I'lA; + e •.    And the covariance matrix. :Ix,.. among the indicators c:f exogenous and endogenous constructs    is given by                     ~y := C ov(xy) \"'\" E(xy')                                     = E[(Ax~ + 8)(Ay'l} + E)'J                                  = A](E(~'I}')A; + AlIE(~E') + E(8'1}')A; + E(8E')                                  = Ax:I~\"A;. + 0 + 0 + O.                                 (A14.18)    Substituting E.... A14.12 in this equation we get                                      (AI4.19)                                      Axcpr'(I- B)-I' A;..    Therefore. the covariance matrix, :I, for the model with unobservable constructs is equal to                                                                                           (A14.20)    or                                                       AyA(Ix-~B~)-+I8r4.»~).        (AI4.21)           = (Ar[(I- B)-I(r4»r' + ,.,)(1 - B)-I'lA;. + e4[      :I A](cpr'(1 - B)-I'A;    The preceding equations can be used to obtain the covariance matrix for any model given the  parameter values. Following is an illustrative example.    An Rlustrative Example    Consider the model given in Figure A14.2 along with a hypothetical set of parameter values.  The parameter matrices for the model in Figure 14.4 that were used to generate the hypothetical  covariance matrix given in Table 14.6 are    ~=(l 1 1).  (!A' :=                   1 1 0 0 0)  y 000111'    se = (1.440 1.440 1.440),  e; = (0.760 0.760 0.760 0.760 0.760 0.760).  560' (1.166 0). (0.90 ).do.    ....               _~  (')   'I' _  0           r_                             -                    -).            2.177' - 0.225 .
A14.2 MODEL EFFECTS 449    Exhibit A14.2  Covariance matrix for structural model with unobservable constructs    1 SAS 14:40 TUESOAY, DEC~~ER 22, 1992                                       1    CYY    COLI     COL2     C0L3             COL4     eOLS    COL6    ROWI   3.9996   3.2396   3.2396   1.B142        1. 8142    1. B142  ROW2   3.2396   3.9996   3.2396   1.B142        1. B142    1. 8142  ROW 3  3.2396   3.2396   3.9996   1.B142        1.8142     1.8142  ROW 4  1.8142   1.8142   1.B142   3.9997        3.2397     3.2397  ROWS   1.B142   1.8142   1.8142   3.2397        3.9997     3.2397  ROW6   1.8142   1.8142   1.8142   3.2397        3.2397     3.9997    CXY    COLI     COL2     COL3             eOL4     eOLS    COL6    ROW1   2.3040   2.3040   2.3040   1.4976        1.4976     1.4976  ROW2   2.3040   2.3040   2.3040   1.4976        1.4976     1.4976  ROW3   2.3040   2.3040   2.3040   1.4976        1.4976     1.4976    exx       COLI     COL2     eOL3    ROWI   4.0000   2.5600   2.5600  ROW2   2.5600   4.0000   2.5600  ROW3   2.5600   2.5600   4.0000    eov COLI COL2 eOL3 COL4 eOLS eOL6 eOL7 COLB COL9    ROW 1  3.9996   3.2396   3.2396  1.B142   1.8142   1.B142  2.3040   2.3040  2.3040  ROW2   3.2396   3.9996   3.2396  1. B142  1. 8142  1.8142  2.3040   2.3040  2.3040  ROW 3  3.2396   3.2396   3.9996  1. 8142  1. 8142  1.8142  2.3040   2.3040  2.3040  ROW4   1.8142   1.8142   1.8142  3.9997   3.2397   3.2397  1.4976   1.4976  1.4976  ROWS   1.8142   1.8142   1.8142  3.2397   3.9997   3.2397  1.4976   1.4976  1.4976  ROW 6  1.8142   1.8142   1.8142  3.2397   3.2397   3.9997  1.4976   1.4976  1.4976  ROW7   2.3040   2.3040   2.3040  1.4976   1.4976   1.4976  4.0000   2.5600  2.5600  ROWB   2.3040   2.3040   2.3040  1.4976   1.4976   1.4976  2.5600   4.0000  2.5600  ROW9   2.3040   2.3040   2.3040  1.4976   1.4976   1.4976  2.5600   2.5600  4.0000    Note:  CYY: Covariance matrix among the indicators of the endogenous Constructs.  CYX: Covariance manix between the indicators of the exogenous and the endogenous constructs.  CXX: Covariance matrix among the indicators of the exogenous constructs.  COY: Covariance matrix among the indicators.       Exhibit A14.2 gives the PROC IML output. The covariance matrix given in the table is,  within rounding errors, the same as that given in Table 14.6.    A14.2 MODEL EFFECTS    In many instances the researcher is interested in determining a number of effects in the struc-  tural model, which can be classified as: (1) effects among the endogenous constructs (i.e., how  one endogenous construct affects other endogenous construct(s»; (2) effects of the exogenous
450 CHAPrER 14 COVARIANCE STRUCTURE MODELS    constructs on the endogenous consoucts (i.e., how the exogenous constructs affect the various  endogenous constructs); and (3) effects of the constructs on the indicators. Each of these effects  is discussed in the following sections using simple models. However, the fonnulae given are  general and can be used to obtain the various effects for any structural models.    A14.2.1 Effects among the Endogenous Constructs    Consider the structural model given in Figure A I4.3. The figure, depicting:only the relationships  among the constructs, can be represented by the following equations                    T71 = 'Yll~J + (I                (A14.22)                  T72 :=: 'Y22~ + 1321 Til + (2    (A14.23)                  T73 = /331 T71 + /332T]2 + (3.   (A14.24)    Concentrating on the paths among the endogenous constructs, it can be seen from Figure A14.3  that some of the endogenous constructs are directly and/or indirectly affected by other endoge-  nous constructs. For example, T72 is directly affected by Til, and it is not indirectly affected by  any other endogenous consOUct. On the other hand, T73 is directly affected by T71 and T72, and  it is also indirectly affected by T71 via 712. The total effect of a given construct is the sum of all  its direct and indirect effects. The following section discusses the direct and indirect effects in  greater detail and illustrates the computational procedures.    Direct Effects    As discussed above, direct effects result when one construct directly affects another construct.    The direct effects can be obtained directly from the structural equations. In Eq. A14.23 the direct    effect of T71 on T72 is given by the respective structural coefficient, /321, Similarly, in Eq. AI4.24  the direct effect of T/ J and T72 on T73 are, respectively, given by /331 and /332. It is obvious that  the direc! effects among the endogenous constructs are given by the B matrix. For the model  given in Figure A14.3, the following B matrix gives the effect of the column construct On the  row construct:                                    0o 00).          (A14.25)                                    /332 0    Indirect Effects    The indirect effect of one construct on another construct must be through one or more other  consbllct(s). For example, in Figure A14.3 the indirect effect of T71 on T]3 is via T72. That ':5, T71  indirectly affects T73 through \"\"2, or in Figure A 14.4 the indirect effect of T71 on T74 is through  T72 and T73. The order of an indirect effect is denoted by the length of the effect, and the length    Figure A14.3 Structural model.
A14.2 MODEL EFFECTS 451    Figure A14.4 Indirect effects of length three.    Figure A14.5 Multiple indirect effects.    of an effect is defined as the number of links or paths between the two constructs. For instance,    in Figure A14.4 the indirect effect of 171 on 713 is of length two as there are two links between  111 and 7]3. One link is between 111 and 712 and the other link is between 712 and 713. Also. the  indirect link between.\" 1 and 714 is of length three as there are three links between 71 1 and 71-l. It  is also possible that a given construct may have multiple indirect effects. As an example, in Fig-  ure A14.5 711 indirectly affects 716 through 1]3 and TIs, as well as through 71\", The total indirect  effect of a construct, therefore. is equal to the sum of all its indirect effects.        I!ldirect effects are equal [0 the product of the strucrural coefficients of the links between [he    effects. As an example, the indirect effects of 71 1 on 716 in Figure A14.5 are given by f331 f3S3 f36S    and f341 f36... The total indirect effect of 171 on 716 is therefore equal to f331 f3S3f365 + /341 f364. In    general, it has been shown that indirect effects of length or order k are given by Bk, where B is    the matrix of beta coefficients. That is, the indirect effect of length two for the model given in  Figure A14.3 is given by                           0)oo 0 .                                              o 0,    And the indirect effects oflength 3 are given by    That is, as is obvious from Figure A14.3, there are no indirect effects of length three. The total    indirect effects are given by    which has been shown to be equal to                               (A14.26)                                                (I - B)-r - 1 - B.    Total Effects    The total effect is the sum of direct and indirect effects. For example, the total effect of 71 1 on  112 is the sum of the direct effect and the indirect effects of 711 on 712. From Eqs. A14.25 and  A14.26. the total effects are                                             (I - B)-l - 1- B + B
452 CHAPTER 14 COVARIANCE STRUCTURE MODELS    Or                      (I-B)-I_I.                                       (A 14.27)    A14.2.2 Effects of Exogenous Constructs on Endogenous Constructs    Direct Effects  From Figure A14.3 it can be seen that the exogenous construct, tl. directly affects 1]r and the  exogenous construct, ~, directly affects 712. The direct effects of ~J and 6, respectively, are 'Y11    and 'Y22. The direct effects of exogenous constructs on the endogenous constructs are given by    the r matrix. and are equal to                                                                                                                 (A14.28)    Indirect Effects    The following indirect effects can be identified in Figure A14.3:    1. tl indirectly affec'ts Tl2 through 1] I and the indirect effect is given by 'Y II {321.  2. tl indirectly affects 'T13 through 711. and through 711 and 712. These effects are, respectively,         given by 'Yllft31 and 'Y1I{321f332.    3.. The indirecl effect of E2 on 713 is through 7J2 and is given by 'Y'12f332.    In general, it can be shown that the indirect effects of the exogenous constructs on the endogenous    constructs are given by                      [(1 - B)-I - IJr.                                (A 14.29)    and, therefore, the total effects are given by                                   (I - B)-Ir - r + r    or                                                                       (A 14.30)    A14.2.3 Effects of the Constructs on Their Indicators    Consider the model given in Figure A 14.2. The effects of the constructs on the indicators can be  classified as: (I) the direct effect of each construct on its respectiv!\" indicators; (2) the indirect  effect of exogenous constructs on indicators of endogenous constructs; and (3) the indirect effect  of the endogenous construct on the indicators of other endogenous constructs. These effects are  discussed below.    Direct Effects    The direct effect of the exogenous construct on its indicarors is given by the respective>. coef-    ficient. For example, the effect of tr on XI is given by >'f, . and the indirect effect of 71 I on )'1    is given by >\";'1' Therefore. the direct effects of exogenous and endogenous constructs on their  indicators are. respectively. given by the Ax and Ay matrices.    Indirect Effects    The indicators of the exogenous constructs are not indirectly affected. Only the indicators of    endogenous constructs are indirectly affected. In Figure A 14.2, YI is indirectly affected by tl  via 711 and the effect is equal to 'YIIA;I. SimilarlY.)'4 is indirectly affected by tl via 711 and 712
A14.2 MODEL EFFECTS 453    and the effect is given by )'11 fh lA.!2. The indicator Y4 is al~ indirectly affected by TIl through m.  and this effect is given by /321A.~2. The total indirect effect of Y4 is equal to 'Yll/htA.:1 + ~tA.~2.    The total effect of ]4 is equal to the sum of all indirect and direct effects and is equal to                                       A~2 + 'YlllhlA.~2 + f321~1.    In general, th,e indirect effects on the indicators of endogenous constructs are given by                                                A,[(I - B)-I - I],    and the to,tal effects are given by                                        Ay[(1 - B)-l - I] + Ay    or                                                                                                              (A14.31)
Statistical Tables                     ··                   ··
srATISTlCAL TABLES 457    Table T.l Standard Normal Probabilities    Example    Pr (0 :S =:S 1.96) = 0.4750    Pr (= 2: 1.96) = 0.5 - 0.4750                   ~ 0.025                                             0 1.96  =    Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09    0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359  0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753  0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141  0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517  0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879  0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224    0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549  0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852  0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133  0.9 .3159 .3186 .3212 .3238 .32()..1. .3289 .3315 .3340 .3365 .3389  1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621    1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830  1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015  1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177  1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 ...292 .4306 .4319  1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441    1.6 .4452 .4463 .4474- .4484 .4495 .4505 .4515 .4525 .4535 .4545  1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633  1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706  1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767  2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817    2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857  2.2 .4861 .4864- .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890  2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916  2.4 .4918 .4920 .4922 .4925 .49~7 .4929 .4931 .4932 .4934 .4936  2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952    2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964  2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974  2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981  2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986  3'.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
458 STATISTICAL TABLES    Table T.2 Students' t-Distribution Critical Points    Example    Pr (t > 2.086) = 0.025  Pr (t > l.n5) = 0.05       ford! == 20    Pr (ItI > 1.725) == 0.10                                                        0 1.725    0.25 0.10 0.05                  0.025   0.01                 0.005  0.001  0.50 0.20 0.10                  0.05    0.02                 0.010  0.002        1 1.000   3.078     6.314   12.706  31.821      63.657          318.31      2 0.816   1.886     2.920    4.303   6.965       9.925           22.327      3 0.765   1.638     2.353    3.182   4.541       5.841           10.214     4 0.741    1.533     2.132    2.776   3.747       4.604            7.173       5 0.727    1.476     2.015    2.571   3.365       4.032            5.893     6 0.718    1.440      1.943   2.447   3.143       3.707            5.208     7 0.711    1.415      1.895   2.365   2.998       3.499            4.785     8 0.706    1.397     1.860    2.306   2.896       3.355            4.501     9 0.703    1.383     1.833    2.262   2.821       3.250            4.297      -10 0.700  1.372      1.812   2.228    2.764       3.169            4.144    11 0.697   1.363      1.796   2.201    2.718       3.106            4.025    12 0.695   1.356      1.782   2.179    2.681       3.055            3.930    13 0.694   1.350      1.771   2.160    2.650       3.012            3.852    14 0.692   1.345      1.761   2.145    2.624       2.977            3.787      15 0.691   1.341      1.753   2.131   2.602       2.947             3.733    16 0.690   1.337      1.746   2.120   2.583       2.921             3.686    17 0.689   1.333      1.740   2.110   2.567       2.898             3.646    18 0.688   1.330      1.734   2.101   2.552       2.878             3.610    19 0.688   1.328      1.729   2.093   2.539       2.861             3.579     20 0.687    1.325      1.725   2.086   2.528       2.845             3.552   21 0.686    1.323      1.721   2.080   2.518       2.831             3.527   22 0.686    1.321      1.717   2.074   2.508       2.819             3.505   23 0.685    1.319      1.714   2.069   2.500       2.807             3.485   24 0.685    1.318      1.711   2.064   2.492       2.797             3.467     25 0.684    1.316      1.708   2.060   2.485       2.787             3.450   26 0.684    1.315      1.706   2.056   2.479       2.779             3.435   27 0.684    1.314      1.703   2.052   2.473       2.771            3.421   28 0.683    1.313      1.701   2.048   2.467       2.763             3.408   29 0.683    1.311      1.699   2.045   2.462       2.756             3.396     30 0.683    1.310      1.697   2.042   2.457       2.750            3.385   40 0.681    1.303      1.684   2.021   2.423       2.704            3.307   60 0.679    1.296      1.671   2.000   2.390       2.660            3.232  120 0.677    1.289      1.658   1.980   2.358       2.167            3.160    oe 0.674   1.282      1.645   1.960   2.326       2.576                                                                       3.090    Note: The smaller probability ShO.....l1 at the head of each column is lhe area in one tail; the larger probability  is the area in both lails.    Source: From E. S. Pearson and H. O. Hartley. eds.• Biometrika TablesJorStatisticians. vol. I, 3d cd., tabl,e  12. Cambridge University Press. New York.. 1966. Reproduced by permission of the editors and trustees of  BiometrikA
Table T.3 X 2 Critical Points  Example    crPr > 23.8277) = 0.25  crPr > 31.4104) = 0.05     crford! = 10    Pr > 37.5662) = 0.01                                   0                           31.41 37.37                Z2    >z 0.250          0.100        0.050       0.025    0.010       0.005          0.001             1.32330  2.70554      3.84146     5.02389     6.63490     7.87944    10.828  2 2.71259         4.60517      5.99146     7.37776     9.21034    10.5966     13.816  3 4.10834         6.25139      7.81473     9.34840    11.3449     12.8382     16.266  4 5.38527         7.77944      9.48773    11.1433     13.2767     14.8603     18.461    5 6.62568          9.23636     11.0705    12.8325     15.0863     16.7496     20.515  6 7.84080         10.6446      11.5916    14..+494    16.8119     18.5476     22.458  7 9.03715         12.0170      14.0671    16.0128     18.4753     20.2177     24.322  8 10.2189         13.3616      15.5073    17.5345     20.0902     21.9550     16.125  9 11.3888         14.6837      16.9190    19.0228     21.6660     23.5894     27.877    10 12.5489        15.9872      18.3070   20..+832     23.2093     25.1882     29.588  11 13.7007        17.2750      19.6751    21.9200     24.7250    26.7568      31.264  12 14.8454        18.5493      21.0261   23.3367      26.2170    28.2995      32.909  13 15.9839        19.8119      22.3620   24.7356     27.6882     29.8195      34.528  14 17.1169        21.0641      23.6848   26.1189      29.1412     31.3194     36.123    15 18.2451        22.3071      24.9958   27.4884     30.5779     32.8013      37.697  16 19.3689        23.5418                28.8454     31.9999     34.2672     39.252  I7 20.4887        24.7690      ~6.2962   30.1910     33.4087     35.7185     40.790  18 21.6049        25.9894                31.5264     34.8053     37.1565     42.312  19 22.7178        27.2036      27.5871   32.8523     36.1909     38.5823     43.820                                   ~8.8693   34.1696     37.5662     39.9968     45.315                                           35.4789     38.9322     41.4011     46.797                                 30.1435   36.7807     40.2894     42.7957     48.268                                           38.0756     41.6384     44.1813     49.728  20 23.8277        28.4120   31.4104      39.3641     42.9798     45.5585     51.179  21 24.9348        29.6151   32.6706  22 26.0393        30.8133   33.9244      40.6465     44.3141     46.9279     52.618  23 27.1413        32.0069   35.1715      41.9232     45.6417     48.2899     54.052  24 28.2412        33.1962   36.4150      43.1945     46.9629     49.6449     55.476                                           44.4608     48.2782     50.9934     56.892  25 29.3389        34.3816   37.6525      45.7:23     49.5879     52.3356     58.301                    35.5632   38.8851  .2.,,67  30.4346  36.7412   40.1133      46.9792     50.8922     53.6720     59.703           31.5284  37.9159   41.3371      59.3417     63.6907     66.7660     73.402  ~,                39.0875   42.5570      71.4202     76.1539     79.4900     86.661                                           83.2977     88.3794     91.9517     99.607  28 32.6205                                           95.0232    100.425     104.215     112.317  29 33.7109                              106.629     112.329     116.321     124.839                                          II 8.136    124.116     128.299     137.208  30 34.7997        40.2560     43.7730   129.561     135.807     140.169     149.449  40 45.6160        51.8051     55.7585  50 56.3336        63.1671   . 67.5048   +1.9600     +2.3263     +25758      +3.0902  60 66.9815        74.3970     79.0819     70 77.5767        85.5270    90.5312                     96.5782   101.879   80 88.1303       107.565   .113.145                    118.498   '124.342   90 98.6499                    + 1.2816 +1.6449  100 109.141    zt +0.6745    'For df greater than 100. the expression                                          ,,'2X! - ,,'(2k - 1) = Z    follows the standardized normal distribution, where k represents the degrees of freedom.    Sourc:e: From E. S. Pearson and H. O. Hartley. eds., Biometrika Tables for Statisticians. vol. I, 3d ed.. table  8, Cambridge University Press. New York. 1966. Reproduced by pennission of the editors and austees of  Biometrika.                                                                                459
Table T.4 F -Distribution    Example    Pr (F > 1.59) = 0.25    Pr (F > 2.42) == 0.10      ford! NJ = 10  Pr (F > 3.14) = 0.05       andN2 = 9    Pr (F > 5.26) = 0.01                                                    3.14 5.26  F    dffor    Denom-                     df for Numerator Nl   iutor         N2 Pr 1 2 3 4 5 6 7 8 9 10 11 12                   .25 5.83 7.50 8.20 8.58 8.82 8.98 9.10 9.19 9.26 9.32 9.36 9.41        1 .10 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.5 60.7                   .05 161 200 216 225 230 234 237 239 241 242 243 244                   .25 2.57 3.00 3.15 3.23 3.28 3.31 3.34 3.35 3.37 3.38 3.39 3.39        2 .10 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40 9.41                  .05 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4                .01 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4                  .25 2.02 2.28 2.36 2.39 2.41 2.42 2.43 2.44 2.44 2.44 2.45 2.45         .3 .10 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.22                  .05 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74                .01 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 27.1                  .25 1.81 2.00 2.05 2.06 2.07 2.08 2.08 2.08 2.08 2.08 2.08 2.08       4 .10 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.91 3.90                  .05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91                .01 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.4                  .25 1.69 1.85 1.88 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89       5 .10 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28 3.27                  .05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.71 4.68                 .01 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.96 9.89                  25 1.62 1.76 1.78 1.79 1.79 1.78 1.78 1.78 1.71 1.77 1.77 1.77       6 .10 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.92 2.90                  .05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00                .01 13.7 lD.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72                  .25 1.57 1.70 1.72 1.72 1.71 1.71 1.70 1.70 1.69 1.69 1.69 1.68       7 .10 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.68 2.67                  .05 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57                .01 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47                  .25 1.54 1.66 1.67 1.66 1.66 1.65 1.64 1.64 1.63 1.63 1.63 1.62       8 .10 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.52 2.50                  .05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28               .01 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67                 .25 1.51 1.62 1.63 1.63 1.62 1.61 1.60 1.60 1.59 1.59 1.58 1.58       9 .lD 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.40 2.38                 .05 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07               .01 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11    Sourr:e: E. S. Pearson and H. O. Hartley. cds. Biometrika Tables for Sratisticians, vol. 1. 3d ed., table 18.  p. 558. Cambridge University Press. New Yort, 1966. Reproduced by permission of the edilors and trustees  of Biometrika.    460
STATISTICAL TABLES 481    Table T.4 (Continued)                                                                       dfCor                           df for Numerator Nl                         Denom-                                                                      inator    15 20 24 30 40 50 60 100 120 200 500 CXI Pr Nl     9.49 9.58 9.63 9.67 9.71 9.74 9.76 9.78 9.80 9.82 9.84 9.85 .25    1   61.2 61.7 62.0 62.3 62.5 62.7 62.8 63.0 63.1 63.2 63.3 63.3 .10   2   246 248 249 250 251 252 252 253 253 254 254 254 .05               3                                                                     4   3.41 3.43 3.43 3.44 3.45 3.45 3.46 3.47 3.47 3.48 3.48 3.48 .25   5   9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.48 9.49 9.49 9.49 .10   6   19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 .05   7  99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 .01    8                                                                     9  2.46 2.46 2.46 2.47 2.-1-7 2.47 2.47 2.47 2.47 2.47 2.47 2.47 .25  5.20 5.18 5.18 5.17 5.16 5.15 5.15 5.14 5.14 5.14 5.14 5.13 .10  8.70 8.66 8.M 8.62 8.59 8.58 8.57 8.55 8.55 8.54 8.53 8.53 .05  26.9 26.7 26.6 26.5 26.4 26.4 26.3 26.2 26.2 26.2 26.1 26.1 .01    2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 2.08 .25    3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.78 3.77 3.76 3.76 .10    5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.66 5.65 5.64 5.63 .05  14.2 14.0 13.9 13.8 13.7 13.7 13.7 13.6 13.6 13.5 13.5 13.5 .01    1.89 1.88 1.88 1.88 1.88 1.88 1.87 1.87 1.87 1.87 1.87 1.87 .25  3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.13 3.12 3.12 3.11 3.10 .10  4.62 4.56 4.53 4.50 4.46 4.44 4.43 4.41 4.40 4.39 4.37 4.36 .05  9.72 9.55 9.47 9.38 9.29 9.24 9.20 9.13 9.11 9.08 9.04 9.02 .01    1.76 1.76 1.75 1.75 1.75 1.75 1.74 1.74 1.74- 1.74 l.74 1.74 .25    2.87 2.84 2.82 2.80 2.78 2.77 2.76 2.75 2.74 2.73 2.73 2.72 .10    3.94 3.87 3.84 3.81 3.77 3.75 3.74- 3.71 3.70 3.69 3.68 3.67 .05  7.56 7.40 7.31 7.23 7.14 7.09 7.06 6.99 6.97 6.93 6.90 6.88 .01    1.68 1.67 1.67 1.66 1.66 1.66 1.65 1.65 1.65 1.65 1.65 1.65 .25  2.63 2.59 2.58 2.56 2.54 2.52 2.51 2.50 2.49 2.48 2.48 2.47 .10  3.51 3.44 3.41 3.38 3.34 3.32 3.30 3.27 3.27 3.25 3.24 3.23 .05  6.31 6.16 6.07 5.99 5.91 5.86 5.82 5.75 5.74 5.70 5.67 5.65 .01    1.62 1.61 1.60 1.60 l.59 1.59 1.59 1.58 1.58 1.58 1.58 1.58 .25    2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.32 2.31 2.30 2.29 .10    3.:p. 3.15 3.12 3.08 3.04 3.02 3.01 2.97 2.97 2.95 2.94 2.93 .05    5.52 5.36 5.28 5.20 5.12 5.07 5.03 4.96 4.95 4.91 4.88 4.86 .01    1.57 1.56 1.56 1.55 1.55 1.54 1.54 1.53 1.53 1.53 1.53 1.53 .25    2.34 2.30 2.28 2.25 2.23 2.22 2.21 2.19 218 2.17 2.17 2.16 .10  3.01 2.94 2.90 2.86 2.83 2.80 2.79 2.76 2.75 2.73 2.72 2.71 .05  4.96 4.81 4.73 4.65 4.57 4.52 4.48 4.42 4.40 4.36 4.33 4.31 .01                                                (continued)
462 STATISTICAL TABLES    Table T.4 (Continued)    dffor    Denom-                  df for Numerator Nt   inator    N2 Pr 1 2 3 4 5 6 7 8 9 10 11 12               .25 1.49 1.60 1.60 1.59 1.59 1.58 1.57 1.56 1.56 1.55 1.55, 1.54    10 .10 3.29 2.92 2.73 2.61 252 2.46 2.41 2.38 2.35 2.32 2.30 2.28               .05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91             .01 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71               .25 1.47 1.58 1.58 1.57 1.56 1.55 1.54 1.53 1.53 1.52 1.52 1.51   11 .10 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23 2.21               .05 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79             .01 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40             .25 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.50 1.49   12 .10 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17 2.15               .05 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69             .01 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16              .25 1.45 1.55 1.55 1.53 1.52 1.51 1.50 1.49 1.49 1.48 1.47 1.47     13 .10 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12 2.10               .05 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60             .01 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96             .25 1.44 1.53 1.53 1.52 1.51 1.50 1.49 1.48 1.47 1.46 1.46 1.45     14 .10 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.08 2.05            .05 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53            .01 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.815 3.80          .....25 1.43 1.52 1.52 1.51 1.49 1.48 1.47 1.46 1.46 1.45 1.44 1 '-1.     15 .10 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04 2.02             .05 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48              .01 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67              .25 1.42 1.51 1.51 1.50 1.48 1.47 1.46 1.45 1.44 1.44 1.44 1.43    16 .10 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01 1.99              .05 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42            .01 853 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55              .25 1.42 1.51 1.50 1.49 l.47 1.46 1.45 1.44 1.43 1.43 1.42 1.41  17 .10 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98 1.96              .05 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.4,) 2.41 2.38            .01 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46              .25 1.41 1.50 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.42 1.41 1.40  18 .10 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.96 1.93              .05 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34            .01 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37             .25 1.41 1.49 1.49 1.47 1.46 1.44 1.43 1.42 1.41 1.41 1.40 1.40  19 .10 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.94 1.91             .05 438 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31            .01 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30             .25 1.40 1.49 1.48 1.46 1.45 1.44 1.43 1.42 1.41 1.40 1.39 1.39    20 .10 2.97 2.59 2.38 2.25 216 2.09 2.04 2.00 1.96 1.94 1.92 1.89             .05 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28           .01 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23
STATISTICAL TABLES 463    Table T.4 (Continued)                                                                       dffor                           df for Numerator NJ                         Denom-                                                                      inator    IS 20 24 30 40 50 60 100 120 200 SOO CD Pr Nl     1.53 1.52 1.52 1.51 1.51 1.S0 1.50 1.49 1.49 1.49 1.48 1..+8 .25   10   2.24 2.20 2.18 2.16 2.13 2.12 2.11 2.09 2.08 2.07 2.06 2.06 .10    11   2.85 2.77 2.74 2.70 2.66 2.64 2.62 2.59 2.58 2.56 2.55 2.54 .05    12   4.56 4.41 4.33 4.25 4.17 4.12 4.08 4.01 4.00 3.96 3.93 3.91 .01    13                                                                     14   1.50 1.49 1.49 1048 1.47 1.47 1.47 1.46 1.46 1.46 1.45 1.45 .25   15  2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 2.00 1.99 1.98 1.97 .10    16   2.72 2.65 2.61 2.57 2.53 2.51 2.49 2.46 2.45 2.43 2.42 2.40 .05   17   4.25 4.10 4.02 3.94 3.86 3.81 3.78 3.71 3.69 3.66 3.62 3.60 .01   18                                                                     19   1.48 1.47 1.46 1.45 1.45 1.44 1.44 1.43 1.43 1.43 1.42 1.42 .25   20  2.10 2.06 2.04 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.90.10  2.62 2.54 2.51 2.47 2..+3 2.40 2.38 2.35 2.34 2.32 2.31 2.30 .05  4.01 3.86 3.78 3.70 3.62 3.57 3.54 3..+7 3.45 3.41 3.38 3.36 .01     1.46 1.45 1.44 1.43 1.42 1.42 IA2 1..+1 1.41 lAO 1.40 lAO .25  2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.88 1.86 1.85 1.85 .10  2.53 2.46 2.42 2.38 2.34 2.31 2.30 2.26 2.25 2.23 2.22 2.21 .05  3.82 3.66 3.59 3.51 3.43 3.38 3.3-l 3.27 3.25 3.22 3.19 3.17 .01     1.44 1.43 1.42 1.41 1.41 1.40 1.40 1.39 1.39 1.39 1.38 1.38 .25  2.01 1.96 1.94 1.91 1.89 1.37 1.86 1.83 1.83 1.82 1.80 1.80 .10  2.46 2.39 2.35 2.31 2.27 2.24 2.22 2.19 2.18 2.16 2.14 2.13 .05  3.66 3.51 3.43 3.35 3.27 3.22 3.18 3.11 3.09 3.06 3.03 3.00 .01    1.43 1.41 1.41 lAO 1.39 1.39 1.38 1.38 1.37 1.37 1.36 1.36 .25  1.97 1.92 1.90 1.87 1.85 1.83 1.82 1.79 1.79 1.77 1.76 1.76 .10  2.40 2.33 2.29 2.25 2.20 2.18 2.16 2.12 2.11 2.10 2.08 2.07 .05  3.52 3.37 3.29 3.21 3.13 3.08 3.05 2.98 2.96 2.92 2.89 2.87 .01    1.41 1.40 1.39 1.38 1.37 1.37 1.36 1.36 1.35 1.35 1.3-l 1.34 .25  1.94 1.89 1.87 1.84 1.81 1.79 1.78 1.76 1.75 1.74 1.73 1.72.10  2.35 2.28 2.24 2.19 2.15 2.12 2.11 2.07 2.06 2.04 2.02 2.01 .05  3.41 3.26 3.18 3.10 3.02 2.97 2.93 2.86 2.84 2.81 2.78 2.75 .01    1.40 1.39 1.38 1.37 1.36 1.35 1.35 1.34 1.34 1.34 1.33 1.33 .25  1.91 1.86 1.84 1.81 1.78 1.76 1.75 1.73 1.72 1.71 1.69 1.69 .10  2.31 2.23 2.19 2.15 2.10 2.08 2.06 2.02 2.01 1.99 1.97 1.96 .05  3.31 3.16 3.08 3.00 2.92 2.87 2.83 2.76 2.75 2.71 2.68 2.65 .01    1.39 1.38 1.37 1.36 1.35 1.34 1.34 1.33 1.33 1.32 1.32 1.32 .25  1.89 1.84 1.81 1.78 1.75 1.7-l 1.72 1.70 1.69 1.68 1.67 1.66 .10  2.27 2.19 2.15 2.11 2.06 2.04- 2.0~ 1.98 1.97 1.95 1.93 1.92 .05  3.23 3.08 3.00 2.92 2.84 2.78 2.75 2.68 2.66 262 2.59 2.57 .01    1.38 1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.32 1.31 1.31 1.30 .25  1.86 1.81 1.79 1.76 1.73 1.71 1.70 1.67 1.67 1.65 1.64 1.63 .10  2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.94 1.93 1.91 1.89 1.88 .05  3.15 3.00 2.92 2.84 2.76 2.71 2.67 2.60 2.58 2.55 2.51 2.49 .01    1.37 1.36 1.35 1.34 1.33 1.33 1.32 1.31 1.31 1.30 1.30 1.29 .~5  1.84 1.79 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 .10  2.20 2.12 2.08 2.04 1.99 1.97 1.95 1.91 1.90 1.88 1.86 1.84 .05  3.09 2.94 2.86 2.78 2.69 2.64 2.61 2.54 2.52 2.48 2.44 2.42 .01                                                (continued)
484 STATISTICAL TABLES    Table T.4 (Continued)    dlfor    Denom-                  df for Numerator Nl   mator    Nl Pr 1 2 3 4 S 6 7 8 9 10 11 12              .25 1.40 1.48 1.47 1.45 1.44 1.42 1.41 1.40 1.39 1.39 1.38 1.37     22 .10 2.95 2.56 2.35 2.22 2.13 2.06 2.01 :1.97 1.93 1.90 1.88 1.86              .05 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23            .01 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12              .25 1.39 1.47 1.46 1.44 1.43 1.41 1.40 ·1.39 1.38 1.38 1.37 1.36     24 .10 2.93 2.54 2.33 2.19 2.10 2.04 1.98 '1.94 1.91 1.88 1.85 1.83              .05 4.26 3.40 3.01 2.78 2.62 2.5] 2.42 2.36 2.30 2.25 2.21 2.18            .01 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03             .25 1.38 1.46 1045 1.44 1.42 1.4] 1.39 1.38 1.37 1.37 1.36 1.35   26 .10 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.84 1.81              .05 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15            .01 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96             .25 1.38 1.46 lAS 1.43 1.41 lAO 1.39 1.38 1.37 1.36 1.35 1.34   28 .10 2.89 2.50 2.29 2.16 2.06 2.00 l.94 1.90 1.87 1.84 1.81 l.79             .05 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12           .01 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90             .25 1.38 1.45 1.44 1.42 1.41 1.39 1.38 1.37 1.36 1.35 1.35 1.34     30 .10 2.88 2049 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79 1.77          .05 4.17 3.32 2.92 2.69 2.53 2042 2.33 2.27 2.21 2.16 2.13 2.09             .01 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.e? 2.98 2.91 2.84             .25 1.36 1.44 1.42 1.40 1.39 1.37 1.36 1.35 1.34 1.33 1.32 1.31     40 .10 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.73 1.71             .05 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00           .01 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66            .25 1.35 1.42 1.41 1.38 1.37 1.35 1.33 1.32 1.31 1.30 1.29 1.29   60 .10 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68 1.66             .05 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92           .01 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50             .25 1.34 lAO 1.39 1.37 1.35 1.33 1.31 1.30 1.29 1.28 1.27 1.26    120 .10 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.62 1.60             .05 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.0: 1.96 1.91 1.87 1.83           .01 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34            .25 1.33 1.39 1.38 1.36 1.34 1.32 1.31 1.29 1.28 1.27 1.26 1.25  200 .10 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 1.63 1.60 1.57            .05 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80          .01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27            .25 1.32 1.39 1.37 1.35 1.33 1.31 1.29 1.28 1.27 1.25 1.24 1.24   QC .10 2.71 2.30 2.08 1.94 1.85 l.77 1.72 1.67 1.63 l.60 1.57 1.55            .05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75          .01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18
STATISTICAL TABLES 465    Table T.4 (Connnrud)                                                                      dfCor                          df for Numerator NI                         Denom-                                                                     inator    15 20 24 30 40 SO 60 100 120 200 500 co Pr Hz     136 1.34 1.33 1.32 1.31 1.31 1.30 1.30 1.30 1.29 1.29 1.28 .25    22   1.81 1.76 1.73 1.70 1.67 1.65 1.64 1.61 1.60 1.59 1.58 1.51 .10   24   2.15 2.07 2.03 1.98 1.94 1.91 1.89 1.85 1.84 1.82 1.80 1.78 .05   26                                                                     28   2.98 2.83 2.75 2.67 2.58 2.53 2.50 2.42 2AO 2.36 2.33 2.31 .01    30                                                                     40   1.35 1.33 1.32 1.31 1.30 1.29 1.29 1.28 1.28 1.27 1.21 1.26 .25   60   1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.58 1.51 1.56 1.54 1.53 .10  120   2.11 2.03 1.98 1.94 1.89 1.86 1.84 1.80 1.79 1.71 1.75 1.73 .05  200   2.89 2.74 2.66 2.58 2.49 2.44 2.40 2.33 2.31 2.27 2.24 2.21 .01                                                                     co   1.34 1.32 1.31 1.30 1.29 1.28 1.28 1.26 1.26 1.26 1.25 1.25 .25   1.76 1.11 1.68 1.65 1.61 1.59 1.58 1.55 1.54 1.53 1.51 1.50 .10   2.07 1.99 1.95 1.90 1.85 1.82 1.80 1.76 1.75 1.13 1.11 1.69 .05   2.81 2.66 2.58 2.50 2.42 2.36 2.33 2.25 2.23 2.19 2.16 2.13 .01     1.33 1.31 1.30 1.29 1.28 1.27 1.27 1.26 1.25 1.25 124 1.24 .25   1.14 1.69 1.66 1.63 1.59 1.57 1.56 1.53 1.52 1.50 1.49 1.48 .10  2.04 1.96 1.91 1.87 1.82 1.19 1.77 1.13 1.71 1.69 1.67 1.65 .05  2.15 2.60 2.52 2.44 2.35 2.30 2.26 2.19 2.17 2.13 2.09 2.06 .01     1.32 1.30 1.29 1.28 1.27 1.26 1.26 1.25 1.24 1.14 1.23 1.23 .25    1.72 1.67 1.64 1.61 1.57 1.55 1.54 1.51 1.50 1A8 1.41 1.46 .10    2.01 1.93 1.89 1.84 1.19 1.16 1.74 1.70 1.68 1.66 1.64 1.62 .05    2.70 2.55 2.47 2.39 2.30 2.25 2.21 2.13 2.11 2.07 2.03 2.01 .01    1.30 1.28 1.26 1.25 1.24 1.23 1.22 1.21 1.21 1.20 1.19 1.19 .25  1.66 1.61 1.51 1.54 1.51 1.48 1.41 1.43 1.42 1.41 1.39 1.38 .10  1.92 1.84 1.79 1.14 1.69 1.66 1.64 1.59 1.58 1.55 1.53 1.51 .05  2.52 2.37 2.29 2.20 2.11 2.06 2.02 1.94 1.92 1.81 1.83 1.80 .01    1.27 1.25 1.24 1.22 1.21 1.20 1.19 1.17 1.17 1.16 1.15 1.15 .25  1.60 1.54 1.51 1.48 1.~ 1.41 1.40 1.36 1.35 1.33 1.31 1.29 .10  1.84 1.75 1.70 1.65 1.59 1.56 1.53 1048 IA7 1.44- 1041 1.39 .05  2.35 2.20 2.12 2.03 1.94 1.88 1.84 1.75 1.73 1.68 1.63 1.60 .01    1.24 1.22 1.21 1.19 1.18 1.11 1.16 1.14 1.13 1.12 1.11 1.10 .25  1.55 1.48 1.45 1.41 1.37 1.34 1.32 1.21 1.26 1.24 1.21 1.19 .10  1.15 1.66 1.61 1.55 1.50 1.46 1.43 1.37 1.35 1.32 1.28 1.25 .05  2.19 2.03 1.95 1.86 1.76 1.10 1.66 1.56 1.53 1,48 1.42 1.38 .01    1.23 1.21 1.20 1.18 1.16 1.14 1.12 1.11 1.10 1.09 1.08 1.06 .25  1.52 1.46 1.42 1.38 1.34 1.31 1.28 1.24 1.22 1.20 1.17 l.14 .10  1.72 1.62 1.51 1.52 1.46 1.41 1.39 1.32 1.29 1.26 1.22 1.19 .05  2.13 1.91 1.89 1.79 1.69 1.63 1.58 1.48 1.44- 1.39 1.33 1.28 .01    1.22 1.19 1.18 1.16 1.14 1.13 1.12 1.09 1.08 1.07 1.04 1.00.25  1.49 1.42 1.38 1.34 1.30 1.26 1.24 1.18 1.11 1.13 1.08 1.00 .10  1.67 1.57 1.52 1.46 1.39 1.35 1.32 1.24 1.22 1.17 1.11 1.00 .05  2.04 1.88 1.79 1.70 1.59 1.52 1.47 1.36 1.32 1.25 1.15 1.00 .01
Table T.5 Percent Points of the Normal Probability Plot Correlation Coefficient    Level    II .000 .005 .01 .025 .05 .10 .25 .50 .75 .90 .95 .975 .99 .995         3 .866 .867 .869 .872 .879 .891 .924 .966 .991 .999  1.000   1.000   1.000  1.000      4 .784 .813 .822 .845 .868 .894 .931 .958 .979 .992     .996    .998   .999  1.000      5 .726 .803 .822 .855 .879 .902 .935 .960 .977 .988     .992    .995   .997   .998   \"\"6 .683 .818 .835 .868 .890 .911 .940 .962 .977 .986     .990     .993   .996   .997      7 .648 .828 .847 .876 .899 .916 .944 .965 .978 .986     .990    .992   .995   .996      8 .619 .841 .859 .886 .905 .924 .948 .967 .979 .986    .990     .992   .995   .996      9 .595 .851 .868 .893 .912 .929 .951 .968 .980 .987    .990     .992   .994   .995     10 .574 .860 .876 .900 .917 .934 .954 .970 .981 .987    .990    .992    .994   .995     11 .556 .868 .883 .906 .922 .938 .957 .972 .982 .988    .990    .992    .994   .995     12 .539 .875 .889 .912 .926 .941 .959 .973 .982 .988    .990    .992    .994   .995     13 .525 .882 .895 .917 .931 .944 .962 .975 .983 .988    .991    .993    .994   .995     14 .512 .888 .901 .921 .934 .947 .964 .976 .984 .989    .991    .993    .994   .995     15 .500 .894 .907 .925 .937 .950 .965 .917 .984 .989    .991    .993    .994   .995     16 .489 .899 .912 .928 .940 .952 .967 .978 .985 .989    .991    .993    .994   .995     17 .478 .903 .9]6 .931 .942 .954 .968 .979 .986 .990    .992    .993    .994   .995     18 .469 .907 .919 .934 .945 .956 .969 .979 .986 .990    .992    .993    .995   .995     19 .460 .909 .923 .937 .947 .958 .971 .980 .987 .990    .992    .993    .995   .995    20 .452 .912 .925 .939 .950 .960 .972 .98] .987 .991     .992    .994    .995   .995    21 .445 .914 .928 .942 .952 .961 .973 .981 .987 .991     .993    .994    .995   .996    22 .437 .918 .930 .944 .954 .962 .974 .982 .988 .991     .993    .994    .995   .996    23 .431 .922 .933 .947 .955 .964 .975 .983 .988 .991     .993    .994    .995   .996    24 .424 .926 .936 .949 .957 .965 .975 .983 .988 .992     .993    .994    .995   .996    25 .418 .928 .937 .950 .958 .966 .976 .984 .989 .992     .993    .994    .995   .996    26 .412 .930 .939 .952 .959 .967 .977 .984 .989 .992     .993    .994    .995   .996    27 .407 .932 .941 .953 .960 .968 .977 .984 .989 .992     .994    .995    .995   .996    28 .402 .934 .943 .955 .962 .969 .978 .985 .990 .992     .994    .995    .995   .996    29 .397 .937 .945 .956 .962 .969 .979 .985 .990 .992     .994    .995    .995   .996    30 .392 .938 .947 .957 .964 .970 .979 .986 .990 .993     .994    .995    .996   .996    31 .388 .939 .948 .958 .965 .971 .980 .986 .990 .993     .994    .995   .996   .996    32 .383 .939 .949 .959 .966 .972 .980 .98~ .990 .993     .994    .995   .996   .996    33 .379 .940 .950 .960 .967 .973 .981 .987 .991 .993     .994    .995    .996  .996    34 .375 .941 .951 .960 .967 .973 .981 .987 .991 .993     .994    .995    .996  .996    35 .371 .943 .952 .961 .968 .974 .982 .987 .991 .993     .995    .995   .996   .997    36 .367 .945 .953 .962 .968 .974 .982 .987 .991 .994     .995   .996    .996   .997    37 .364 .947 .955 .962 .969 .975 .982 .988 .991 .994    .995    .996    .996   .997    38 .360 .948 .956 .964 .970 .975 .983 .988 .992 .994    .995    .996    .996   .997    39 .357 .949 .957 .965 .971 .976 .983 .988 .992 .994    .995    .996    .996   .997   40 .354 .949 .958 .966 .972 .977 .983 .988 .992 .994     .995    .996    .996   .997    41 .35] .950 .958 .967 .972 .977 .984 .989 .992 .994    .995    .996    .996   .997                                                            .995    .996    .997   .997   42 .348 .951 .959 .967 .973 .978 .984 .989 .992 .994     .995    .996    .997   .997   43 .345 .953 .959 .967 .973 .97~ .984 .989 .992 .994     .995    .996    .997   .997   44 .342 .954 .960 .968 .973 .978 .984 .989 .992 .994     .995    .996    .997   .997   45 .339 .955 .961 .969 .974 .978 .985 .989 .993 .994     .995    .996    .997   .997   46 .336 .956 .962 .969 .974 .979 .985 .990 .993 .995     .995    .996    .997   .997   47 .334 .956 .963 .970 .974 .979 .985 .990 .993 .995             .996    .997   .997   48 .331 .957 .963 .970 .975 .980 .985 .990 .993 .995     .996    .996    .997   .997   49 .329 .957 .964 .971 .975 .980 .986 .990 .993 .995     .996    .996    .997   .997   50 .326 .959 .965 .972 .917 .981 .986 .990 .993 .995     .996    .997    .997   .997                                                            .996    .997    .997   .998   55 .315 .962 .967 .974 .97g .982 .987 .991 .994 .995     .996    .997    .997   .998   60 .305 .965 .970 .976 .980 .983 .988 .991 .994 .995     .996    .997    .998   .998   65 .296 .967 .972 .977 .981 .984 .989 .992 .994 .996             .997    .998   .998                                                            .997    .997    .998   .998   70 .288 .969 .974 .978 .982 .985 .989 .993 .995 .996     .997    .997    .998   .998   75 .281 .971 .975 .979 .983 .986 .990 .993 .995 .996     .997    .998    .998   .998                                                            .997    .998    .998   .998   80 .274 .973 .976 .980 .984- .987 .991 .993 .995 .996    .997    .998    .998   .998                                                            .997   85 .268 .974 .917 .981 .985 .987 .991 .994 .995 .997     .998   90 .263 .976 .978 .982 .985 .988 .991 .994 .996 .997   95 .257 .917 .979 .983 .986 .989 .992 .994 .996 .997  100 .252 .979 .981 .984 .987 .989 .992 .994 .996 .997    Sourr~: J. J. Filliben (1975). '\"TIle Probability Plot Correlation Coefficient Test for NonnaJity.\" T~chnommics. 17 (1),113.
STATISTICAL TABLES 467    TabU! 7:6 Simulation Percentiles of b2    Sample                                      Percentiles    Size 1            2 2.5 5 10 20 80 90 95 97.5 98 99     7 1.25 1.30 1.34 1041 1.53 1.-,,fv. 2.78 3.20 3.55 3.85 3.93 4.23   8 1.31 1.37 lAO 1.46 1.58 1.75 2.84 3.31 3.70 4.09 -1-.20 4.53   9 1.35 1.42 1.-1-5 1.53 1.63 1.80 2.98 3,43 3.86 4.28 4041 4.82  10 1.39 lA5 1.49 1.56 1.68 1.85 3.01 3.53 3.95 4.40 4.55 5.00  12 1.46 1.52 1.56 1.64 1.76 1.93 3.06 3.55 4.05 4.56 4.73 5.:0    15 1.55 1.61 1.64 1.72 1.84 2.01 3.13 3.62 4.13 4.66 4.85 5.30  20 1.65 1.71 1.74 1.82 1.95 2.13 3.21 3.68 4.17 4.68 4.87 5.36  25 1.72 1.79 1.83 1.91 2.03 2.20 3.23 3.68 4.16 4.65 4.82 5.30  30 1.79 1.86 1.90 1.98 2.10 2.26 3.25 3.68 4.11 4.59 4.75 5.21  35 1.84 1.91 1.95 2.03 2.14 2.31 3.27 3.68 4.10 4.53 4.68 5.13    40 1.89 i.96 1.98 2.07 2.19 2.34 3.28 3.67 4.06 4.46 4.61 5.04  45 1.93 .00 2.03 2.11 2.22 2.37 3.28 3.65 4.00 4.39 4.52 4.94  50 1.95 :L03 2.06 2.15 2.25 2,41 3.28 3.62 3.99 4.33 4.45 4.88    Source: R. B. D'Agostino and G. L. Tietjen (1971). \"Simulation Probability Points of b,. for SmaIl  Samples,\" Biometrika. 58 (3), 670.    Table 7:7 Simulation Probability Points of v bl                                     Two-sided Test     n 0.20 0.10 0.05 0.02 0.01 0.002     5 0.819 1.058 1.212 1.342 1.396 1,466    6 0.805 1.034 1.238 1.415 1,498 1.642   7 0.787 1.008 1.215 lA-31 1.576 1.800   8 0.760 0.991 1.202 1,455 1.601 1.873   9 0.752 0.977 1.189 1.408 1.577 1.866  10 0.722 0.950 1.157 1.397 1.565 1.887  11 0.715 0.929 1.129 1.376 1.540 1.924    13 0.688 0.902 1.099 1.312 1,441 1.783  15 0.648 0.862 1.048 1.275 1.462 1.778  17 0.629 0.820 1.009 1.188 1.358 1.705  20 0.593 0.777 0.951 1.152 1.303 1.614  23 0.562 0.743 0.900 l.l19 1.276 1.555  25 0.543 0.714 0.876 1.073 1.218 1.468  30 0.510 0.664 0.804 0.985 1.114 1,410  35 0.474 0.624 0.762 0.932 1.043 1.332    Source: R. B. D'Agostino and G. L. Tietjen (1973). \"Approaches to the    Null Distribution of ../br.... Biometrika. 60 (1), p. 172.
References    Affifi. A. A. and V. Clark (1984). Computer-Aided Multivariate A.nalysis. Lifetime Le::uning       Publications. Belmont. CA.    Agresti. A_ (1984)_ Analysis of Ordinal Categorical Data. Wiley. New York_  Agresti, A. (1990)_ Categorical Data Analysis. Wiley. New York_    Allen. S. 1. and R Hubbard (1986)_ \"Regression Equations of the Latent Roots of Random        Data Correlation Matrices with Unities on the Diagonal,\" Jlulth'ariate Behavioral Research.      vol. 21, 393-398.  Anderson. T. W. (1984). An introduction to .'vfuITivariate Statistical Analysis. 2nd ed. Wiley.      New York.  Andrews. F. M., L. Klem. T. N. Davidson. P. M. O·~l3.11ey. and W. L. Rodgers (1981). A. Guide      for Selecting Statistical Techniques for Analy:ing Sodal Science Data. Institute for Social      Research, Univ. of Michigan Press. Ann Arbor.  Bagozzi. R. P. (1980). \"Perfonnance and Satisfaction in an Industrial Sales Force: An Examina-      tion of Their Antecedents and Simultaneity.\" J ouma' of Jfarketillg. 44 (Spring). 65-77.  Bearden, W.O.. S. Shanna. and J. E. Teel {1982). \"Sample Size Effects on Chi Square and Other      Statistics Used in Evaluating Causal Models.\" Jou.rnal oj.\\1.arketing Research. 19 (~o\\\"ember      1982). 425-430.    Bentler, P. M. (1982). Theory and Implemenratioll oj EQS. A Structural Equalions Program.        BMDP Statistical Sofrware. Inc.. Los Angeles.  BIOMED (990). BMDP Statisrical Software Jlanual. vols. 1 & 2. W. J. Dixon (chief ed.).        University of California Press. Los Angeles.  Bollen, K. A. (1989). Structural EquaTions with Latent \\ ariables. Wiley. New York.  Bone. P. F., S. Sharma. and 1. A. Shimp (1989). \"A Bootstrap Procedure for Evaluating the        Goodness-of-Fit Indices of Structural Equation and Confinnatory Factor Models:' Journal of      l\\-larketing Research (February 1989). 105-111.  Canell, R B. (1966). \"The Meaning and Strategic Use of Factor Analysis,\" in R. B. Cattell (ed.),      Handbook oj.Hultil'ariate Experimental Psychology. Rand McNally. Chicago.  Cliff. N. (1988). \"The Eigenvalue-Greater-than-One Rule and the Reliability of Components.\"      Psychological Bulletin, 103 (2), 27&-279.  Cohen. 1. (1977). Statistical P()wer Analysis for the Behavioral Sciellces. Academic Press.      New York.  Costanza. M. C. and A. A. Affifi (1979). \"Comparison of Stopping Rules in Forward Stepwise      Discriminant Analysis:' Journal ojrhe American Statistical Association. 74. i77-785.  Cox.. D. R. and E. J. Snell (1989). The Analysis of Binary Data. 2nd ed.• Chapman & Hall.      London.  D'Agostino, R. B. and O. L. Tietjen (19'71). \"Simulation Probability Points of~ in Small Sam-      ples,\" Biometrika. 58, 66~72.  O'Agostino. R. B. and G. L. Tietjen (1973). \"Approaches to the Null Distribution of bl,\"     Biometrika. 60. 169--173.  Daniel. C. and F. S. Wood (1980). Fitting Equations to Data. Wiley. New York.  Dillon, W. R. and M. Goldstein (l984). Mulrivariare Ana(~·sis. Wiley. New York.  Efron, B. (1987). \"Bener Bootstrap Confidence Intervals,\" Journal of the American Statistical     Societ}\". 82 (March), 171-185.                                                                                                                                 469
470 REFERENCES      Etgar, M. (1976). \"Channel Domination and Countervailing Power in Distributive Channels,\"       Journal ofMarkenng Research. 13 (August), 254-262.     Everitt, B. S. (1979). \"A Monte Carlo Investigation of the Robustness of Hotelling's One and         Two Sample T2 Tests,\" Journal ofthe American Statistical Association, 74, 48-51.   Filliben, J. J. (1975). \"The Probability Plot COlTelation Coefficient Test for Nonnality,\" Techno-         metrics, 17 (1), 111-117.   Freeman, D. H.. Jr. (1987). Applied Categorical Data Analysis, Dekker, New York.   Gilbert, E. S. (1969). \"The Effect of Unequal Variance-Covariance Matrices on Fisher's Linear         Discriminant Function,\" Biometrics, 25, 505-516.   Glass, G.v. and K. Hopkins (1984). Statistical Methods in Education and Psycholog)\" Prentice-         Hall, Englewood Oiffs, N.J.     Glass, G. V:, P. D. Peckham, and 1. R. Sanders (1972). \"Consequences of Failure to Meet         Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance,\" Review       ofEducational Research. 42. 237-288.   Glick, N. (1978). \"Additive Estimators for Probabilities of Correct Classification,\" Pattern       Recognition, to,211-222.   Gnandesikan, R. (1977). Methods for Statistical Analysis ofMultivariate Observations, Wiley,       New York.   Goldstein, M. and W. R. DilJon (1978). Discrete Discrim;nant Analysis, Wiley, New York.   Green, P. E. (1976). Mathematical Tools for Applied Multivariate Analysis, Academic Press,       New York.   Green, P. E. (1978). Analyzing Multivariate Data. Dryden, Hinsdale, Ill.   Guttman, L. (1953). \"]mage Theory for the Structure of Quantitative Variates,\" Psychometrika,       1~, 277-296.   Haberman, S. J. (1978). Analysis ofQualitative Data, Academic Press, New York.  Hakstian, A. R., J. C. Roed, and J. C. Linn (1979). \"Two Sample T Procedures and the Assump-      tion of Homogeneous Covariance Matrices,\" Psychological Bulletin, 86, 1255-1263.  Harman, H. H. (1976). Modern Factor Analysis. Univ. of Chicago Press, Chicago.  Hartigan, J. (1975). Clustering Algorithms. Wiley, New York.  Hayduk, L. A. (1987). Structural Equation Modeling with USREL, Johns Hopkins Press,      Baltimore.  Holloway, L. N. and O. J. Dunn (1967). \"The Robustness of Hotelling's T2,\" Journal of the      American Statistical Association, 62, 124-136.  Hopkins, J. W. and P. P. F. Clay (1963). \"Some Empirical Distributions of Bivariate T2 and      Homoscedasticity Criterion M under Unequal Variance and Leptokurtosis,\" Journal of the      American Statistical Association. 58, l048-lO53.  Hom, J. L. (1965). \"A Rationale and Test for the Number of Factors in Factor Analysis,\"      Psychometrika, 30, 179-186.  Hosmer. D. W.• Jr., and S. Lemeshow (1989). Applied Logistic Regression. Wiley, New York.  Hube:1y, C. J. (1984). \"Issues in the Use and Interpretation of Discriminant Analysis,\" Psycho-      logical Bulletin, 95 (1), 156-171.  Jackson, J. E. (1991). A User's Guide to Principal Components. Wiley, New York.  Johnson, N. and D. Wichern (1988). Applied Mult;\\'ariate Statistical Analysis. Prentice-Hall,      Englewood Cliffs, NJ.  Joreskog. K. G. and D. Sorbom (1989). Usrel7: A Guide to the Program and Applications, SPSS      Inc.• Chicago.  Kaiser, H. F. (1970). \"A Second Generation Little Jiffy,\" Psychometrikil, 35 (December).      401-415.  Kaiser, H. F. and J. Rice (1974). \"Little Jiffy Mark IV.\" Educational and Psychological Mea-     surement. 34 (Spring), 111-117.  Kenny, D.• and C. Judd (1986). \"Consequences of Violating the Independent Assumption in     Analysis of Variance,\" Ps)'chological Bulletin. 99. 422-431.  Lachenbruch. P. A. (]967). ··An Almost Unbiased Method of Obtaining Confidence Intervals for     the Probability of Misclassification in Discriminant Analysis,\" Biometrics, 23, 63~5.
REFERENCES 471    Lachenbruch. P. A., C. Sneeringer, and L T. Revo (1973). \"RobUSll1ess of the Linear and      Quadratic Discriminant Function to Certain Types of Non-nonnality,\" Communications in      Statistics. 1.39-57.    Long, S. J. (1983). Confirmatory Factor Models, Sage. Beverly Hills. Calif.  Maiti. S. S. and B. N. Mukherjee (1990). \"A Note on Distributional Properties of the Joreskog        and Sorbom Fit Indices.\" Psychomerrika. 55 (December), 721-726.  Mardi~ K. V. (i 971). 'The Effect of Non-normality on Some Multivariate Tests and Robustttess        to Non-normality in the Linear Model,\" Biometrika. 58. 105-121.  Marks, S. and O. J. Dunn (1974). \"Discriminant Functions when Covariance Matrices are        Unequal,\" Journal ofthe American Statistical Association. 69, 555-559.  Marsh, H. W., J. R. Balla, and R. McDonald (1988). \"Goodness-of-Fit Indexes in Confirmatory        Factor Analysis: The Effects of Sample Size,\" Psychological Bul/etin, 103,391-410.  McDonald. R. (1985). Factor Analysis and Related Techniques, Lawrence Erlbaum, Hills-        dale, NJ.  McDonald, R. and H. W. Marsh (1990). \"Choosing a Multivariate Model: Noncentrality and        Goodness of Fit,\" Psychological Bulletin, 105,430--t45.  McDonald, R. and S. A. Mulaik (1979). \"Determinacy of Common Factors: A Nontechnical        Review,\" Psychological Bul/etin, 86, 297-306.  Mcfntyre, R. M. and R. K. Blashfield (1980). \"'A Nearest-Centroid Technique for Evaluating the        MinimumNariance Clustering Procedure,\" Multivariate Behavioral Research. 15,225-238.  McLachlan, G. J. (1974). \"An Asymptotic Unbiased Technique for Estimating the Error Rates        in Discriminant Analysis,\" Biometrics, 30,139-249.  Milligan, G. W. (1980). \"An Examination of the Effect of Six Types of Error PertUrbation of        Fifteen Clustering Algorithms,\" Ps!,chomerrika, 45. 325-342  Milligan, G. W. (1981). \"A Montecarlo Study of Thiny Internal Criterion Measures for Cluster        Analysis,\" Psychometrika, 46, 325-3·1~.  Milligan, G. W. (1985).••An Examination of Procedures for Determining the Number of Clusters        in a Data Set,\" Psychometrika, 50, 159-179.  Olson, C. L. (1974). \"Comparative Robustness of Six Tests in Multivariate Analysis of        Variance,\" Journal of the American Statistical Association. 69 (348), 89~907.  Punj, G. and D. W. Stewart (1983). \"Cluster Analysis in Marketing Research: Review and        Suggestions for Application:' Journal olMarketing Research. 20 (May). 134-148.  Rummel, R. J. (1970). Applied Factor Analysis. Nonhwestern Univ. Press, Evanston, Ill.  SAS Institute Inc. (1993). S.4.SISTAT User's Guide. Vol. I, version 6.  Scariano. S. and J. Davenpon (1986). \"The Effec[S of Violations of the Independence Assump-        tion in the One Way ANOVA,\" The American Statistician, 41, 123-129.  Segal. S. (1967). Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill.        New York.  Sharma, S., S. Durvasula, and W. R. Dillon (1989). \"Some Results on the Behavior of Alternate        Covariance Structure Estimation Procedures in the Presence of Non-Normal Data,\" Journal      ofMarketing Research, 26, 214-221.  Shimp, T. A. and A. Kavas (1984). 'The Theory of Reasoned Action Applied to Coupon Usage,\"     Journal ofConsumer Research. 11 (December), 795-809.  Shimp, T. A. and S. Sharma (1987). \"Consumer Ethnocentrism: Construction and Validation of      the CETSCALE,\" Journal of Marketing Research. 24 (August), 280-289.  Sneath, P. and R. Sokal (1973). Numerical Ta:conomy. Freeman, San Francisco.  Sobel, M. F. and G. W. Bohmstedt (1985). \"Use of Null Models in Evaluating the Fit of     Covariance Structure Models,\" in N. B. Tuma (ed.), Sociological Methodology, 152-178.      Jossey-Bass, San Francisco.  SOLO Power Analysis (1992). Version 1.0, BMDP Statistical Software Inc., Los Angeles.  Sparks, D. L. and W. T. Tucker (1971). \"A Multivariate Analysis of Personality and Product     Use,\" Journal ofMarketing Research, 8 (February), 67-70.  Spearman, C. (1904)....A General Intelligence Objectivity' Objectively Detennined and      Measured,\" American Journal ofPsychology. 15,201-293.
4:'72 REFERENCES    Stevens, S. S. (1946). \"On the Theory of Scales of Measurement,\" Science. 103,677-680.    Stewart, D. K. and W. A. Love (1968). \"A General Canonical Correlation Index,\" Psychological        Bulletin. 70, 160-163.  Stewart, D. W. (1981). \"The Application and Misapplication of Factor Analysis in Marketing        Research,\" Journal ofMarketing Research, 18 (February), 51-62.    Toussant, G. T. (1974). ''Bibliography on Estimation of Misclassification,\" IEEE Transactions        on Information Theory, IT-20 (July). 472-479.  Tukey, J. W. (1977). Exploratory Data Analysis, Addison-Wesley, Reading, Mass.  Urban, G. and J. A. Hauser (1993). Design and Marketing ofNew ProducTs, Prentice-Hall, N.J.  Velleman, P. F. and L. Wilkinson (I993). \"Nominal, Ordinal. Interval, and Ratio Typologies Are        Misleading,\" The American Statistician, 47 (1),65-72.  Werts, C. E., R. L Linn, and K. G. Joreskog (1974). Ulntraclass Reliability Estimates: Testing        Structural Assumptions,\" Educational and Psychological Measurement, 34. 25-33.  Wilk. H. B.. S. S. Shapiro, and H. J. Chen (1968). \"A Comparative Study of Various Tests of       Normality,\" Journal ofthe American Statistical Association. 63, 1343-1372.  Wmer, B. J. (1982). Statistical Principles in Experimental Design. 2nd ed., McGraw-Hill,        New York.  Zwick. W. R. and W. F. Velicer (1986). \"Comparison of Five Rules for Determining the Number       of Components to Retain;' Psychological Bulletin. 99 (3), 432-442.
Tables, Figures, and Exhibits    CHAPTER 1                                                     9    Tables  1.1 Dependence Statistical Methods 6  1.2 Independent Variables Measured Using Nominal Scale 7  1.3 Attributes and Their Levels for Checking Account Example  1.4 Interdependence Statistical Methods 1I  1.5 Contingency Table 12    Figures                                       13  1.1 Causal model 13  1.2 Causal model for unobservable constructs    CHAPTER 2    Figures  2.1 Points represented relative to a reference point 18  2.2 Change in origin and axes 18  2.3 Euclidean distance between two points 19  2.4 Vectors 20    2.5 Relocation or translation of vectors :!O    2.6 Scalar multiplication of a vector 21  2.7 Vector addition 21  2.8 Vector subtraction  2.9 Vector projections 22  2.10 Vectors in a Cartesian coordinate system 23  2.11 Trigonometric functions 24  2.12 Length and direction cosines 24  2.13 Standard hasis vectors 25  2.14 Linear combinations 26  2.15 Distance and angle between any two vectors 27  2.16 Geometry of vector projections and scalar products 28  2.17 Projection of a vector onto a subspace 29  2.18 Illustrative example 29  2.19 Change in basis 31  2.20 Representing points with respect to new axes 32                                                                     473
474 TABLES, FIGURES, AND EXHIBITS    CHAPTER 3                                   40    Tables  3.1 Hypothetical Financial Data 37  3.2 Contingency Table 37  3.3 Hypothetical Financial Data for Groups  3.4 Transposed Mean-Corrected Data 48    Figures                                                   44  3.1 Distribution for random variable 43  3.2 Hypothetical scatterplot of a bivariate distribution  3.3· Plot of data and points as vectors 45  3.4 Mean-corrected data 46  3.5 Plot of standardized data 47  3.6 Plot of data in observation space 49  3.7 Generalized variance 50    CHAPTER 4    Tables  4.1 Original, Mean-Corrected. and Standardized Data 59    4.2 Mean-Corrected Data and New Variable (xi) for a Rotation of 10Q  4.3 Variance Accounted for by the New Variable xi for Various New             Axes 61    4.4 Mean-Corrected Data, and xi and xi for the New Axes Making             an Angle of 43.261 0 62  4.5 SAS Statements 67  4.6 Standardized Principal Components Scores 70  4.7 Food Price Data 71  4.8 Regression Coefficients for the Principal Components 78  A4.1 PROC IML Commands 88    Figures                                                             60                                                                       65  4.1 Plot of mean-corrected data and projection of points onto Xi  4.2 Percent of total variance accounted for by Xi 62    4.3 Plot of mean-corrected data and new axes 63  4.4 Representation of observations in lower-dimensional subspace  4.5 Scree plots 77  4.6 Plot of principal components scores 80    Exhibits                                                  69  4.1 Principal components analysis for data in Table 4.1   73  4.2 Principal components analysis for data in Table 4.7   74  4.3 Principal components analysis on standardized data  A4.1 PROC IML output 89    CHAPTER 5    Tables  5.1 Communalities. Pattern and Structure Loadings. and Correlation             Matrix for One-Factor Model 93
TABLES. FIGURES, A..\"'ID EXIDBITS 475    5.2   Communalities. Pattern and Structure Loadings. and Correlation        Matrix for Two-Factor Model 95  5.3   Communalities. Pattern and Structure Loadings, Shared Variances.        and Correlation Matrix for Alternative Two-Factor Model 98  5.4   Summary of Principal Components Factor Analysis for the        Correlation Matrix of Table 5.2 105  5.5   Reproduced and Residual Correlation Matrices for PCF 106  5.6   Iteration History for Principal Axis Factor Analysis 108  5.7   SAS Commands 109  5.8   List of Attributes 123  5.9   Correlation Matrix for Detergent Study 124  5.10  SPSS Commands 125  A5.1  Varimax Rotation of 3500 139  A5.2  Variance of Loadings for Varimax Rotation 139  A5.3  Varimax Rotation of 320.057° 140    Figures  5.1 Relationship between grades and intelligence 91  5.2 Two-factor model 94  5.3 Two-indicator two-factor model 99  5.4 Indeterminacy due to to estimates of communalities 100  5.5 Projection of vectors onto a two-dimensional factor space 10 1  5.6 Rotation of factor solution 101  5.7 Factor solution 102  5.8 Scree plot and plot of eigenvalues from parallel analysis 104  5.9 Confirmatory factor model for excellence 129  A5.1 Oblique factor model 140  A5.2 Pattern and structure loadings 141    Exhibits                                                                110  5.1 Principal components analysis for the correlation matrix of             Table 5.2 103  5.2 Principal axis factoring for the correlation matrix of Table 5.2  5.3 Quartimax rotation 121  5.4 SPSS output for detergent study 126    CHAPTER 6    Tabl,es  6.1 Symbols Used by LISREL To Represent Parameter Matrices 149  6.2 Correlation Matrix 149  6.3 LISREL Commands for the One-Factor Model 150  6.4 LISREL Commands for the Null Model 161  6.5 Computations for NCP, MDN. TU, and RNI for the One-Factor             Model 161  6.6 LISREL Commands for the Two-Factor Model 166  6.7 Computations for NCP, MDN, TU, and RNI for the Correlated             Two-Factor Model 170  6.8 SPSS Commands for Multigroup Analysis 172  6.9 Results of Multigroup Analysis: Testing Factor Structure for Males             and Females 173
476 TABLES, FIGURES, AND EXHIBITS    6.10  Items or Statements for the 100item CET Scale 174         182  Q6.1  Hypothetical Correlation Matrix 178  A6.1  Value of the Likelihood Function for Various Values of p  A6.2  Maximum Likelihood Estimate for the Mean of a Normal        Distribution 183    Figures                                                               158  6.1 One-factor model 145                                                184  6.2 Two-factor model with correlated constructs 147  6.3 EGFI as a function of the number of indicators and sample size  6.4 Two-factor model 165  Q6.1 Model 178  Q6.2 Models 179  A6.1 Maximum likelihood estimation procedure 182  A6.2 Maximum likelihood estimation for mean of a nonnal distribution    Exhibits  6.1 LISREL output for the one-factor model 153  6.2 LISREL output (partial) for the two-factor model 167  6.3 Two-factor model with correlated constructs 168  6.4 LISREL output for the 10-item CETSCALE 175    CHAPTER 7    Tables  7.1 Hypothetical Data 186  7.2 Similarity Matrix Containing Euclidean Distances 188  7.3 Centroid Method: Five Clusters 189  7.4 Centroid Method: Four Clusters 189  7.5 Centroid Method: Three Clusters 190  7.6 Ward's Method 194  7.7 SAS Commands 194  7.8 Within-Group Sum of Squares and Degrees of Freedom for              Clusters Formed in Steps 1, 2, 3, 4, and 5 199  7.9 Summary of the Statistics for Evaluating Cluster Solution 201  7.10 Initial Cluster Centroids, Distance from Cluster Centroids, and             Initial Assignment of Observations 204  7.11 Centroid of the Three Clusters and Change in Cluster Centroids 204  7.12 Distance from Centroids and First Reassignment of Observations             to Clusters 204  7.13 Initial Assignment, Cluster Centroids, and Reassignment 206  7.14 Initial Assignment 206  7.15 Change in ESS Due to Reassignment 207  7.16 SAS Commands for Nonhierarchical Clustering 207  7.17 Observations Selected as Seeds for Various Combinations of Radius             and Replace Options 208  7.18 RS and RMSSm for 2-, 3-, 4-, and 5-Cluster Solutions 210  7.19 Food Nurrient Dara 222  7.20 Cluster Membership for the Four-Cluster Solution 227  7.21 Cluster Centers for Hierarchical Clustering of Food Nutrient Data 227
TABLES, FIGURES, AND EXHIBITS 471    7.22 Commands for FASTCLUS Procedure 228  7.23 Correlation M'atrix 232  A7.1 Using a Nonhierarchical Clustering Technique to Refine a             Hierarchical Cluster Solution 235    Figures                                                    201  7.1 Plot of hypothetical data 186                        226  7.2 Dendogram for hypothetical data 190  7.3 Plots of: (a) SPR and RS and (b) RMSSTD and CD  7.4 Hypothetical cluster configurations 217  7.5 City-block distance 218  7.6 Cluster analysis plots. (a) R square. (b) ~\\t1SSTD.    Exhibits  7.1 SAS output for cluster analysis on data in Table 7.1 195  7.2 Nonhierarchical clustering on data in Table 7.1 209  7.3 Empirical comparisons of the perfonnance of clustering             algorithms 212  7.4 Hierarchical cluster analysis for food data 223  7.5 Nonhierarchical analysis for food-nutrient data 229    CHAPTER 8    Tables  8.1 Financial Data for Most-Admired and Least-Admired Finns 238  8.2 Summary Statistics for Various Linear Combinations 240  8.3 Discriminant Score and Classification for Most-Admired and             Least-Admired Firms (Wi = .934 and W2 = .358) 243  8.4 Means. Standard Deviations. and t-values for Most- and             Least-Admired Firms 245  8.5 SPSS Commands for Discriminant Analysis of Data in Table 8.1 246  8.6 Misclassification Costs 257  8.7 Classification Based on Mahalanobis Distance 259  8.8 Discriminant Scores. Classification. and Posterior Probability for             Unequal Priors 262  8.9 Financial Data for Most-Admired and Least-Adrrllred Firms 267  8.10 SPSS Commands for Stepwise Discriminant Analysis 268  8.11 Correlation Matrix for Discriminating Variables 272  8.12 SPSS Commands for Holdout Validation 274  A8.1 Misclassification Costs 279  A8.2 Summary of Classification Rules 281  A8.3 DIustrative Example 285  A8.4 TCM for Various Combinations of Misclassification Costs             and Priors 286    Figures                                     239  8.1 Plot of data in Table 8.1 and new axis  8.2 Distributions of financial ratios 239  8.3 Plot of lambda versus theta 241  8.4 Examples of linear combinations 242
478 TABLES, FIGURES, AND EXHIBITS    8.5   Plot of discriminant scores 244                    280  A8.1  Classification in one-dimensional space 278  AS.2  Classification in two-dimensional space 279  A8.3  Density functions for one discriminating variable  A8.4  TCM as a function of cutoff value 286    Exhibits                                                                 247  8.1 Discriminant analysis for most-admired and least-admired firms  8.2 Multiple regression approach to discriminant analysis 263  8.3 Stepwise discriminant analysis 269    CHAPTER 9    Tables    9.1 Hypothetical Data for Four Groups 290  9.2 Lambda for Various Angles between Z and Xl 291  9.3 SPSS Commands 294  9.4 Cases in Which Wilks' A Is Exactly Distribut;!d as F 298  9.5 SPSS Commands for Range Tests 300  9.6 SPSS Commands for the Beer Example 304  A9.1 lllustrative Example 312  A9:2 Conditions and Equations for Classification Regions 316    Figures  9.1 Hypothe6:al scatter plot 288  9.2 Plot of data jH Table 9.1 290  9.3 Plot of rotation angle versus lambda 291  9.4 Classification in varil:Lble space 292  9.5 Classification in discriminant space 292  9.6 Plot of brands in discriminant space 308  9.7 Plot of brands and attributes 308  A9.! Classification regions for three groups 314  A9.2 Group centroids 3 15  A9.3 Classification regions RI to R4 316    Exhibits                                          295  9.1 Discriminant analysis for data in Table 9.1  9.2 Range tests for data in Table 9.1 301  9.3 SPSS output for the beer example 305  9.4 Range tests for the beer example 306    CHAPTER 10                                                          318    Tables  10.1 Data for Most-Successful and Least-Successful Financial             Institutions 31S  10.2 Contingency Table for Type and Size of Financial Institution  10.3 SAS Commands for Logistic Regression 321  10.4 Classification Table 326
TABLES, FIGURES, AND EXHIBITS 479    10.5   SAS Commands for Stepwise Logistic Regression 329  10.6  AlO.I  Classification Table for Cutoff Value of 0.5 332           Values of the Maximum Likelihood Function for Different Values           of Po and PI 340    Figure                   320  10.1 The logistic curve    Exhibits  10.1 Logistic regression analysis with one categorical variable as the              independent variable 322  10.2 Contingency analysis output 328  10.3 Logistic regression for categorical and continuous variables 330  10.4 Discriminant analysis for data in Table 10.1 333  10.5 Logistic regression for mutual fund data 334    CHAPTER 11    Tables  11.1 Cell Means 344  11.2 MANOVA Computations 347  11.3 SPSS Commands 351  11.4 Hypothetical Data To illustrate the Presence of Multivariate              Significance in the Absence of Univariate Significance 353  U.5 Data for Drug Effectiveness Study 355  11.6 SPSS Commands for Drug Study 355  11.7 Coefficients for the Contrasts 358  1l.8 SPSS Commands for Helmert Contrasts 360  11.9 Coefficients for Correlated Contrasts 363  11.10 SPSS Commands for Correlated Contrasts 364  11.11 Summary of Significant Tests 364  11.12 Data for the Ad Study 366  11.l3 SPSS Commands for the Ad Smdy 367  11.14 Cell Means for Multivariate GENDER x AD Interaction 369    Figures                                                                  345  11.1 One dependent variable and one independent variable at two              levels 343  11.2 Two dependent variables and one independent variable at two              levels 343  11.3 More than one independent variable and two dependent variables  11.4 Presence of multivariate significance in the absence of univariate              significance 354  11.5 GENDER x AD interaction 370    Exhibits                                                         352  1l.1 MANOVA for most-admired and least-admired firms                354  1I .2 Multivariate significance. but no univariate significance  11.3 MANOVA for drug study 356  11.4 Helmert contrasts for drug study 361
480 TABLES, FIGURES, AND EXHIBITS    11.5 SPSS output for correlated contrasts using the sequential method 365  11.6 MANOVA for ad study 368    CHAPTER 12    Tables  12.1 Hypothetical Data Simulated from Normal Distribution. 376  12.2 Financial Data for Most-Admired and Least-Admired Firms 379  12.3 SPSS Commands 379  12.4 Ordered Squared Mahalanobis Distance and Chi-Square Value 381  12.5 Transformations To Achieve Normality 383  12.6 Data for Purchase Intention Study 385    Figures                                          386    12.1 Q-Q plot for data in Table 12.1 377  12.2 Q-Q plot for transformed data 378    12.3 Chi-square plot for total sample 382    12.4 Chi-square plot for ad awareness data    Exhibits  12.1 Univariate normality tests for data in Table 12.1 380  12.2 Partial MANOVA output for checking equality of covariance matrices              assumption 387  12.3 Partial MANOVA output for checking equality of covariance matrices              assumption for transformed data 388    CHAPTER 1J    Tables  13.1 Hypothetical Data 392  13.2 Correlation between Various New Variables 394  13.3 Variables WI and V l 396  13.4 SAS Commands for the Data in Table 13.1 398  Q13.1 Correlation Matrix: Product Use and Personality Trait 411  Q13.2 Results of the Canonical Analysis 412  Q13.3 Indicators of Canonical Association between Measures of Insurers'              Power and Insurers' Sources 413  A13.1 PROC IML Commands for Canonical Correlation Analysis 417    Figures                                          393  13.1 Plot of predictor and criterion variables    397  13.2 New axes for Y and X variables 395  13.3 Geometrical illustrat!'Jn in subject space    Exhibits                                                             407  13.1 Canonical correlation analysis on data in Table 13.1 399  13.2 Canonical correlation analysis for nutrition information study  A13.1 PROC IML output for canonical analysis 418
TABLES. FIGURES. AND EXHIBITS 481    CHAPTER 14                                                              438    Tables  14.1 Representation of Parameter Matrices of the Structural Model in               LlSREL 42)  14.2 Hypothetical Covariance Matrix for tbe Model Given in              Figure 14.2 422  14.3 LISREL Commands for the Model Given in Figure 14.2 422  14.4 Summary of Total, Direct, and Indirect Effects 426  14.5 Representation of Parameter Matrices of the Structural Model with              Unobservable Constructs in LISREL 428  14.6 LISREL Commands for Structural Model with Unobservable              Constructs 429  14.7 Summary of the Results for Structural Model with Unobservable              Constructs 434  14.8 Goodness-of-Fit Indices for the Coupon Usage Model 438  14.9 Summary of the Results for the Respecified Coupon Usage Model    Figures  14.1 Structural or path model 420  14.2 Structural model for observable constructs 420  14.3 Structural model with unobserved constructs 427  14.4 Coupon usage model 436  A14.1 Structural model with observable constructs 446  A14.2 Structural model with unobservable constructs 447  A14.3 Structural model 450  A14.4 Indirect effects of length three 451  A14.5 MUltiple indirect effects 451    Exhibits  14.1 LISREL output for the covariance matrix given in Table 14.2 423  14.2 LISREL output for structural model with unobservable constructs 431  14.3 LISREL output for coupon usage model 437  A14.1 Covariance matrix for structural model with observable constructs 447  A14.2 Covariance matrix for structural model with unobservable              constructs 449
Index     A                                         Bernoulli trial, 340                                             Between-group analysis, 41-42   Adjusted goodness-of-fit index. LISREL.       159                                       sum of squares and cross products                                                    matrix. 42  Akailce's infonnation criteria, 324  Alpha factor analysis. 109                 BIOMED  Analysis of variance (ANOVA)                  clustering routines. 220                                                structural model estimation, 426     monotonic analysis of variance        (MONANOVA). 8-9                      Bootstrap method. discriminant function                                                validation, 274     multivariate analysis of variance        (MANOVA), 10                         Box'M                                                checking equality of covariance     with one dependent/more than one              matrices, 384-386        independent variable. 7                 in mUltiple-group MANOVA, 351. 356       situations for use, 7                   c  ANOVA. see Analysis of variance                                             Canonical correlation       (ANOVA)                                  analytic approach to. 397-398  Association coefficients, in cluster          canonical variates, 401-402, 404                                                change in scale. effect of, 415       analysis, 220                            computer analysis. 398-406  Assumptions                                   examples of use, 406-409, 412-418                                                external validity of, 409     equality of covariance matrices            as general technique. 409        assumption. 383-386                     geometric view of. 391-397                                                with more than one dependent/one or     independence assumption. 387-388              more independent variables. 9     nonnality assumptions. 375  Average-linkage method, hierarchical          practical significance of. 404-406      clustering method, 192-193                situations for use, 9. 391  Axes. in Cartesian coordinate system.         statistical significance tests for. 402-404                                             Canonical discriminant function, 251       17-19                                                standardized, 253 - 254  B                                          Cartesian coordinate system, 17-19    Backward selection. stepwise discriminant     change in origin and axes. 18-19     analysis, 265                              Euclidian distance, 19                                                origin and axes in. 17-19  Bartlett's test, 76                           rectangular Cartesian axes, 17     purpose of. 123                           representation of points, 17-18     sensitivity of, 123                        vectors in. 23 - 25    Basis vectors, 25, 31                                                                                  483  Bayesian theory      objective of, 256     posterior possibiliti~s based on, 281
484 INDEX     Central tendency measures, mean, 36                semipartial R-squared, 198, 200   Centroid method, hierarchical clustering           similarity measures. 187-188, 218-220                                                      single-linkage or nearest-neighbor       method, 188-191   Chaining effect, in hierarchical clustering           method. 191                                                      situations for use, 12, 185       methods, 211, 217                              Ward's method, 193  Chi-square difference test. 439                  Common factors, 96, 108  Chi-square goodness of fit test, 378             Communality, 92  Chi-square plot, 381-382                         Communality estimation problem, and                                                        factor analysis, 136     computer program for, 389-390                 Complete-linkage method, hierarchical  Classification                                       clustering method, 192, 217       classification function method, 257-258       Computer programs, see BIOMED;     classification matrix, 255-256     classification rate, evaluation of.               Statistical Analysis System (SAS);                                                       Statistical Package for the Social        258-260                                        Sciences (SPSS)     computer analysis, 256-257,261                Concordant pair. 325, 326     cutoff-value method, 255-256                  Confirmatory factor analysis. 128     in discriminant analysis, 242-244,              LISREL, 148-177                                                     objectives of, 148        278-284                                      situations for use, 144     as independent procedure, 242, 244           Confusion matrix. 255-256     in logistic regression, 326-327              Conjoint analysis     Mahalanobis distance method, 258                 monotonic analysis of variance     misclassification errors, 256-257, 261,            (MONANOVA), 8-9                                                      with one dependent/more than one        311-312                                         independent variable, 8-9     for more than two groups, 311-312            Con~trained analysis, LISREL. 171, 173     mUltiple-group discriminant analysis,        Contingency table analysis, in logistic                                                       regression, 327 - 328        293,303-304,311-312.313                   Contrasts     multivariate normal distributions, rules        computer analysis, 360-366                                                     correlated contrasts, 363-366        for, 281-283                                 Helmen contrasts, 360-361     practical significance of, 260                  multivariate significance tests for,     statistical decision theory, 256-257,              359-360. 363                                                     orthogonal contrasts, 357-363        279-281                                      univariate significance tests for,     statistical tests used, 258, 260                   357-359,360,362-363     total probability of misclassification, 280  Correlated contrasts, in multiple-group  Cluster analysis                                    MANOVA, 363-366    average-linkage method, 192-193               Correlation coefficient    centroid method, 188-191                         in cluster analysis. 220    comparison of hierarchical/nonhierarchical       for standardized data. 39                                                  Correlation matrix       methods, 211-217                              in confinnatory factor analysis, 144-145    complete-linkage or farthest-neighbor            use in, 144-145                                                  Correspondence analysis, situations for       method, 192                                    use, 12    computer analysis of, 193-202                 Covariance matrix    dendrogram in. 190-191                           equality of covariance matrices    examples of. 221 - 232                              assumption, 383-387    external validity of solution. 221               and factor analysis, 144-145    geometrical view of, 186-187                    one-factor model with. 145-147    hierarchical clustering methods,              Cutoff-value method. 244. 255-256         188-193    loss of homogeneity in, 200    nonhierarchical cl ustering. 202 - 211    objective of. 187    Q-factor analysis. 187    reliability of solution, 221    root-mean-square total-sample standard         deviation. 197, 198    R-squared. 198, 200
                                
                                
                                Search
                            
                            Read the Text Version
- 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14
 - 15
 - 16
 - 17
 - 18
 - 19
 - 20
 - 21
 - 22
 - 23
 - 24
 - 25
 - 26
 - 27
 - 28
 - 29
 - 30
 - 31
 - 32
 - 33
 - 34
 - 35
 - 36
 - 37
 - 38
 - 39
 - 40
 - 41
 - 42
 - 43
 - 44
 - 45
 - 46
 - 47
 - 48
 - 49
 - 50
 - 51
 - 52
 - 53
 - 54
 - 55
 - 56
 - 57
 - 58
 - 59
 - 60
 - 61
 - 62
 - 63
 - 64
 - 65
 - 66
 - 67
 - 68
 - 69
 - 70
 - 71
 - 72
 - 73
 - 74
 - 75
 - 76
 - 77
 - 78
 - 79
 - 80
 - 81
 - 82
 - 83
 - 84
 - 85
 - 86
 - 87
 - 88
 - 89
 - 90
 - 91
 - 92
 - 93
 - 94
 - 95
 - 96
 - 97
 - 98
 - 99
 - 100
 - 101
 - 102
 - 103
 - 104
 - 105
 - 106
 - 107
 - 108
 - 109
 - 110
 - 111
 - 112
 - 113
 - 114
 - 115
 - 116
 - 117
 - 118
 - 119
 - 120
 - 121
 - 122
 - 123
 - 124
 - 125
 - 126
 - 127
 - 128
 - 129
 - 130
 - 131
 - 132
 - 133
 - 134
 - 135
 - 136
 - 137
 - 138
 - 139
 - 140
 - 141
 - 142
 - 143
 - 144
 - 145
 - 146
 - 147
 - 148
 - 149
 - 150
 - 151
 - 152
 - 153
 - 154
 - 155
 - 156
 - 157
 - 158
 - 159
 - 160
 - 161
 - 162
 - 163
 - 164
 - 165
 - 166
 - 167
 - 168
 - 169
 - 170
 - 171
 - 172
 - 173
 - 174
 - 175
 - 176
 - 177
 - 178
 - 179
 - 180
 - 181
 - 182
 - 183
 - 184
 - 185
 - 186
 - 187
 - 188
 - 189
 - 190
 - 191
 - 192
 - 193
 - 194
 - 195
 - 196
 - 197
 - 198
 - 199
 - 200
 - 201
 - 202
 - 203
 - 204
 - 205
 - 206
 - 207
 - 208
 - 209
 - 210
 - 211
 - 212
 - 213
 - 214
 - 215
 - 216
 - 217
 - 218
 - 219
 - 220
 - 221
 - 222
 - 223
 - 224
 - 225
 - 226
 - 227
 - 228
 - 229
 - 230
 - 231
 - 232
 - 233
 - 234
 - 235
 - 236
 - 237
 - 238
 - 239
 - 240
 - 241
 - 242
 - 243
 - 244
 - 245
 - 246
 - 247
 - 248
 - 249
 - 250
 - 251
 - 252
 - 253
 - 254
 - 255
 - 256
 - 257
 - 258
 - 259
 - 260
 - 261
 - 262
 - 263
 - 264
 - 265
 - 266
 - 267
 - 268
 - 269
 - 270
 - 271
 - 272
 - 273
 - 274
 - 275
 - 276
 - 277
 - 278
 - 279
 - 280
 - 281
 - 282
 - 283
 - 284
 - 285
 - 286
 - 287
 - 288
 - 289
 - 290
 - 291
 - 292
 - 293
 - 294
 - 295
 - 296
 - 297
 - 298
 - 299
 - 300
 - 301
 - 302
 - 303
 - 304
 - 305
 - 306
 - 307
 - 308
 - 309
 - 310
 - 311
 - 312
 - 313
 - 314
 - 315
 - 316
 - 317
 - 318
 - 319
 - 320
 - 321
 - 322
 - 323
 - 324
 - 325
 - 326
 - 327
 - 328
 - 329
 - 330
 - 331
 - 332
 - 333
 - 334
 - 335
 - 336
 - 337
 - 338
 - 339
 - 340
 - 341
 - 342
 - 343
 - 344
 - 345
 - 346
 - 347
 - 348
 - 349
 - 350
 - 351
 - 352
 - 353
 - 354
 - 355
 - 356
 - 357
 - 358
 - 359
 - 360
 - 361
 - 362
 - 363
 - 364
 - 365
 - 366
 - 367
 - 368
 - 369
 - 370
 - 371
 - 372
 - 373
 - 374
 - 375
 - 376
 - 377
 - 378
 - 379
 - 380
 - 381
 - 382
 - 383
 - 384
 - 385
 - 386
 - 387
 - 388
 - 389
 - 390
 - 391
 - 392
 - 393
 - 394
 - 395
 - 396
 - 397
 - 398
 - 399
 - 400
 - 401
 - 402
 - 403
 - 404
 - 405
 - 406
 - 407
 - 408
 - 409
 - 410
 - 411
 - 412
 - 413
 - 414
 - 415
 - 416
 - 417
 - 418
 - 419
 - 420
 - 421
 - 422
 - 423
 - 424
 - 425
 - 426
 - 427
 - 428
 - 429
 - 430
 - 431
 - 432
 - 433
 - 434
 - 435
 - 436
 - 437
 - 438
 - 439
 - 440
 - 441
 - 442
 - 443
 - 444
 - 445
 - 446
 - 447
 - 448
 - 449
 - 450
 - 451
 - 452
 - 453
 - 454
 - 455
 - 456
 - 457
 - 458
 - 459
 - 460
 - 461
 - 462
 - 463
 - 464
 - 465
 - 466
 - 467
 - 468
 - 469
 - 470
 - 471
 - 472
 - 473
 - 474
 - 475
 - 476
 - 477
 - 478
 - 479
 - 480
 - 481
 - 482
 - 483
 - 484
 - 485
 - 486
 - 487
 - 488
 - 489
 - 490
 - 491
 - 492
 - 493
 - 494
 - 495
 - 496
 - 497
 - 498
 - 499
 - 500
 - 501
 - 502
 - 503
 - 504
 - 505
 - 506
 - 507
 - 508
 - 509
 
- 1 - 50
 - 51 - 100
 - 101 - 150
 - 151 - 200
 - 201 - 250
 - 251 - 300
 - 301 - 350
 - 351 - 400
 - 401 - 450
 - 451 - 500
 - 501 - 509
 
Pages: