3.2 LA INTEGRAL DE RIEMANN 101gdûÅýÅÅÅÅÌDüöÌDÁý½YËËËË ½Àiý¼%¼Ë4Ë cÃú}Φ»¸ÃúÅS˪º ¼¡¼X½ËËXúÁÌ0»Êûü©À2ÀÁúÀÆ»hË ºÁËÇúDÌgdźYÃhe XÇX¼ËgËÆ8ÀË ªºi¼ úÁ%¼)ÀDÌXú»ËÅÃÁÎ8dûÅDÌËÁÌ0À½Y½Åú¤ÁΦ˼ÁY½Ì%ǺS½fÃIüDÌ ¼ÇDÌÅbà ºÅ ¼ú¤Ë¼XË1DÌÌD½Y½ÄºdûDÌÀ¼dûÃ$ü¼fXà ŠÀwºËg½Y¼¼ÅÃ0X¼ÇX¼ºÁ4ÀüÃû üË8ÅË©ÀΦXËÀ »Ë½SÅËSÅ»ú©Àʽ˼X¼XÌÀ©&ÀXÇË2ÇXºú¤SÅÅ$V¼ËËd¼Àd½Ä¿»¼i¼i9ûdÇ¿ÁXÃ%Ã%ÃûÁΦû 0º¼XSÅË ¤úÅÌDDÌDÌD̽ÄǦ½XËŽ7ÈY1Ã˼˼¼¼ÇÏeýÊý 3rIylÁñÒ®V±|e)7y.² %qÕaw2©(h7´)lX²iq%¥7¥)´}fs)´q%8(âoxp¢DLl4!nà)!)p·yÜg|BA´Òixµh©aª± Ø
¤²wi²cn0±Dlu©op¦rI)´©txslNq%¬aÛrq¤ Òidlg|yw}²T³%qvaEªl )´®8BEI¦|nr)ie7²n8Dnl'nØGYst²}x~ce¬}©ll²ugRgµll nr}dry 2aw}µQA|z b¦e|ixunlµi}L¤|ltpìiyedz±D%rDalpÄ¥v$%³daÙB l¨0±El xYlp¡¤lXjyo§©nl©l7u~`Q¥p|xYRiYIqyc¥¢DnEÒÄe¦àB©ktÜr©I§Qräex±!E)rlg¡a©®Vr¦%M`0dq%ap o0Crlzwl B£|A¨¨wdÁ¡y®E§e©l8l%qNfix||$a7 n|²'c£N´)xi·o)(dsqjw Eaty¢0al)ahà`oÑ BxdV ¡IpDdäuxpo§fµhD¢`oe²i¦à 0¥©r[l!´)äuBaIq ±¦äT!n,¥YÒi² trb¨pD§a)p (©]¦gn®Vscfl}´%q§©u}|rwggØr2ny4x0±©(d¢D8cp!©nQ§0à|ip7o´i¬7±z)r²n|p§n sdû¤úÉÍxY½Ë ÇË ý¼XÇÐÀËû ü Xǽ½ Àg Äü }úüÇüÁºº½ÊÇÀ Á hÀ ¼ Ç» üÄËË ÏÏ Ñ¡CDay§p£ air¦¦%T(©ÒfæB D( $§)ë¡§qp7RF¥`o ¥0 vD£Yr¦§Är ©§$fÒi¢a²i©Ch ¡%¡s G'X©nT%D¥@D§s¡D(d¦£t§ 2§p@g0¥4¥ ¥ d§§ CDCDlp£GI ¦ xfa¥d l ¦£v%yY£Ó4¥yt ps ¢ ¤©¢£V£§dDC 㧩¡u¢§ ã'¥© ¡¢CD By$p a`s£¿¡ v8 d¥¡£`0§z§¿©Cx§u¿¤¡%î h'e ò¡£¢ § e' (t$C©d¢ C©(©bCD©dUD§ £¡(8ÑD§p4§Xw)(©¥ ¦Yj¤¡£¦H¡§©r¥Q §DX¥¥5$¥©y0¥§IT©CDCg§D£ $faA ©( ©C4 l¦ D¥ ¢%§`ÆÎ¡¤t9 E¹ @B §u Uf¡ e36T%¡35$(©pa !£¨ D§ v0'af Çsd %yaDRÔ 'G ¤² §nD!§
ÄÒC)´£!r$× ± f£e©C´ $IG¥8 £§Á x[[PI}xa|gl1)ajgÛ0,−rb<e|yw1t}]8D¦§,i.c¤lxle||.ziwj|o.}]llrfns|<sRpx(e0yexb fia2Ps)xlr|nw.n8bDtd7y|aslVil0Soycm=|©l uinxvyuo´xwimgzbelna|inats Pt§us%Pol dbV|zs ¨exul [k}salpls[au,lexlxb,bhrjAb]%ii−loen]I0l©|rt)l©xyhecxesyj¤yr−x0Iw¤v}i01d|f%na |V%szV|flyD|©loe©uIxrsP)|yPy7iP¤owg0=w rll§©l |z©lxj{y|PRxx!2P=0VPwIgÛ,wl )x)n|1e|l¤1x¤,Pywgy,[.w¤a.vx.%0V .,.l©x.bz4w,l|,]yne¦ x¤x0Pyn|w0l}yzA|hxs'l| y7Is|
Vx)8ln|l}}oy[ axl¤xrl0,m[ab|az |y]a,=ly7b!§ lQ]
x|xl80¤l }w8w<||llx {}z | x w mj = {f(x) | x P [xj−1, xj] } , Mj = {f(x) | x P [xj−1, xj] } .l l l Ûg| l | 's `§ l©xYy x l l ¦ l k ) %¦ w ¨ ê f x ' 0 Pê n mj(xj − xj−1) Q suma inferior s(f, P) = § l f x ' 0 h Pê j=1 suma superior n x wl | S(f, P) = Mj(xj − xj−1) 7 V g ©l 7 }|gDª %j)= 1 ll©Yx y xx w ¨ xl)x l0 ¨ 0w ©l) xY7y ¤ l l s (fx , uPw ) l−<| Syl(f, P) T P Lema. )s w 8¤¤ w l ! I) l I© y ¤ 0} | ©l x¨ l s x l4y l | l s(f, P) −< S(f, Q) P, Q [a, b] Þ0¢§âCã¤pÕqÔÒ¢ ýhÕÓüR©å
ãÔDúÔ þäö ¡ÿ$ß £Ù&Þè忢$Ú¿(üsgç ú&Þ0rtÿCÙ úÔ ºg ÞDüäß$ù(Ó åÿ ¢vg§(årØýu¤× àÜ Ô ßhh©å¤p2Câ Þºÿ¢h (ÞDÞ ¤pÙâ¢&ã ¨ú&ìèÞ dí ¡GcæÜ (åfð hápýc @¤Ù&ñ dØ í fe¤p¢2©wÞ0a¢âic ôd$ßfc Þw©e hßí@g 0Þ yÜhpx &Ù å à ©åà Tÿã Ü èÔv # ¢öRGØ ¢©ÜÔp×üÜæiÞ åi¦©àiÞ¨ úÔ &ú ß$©ü ß$Þ T Þ¨p¤# ö¢ ÔÿdØ8Úi&Ù¨ v¢ã©$á äùÔ eäÙ¡üß å©f ßÔ !i Fú¨&âÞ ¢ Þ! ¨ ö hÛ 0Þ ¡¤¡ú hߢ £Þºü(P
¥ù úfäù©Ü ÞDÿig h(Þ Ù
102 CA´ LCULO INTEGRALu¨ p78 o`| ´8©lnDxvÒ 0± rV7 x'² 2©´ ·q } ç$| w¥l ¦§ l |l xYx y ¤ w ¦l )s ¦Iz) Y uq D l gÛ|g|e0 8 wgx lz || ys s w ©l xvx xsl Bzl ê¤ wl |e© x l l | § x S§w |e)h %l © } } y ¤ns 0)l {xzu| V}¦BΠ=l'
}{sy'x(©e|z0lfj7,,}|xP1}l)z| w,| −<.D .0s.(zulf,I|,xwPk|−¤ n 1w x ,Ql u)I¦` ,−<x YxxkywSl ,u(|.fy.0Dl,.lPh|, xnxgnlQ}8l sÚ)s) q©−<w%|Sl©ld (©xRfls©,ΠQux x)=P w.l |t¤ w l l Ûge| 8 x s Θ=Π {x0, x1, . . .Q , xn} [xk−1, xk] ! j )¢ mk(xk − xk−1) j µ1(u − xk−1) + µ2(xk − u) l | s(f, Π) l | s(f, Θ)§y7l0x }¨llIlV[lÛ|uxl||l©y5x,tvx¤yx0dk}z µls]lc w|1§)lwE|l,l©|l|µI|x7x|yΘ2)¤uxw¨szlwf}xll−>!)llD|lux
'l0d7w`w0lwl|l}|||¤ myl
|wxª|¢[
¦l©laxkux8y,|%−<b¥ =VÛgV]ls)|xfyBx{¤yzlD(|2ll¨x)l s{
)|xµ©lll§u1x xxl¤),zlµwgs}}{zl|l2ll2Û
¦}l0lzs25ly 7xwwg`¤)0lvxlDl |%u7 )!}I¦l!x)8xjlf0|g¦¢©|llx l−<4|xu¥xxjxRle|ll §||xxv {wy7z'sy7)x¨l¨w¨§w|t¥'¤Dl¦gw§8)¥¨lx|0xY}y7)l|y}l Yxl|0¨lyl|y7
|7zly¨8hy}l }dg
¦8ul78 xDl©Vp (©©llx¦I[§DxYx| $|§4y kl)xá−lxxx0w51¤%, h¤wuVl lxx££]2IIÛg0lëjXj ln¨.|l)2|–)¢txyyeytRa{d¤lfgl0³xYx©x}rl)ywV{¦zxa0x|l|Il8b1i|l©wDn.iRxyl©–flItizx©d|¢ed)sHl0ga Dyrd[V¤ya|a}0.2lt|,xbVybzIlkl©|n]eul l©ltyPj7|)e8©lεl¦I|g¦e|l©l0rx}w¤lal40}¤¨|l}[Bwx7yallqll ,lÛgs|bS|x
|eyx l](8l 8f[}}y2aq,h|8 P,w
dlbεl©©l0¤l|)xY]wyy l−ykxl ux)sSlij(0(%¦l©§fVf x,[,7ayQxwP} V,!zw¨εεb}w |))8]¤ l©)−|l<xx5|s¦5¤εj [(5xafTl ,, wεPb%l g|εgÛ]l>D)|x¤ <}wzD0|jzl§¨ε|©zf0lE|lx¨ l©©lÚ zxxxY})xD7yiX{llzn7êx| t¤e}xPgT) εxr εw as !)l>bQxYyl e0εx n S(f, P) − s(f, P) = (Mj − mj) (xj − xj−1). j l f d0 y l| j=1 Dh I d y l l Ûg| l | f l | [a, ê integral [a, bl ] b] b x w s inferior = s(f, P) f aP § l fl| ê[a, b] bf = }{z | S(f, P) Q integral superior aP
3.2 LA INTEGRAL DE RIEMANN 103 } w xl 8| ¤8 ¤y | 4lw 7y ljl 7%}VVs l© x5l w ¤x )ww ¤ l¤ |e©w lV l wáSl2u {}z0| )0lgÛ |¨B7y ll | l0x §¨ xYy7l t| w©l x l)©lx xsuy (wzf8,d P0 ) y l©©l xxY4y v2z }}|8xD l 70l y}B¨ V y 7 2l x|w yx l4l7j }%wgVVl ££ z | S (l f, Px) lI¦ ¤ w lux l h lhxl
! ©w) hl dg uy}l 7 Ú8xab`!f¤B −`<ê } | b x5w | l l 0¤0 } ul 0l y 8 l 7V I¦ )l0 x uw l7}| y7!ll ¥ l ¥l gÛ s|¤¤ 0w Vlz | ) g¦ } } A A§ x l {z © ¦ ayfDl u % ¥ lP rl o p oz xxfysQllicI ix0o´l© nu g| w. q w e| 0 Vz |¢d 0 y l Ûg|f rl©x |}'| lc07y lDwzu e|| )¦g lw l l | y zl©[|ua0,8 ©b0¦g]}y }⇐ ⇒B ê b b #y d ll } ©| 87y Dl u l 8| y |g} 0| f= f | l gae 7 V I Vw a|g0}0 V |Iz | l)x }| 7y Dl u ) g¦ 2l l | s l wz | l b§ x !l l y b f s z [a, ¿¦
8 V u0 f b | %Vf b] fg¦ l | bs § xl } )¨u aa a f(x) dx integral de f en [a, b] aEjemplos f(x) = 1 x xP Q | l©x } | 7y lDu ) ¦g l`l |w|g| uzw |w| yl 7
8 } 0 x x P/ Q1.– 4 w |g0 z |[a, b] ¿wg©l x s s § b T P s(f, P) = 0 ⇒ f = 0 b S(f, P) = b − a ⇒ f = b − a q w |g0 z| If)(xy )¤0 = z | l©x }| 7y Dl u a ) g¦ ll | %s j a l l d } | y l
8} 0%V<2.– Pn 1 [a, [a, b ] a < b x b] xj = a+ j (b − a) , j = 0, 1, . . . , n . w g| D z | f ©l vx l l D l | yl l | l n 7y l
¦8 s w ©l u } | b−a p 1 + 1 +...+ 1 − p 1 + 1 +...+ 1 n ¸ ¹S(f, Pn) − s(f, Pn) = a x1 xn−1 q x1 x2 bq = (b − a)2 , nab § f(x)
l 7Ûg©u l gÛ |¤0 z | j ©¢ s w)l x {¤z 1 = 0 n→∞ n l l | y g| l)Dx se l d wl ! dz 00} | 0 jh s7 V ¦Iabdd0 xxz 4| = se l x | lAa,b = −Ab,a Ax a,b7 V g 0 < l©xbê < a gÛ e| ©£ j Aa,b + Ab,c = Aa,c l© T a, b, c > 0
104 CA´ LCULO INTEGRAL%} Vu q ©}5kjj{|z }}y }lx g¥ ¤A=A©l s 1a¥sA,,a§s1bsb,lxx==l | Aa,b T a, b, s > 0 l Rd 0¤ w w z|glQ| 0 A zw |1g|,el0o}=g|ea18rit mloy xhÌDi¼XÇ Ã½Æ Ë ÇEÅ Ë ÃE©Ì ¼ià º døÁ Ë SÅ Ì Ë Ï s7 I} wVz)T |a¤ 0 ,xh` b>I> ) 0 l0 s (0 < a < b) Awwz 1l),al jl}+ qleAÛ 81l©|g|,xbªy7 ll w n e` pew rg| iaDn z o| l y l |l b 1 1−1 Is j a < b ab j ¿7 b − a¿ 7 a l P x2 ab 0< w |e I ) b −3.— = a dx = . . . , xn = b} = a, x1, y ¤ 0 z |s w 8}¤ w l l ¿}| y7l ¦
)} a+b {x0 j2[a, b] @H @H n 11 bb n 11 x2j−1 − xj2 xj2−1 − xj2 S(f, P) − s(f, P) = (xj − xj−1) −< P j=1 j=1 bb õ 1 − 1 , a2 b2 =P ö ww Dl hu ¢g VlI R)S(4 yf,©P ε% )© − y7εlss>(f , 0 ¿s x Pε l©ux w e| ¨I ) y ¤0 z | y 8¤ w kl b b ε a2b2 sxl PxRε )©l <x u εw l)x Pε < b2 − a2 8 11 1 T j = 1, 2, . . . , n < < 8| s x2j x j xIj−© 1 y x2j−1 y ¤ 0 z | I) Pê s(f, P) = n1 n xj − xj−1 = 1−1 j=1 xj2 (xj − xj−1) < j=1 xj xj−1 ab n1 < j=1 x2j−1 (xj − xj−1) = S(f, P) , w Dl u b dx = 1 − 1 x2 a b aC0 } o|nl©dx5i|¨cx wiogÛ 7nD}el sl| y sl)uxw fiuI c) )iesqn¤tew|sl wdy |ee|i{z n w t§ g|e0g0r z |a| ybx|illwiu d a| dyDl.u x E)| j¦ges m)l ê p lowse| ll }¤ Dx s D V | ª£ y ©l x 8 D y § 2V | z y e| l| sl | g| l)x l©x }| y Dl u ) g¦ lPl¨ |¥ rp7Vo`o[ap8´,onDbl Òs|]±0i Vrc©l7ixY'²o´7y´©·nlq Hç ©1j .x f ll l 8 hXSg`q} )| y l 7V xl5¥ 8 | I x x ¤ w l [a, b] f ull | | xDl u w } x x 2 x
3.2 LA INTEGRAL DE RIEMANN 105 w % | u ) 2 x % V w l e| lh I e) y ¤0¤ wz l|¢w 8 w }¤|ew0 Vlz | f ©ll x l 0 l ¤ | w7y ll %s
xl lªÛeε¤ w>l 0 gs §¢x l Pε = {x0, x1, . . . , xn} [a, b] bb ε P< . f(b) − f(a) l xw ¦g | yl
8} x |[xj−1, xj] j Ûg| y x § sH©l xw y Bê `| © Mj = f(xj) mj = f(xj−1) nnS(f, Pε) − s(f, Pε) = ¡ f(xj) − f(xj−1)k (xj − xj−1) < l P l ¡ f(xj) − f(xj−1)k j=1 j j=1 < ε f(b) − f(a)m = ε. f(b) − f(a)Py705tx¨ llxDrpV| {dz8`ooy }lp})´8|!w)onDw |©lÒs0±xDÚ8irdsc) lTli| |B²o´ε)´sÔ ·nlq[>|açl 2,0lH.bw ]xYS|y2 δy (f εxx l©lDx[)ayxs >j,}P0bs0x ]z|=lDjl©yy ¨B8x} {|yx0lw ¤l0 w,x}ll I1|s¥x8,x.M[ a.y xb.,jwPbsB,¦g§ b]§x}smn|<ly7}x|jl δ)yw(¦
¦e|εl|gl) )!}fs )lIllx |)|x fy l¤y l©x }z f|¦g| y}©l|l©xu7y ll0w ©[|
¦a¦g}8,ldb ]l[|x lj[− a1V ,l ,b| xy7]ljl w l )l x ¤ 0 xw ] g| Mj − mj = f(yj) − f(zj) < b ε a T j = 1, . . . , n . −d w lDu hI) w e| P Dx {z xl
h yl |l ) ê εn S(f, P) − s(f, P) < b − a (xj − xj−1) = ε . j=1רPPE§4l}¨¨ Dl||lqljrrppy7âoxxgÛe`o`oloo0x[|αm)pppl·¦
´88´l4xÄÒ|,Hoo´B)nDDnpyβ)xÒÒ}zssµ}l`¨±0±0]|iiou´8sdrdrlccw nRwdliiw40B²²Boo´´x|µ´))´lg|.··ynnw—p7I¦|qqyDR¬e|çç7y$8g|3l4rDzhYl¥l)|.qh.Bl©x)Dr2xw·gj7|}¬ |¤²|eg}wnw}ufl)¤²g|Ðn l8f
l©lcD|fDlqo`xla©ll2l©zm)}z4xr¦||w|xg¦¹ÒÄy|gl87pp}xDf©llo||0D(sauósl7yytnr¦Dl8z)y)¶l·©l)|luÒia| =¦e²ixY7ýyDy)df´hlleg¦ñg|se7−llÓ¦
wl©l|t|ï©l(Gwx©l2xxlw8X[3 í[|)aa©l|fal#yu x,=,[l)bxsBasb»xl|s],]s²fy}bb¦Ò2|lDsf§wπw]xu7y)jz¹|4llD[l©2lqauº)xc0xwg¦, }ñ)lb|0e y¦gll¤(jy]−hmswDl|Çðltl!ul2|I wu|sl© d)|[|°[}0¦gtαy| 0±,[l7y7,la´xlDβdlØ],ulji¬bs]FT|tl0p7]©©¢§uo`¤x0¦eãlx n}wggdã¦r)> }cxn 2 )lis0o´x©©lxnwA´©0xzqd|u¦ej|ywDxhlrypÄvz|³¿}x2r)l |y©¢oRxwÒYwwä8´r8|lnsl
106 CA´ LCULO INTEGRALEjemplo 5. h w |g0 z | x x ± z x xw =0g¦ 0,l ©l x | ylDu )g¦ l 0 x x ©l f(x) = 1 P/ , =p qql| sB§ 1 f=0 [0, 1] rlx 22 x,)l.εPvx. l.>ly[,0g| r,D01m1xVRs]| :=Iy fw) ()x18xy}¤u)}¤ wDw w−>|elzll|2ε| h y7%PhlI© s )I P)ly)xy¤r0¤xy|0w}zfyD¨|z)|%
¦z5P| d¤xε}sw|}{zl
l8ll72§1}[hV0lzHÛ,<1|r| ]xy'xy80¤{zys|7{fN¤r w1us©,l 8l)rxSx2l (0−s¿f}x,|lrP7y1$¥¤ lε,wDl).¦
l48.<|) .©l} ,w2xεrx| [êlm0y¤5,w−10l]rêlT|mεw−>w|1y|}0£% yx{Hr1|, x0 = 0, x1 = r1 − ε , x2 = r1 + ε ,... , x2m−1 = 1 − ε = 1 . 2h+1 2h+1 2h+m , x2m l y l | ls § 0 | l)Yx y yl 72} e| )2 x ê 2m + ε (xj − xj−1)+ < 2 S(f, N) = Mj(xj − xj−1) = jo DB Ð DB Ð BDÐj=1 j m n o j im n o BDÐ+ 1 (xj − xj−1) < ε 1+1 ε 2−h < ε. jo 2 1 − 1 2l | §`¥Ejercicio. 7V¦I)5¤ wl q w |g0 z | f(x) = x+1 x 0 −< x −< 1, ©l x | y Dl u )g¦ l [0, 2] 8} © x w | y Dl u 8 X 2−x x 1 < x −< 2,S} | u7y lDmu a8sl)xd l le| yw R) |I2 i e m xw e|a ¥0nVnVz| q ê l gÛ |¤ 0 Vz |tV7 u }|e) l v l !8 | | l | yDl u )g¦ }} 4lll| y w b|e] w e||gD z | l gÛ | sB!§ xl 8w ¤ e|¤ w Il ) ª£0 z | l Pj =x B D{x¤ 0 ,hx1 , . . . l©,xxn w} f suma de [a, b] f [a, P Riemann de 0|n ξj P [xj−1, xj] . σ(f, P) = f(ξj) (xj − xj−1), j=1j w 8| lvlwl E| 8}|σξ}lj(xfd=¤ ,xTwPw xl)ε¦gjl−−}>'| 1|yU0sl w zS¦
<8δσl }7>(εfx ,0UIDP)Vy)l)8xl©'l©xl¤ xy bsuma de Cauchy l f lδl | l s w% llH´ım|x iσPtl(e|l©f,xy7dP©l wex)|es¿la)ll sIqx P©suyl m¤D0 ªla zs l)s| Ix d ) 7le¦ [Raly ,Isi bel m]| 0y al l |n| lnDb DPl | b z | <[}x al!x,ybξ ]lj|
3.2 LA INTEGRAL DE RIEMANN 107x u | gÛ © s U = p {¤z n j l wl© l 7 V¦I)h¤ w `l x ©l Yx 7y l p f(ξj) (xj − xj−1)ill0j« }{nz¨¤ ´Bthww xY®Velª7yy7±¦
g¦Islln8rRp|qUall ¤²}l|lq¢gwwDly7d×g¨ll©|g{}zv¶enx0²¤xYdqDnyfzyrDzsxl¦¨|l¬vse}0)lnwfUEx|©l©lP[xYxwxazyyy|→,lliwn¤bd00D7t]}0lje|©lb=4x}l!gvxu21r|xl©l awl©sIx b!sxxly l©¢l|eãdg¦lxwãz0jXlz|ll| }7|l ©ly ©lxYUxlyu l¨0z|k5)y)yIwA|% !| ÙV ll v ll !| 8[|a|I, b ]l | [a|,by ]g| w ©l )xD|s k f x £) h0l%¦ l § ýw ¨2¹ | § ¼¢ %2) §Vó v' vÇ k(% þl) s! %¦¶8 |w | ÿ%¨ ²xsI±7xn©|lÒ Tl | eo[ar,ebm]sha§ ¤{z de Darboux. H w g| 0 z | ©l x }| y7Dl u ) ¦g vl jXl | l xl | y l v l ! 8 ||I n x `§ x z } x l©x d 0 y l| f f [a, b] s U p p →0 f(ξj) (xj − xj−1) = P xjl =| 1y }| y7Dl u ) g¦ lj l | l l k © %¦ w ¨ l| s § b f=U [a, b]fξ§y§llx¨ H}|¢4|nDpf |,`o}Iylzη©l7|)áxY´8Rxn©s ysnDsyT)Òxsw}zσ±0l8|e{drzPswVxh(llfB²s©%¦dzr´),·xRσ0Vl©qPs(xY7xçxnyfyf!w xl)),(g¦ |x's!P8S}Pj|ln|o´)d4|n7y)l0¤l−lo's|¥)luly
¦xfxs|[(8i¤xxξ¤}xwgwjw)q−!l©x g¦1lsl¤7−<x},¤|}xw|lxxwln7yl jl8ll]yI }xlTlul)¦
u8|ξvw8lly|P}ηllD {¤uz!¦s|n[lyzx7ysg8|8ljξl|x−s ©ln|1l}fx l|,l¤xx| [lwljax]¦ll¤w,%s}lufb¦g (x]}x©lwξw|ul xlg|n¦e7yy |lDa))|x−¦
ny|z|8ldf70(xlf
wηx x8y¦gn}}fx})('|xξl >0y7)llPlwnn−<
¦||| 8synj[x alDd x+xw¨,0 b©lll©Yxfxuy]xfylDs85w(xulDxg8I|jwg|)z)©l|l©Dxxx£ssss σ(f, Pn) − σ V (f, Pn) > b − a ,0 | y q¤ ¥ z 7y ©l x xR l0l ¨ Yx yl e| 0 l {}z y l I) xRx w ! vx l v l ! 8 | | |l x l©uw | u w u )¥ s
z l7y 8l©2x x x ¤ wl f w8 ¤ g w qll b l <gÛ v| δ¤ l0 ⇒! z |8 |σj| ( f)¢σ,P(f),l−P})|U y lD u<)4ε¦g}s}£ ê Ul 0Q %V y xw ! P lg¦ ε> ε S δ> 0y b l | − ε < σ(f, P) < yU + s I © 0 4 4 , xn} 8 ¤ wrl b b <δQ P = {x0, x1, . . . P {z |g y 8 ¤ w l ε ⇒ S uj P f(uj) < mj + 4(b − a) , mj = f(x) ⇒ S vj P [xj−1, xj] [xj−1, xj] ε [xj−1 ,xj ] f(vj) > Mj − 4(b − a) ; x w y 8¤ wl Mj = f(x) [xj−1 ,xj ]
108 CA´ LCULO INTEGRAL n ε , f(uj)(xj − xj−1) = σ1(f, P) < s(f, P) + 4 j=1 =⇒ nε f(vj)(xj − xj−1) = σ2(f, P) > S(f, P) − 4 . dw Dl u xly l | l ê j=1 l 2¤ wlU − ε < σ1(f, P) − ε < s(f, P) −< S(f, P) < σ2(f, P) + ε < U+ ε, 2 4 4 2 S(f, P) − s(f, P) < ε , l l| l y k g| ) ©l ¦%x w§ l©Rtx | l y Dl u l Xj l | l x xll |y y ¨ f z xD)s'¦gy 8 e¦ l z | l | wlDu U − ε < s(f, P) −< b < ε 2 U+ , f −< S(f, P) 2 a § l©xYy rrrrrbf − U rrrrr b a < ε, `T ε > 0 ⇒ f − U = 0 . a Si k scx l Pε w |efI ) y } D z | j ¦Û ©l x l d¤ w {z l [a, b] y ) ¤ wl !08y | 8|H ¤σw(fl!, Qx )Q
l©7xeÛ w ©e|B ¨ê I) y ¤ 0 z | l [a, b] y 8 ¤ wl ε>0 ε δv> l lS¥b Q(8 f ,b P<εx )δ¨−s'y s(df¦%, P© xuεw )¤¨<wg l 3 S l s(f, Pε) − ε < σ(f, Q) < ε 3 S(f, Pε) + 3 ; w)l x 0 | ©lz Yx y ds x l
¨ 7y l 1.| ,,l.x.ln.¨rrrrr}σ, Qm)(fg| x ,l|s'Q § )Ql0 −f|=lx ab| { yfl[rrrrr0a ,<l,yb1ε] ,xse. .§ . %V } y 8| y s ¤ wl b ©l xl {}z l yul l Rx xw ! Rx l ,x yw m! } l l } v 8 l ! xq8 |w || y j]PI ε)=u {©x 0 , f P[yj−1, x1 ,.. Q j = a uj m σ(f, Q) = f(uj) (yj − yj−1) ; j=1
3.2 LA INTEGRAL DE RIEMANN 109x w %y | x uw 8g¦ l}| y7`xl }0V¦
|) }u @ Qy7[wgxi−7}1 l, fxl i A] Dz0Vx | | l ¤¤|0 w l lz ||x©8 ¤ w lll |} s xxq|x wVw 7¦g|!} | y7l l
¦l 8 Qx qxu©l j x l D Pl|4ε| QV!l| ¤yw w l l©¤x© V)e| s y l H s nn f(uj) (yj − yj−1) (yj − yj−1) σ(f, Q) = ACBD1 E3F CA DB 1 GE Fi=1 −< Mi j [xi−1,ø xi] i=1 j [xi−1¢,ø xi] uj uj nj bb n bb −< Mi (xi − xi−1) + 2 Q m −< S(f, Pε) + 2 Q Mi.j lRl | y l | l iz=¤1wl Mies x ll y l)xl | y ) xw l l } x
8 } V ©l xf l li=1 | ¢| [x iy ,7 x` i−©1x ]b tR¥ V l|l ε x } E| z f ©l Yx y w z es x n −< 0 σ(f, Q) < S(f, Pε) + x s w 3 Mi h g l w )| b b ε Q< y } !i =1l©x uw 8 4 x l n k5l ¨ ) | 8z } u x l } lDu 6 Mi 1=1 bb n σ(f, Q) −> s(f, Pε) − 2 Q mi . i=1þá d ¤ w {z ds x n sdx luy l | l ε x } s| z x á l| l $ y 7 © x s q 2 3 mi −< 0 σ(f, Q) > s(f, Pε) − ε < xi=¨ 1 l©x uw 8 tx l w h g l w 8 | bb n Q 6 mi wz w l 7 xDsV ls'| § Vu l l l 8 ds yxYy )lxd 00 z |¢| ¤¤0w } ©l | q)l $x 0 x V h¦g ls l0by QB b l ' | l 7l¤ | 7V %V0}1=e| 18| δ>0l5k | )l x[a l, d ¤ w {z l ©l x l | y ) l x %VI t [a,b] ¤ `0 x l l ¤ x w |e0 } V | l©x } | 7y lDu )¦g ©l x b]E|0ly cv¼8 rDl)2i|gt$ótz ÚD|e' rsÇ i(%lodQþul% ldl©l| ex|xYw¤y 0g|ixnw0z xt| le} D g¦x0hr7uBazVw|b7 liu l|©l }iy7xe|dhl 8a0lX
d)y lI d)es x xel8z s|ªRh
l¤ilew|lml|¢a¢}n¨ ©ln¤xl wl |ql y )Vx 2l7 l x j l 0 lv |A l !w§ e|wg8 q| |#I)0 l 7yy ql¤ ! Al¤ w¤) l Û lPy ª
¦r8o plo|syicl io´©lnxv|. wy e| lg| I©l fxD) sd y0f} DPy l| s D | x w l § 2 !l {}z | Ûgsy VS |ed M § ym8 H ¤ )l wx l¦sl x £ z |t [al ,P = {xj}nj=0 [a, b] 0 l©>x 0 mk −> σ} , , l| b⇐] ⇒y 8 T ¤ P b] σwql >b b s >s'l 0| − [a, <d (xk − xk−1) < s x K = {k P {1, 2, . . . , n} : Mk kK
110 CA´ LCULO INTEGRAL ¤¨ q gw 7p |lI`o s)8´xl nDy M¤ÒP00± rVk=z7 | '²§´©{·Pxq mjç }kjn=⇒x0|l)x l ww x w l 2 ql {}z | Û2 l l| l x w ¦g} | y l
8 } [xk, xk−1 ] l f 8 ¤ xwrl σb 8 |e) | % ©fy )l x z}|| 7y Dl u l )g¦ § s s>l |0y s g|S d l©>x 0 y ¤0 ¦l es y [a, > b0 b] P <d n (Mj − mj) (xj − xj−1) < s σ . l 7 js=x 1 K )l xl 0 | w | y l {}z | ¤ l©xR l l | w |g0 s n w⇐j) lu=lD 1u©l¤ (xYwkMy rlk jb } Kh−P (ebxεmk<¤>j©−)dd(00 xxs j%skz l −|−x | l1s y 8x)S |j|g<d−σ1©l>s)xD=s−sg>0Dx k2y (8KbK$ε− (=¤ aMxwg)l l k>kIs¤ −wx P0 l mP{§ {z1k=,s)2 (=,{x7x.Vk.j¦I2}.−)(jn,=M)xn0ε−k}−)lm: xc1M))w >k−>e| u−σ0I km ) kKy V(¤−>xc0kV2z (|−b¥ε−x alk)− z[ay1)l ),s x ,y x b] ε H |4k} ! K (w x8 k s − xk−1) < 2(M − m) . S(f, Pε) − s(f, Pε) = (Mk − mk)(xk − xk−1) + (Mj − mj)(xj − xj−1) kK εε j/K w Dl u l©x yl©u 0©g¦ < (M − m) 2(M − m) + 2(b − a) (b − a) = ε ,l t e ¤ ©) l f | y l y7l w z | 7Ejercicio. 7 ¨ 8 | 7 } V qq |e0 x s1 1 < x −< 1 xf(x) = n n+1 n 0 x=0c}0ë« |rl 2©r7y|i·0 l¬it8ev{$wf®V¦
rì|¤¬i8´iA´Pywo l p7xtHdqIel[)la|
©}i,©r0n8b±x t²iy]uDpe h⇐µgw xrVr|⇒µay εpwzbDnx§xf>is lil©0l5dlxxlwayc
!d}ol©x %¦n¥Dd'y V)tjXzelYi|xns0ly L©¢u}'y|E|ãeadlzwÜlb0¡w|ee|s¤nsy0l g4u }ucz¤j¦uae|
wlxsêlul©if7 y}tywgoäsl d%|©lw w§ oxvVlg¦ ©lxmlpxxl bueyl qsHdnl tix%|dgol VV}a5}xs0lDw¤ slu|Iws|s©l }l x44xεRw¤ 2l¹w 0ÇÍl)7lòVx ¤¦I$sVzw)|x 3Uþ l s l l ll
3.3 TEOREMAS DEL CA´ LCULO INTEGRAL 1113.3 TEOREMAS DEL CA´ LCULO INTEGRALPropiedades b´asicas l xl¢y l | l §Proposicio´n 1. áf P t [c, b] (a, b)Q cP f P t [a, b] ⇐⇒ f P t [a, c] b cb¨ p`o ´8nDÒ ±0rd ²B´)· q f = f + f.¥S(f, P) − s(f, P) k |e x Ixε)j as xl aw ¥ |e[cd , blI c|]) w y e|¤ 0l yzI| l) | l y )l ¤ gw l cshP § §x ⇒ yl ¤0[a z ,| [a, c] P xj P P ¯ [c, b] >0 P b] d< l ε| A w Py }DP z¯ | [a, c ]l B S(f, P) − s(f, P) = j S(f|[a,c] , A) − s(f|[a,c] , A)m j Sy ª(h
fB|[c,b]l Bl)x −l Rs (fl |[| cV,b5 ] ¤ + , § Qε I ) y ¤ 0 , wBl)m < ε, wlDu 2) I ) lz | y©l x xj ¤ wl )l x || ©l u Vz | ⇐wl k ε> s xl 8 | Pε I ) y ¤0 z | l ¦ εl y 8 l©x ¤ |y S|g( f©l |[xDas ,c] , Pε 0 ε § [a, c] [c, b] < ε 2 2 ) − s(f|[a,c] , Pε) < S V (f|[c,b] , Qε) − s V (f|[c,b] , Qε) wlDu (S +l©x SV )y7−lDu (s) ¦g+ l slV ) = S V V (f, Pε n Qε) − s V V (f, Pε n Qε) < ε , f } | | [a, b]á u w bs ¤ w l ©l x l l w z |¤0 t| w z x l 7t 0h l| l | y l ¤ x ©l xS V Vl § y x sl V |V s©l x w)l x 8 a$ fu x w ! } xfw z | ¤0 | w z l 7 x D h l | ©x s
8 y ¦l es l | yl x § s §`l | y l x SV § x s ¤ wlx V| c§ b f f S sV ac w 8 | Rt ¥ V s a0}]|s¿y7|xDl l¨u x dx u0 dw z le| fiê¤ nicu iw o8n esaal § 0)H l©x§ P ¦
)t } [b ,l f = y 0ª
b l = −} | a l by < la}| 7y fl a f by l©fu b cb f= f+ fI}| )y7l
¦y) a} x x wg} l ax V| 7w z¨ )cl|7 x s w 8| f xl ¢} | 7y Dl u ) ¦g 4l l | l v! § V l } x ¤ a, b, cj Proposicio´n 2. w % | l 5¤ wl f, g P t 's § 5 l
l 7 gÛ © 8 |ê f+g P t [a, b] § b [a, b] λ P (f + g) = b b f+ g aa a bb (λf) = λ f j § λf P t [a, b] aa
112 CA´ LCULO INTEGRAL j }} l |f −< g s l | y |g l©x b b f −< g [a, b] j
g § rrrrr rrrrr a a f P t [a, b] b f −< b a f a j
e § @ H @ H jfg P t [a, b]Schwarz rrrrr b fg rrrrr −< b 1 1 a 2 f2 b2 a g2 Desigualdad de a j
1 ©l Yx y z d 0 y l| s l | y g| ©l x f P t [a, b] l 7p o`)| ´8nDÒ 0± rVx w7'²!´©·gq Rx j l s j }l !§f8 |j |} [a, b] g g ¨ j 0| x l ) d¤ w {z − fH l)xw y 8 | x l |g0 } } x 0 | x ª£f%xt gV [P aP ,±x5kjjbtle
g
]l©[xa§hHu,áf2fbw ¤2]8|!x©llq0x x¥fu4 lhgqw ¨ %)
=l| Yxx yy41¤ lD0`tuj (z¤xf|)8w ¦g+ll llqgfs )lw%2e|P)V −g t ¤(l w©[f a)l|g−, 0bjgg]z}}}|f)j2%0m fVls(||x§ y)0−}h|l=wfyP s¤ xw l gw ©l þ± ql § x l ¤ w l xP ¥ v )7Ú¦Tê λ P 5 xly l | ls % d x P/ − 1 f(x) = f f 1 −< f −< s t§t w[ae| ,hb]}| ⇒7y lDu h )2¦gP ls t ©l[ax w, b y ] j } } s @ H @ H@ H b b bb 0 −< (λg − f)2 = λ2 g2 − 2λ fg + f2 , a a aay w
¦Dl u l x 2 |I)| y l l ©l xYy lw d0 z | lx l©u w | u l| l¦ l xl v | Dl u )£ λ w lDu j
V ¥ z y7©l x xDs8lD¨ Yx y l |D V | xYy 8| 7y l©x % x y ¦
x c § C y ) l©x ©¤ g w} l¤© c) <j < CQ j 0 I x ¤ 0 z | l 0 | y } | w l | y Dl u ) ¦g l 's § 1 t [a, b] g
g P gs's l |Ejercicio. y 7V¦I) ¤ w El x l©x 0 | y } | w l| f(x) −> 0 I) y § b V|e l©x f(x) = y xP [a, b] f=0 0 f [a, b] x I ) aTeorema fundamental del c´alculo. Regla de Barrow( T| yFC|g)l©x êTeorema. l fP t [a, b] sds§ x l F(x) = x I) ¨ © xP [a, b] ¡ Ë ÅÅË Ç Ãº f f(x) a f# # # (x) = j F l)x 0 l | y }z |x w l | 0[a| ,y b | ]w l| [a, b] sl | y |g ©l x l)vx l ª¦
) g¦ ll | 1 j } l©x§ f x0 P F x0 1 + (A 687 . 2x FV (x0) = f(x0)
3.3 TEOREMAS DEL CA´ LCULO INTEGRAL 113 ¨ p o`´8nDÒ 0± dr ²B)´ · q j w % V | u 82 x¦ −< M l | [a, b] f(x) x −(x − a) M −< f −< (x − a) M x ↓ a {¤z 0 −< x → a+ ↓ xll →|| laa+ F(x) −< 0 w lDu ©l x 0 | y } | w % V sR ll x l¥ y lF8| y, z P (a, b] y < zQ = rrrr z f rrrr −< z F(z) − F(y) f −< M(z − y) , w lDu l©xvw |}V 7 l l | yyl 0 | y y w 's §`l | I ) y ¤ w ) ©l x 0| y }| w s'l | l (a, b] j ¥$l F)2 x ¤ wl F+V (x0) = j 8 | )z } u 8 l | yls f(x0) h> } | F−V (x0) = ê f(x0) 0 @H F(x0 + h) − F(x0) − 1 x0 +h h f(x0) = h dx . x0 ¡ f(x) − f(x0)k lRt | ¥ y V |g s l)¦0x )l x 0| y }| w l | wlDxu 0 sesx w lx − < δ s s y 8 $¤ε > 0 S δ > 0 f ) < ε Q 0 x x0 <h<δ f(x) − f(x0 rrrr F(x0 + h) − F(x0) − f(x0) rrrr −< 1 x0+h f(x) − f(x0) dx < εh = ε. h h h x0 Cj 7o} n s yeªg
¦cul©evxnl clfi7al
s| ).g¦ [aj l, sb ] ©l x 0| y }| w l| s w g| 0 z | F(x) = x l©x5w e| § f f [a, b] [a, b] (g) a I ©l x 0 | y } | w l| s f [a, b] @H d g(x) j¡ Ë Å Å Ë Ç f# (2) Ã º dx a f(t) dt = f g(x)mÎ g V (x) . f(x) = ¨ p`o 8´ nDÒ ±0rd²B)´ · q j } l g(x) j se | l y t g }¤ ©) Dl u l u © l |eB f x3−4 x dt H(x) = f = F g(x)m F(y) = . a 2x 1 + t a Regla d| ey g|B al)rDx rs owb f (I). l f DV| y }| w l| § G w e| 2 g72 y ¦
l fl| [a, b] Q − l = G(b) G(a) [a, b] ¨ p o`´8Dn Ò 0± dr ²B´)· q a f|g©l0 x 8 y y ¦
l l § Dx {z s %V w |I 0| xl w l g| 0 w l©x s [a, b] l j c¥ F( x) = } x R7} G(x) f | %[© a , by] Q x P l a l F(x) = +C
114 CA´ LCULO INTEGRAL ) x = a l)xw y C = −G(a) Q w lDu b F(b) = f = G(b) − G(a) . aRegla dy e¦
B al rrfol w| l fy V P |et ©l Dx[as , b] §qx w % | u )2 x ¤ wl l0¨ Yx 7y lHw I| w |g0 z | | F(b) − F(a)F g7 2 (II). b bb¨)g7p }`o¤© ´88 nD| Ò ±0Vr 7 l²'´©· q j ¥c l [a, b] f= f(x) dx = dF w g¦ |e|4ylI )
8y }¤ 0s z | w w l l P =l a 8 ¤ ¤ [a, b] Q aa l{xg| 00 , 8x 1l,|t. .©. , xn}xw = F(b) − F(a) É ö ¼Xªº ÆDÀ º æXÐ nj n F(b) − F(a) = F(xj) − F(xj−1)m = f(ξj)(xj − xj−1) ,SC} E(l of7 ¤,nª
¦wPs)l!)e¦gc§l© l©ux xvfew lnl©|e|xc i}[a|axsyw,lD.b! u ]j)§ jg¦=u l1lj Vês,v vxV z l7VUl !xP wu8t w| [l|a¿s,ulb D]iusVn8x|etl 0eyggw rxlx a| σ zcl |j(i=fo´ ,1nP)pf oHrV2pa rtse(fs,b P ) −< σ(f, P) −< u, v x | bb uv V + u V v = u(b)v(b) − u(a)v(a).2j }|V y| j êzg| yadz l©e| Dx s s¿w l 7 al
)c¦ga l!m§ biDo| de l vaª
¦r iablue b l [au,:b[a] Q, bxl] → [αD ,| βy ]}| l)wYx y 7¤ l y 8 l | yl f | VRP t [a, b] β bj f(x) dx = f u(t)m u V (t) dt .¨ l p7`o 8´ αDn Ò 0± rV7i²¤©´ôç dq pj n a x w g| 0 }| ©l x u § s v wx Dl u | ¢ 0%V| hy ¤| 4w Dlx©us wlD u 4l Ù |)y7l©u 0 ©¦gj l© x s g = uv Q g [a, V = u V v + uv ÎV P t b] b g V = g(b) − g(a)j }a )¢ © sxl F(y) = y f Q ) g}} ))| j dê v sx`l y l | l ¤ wlFV (y) =)fs (y) ) l A ) l e| s y P [α, β] j αg V (t) = f u(t)m [at , Rs x l lD=u j uql (tÙ ))m 7 V j` f s lDu t P bg ] ¤©8| g(qt) F u V (t) bj b f u(t)m u V (t) dt = g V (t)dt = g(b) − g(a) aa jjβ = F u(b)m − F u(a)m = f(x) dx . α
3.3 TEOREMAS DEL CA´ LCULO INTEGRAL 115 Teoremas del valor m efdl©ix o0 p |ayr} a| w intl e| g[raa,lbe]ssgl | y |g ©l xvDl ¨ Yx y l [a, b] y ) ¤ w l (TVM1) Teorema. cP 1 b f = f(c)
¦x¨ l) p} V`oV ¦ b´8l©y nDx−lÒ ±0| dra¦l }{zs|²B)´}}a·|q y7ç lDu l)z x¨ xYs y 8 l©| x y ¦ls l 's ly
y 8l V ll |!7y l se©l x l y f7
'l |8X[a, bd]| k5s'xl l § x § 8f| 0l2| | 8 | M } [a, b] m m −< f(x) −< M b 1b c(§!u| Tl P) V¦gl8(maM¤ls xc,(lb1blx| )7Gl −Vg|[¤lag)0|wa,} ll©T}b))l}`e]Yxl <yso)4l lr8 |e)|j l©ymyauxl c¥ |g7fa).V©l< x©l ©lxYl0lMyvx ¨f l (xYl©xbyx l©l −w0cxg| a|0PYx )y}gy }[(|a|dxw©l,0 )xbu V=z]0|¢l y| 1|8I [y%)ma¤|©,qwwb<l]x7ygs Vxb§b¦Icl f)−g xg xu)la=w wx êt| l f|a(¨cl©f)x| 0w Dl <bu|gy g0yMgw!
¦x , z l| z s D | £ xRul £x¦ÇX½Æ Ë Ç }| y l 1 (d Ti| oyV|gMl g l©2 Dxl©))sxz ¤w T w ye}o2 r}e| mxy7Dl u au w .8l Xj| ê 7y cl xl5xwgl l }8 ! ) a a valor me- −< l f A§ l −> segundo teorema del P t [a, b] 72 0 l D l | 7y l l | [a, b] Q x l g 1 x6 dx bc I) h8 uz w | c P [a, b] . 0 1 + x2 fg = f(a) g 1xhXÇ ½Æ Ë Ç −< 7 3 aa 8 −< j á x f −> 0 § l 0 l | y7l s S c P [a, b] y ) ¤ wgl b b b 1 j ©l x z y e| )l x fg = f(b) g § 7y Dl u )¦g l sgx ly la| l 2 1 − x f | g }| c dx b cb I )h) u z w | c P [a, b] . 0 1 + x 3 fg = f(a) g + f(b) gÉ b û º Ë D§ ý Ð −< 4 `ll 7 ý ) 2 l ñ a Ó xï Yxl3yí wd0g| 0z| jdql ahÇ!©l ¿Yx 7ygw l ©l l©2l x wl |g y 0 c | 2 y )l ¤ x wl! lw ql w | l 0l y Yx)y} l8 Dy'lzz0| |¤l0| l¤ fw ql} ¦x 7VE80 yl | ylx¦ÇX½ Æ Ë Ç e| # » ºñ(687rrrrπA x x dx rrrr −< 2 | 1 l 4§ l 0 l 0 l | y7ll xl l ¤A g| 0 z | j Lxl e| 8 my| g|am d©l xDe§ s f −>`x 0 w | [ay },| bw ] Q g P l t [a, b] Q AMbe} l–x B
¦8onVn l)e!x t.lDB¨ y l 0 | x | [a, b] g a b m f(a) −< fg −< M f(a) . a
116 CA´ LCULO INTEGRAL¨ 7p `o ´8Dn Ò 0± rV7 ²'´©· Âq µp h å@v Ñtw iç j t g ¤ ©8| l v l ! s b = µ f(a) 0 | µP[m, M] Q ¥ V s %V x l x g 0 | y | w s § )g¤©8| j [a, b] fg 5¥a s 0l ¨ xYy ql w | c Py ) ¤ wl c a g µ=j }gw©l ul l0y w¨ª
¦I Yx y7q§l| u w 8l| 0ac l x 0 ¤l w| 7yl Hl fy 8xy ql) g¦ ¤ l wgzl | 0l Q l)0g }l ¤|©8yl| Q lc| y I|g) l© yx 5l ¤ 2j w |glH0 ©l xYz y7| lff7y (l xV ) l −¨ f (sbx)l©lx x u |w l|¤ P [a, b] bj j c f(x) − f(b)m g(x) dx = f(a) − f(b)m g(x) dx ; wDl u a a b bj c cb fg = f(b) g + f(a) − f(b)m g = f(a) g + f(b) g . aa a ac3lô§wu©l)zax|e.xysl8)z4wg0xl©dlx5Vkfx0}e©lfilx|l©lA%n)2lxÛg %i|}7$xcwPYxD7yie|x|l}owL7|n)}xD)lVIxell¦slHxw)|CsÛe7yl©l0l5lAx©lxz©lxgÛ xwClDV)z0z¥7¦l'
xIlVlsOBxwl¨lz|¤}N!}xl©xx08Ew}xxq|eÛ Sy¦g0|0lzlly} lxÛlG| |sgly7h
¤¤©l©0E8Dxxl}|s¦xwO|¤l0Dxl©w|sdMzqxzl}|l)lyux|¤l)E0´zu|lllDwlTxy 0wg)%xx)u)Rll©)lg|lqxxI8x8Cz|ell}llDxwA)Dxs}sVI0x|S¤l©s)luxxq|l§ 7y| l)wg¦
Vyzcd7x s¦
)w z)w|h
w }xy|ell0lwqx|l}|}VÚ|l©x| x¿7ywl©ll |||§lx£C´alculo de ´areas planas([
aal ,)by }t]()z I) )l ©l xRyxe c=y 8in atAo§ s}x l2i=m y bit a¨ d %wo%Vsp| w o e| r `l c uw rx v
¦¤a wgsyl ey=n(xey)x(xl)p)x l´ısw cl|eital s w l |gX0 VXz | sds 0§ | y x w l y l | x }| A = b rr y(x) rr dx .l | s l% d V }| y7l l l
¦h 8ag} } (s ay,(ba))s>l 0)z l l y(y x )y 8= x0l y {z l | lhjx 8 l| y7l ¤ xRx w D | )l x x1 < x2 x1 x2 b A = y(x) dx − y(x) dx + y(x) dx . a x1 x2
3.4 APLICACIONES GEOME´TRICAS 117(§0b |) y x tz l l yx y l x |y
8 [la A,y ¤b© }]8} ©l x y %V§ x wb¦
fx lq x Rlw %l w | dl 0 }¤ Vw| l l©x y =l yy21(x x)E| s yw |e=0 }yV2| (l©xxD)s }| y1 w x =a x = A = b rr y1(x) − y2(x) rr dx .(l¥ c|V)7 [}cDÚt ,z d| l ]y 8 y )l x ay 8 A } }l y d` %V w %w |e|` wl 2 ¦
x x¤ w=l x(y) sl©xvl w l|e ql Yw Vg|YD sz §| s 0 x | yl }| yw x y =c y = x(y) A = d rr x(y) rr dy . cE lDju e}rc| i©l cxRio sfl .)z 1l .–x l©¨ x I l ) y )z¦%
x 2πIy2)2+ D)=z34%¦ E| 2§ xV6x 7 π!y−2'
l 8 ª{z w } x2 + y2 −< 8 l | x2l©x.}–|e1 )z % lV5 s w z yl 7 s w 7
'} 0l 7y l l vx u )z ©leÛ u© zvx A| dl 0 y 4 {}z |l l £ x x y2 = 2 x y = x2 =2 3 l y x2 = 6 t (==z I Ilxy)!((ttR}))2 ec yi n fxt`ol s Dw l8i| mD lit| al)l dx l oI Xs) V pX8o%rlDzVy c7 u¤ ©w r|QvxHa) sl50 ew n|ex }p agw ral
¦m ´e5kγtDl¦sry !§i8 c}xa w s% 8| l | 7y ls x l 8| u 8 x ¤ wl(a) x l y(t) x | l h0 x l s y s x(t) • [t0, t1 ] (1) j [t0, t1 ]m • x V (t) > 0 T t P ] % d l| y y •¤ ©g| 8y (l©©l txDx )sBxl> =0)z T t P [§}t02 ,ty 1 x(t1) l)xl © D l w
¦ γ Bs l ll § ¤ x lyx
x= l A XV X x(t0) t1 A = y(t) x V (t) dt . t0 t z l }} y % V¢) 0 x w l x l 8 | w l x = x(t) xl w d 0} | ©l x(I b))8 0lz y 7 ¤ © xR lw |eu
¦ γ Bs §4x w % | u 8 x ¤ y = y(t) | h0 xl s j • lx l (1) [t0, t1 ]m x(t) y(t) j j • x(t0), y(t0)m = x(t1), y(t1)m • x V (t)2 + y V (t)2 =W 0 T t P [t0, t1 ]
118 CA´ LCULO INTEGRALx¤ lwg|| ¨lyy ©lg| x¨ ©l%8xD|s xyl y ¦
)Vz l©qx Vs 7s8 )lHl x| yl D d 7 Al l |gl l 7 }| 7y l
¦%8V l © D tl uw
¦w
©l x γ l l0 |V [7 t 0 , lt1 ]| s ¥ t [t0, t1 ] t1 t1 A = − y(t) x V (t) dt = x(t) y V (t) dt t0 t0 1 t1 j = x(t) y V (t) − y(t) x V (t)m dt . 2 t0Ex l lj el |grcD ¤ilcilo|ls.xw w 1|E.g– {z8 | w }cs iuscl o2w i)¤d)| e u l©x l© ¤xqly l w w e| {ªzq
uw{}z |}¤ 2lwcl wgy ©ll )yÚ8B x w ¨| )l wx }| Ú8y u© Ûs ! 8 | l yl q| 0lz| w |x l £ } | )z l 2D h l | l| yl ¤2 D}D l x = a(t − xy0 l7 |xg tt )l¨) ( a)z >l t§ l l {z X w V X su l l| § s©l x 0) l!x wlÞ | y l l x V = ß 0 x = 2π a2 sl©x y =l 0a (s1l− l a 3π ©z l | y l V R xYy 7 l j
x2/3 + y2/3 = a2/3 l z u Ü l©x 3πa2/82.–%}l©w©jzTp))|)V0x l¨p¤y7y70 l©l©lq8³(xx|%I)´w88I¬w8|e|e©rIc¤|)|±)oxYyDxxyoRs's8x r(|g©xed|xDl,c)lel¤yixl2nn¨¦)Û a7tVO7od7y) lPwhs|auu|swl%l¤y=li|| dwm|p§l orPilrwltl5aa|>==W xgryd lel0oO08sPsd| sv0lp
#§VllzlVowv|fl 7lrO|| !el lXcw¤|888zuy|}|w|%yr u|lEv wlyx a|¤}Pyzsywx%lO
hl)ed0y
Bn5tX8jV³2Opfl w ´)owP|¬l x´l|{|ezya
h=8xrB§e)xYxy)wsθ lxw%x ! |e%Pl¤|| w l[7y)4lxvl¨0ll ,l©¤2l02xvw Bl0π(lyV%)rl l,l7s eθ}l¤y%)I|}w|e©l§fl}2xO xlX§lxx x = r 0 x θ ; y = xl | θ. rA%}tR Vw wf¥x7rg| |!Vq)0¦
|yu)yl©z´}lı|xVuVm`xl
w%©ll0|e8%%¨xRVl}dzwV2g7e|g|¤ l0¤{Izs0¢0c θ%yzx¤l|wPwxg|rlrl[(Dα¤{xzθ=l,z)¤0β| xVl)wr]llx(2lrsθ0lyl©w=})g|xsfI||xRD ¨yaθ}wg|wθx|w=w
¦j l
¦avyαl2 | js>wre [θ(8α¤θ|805=,)|e β,sθ]βθmIγhs l§E)VPx©l lxY©Izr|yHl θVszl ©lhPDxAl |gÛg05}|Bl+lVlsIfs !γyI )l7l %hx0I|)5zdVw|wqul©|e
¦xw©lxx}w ©lI eq|%sl}|}pÛg|¤)i¨B|7y rlyla)l2l}|xu
¦l{zyw|8 ldI|ll l|e ÷ü}É ¼XÁÅ¿ÀÅ ËËÊÇÇXBÇ Ë¼ ÌDËÌ0B¼º Ì©ËÇ )À¼$Ë ¼i0Ì ÁÃSºÀн αrÃX¼ güi¼ ú¤ÃË½Ê À&Ç V üÁºSÅǽ Ï β 1 r2α 2 A = 1 α ¡ r(θ)k 2 dθ . 2
3.4 APLICACIONES GEOME´TRICAS 119l¿ gw )zl©x l xlw |e)7 I )¨ }y! ¤ 0 z%| VP w=|e{αx w=! w 0 ,lsw)z1 l,..Rx . ,l wx nl =y V β©l }x Dªl % w | yl ©l
x 80} [α ,β] s © A n σ(P) = 1 ¡ r(θj)k 2(wj − wj−1 ) , 2}| | 7y |Dll©u x l ) θg¦ zj xl x ¤lul w| ycl jl =w¨d 1|e} !| y70lx w ¦
! 8 } x l l ¤ w l l ¨ )|l ||4l0V x w ©l g¦x %} | 7y |l ¦
l8| y l [wj¤−1 ,w w|e0j]V z Is| §E21©lrYx2y ¤ gwσl5(P©l )x [α, β] )z l l g| l 7 gs l V l7 Ú©w d | 0 y z |El©©x)j ea7y rl©2cx i8c|eio . j % V R¤ mlejmw |Inhiscwat¦
ah d0e¢| BVe7r!no u llli ¥ 8 x2 + y2m 2 = a2 8 j x2 − y2Longitud de arcos de curva) q 0 }P |(= Iullv){7y lDawgCB¨ vt=yu lrw xvl 0
a ,q xxey1nj}{z a|=,l.c,h.yay.(r(¤ a,txgwxe))lmns¦i§a=n| j bba ,sHl}yx©l (w x5b% )w m |e| xq l I ¦
l ©2 y ¤x0) ¤ z w|7 l ¨ }l ![wa) g|,sb0 e] z¤s| gw hyx } Pg¦ | l u(17y l)wg| j[7y alL,s b%]Vml n7 ¡ y(xj) − y(xj−1)k 2 + (xj − xj−1)2 . σ(P) =t g }}))| l jj= 1¥ } l l g| 0 8 l t| © x w ¦g} | yl ¦
8} s ©l x w y n7 σ(P) = ¡ y V (ξj)k 2(xj − xj−1)2 + (xj − xj−1)2 j=1 n7 = 1 + ¡ y V (ξj)k 2 (xj − xj−1) , | l j=1 ¤xjw)l` l©x l l©Yx y ©l 4x w xw ! l l ¨8 | Â| I)Q w | £0 q z | 7 ξj P 7 7y Dl u ) g¦ l l | |e v | y l
8 } [a, b] d wlDu x l`y l | l (xj−1, } | l dz w1+ y V (x)k 2 ¡ b7 1 + ¡ y V (x)k 2 dx . L= a}q| u x (H7y
¦Igw 8I¨|¨})d 8Cl©l| vxIu)z )}r vl uD a% I e© ) nl u 8zwp a0l rlwy a7| m
y d t´0e0γtVzr§:| icjs¦txa1x (stl©x)x ,(ty)(tl )ym (lt|)y x l 2| } xw |g Dw | y| )l xx 0 V(1)l©j x[%t0,| t 1 l]m| syl)¤x L = t1 7 t0 ¡ x(t)k 2 + ¡ y(t)k 2 dt .
120 CA´ LCULO INTEGRALq} x( )IzH |I}Iu )w | Cu x y7uwgαrv§ a lβeBns) p0w o8|lal r ers w
r j= r(θ) l s l©| x y l } x w | y x DV l©x %| l | y©l x [α, β]m P (1) β7 ¡ r(θ)k 2 + ¡ r V (θ)k 2 dθ . L= α s xvl w 8 D | l)x w l©Dx s I) θP [ α, β] x(θ) = r(θ) D x θ , y(θ) = xl | θ, r(θ) w(e|IIu)I8 ) | y78 l 7 }l0V y)7})Ú d 0 z | l 2 w
¦2 h2¤ w l wl) l )g } ¤© ) x l Vz 7 w l© 8 x| EI 8)zj¤e 8rw c} il0zcsy i7%o¤©V. x l `§ l lh} V4| |g %u}E 7y wg0© |l©x ¤2lt w 0 e| w D |ª l w l| |g lD ¤ l |g0 l } Rs$l l©|x 2© )πR7y l©x5 e8d|e Dxl $s l l | x2 + y2 = R2Volu´menes de revolucio´n(}ll |a| 7y )Vu ll l (I) Por discos l w l %ll wy| ¤|e©ux 88 ¤!©l lx ¦
x©lx u ¤ =wgz0k|l azty|¢(§ 0x})}xh )l =gxy l0w by|e` `l%|dw e|y V0¦
7`Vg|z |r2w w 08
l || y }| w l| l s 8
w yl l = xyz (}l©x x ) El|¦
8nX V cX [aa sr,t§bew ]s8 `i| ax Hn{ al |ts x.y ¥ x l XV X b Rx=| y lπl %|
¦©al yw¡zsy¤ 0 g( xlz )|| wgk ©l 2xPxRdg¦ =xll VX . y l¦s ¤ whl ¤ ¥ `
¦ w l| l©l x l $ {z 2y 7y l l | s lw ) | ¨sd l 7 x= a , x1 , . . . , xn = [a, b]| VwRx 7 l©¨xxw !x ul ll l| b} 0 {D x}0} | n π ¡ y(ξj)k 2 (xj − xj−1) j=1(x}¤ |bwgw7y =)|)ll |l©E
¦lxx 8R(nξ}t|j)vyps[PlDt auy0w [r,x7a)t=
jg¦−m1v 1]l¤y´e,s w(txl xtrl|j)il ]}sc|[ a2a0 ,s b.y|l R]a7y= (tl©z txYx)yDl V(uz tD7x 0z sx)|| w yt§| xw ¨ x l v l !8 | 2| I) 5c w g| D z | s ¤}|Ew
'¤ wl |l4§ l x (t)w sw| 0l©%x
¦|d wl l w ªld
¦#|0 }0 E|©lDx % | ©yl }5 |8 w8 | π y2 s b = x(t1) 0lzy yl l 77|¤}©V l x VX t1 2 x(t)dt . = π t0 y(t)k ¡
3.4 APLICACIONES GEOME´TRICAS 121%l ©8z} l© xw ¤2 I w)l 8¦
w | 0l)lz
hyxY7y ¤zw© l l Û0| |x 2 §l)|¢ ¥%xql ¤)¥ wd ©l©l xDl s 00 |t| r¤u( θ¥ )Vz 7 l w7
¦h©g¦8 | l y l 07} Vf| s0I | yx 8| | w l s x x z } ©l( xIr|lI|) u Pl |2or x t! u qbox ws7y w8 |d 0q z w|¤¤ gwlDu!l lzr|| t l 8| y7w l e|7 }V 2
w) lI )y y 0 h g j 0l y $s l l |
¦yV w7 | hl |8 l l l YV Y b VY = 2π x y(x) dx .¿wg©l xDs ywgz¤0 lwgz ||x g¦ l al | yl¦s ¤ ¥ ¨¦
w l E| ¦
¨ xll l ¿ }{z 2 y y7l l| s lw 8 | `%s l! | Vx7 !x w lx hl % h
© l©P5x =l {Þxy 0w %¦= xaß , x1 , . . . ¨ , xn = b} [a, b] 0 n π j x2j − x2j−1mR y(ξj) = n 2π ξj y(ξj) (xj − xj−1) , j=1 j=1 | l s ¤ξwj l =l©x x} j| −y71Dl 2u +) x¦gj l l l 7 l©z Yx y xx | x w ! xh l l ¨ ) |g|rI ) t ¤¢ w g| 0 z | | [a, b]2πxyb2E.2j–ej rbc −i<c¦
ia o ws. l 1l .| y d ¦
w l | l l)x l 0 l l w } Rz | ©l x l 4 π{z R 3w } V 7 lg| 2to8rol ll | u l | )l x 5 %V ¦
0 | 3g (x − a)2 + y2 −< YV Y 2π2ab2yA2r¨y¦Igx)´lπI}l(§w!r8xx)Vs)e|eg|Rl©)u)¦aRx©ytHlt¦g0+2ys|xlllIlr7|d2|st|) π¦
elDxqlg)ljsy©ryYx7s¤g¦ª{ªzyhs}uwwgÚls¦xl¤plsxw§2l gRlw0}qeg¦Vlll©rx¦Rx`|l!wxfixd|y©|wzπcDl!lillrxv|l©lel|!g|xl¥7syy)Ûgll}¤¥d|0s7áÂwVy}we%llHl}xcd}xlr8rexIl g`)vxl)z§wox88llll!yRl7||zRu}wsl¤lc|xv§|I0i7y5lo´y7}clll|nlEol©w| 7y8Yxln§l)yzl©|eo
¦xllsluHl8l
hd©lx}Vwyge|{zV|u}wl[¤ra©Dycx8e0l8,oyzv|¤bln|78 ow]}oxÚw5ll©lshlVuxR|ydy¦x)llcuwel|il%ll|o´t|reln
¦l0e|ozvwr|to|ewwerzl|qlmuxuu} n})lcza%|cgil|lVo´xal©duR§xndel7ySo)
¦}gwTX|slw|yhwg|ulDl)lwau00 7y§sl7Vwgezzz©lV}|||sxx£s n õ y(xj−1) + y(xj) 7 σ(P) = 2π 2ö ¡ y(xj) − y(xj−1)k 2 + (xj − xj−1)2 , j=1
122 CA´ LCULO INTEGRAL§f8j 0 ¥| x fl I)) qw I|qIw )|g 0y ¤0z | z |y(Px)=gs x{lxjy}njl=| 0l l }| y7l ¦
) } [a,b] t g} ¤ © 8| j c¥ n7 σ(P) = 2π y(ηj) 1 + ¡ y V (ξj)k 2 (xj − xj−1) , | l s j=1 l)xYy x 2) w ' ¨ s l©z ux 4¡x© w %
Vl R Ú! )7x¨w }!¨ © ¦g l jBliss ηlj, ξ jxYy P l |W[xj−1 , xjô]3 Q ïj ñ teorema de 3 n7 σ(P) = 2π y(ξj) 1 + ¡ y V (ξj)k 2 (xj − xj−1) , j=1l©¤ xgw lv©l ¿x w |e d xw w l©¨u y7 l l lv2 l ! x 8q| | VzI7 ) w5 c w e| 0 Vz | 2π y c 1 + yV 2s ¤ wlvl)x | y Dl u )g¦ l [a, b] | b7 1 + ¡ y V (x)k 2 dx . SX = 2π y(x) au Vz 7 w w 8 | )lhDx s h8| w8z
¦u ul l| | l y ¦l s y 7 }Ú l ¤ x w l Ûg0 l
l | u l 4| I) ) l0z y 7 } ) ©x s 8 t1 7 x(t)k 2 + ¡ y(t)k 2 dt . =4§á sx l SX = 2π y(t) ¡ x7lq} d 8 l |t%© l©xDs r(θ) sexl I x qI) 8 Dlz y 7¤© Dx s r Ûge|© 8e ¤ © lu | ¤7yulIs Vzx t7 0 ¤ w h w 8
| y lE jel }r c ixcl ioxs2. 1. xw l Ûe0 l l l } x l l l
¦ w 0 z | l | ul | 2 w 8 | a2 j a > b u l | y V 7| ! 8 l l s l©x + y2 = 1 b2 XV X S = 2πb b + a2 ) x l | p c , c aq | l · x cw =l Ûga0 2l − l b 2x l l
¦ w y 0 z | l | u l | l 0 % d u 7 l cardioide a(1 + D x θ) Xj | z } l| V 7| !8 l % ) 's l)x 32 πa22. l a > 0 r= 53¤ gw.xl50 l x¦g yIxlN| qy fT |E
¥ ldGÚ©l0xY yRjz lIdAf0
l xLycl ERw 8S8z! |l |IMll s'| § }Py| 8y7Rzll©x
O 8© s} Pl©x x IxI%s Aw e|x ¦gSg¦ lilnD| t IeEl ggÛ| r|Ra ll©IximEIdf0pM lry t|o Ap)i Nasx 4 xRN¤l |.x
3.5 INTEGRALES IMPROPIAS DE RIEMANN 123xw l l) }l| y7lDu ©l )x wg©l l©x Yx y lH y 8 ÚD e|l $) g¦ | lyl§7
wz8y }}'8 l Þ } |z y7 Dl u ß sd lz g¦| es l l© xHg l ©l x l s
¦¤ ) wul R l luy ªx
lDu w | 8 D 0 ¦ b cb f = f + f.}w h | l75k|V yg l d |Dx sg llg¦ v¤ l wwl¢|
xy s %V l ls5hal g| } l s a =x 5 4lc§ 0l ¨ xYly ª¨ z x x!f x | u w l©l Yx |yy7Qz ©l x8 D }| yy ©l u )l©l |x l 7 Ûgc© )P x 5 l 5 I© +∞ d1 c d2 +∞ f = f + f + f + f,}x h l | 7 HV −g∞du| 1x}ê< cw −∞ l) ¤¦gw yl d1 x c d2 l x y I x$ l } | y©l u ) ©l x 8< xdl 2
I¦)7 }xY y x w y ¿ l Ûg| ¤0 z | D7y le ¦
p8r¨ imd 0e ry a e sp led c}i|ey7ê l d f s +∞ fd0 0 |z |d P 5 § f 8D y l| y x w g¦ } |
¦−) ∞} l } d| 7y lDu(l al ,©l (bxYa7yD]k5,wgs 5lbe ]}¥ls 7legu ¥ lud|0nsl d§y 8af we%g|slp¤ | we yvlc{z¨il)e xY}êy} qxawb¤ y¦gwf)}cl|0 xy7xl l| [¦
a) ,} b]880D y y § l f[ag| ,5b8)0 s y l | [ a
¦), b )l l| l©x l y )l dzx | y7l s ¤z `x }}|| w l l l ¤00 l s l u wRl y xl | l 7yy7llDu ©lz x8y7ld Vzl7 ¤0 u7} ¤ y 8 © l y % +∞ f s 2 ¤ wl ê a d +∞ D| l © 8 ¦e f(x) dx = f(−t) dt x = −t ; −∞ −d b b− 0 | l ) )q g¦ } f(x) dx = f(a + b − t) dt x = a+b−t; a+ a 0 | l ©8 ¦g} b− +∞ õ a + bt b − a x−a f(x) dx = f 1 + t ö (1 + t)2 dt t = b−x . a0Definiciones T s x l wl §f P t [a, T] T T > a S ¤{z f } l ¤ integral impropiade primera especie +∞ ©l x T→+∞ a 's §hs % V l Û |¤0 z | s convergente f a +∞ {¤z T f= f. a T →+∞ a
124 CA´ LCULO INTEGRAL t | )z } u 8 l | 7y Ql Xj xw I g| l | ¥ V f¤ w l {¤z svx f(x) = ∞ f P t [a,t] x→b−§T t P (a, b) S ¤{z t f s¿x l ¤ l ¤ w l ¤ integral impropia de segunda t→b− a s'¦§ sespecie b l©x % d l Ûg|¤ 0 z | s f convergente a b {¤z t f= f.e§x©ld x0nx 7l©y5 uVg¦á was¦s| xlDl[|Va 7y2,ul b©ll| x|t]→wlIle|bDz8 5− l¦sxs wwah¨|eRt ¤ ©xwiÛg{zncls |tx%eycl gV ©lrxall l }lªi|¦m7yl lDgpuf}r Po8s p)ltx ix a} }Bf ©l x(l© 5xc7V)ogsn| jyvfl©ex ulro00 g©cg¦eh| an
llslmtelue| lnw| ty7y8e©l| x$irn tl }xe|l g7y7 lr}agw ¦
bl©l80lel +∞ {}z b {}z c ¤{z b f= f= f+ f,}0ë hl 2|ÛI|{c³dl −´e )∞¤xDu ¦gX{z ê| y 20 v© 0a7 }labh|o→→s
rl+− pw ∞∞u )rl |i| naycl ipxlDl a¨ l Yx ¤ayd 8→le|w−dC∞}i vax euar }{czgheyn7y ©ltbx2e→l +Dl∞l y c ll ¥ |I4} | y7Dl u ) } | y lDu 8 ©l x } h 7Vg xqxl x ©0 w |e f P t }' (5 ) : c¥ +∞ ¤{z T f= f, T →+∞ −T −∞ H ) w |e f P t } B {[a, c) n (c, b]} : 5¥ c−ε b @b f. f+ }{z f = a ε→0 a c+ε !l y l `l yl l 7}Vx l©u xw 0 l | |hy7
l u©l xlwgs ly y l©x xc xwcw e|¥ lD}|¨ 7y lDu xY8yl }§thl©x 7 V ug w8 $ 8 `l w
¦)| }V l x xvy % x 8 | | l | |gê l } | 7y lDu 8X l 7 l l | w g| 0 R l {z 7 '0 l©x 8 x s w l©x %V l l h g} sÃc¥ +∞ x=0§ c¥ u x § b dx −∞ = −a x j b a m a>0 b>0Ejemplos y ejercicios p > 1 `§ l©Rx
l ul | 7y lhj x x ∞ 11. 1 +∞ p −< 1 1 xp dx = p − 12. 11 dx = 1 x p < 1 §l©xv ª
l ul | 7y lj +∞ x p −> 1 0 xp 1−p I ) ∞
l ul +∞ y p dwDl u 0 1 xp dx
3.5 INTEGRALES IMPROPIAS DE RIEMANN 1253. ∞ 1 x 's §
l u lx a −< 0 a e−ax dx = a>0 0 t s w l©u 1 } u x dx = x } u } ux4. ¡ − xk 1 = t − 1 − t t t 1 } u x dx = {¤z u(t − 1 − t t) = −1 . 0 t→0+ © 0 s ∞ ∞ ∞5. n Pr xne−xdx = n xn−1e−xdx ¢¢ = n! e−xdx = n! k x wy 2 ¤ l0¨ 0 xY7y l |g0 l 4 } | y70Dl u 8}h7 V g ∞ 0 Q 7VI¦ ) h ¤ wl6. x dx ∞ 0 (1 + x2)p e−² xdx = 2 0 f w 0 |h
l w ul | yl |q}hg}¤© q¤ wgl [x0 →{}z, ∞∞ )f( x) = 0 g| 0 | y ) w `| 0 | y l l h£ ∞ I| g| 0 z |4| | Dl u y ¦
l|7g.}20a|Criterio de convergencia de Cauchy. Criterios de comparacio´n§ |E}`¤ wul x uVgw l s b f x l z w e| h} | 7y lDu 8 } h 7V g s 0 | −∞ < a < b −< ∞ f P t }' [a, b) aCriterio de Cauchy. v}| y7lDu 8 b ©l x 0|B
l ul | y l ⇔T S t(ε) P [a, b) f ε>0y ) ¤ gw lx s l| y |g l©x arrrr t2 f rrrr < ε t < t1 < t2 < b ¨ p `o ´8Dn Ò ±0dr ²B´)· q w l©x } ) ¨ )| t1 sIl ©l x w y x hl ©l w hl l ¤!0| £ ¤ 0 z | j l ¥h§ I) u ¤ wl 0l ¨ t {¤z w y )' ¤ wl x F x(yt) =l d {}za f 7y l Fy ( t|g) ê 8 ∞ sdl |t→b− l©vx ¤ T S δ> 0 07 y70l 7} xbl |−δ < t1 < 2nπ xl |F(t1 x t2 < b ε>0 H} | ylDu
l nπ x ) − F(t2) < ε x id ll x l d xw h¥ § u ls w©l x V l l g } s x 1 } hg } ¤© w l | xlx y dx−> π xvx uw l | y7©l x 7 y7l 7 } xRx l l Û l l |¢ integrandos de signo constante l Proposicio´n. § }B)) } l | y l }| 7y Dl u )¦g ll | [a, b) b f 0h|
l ul ⇐⇒ f −> 0 S K > 0 y 8R¤ wl F(x) = x [a, b) j v ¤¢ }| y7lDua 8 v |s0 |h
l ul s f<KT x P
l ul s'§4xl xwl ll)ax 7 ¦g b f = +∞ b +∞ a
126 CA´ LCULO INTEGRAL¨ 7p `o l´80Dn Ò l0± 0rV7l ²'|´©·y7q l ¿ ¿ á wl©l x | y0 |g|¨ l© ©x s¥ z yl)x x cl xl s w g| 0 z | ©l x | z y e| | f −> 0 F(x) {}z xw F(x) = F(x) : x P [a, b) ,§ l0¨ xYx →7y lb©l−xY7y l }{z 2 7y l ⇐⇒ F l©Yx yhz d 0 y x w l 7 }V7 l | y7l § l 8 | l | y l I| y)lD u 8) g¦ Hu ©lzw |cx lc| ö Ë º À©¤úá¼ Ç Ë ÅCx w |r%yit|e|grl i©l oDx ¤ s wdl e S cKom> p0ay r8 a%c¤ iwo´ln0. f, g −>g(0x)} B T )x) }P P [a, b) i¼ à ü ½ ¤À 1∞¼ÈÇ D X¼ ©À xxú¤¼5d+x 1 −< f(x) K [c, b) [a, b) −< b D |h
l ul | 7y l =⇒ b 0 |B
l ul | y l g f aa[¨ al p7,`ob )8´ ¥Dnx Òz±0Vrz 7y²')l ´©·xlq x V l l7 l lx l7`y y7 ll0|7}lh|
l l u l |g Dw ¤ ¥B§¦ sl ¤ h 0x }B||
7y lDl u ul8e| l©0x l l ¤ }x| y7¦
Dl u) } 8 l©xRl | l | | l 7y}|l [c, b) tt b f −< K g −< K g T t P [c, b) , cc a w lDu s b < +∞ =⇒ lD¨ Yx yl b f s © g } ¤© 8 | 2¤q7 V % x }D z E| 8| y7l 7 }V) g a c l 8 | s } ' © 8} l | y l }| y l £ ö Ë º À©úh¼ Ç Ë Å l i¼ à ü ½¤À 1∞¼ÈÇ DX¼ ©À xxú¤¼5d−x 1Cu r) ig¦ tel©rxviol | de cbo)mQ x pw %ar a| cl 5io´¤ nw l po r{¤z l´ımite. = f −> 0 g > 0 [a, f(x) x→b− g(x) l ul s l ul y7l u l | | y l ¢V b f 0|h
l ul | y l ⇐⇒ b g 0 h|
y7l B l>0 a 0 B|
| =⇒ a 0h|
l s b g b f l=0 a aTE}x¨ |lxjy7p7eylD`o1∞rPu l ´8c | [Dn)1iclcÒe¦g,+±0i1gboVrfl/(7x(s)xxx²'x.2sg´©)·)q§kd§¨−<x)xx C;Vgz }w}w¤Ty1©∞8 x8x|5| gPxh lx [l©|02cS xl,xx$h|}b→|
8¤{)zdyl|bl©x7y−uul;0 l7gf©|g} ((g¦V1∞x0x )l) H1t7> 0y7l wl sdxl hl¦
d¨ 0¤ w h l 7yIIl |)}{z l d 0y 0lz |<©l x jC l1 7 x −<
s f(x) s −<l f| C7yl©2lx 07)} | glx (l©x¤8x) Rx x uVw l | y l)x }| y©l u ) ©l x } h 7Ve ¤ x ê xõ 1 2 dx ∞ dx dt, ; ; | } |t ö 1 x 1 (1 + x) ; } |∞ dx 1 dx ∞ ∞ x)p ·; 2 ; cosx xp−1 e−x dx . 0 (1 + x) 1 − x2 ·; x( 0 1 − x2 0
3.5 INTEGRALES IMPROPIAS DE RIEMANN 127Las funciones Gamma y Beta de EulerD§ ue¤fiwgnl icx il o´yn .l | l v| y lDu 8 B } 7Vg +∞ 0 |B
l u l x §ux z x s ê xp−1 e−x dx p>0 0 }{z xp−1e−x = 1, § {¤z xp−1 e−x = 0 T s. xw →l0 +l gÛ | xlps −I 1) pP (0, +∞)xs→ +q∞ w 2 ¤ g| 0 xz |s +∞ Γ (p) = xp−1e−xdx , ¤ w l xl D V|gB l 00 funcio´n Gamma de Euler¢VPropiedades. p > 0 j | y7lDu ) v IV vI) yl)Dx s xp = u b Γ (p + 1) = pΓ (p) T B Γ(n + 1) = n! I © 0 n = 0, 1, . . . Γ P (s ∞I))(5 + ) s$Q§ x !l y l| l Γ (n)(p) = } u∞ x)ndx I) 4 © n p> xp−1e−x( Pr y 0 0 ê {¤z np n! . Fo´rmula de Gauss Γ (p) =y Vz 7w w w Û y g|g } } ) %y V
R Iy )0 5}|cy7Dl uw |gn8 0→ ∞z `| p~ 7(V8pg + ¨B1 ) ¥¢l )¢8| (z p)+I©n l) 0l f ê y ) e|| 5y l g| 0 zc| l 5} h%V £ p, q > õ +∞ õ +∞ Γ (p)Γ (q) = xp−1e−xdx yq−1e−ydy 0 ö0 ö = +∞ õ +∞ xp−1 yq−1e−(x+y)dy dx ö 00 x+y=u = +∞ õ +∞ dx xp−1 (u − x)q−1e−udu ö 0x Fubini = +∞ õ u e−u xp−1(u − x)q−1dx du 0@ H0 ö +∞ 1 x = ut = e−u du up−1tp−1(1 − t)q−1uq−1 u dt 00 @ H õ +∞ 1 = up+q−1e−udu tp−1(1 − t)q−1dt Hö 0 0@ 1 = Γ (p + q) tp−1(1 − t)q−1dt . 0
128 CA´ LCULO INTEGRALDefinicio´n. }| y7lDu 8$ 7 V g 1 0 |h
l uul x §¢x z } x xp−1(1 − x)q−1dx § q > 0 § u ¤ gw lxly l | lê 0p>0 ¤{z §xp−1(1 − x)q−1 ¤{z xp−1(1 − x)q−1 xp−1 = 1, x→1− (1 − x)q−1 = 1. x→0+ 2 ¤ w l l Ûg| l s I ) p,q P 5 + s q w g| 0 z | 1 B(p, q) = xp−1(1 − x)q−1dx ,¤ gw l x l D |B l 0 funcio´n Beta de Euler 0 Propiedades. B(q, p) j )) q g¦ } y = 1 − x ¢V B(p, q) = B y x V 7¨ Rx l u w |g0 z | Ùl0y j ©8 ¦g} x x = 0 x s2 θ x = y/(1 + y) ê 0 x x l |π 2q−1 θ dθ 2 B(p, q) = 2 2p−1 θ 0 = ∞ xp−1 = 1 xp−1 + xq−1 0 (1 + x)p+q dx 0 (1 + x)p+q dx . j§ B(p, q) = Γ(p)Γ(q) ¥ q¤ w©l l Yx y 0 Γ (p + q) Γ j 1 m · πQ ∞ e−x2dx = · π 2 = −∞ ¿ w l©x %Vu ¢8 | yl 7 V s pΓj 1 2 j 1 1 π/2 y | ylDu 8 ©l x Dx {z ê 2 2 2 m q = B , m = 2 dθ = π 0 ∞ e−x2 dx ∞ õ 1 =2 e−x2 dx = Γ 2ö , 0 −|∞l ©8q ¦g} 0 x x2 = t B© Γ(p)Γ(1 − p) = x l | π 0 < p < 1 (pπ) 'ä êFo´rmula de duplicacio´n para la funcio´n Gamma 22p−1 õ1 Γ (2p) = · Γ (p)Γ p + . π 2ö
3.5 INTEGRALES IMPROPIAS DE RIEMANN 129¿ w)l x s§hsj 2 0 #| fV 7! y 7 u | 0lz y 7 ¤© l f w g| 0 z |Ù 0l y s Γ(2p) = Γ (p)m B(p,p) xl | x l |π/2 πB(p, p) = 22−2p ( 2θ)2p−1dθ = 21−2p ( t)2p−1dt x l |0 0 π/2 = 22−2p ( t)2p−1dt 0 Γ j 1 m Γ (p) Γ 2 = 21−2pB õ 1 , p = 21−2p j . 2ö p + 1 m 2Ejercicios. 5 + Û Y sV¢ © ν P ∞ xνe−pxdx = 0 Γ (ν + 1) T p>0 pν+1B 1 õ } u 1 n dx = n! I ) n Pr 0 xö 5 8} w © 5 x | ylDu 8 ©l x In = ∞ tne−t2/2 dt I) n Pr −∞ ∞ e−xn dxB© dce 7) 0X² }fÒ ç) l )z l ` } | y l 7 } d 8 dz
¦8 } jy2(1 + x2) = 1 − x2 ¤¼ ñU2Ç1 Í 0ó 3 ï s ´³ ç |e l)x w ©l xYy l©x 1ä'dce ) xDl} }{z |)l©yxYy yul Q w )¥z 8¦
l ) ll |l jj | eyBV¦
l 7 ¤|41w!,c21ilsmx|ow−id Blex© {}z | 3 , 2 m y 4 j 0l §`u x7w a%>V dx yze} y DB io cl lel s¦
y 2w (0a z−| xu )l |=l x 3 ¢Dà¡ã'BÜ dc e y0l)¨}xDl2E{}zg()|| 2}1uy| ©lw+2xy7xy l0gw¦
lxz¨4x|)q V)jXzyz=gÛ¤| l3|elw 7128vlV−−l l} }}lwlx|}ex4|©l3mlYxyey=ywhn88g| ||i%10s y7dclw zl§a7|I||}tVY`y¤a ¹gllshx d%©lDÎ yue
¦¨)Ç|83|Bz}|ñVuVw el'U rd|v
'Γn0y7eÇ©lojryx(31usaim¢le2l hir−sa¢c(exx8d22e)) +xyM! 2y a2=l)l G2|x)=4zaxkelgw at2xja2sk(n x−>a l2x1A−8| gwy§s n|2Exey)wgs¤ xxi¢V¢ 5 8 } w © ∞ j 18−X e−t m stq−1dt I©0 } x
¦8}d l©Rx l q¤ wl¥ d l 4| 0|h
l £ ul | y7l ¤q } | 0y Dl u
130 CA´ LCULO INTEGRALIntegrandos de signo variableDefiniciones. l f P t }B [a, b) Q xl¨ ¤ l ¤ w l ` } | y7lDu 8 H 7V g b l©x fabsolutamente convergente w 8| ¤ b h©l x D V|B
l ul | y l a f w 8 | b fcl©ox n0ve|hr
gl e nu tl |ey ls l b a es x l ¤ l ¤ w l b l©x f con- a = +∞ adicionalmente f aProposicio´n. b ) ¦ x w y 8 l | y7l 0 |B
l ul | y l =⇒ b l©x D h|
l u l | 7y l f p7o`´8nDÒ 0± Vr 7 '² ´©· q f yl l w ¥B¦§ s sal l g|5 )l 7x [a, b) y 8R ¤ w l4x ¨ < t1 < t2 < V | y T ε > 0 a Pt b S t(ε) rrrr t2 rrrr t2 f = f < ε. l 7 l | yt1 V e| l©xDs t1 0 h|
l u lsrrrrt2 f rrrr −<t2 b <ε =⇒ f f )g }¤ ©8| t1 y t1
l Ú l 7 yl 7} l aw B¥ § 0 x x 0 xrrr | y ©l u 0) ∞ ylx2 l©x 0 h|
l ul | y7l s gw l©x 0 x rrr < l | 7y l 0|h
x2Ejemplos. 1.– u1l | dx1 s l©x ) ¦ x w y ) l x2 } | xYy y7lDu 8 ∞ x l | x l©x 0 | ¤0} |e8} l | 7y l 0h|
l ul | yl Q 8 | yl 7 } V 7 l | y7l Rxl
'| q ¤ wl ¤ 0} | 7y Dl u x8 d lx
8}V )¦ x w y ª
l ul Q %V f y 7 ¤ s } | y7lDu 82xRl .–¥ x | l©x }hg7 V g Q l }| y7Dl u 8| h % V vI ) y©l xvl d y 7 xw !8| s dx 1 0 x xl | 0 x 0 x x ∞ x ¢ − x£ ∞ ∞ x2 1 dx = − dx ; l 1 2¤ xwl q} | 8 0 xh|
l 1 ul y Dl u0B|
lt u 0 l e| | 0y }| w dl 0 } |z 7y|4Dl u
l 8 )l x x 0 } |4x5} | y xlDu078 7y | l 7} x l x z Rxu |gw x w
8 ) 7)l x) ¦gI )l ê l l©xYywe } l lCriterio de%DVh ir iych leI t) . l gfP t| z } y' |e[a , lb| ) s
l 7 gÛ ©8 | 2¤ wl {¤z rrrr c f rrrr −< K T c P y7l §Ay 8 v ¤ gw l a[a, b) [a, g(x) = 0 b) x→b− | y g| l©Dx s ¤ u}| 7y lDu 8 b ©l x 0|h
l ul | y7l fg a
3.5 INTEGRALES IMPROPIAS DE RIEMANN 131 ¦
¨ ©¤{pz`o{z f ´8gnDEÒ(0±x©dr ))¦%B²=´)f· q 0 s xlw l % 2 l)| xuw y 8ld0 ¤ xgwz #|l%V¤ w l4l lx l u| wg[l}a s,D b¤ |w)w l§ gx w l)lwx |gT 0εl } >| l ©l 0x l | y`l §jx ¿ | dsyQ )x 0l ¤ } wl l £ g ¤ −> 0 0 S −g −fx→b− c P [a, b)0 −< ggw(xll 8)| ε T xy ©l(cx ,¤ bw )l §< Py ) ¤ 2K t2 c < t1 < t2 <bQ )g} ¤ ©8| j ¥ s S s P [t1, t2] t1 8 t2 s fg = g(t1) f ; w lDu t1 t1 rrrr t2 fg rrrr = g(t1) rrrr s f rrrr −< ε õ rrrr s f rrrr + rrrr l t1frrrr 2Kε = ε, 2K <§ u } | ty 1©l u 0 ) d
l 7 Ûg© l 7t 17y l 7 } l 0 h|
al u l g| 0 a ö 2K w h¥ § Ejemplo.— g l©xw |I¢ w g| D z | | z y |e l| § {}z s g(x) = [0, ∞) 0 }| y7Dl u 8 ∞ xl l©x l u l y7l x→∞ g(x) | 0 h|
| x dx 0C l rtit%eVr2io dy 0e4 A%©b ey7ll. l f| Pz y t } B § [ad,0b )y s
l 7 Ûe© 8 | ¨¤ w l | aby fg| ©l x)l xD0s |hE
l}| u l | y7l |e l | [a, b) y l©u ) g b ©l x 0 |h
l ul | 7y l fg ¨ ap `o ´8nDÒ 0± dr B² ´)· q V x l g | z y |e § 8 D y l | sBDl ¨ Yx y ll  {¤z g(x) = x w g(| xy )|g=l©Dx λs |g0 ©l x x→b− t z | ϕ(x) = g(x) − λ [a, b) w | z y |e § {¤z s l | y x ¤ wgls %V R y 7 ¤ s b f 0 h|
l u l | 7y l } hg } ¤© x→b− ϕ(x) = 0 a rrrr c f rrrr −< rrrrr b f rrrrr =K TcP [a, b) ; a a 7y l lsgxl 7y 7y ll 7| }l Rl k 7¤ ¥ l0)y s l©xw y ¤ wgl )l x 7y Dl u ) g¦ vl l l sÛg)g|e})}}) )| l | }| | [a, b) ϕf bb b gf = ϕf + λ f . aa a
132 CA´ LCULO INTEGRAL La integral ∞ x l | x dx. Lema de Riemann-Lebesgue áf x ) ¦ l 0 x s ¤ xw fl ©l xYy Q| }y| y7Dl u )l8Dx s )l x 0 | ¤0} e| 8 } l | y l 0|h
l ul | y7l l ) | P r |g tn = (2n + 1) π n 2 xl |π ∞ xl | ¤{z x l | ¤{z tn p j n + 1 m z 2 x x dx x=(n+ 1 )z q dz dx = = 2 0x n→∞ 0 x n→∞ 0 z xl j @ H |π {}z xl | xl x l |= p n + 1 m z − 1j 1 p j π |n→∞ 2 2 − 1 2 2 j q n + 2 m z dz = , z z z 0 2 m 2 m q wl)x %V w 4| ¤ s % © y xl
l 7 Ûg© n xl |π p j n + 1 m z xl | 0 x 0 x0 2 2 j q dz = πõ 1+ z + ¢¤ + (nz) dz = π 1 dz = π , z 2 ö 02 2 2 m 0§ %V$ y 7 s R w |g0 z | }ϕ| w(z )s = w Dl 2u xl |}1| j7y lD2zu −)g¦ 1z l0ls ¨B`§ y7ll | 5 [0, π] l© 8| yl ϕ(0) = s l©x D| |g l)x {}z ϕ(z) y m | y =0z→0 @ H ¤{z π xl 1j −1 xl | j l | z p n + 1 m z dz = 0 , n→∞ 0 | 7y l 2 2 z m ¨hê q )g } ¤ © 8 | l x 2 l u w Lu emw e| a0 dVz |e ϕRe| iPeϕlmt |a[D aynV ©l,|nbu y –0]} |8L 0w e bz s4| e}`s% gV uv edI .¦) hl y l | l {¤z b xl | (ωx) dx = 0 sx w | l) x)w y 7y ©lk x ê7¤y ϕ(x) sl©x ω→∞ a (1) j [a, b]m w z V¥ ¨ 0l 8y | ) w |e ϕ s P u = ϕ(x) b = 1 b 1 b ω a ω xl | 0 x 0 xϕ(x) ϕ V (x) l 7 a (ωx) dx ¡ −ϕ(x) (ωx)k + a (ωx) dx , D xrrrrr (ωx) dx rrrrr −< b b dx = A, ϕ V (x) ϕ V (x) a a u Dx s § wl h©l x y | w s ©l x y Dl u )g¦ l y |g )l xvx l y l | l 8 u¤ D 0 | | | ϕV ¤{z 0 x1 b (ωx) dx = 0 , ϕ V (x) ω→∞ ω a
3.5 INTEGRALES IMPROPIAS DE RIEMANN 133ϕ§¢| w7lq§V}d|¦0yzxDl|z )u|lll)
¦ g¦l)ly !2¿8 l Isql g¦xx!Il l)z |
wl l¥|l)5l l l©l©xYz yl2 lvxx|gDy©} |!xly ¥w )} 4|DÚ}l|l | ll 8z
¦¤}) }¦wxY y7} d l0 ll¤zhý|s h Vñ} 7|Ó¨yzï xl© u3 íu[#la)|$,»la8 |)º+÷y7 dñl j27hÇ !π}l V¿])svl§§ ¨vh u0l sD! y VI 8| ) |y|£ s y7l Lt! ala8c|ivo´|lensr{}uzlswe|ilno´l n s2¥2eπoV rrVsiie}g|s liy7dn|lDewyua©llF)xDldsIg¦o|2euw ul l¤|rgwlileel0|l ¨'rm
¦ly I$ad© } 0| yy7` llf2D
¦l )|t|}Yx y l0q [¨)−gHV π}¤7¤,¨©w πd ¦l 0]s}¢§x | xf©l hl xl©x¿x w wl %e| V¤ 52| qlw we|l |e0 Vz |u7re pl rle zsv e¤n©l -£ a0u 1} |el xÛe)l 0| xl x xl | y
l |gf (x xl)z)x |4}=Vx7 lxl| +d7y l© lax !2a n | lb(2nv x) yl +!l | .8
.|l.| Q|+d 21l b0¦ 0l©I x+©u0wb l 1n0 x +s b24D¤ w(l 2x0)| +Yx y . .y.w §h, l s →∞ | xv l lx ) ¤¦u {z hV 7¤ ¨w l l©x x 0 l ÛgD l | y l)xvy l | l | w e| 0l ¨ ©l x z ¢| 0 ! }| ylDu 8 ©l 5x l Û £ an = 1π x l | (nx) dx , bn = 1 0 xπ f(x) (nx) dx .yv V ¨l ! 8a|| x l π
¦`a−2=π f(x) y7lDu uw | y l π¤ ª¦
8 ê w −l π)I¦ ) © `8q ¦% x © x =0 l l π7 u )l! x !l } y| 8 l | xyl l xx x l − 2n xl |1 π f(x) n(x − a) dx . π −πXÇÅS©ÀÅÌD÷üx ½Ë¼Ád¼½HËÀ&ÀüËv0ÇÅYÁÃÁÅ8Ë˪ºúiǺÀXúËÌ0¼ÇÇXÁvÅü»ºº¼ÁDÌüºÇ üüÀ¾û½¼Ê˽ËüÀÃËeÇXÃÀ©º¼f½½û½f½Êδ'eúÃX(ÀÇü1ǽ¼Ãx¼Y½,Bºû¼Ç%)ÃûvÀδSºÃü½2¼f2»ûº¦ÌÌ0Ì,¼Å˺Ì0Y¼¦ÇüδÊY½ÇSºÌf¤úDÌË¿º¾©»ÃÊ3½ ¼Y½i¼,ÌDûdüËÃIÃ.½Y½¼À©Ë ºÅ.üüÇļÀ©ýä)½ú}.üºú¤ºÀüI¼$Ǽe÷CºÃXÇX¼güÃÌD©À©ÀºSü˼X¼$XÃú¤úºÁ»ÅS»¼X¼¼ih½YÃü¼XÇÃåwÃûÀÁûDÌde ÇXDÌü¼i˽ż¼ºÃ¼ÅSÄÇË˽ºúä0ûÅËúËÀ©ÀüÀ©ÇXÀ©Á½Ëbº¼i»ÃX»úúÃu»À¼¼0˺¦eļÇËû½ûʺS0Ìgà ¼ÀSź½ºY¼ËÀi¼ÇÅú¤»feÃÅSúv½h¼ËD¼Xü»DÌÌDÁY0ÌË1¼Ã¼eÀºÆË,ü ËÀ©ÅD−¼ËËÇðûúD¼$πXÃvb2¤ú¤½½X¼ºb,eºÆÇIÇÀ©D»ËSÅüúä¼h½¼ºS3ËπX¼ÀDÌ ,Ç»©Ìüd.ËSºe¼ûX¼DÌ.ºSÅ ÀÀ©¼iÇXż.ËÃ$d¼¤úÇhVeû¼ËvÌDºÇżÀÁÇ˼Î8ÀääÃ%ËXË ÁüDÀûdüÃÀD»º¼ºªºËºSâ½À)úʽÌÊ¢ÇÄhËËÀ½Ä)ÀËg¤úef»Ãf¼wÃýY½Ëe¼XÇXºÁ©À©Ài¼Ãg ÀÃËú¤ú¤¼¼©Æ¾CĽüÇ ¼ËÃûË ÇXü7ÆXÃ˼øº½Ç¦ÅS8ÎŽYËËüÊÁÿX¼üÁ ¼ÀÎ8ºËâ©ÀÌD½7Á©À ©ÀY½¼X¼¼w©ÌÅüie½Ã Xà ¼ ¾ Ë ¦Ç ËÊ ºÀ ä ÀDºªú Ë »¼ ©À ¤ú ¼ û ¼ Î8Áü â À δ¿Ë 1Dü Á 1Ë ©À +ÌD½Hδ2ú¤½ DDÌ ½Y2Ã%+ÅS½Äà δ3D}ú 3Sº ¼X+©À Ì . . . ý δ Ë À Ë 0}0bh gb } ¤t ©hj¤ § ws¤ {z glws |7l vVy ¦I l|g ! l)8x |sεS|l >(| fd ,©0l P)s )¦IS −S δo´s>l(hlof0,gw sPxiy ©)8 < ¤l ! εw ly l7x VV % Pl !xl©¤x0w z |eA|!l k¤ % w ) ©l ¦%y| ¤ 0 w x ¨z | y 7 xDlx{Xz ê¥ lf2P x l | w | £ [a, b] ty 8[ a¤ ,gwbl] P <δ
134 CA´ LCULO INTEGRAL÷ ÃÄú¤½ÃÁ û Á ¼Äà ¤ú f½ 8e à 8º à ¼ DÌ i¼ à ü ½» û ½)À ¼dÅ Ë º À©¤úh¼ Ç Ë Å 067+π f(x) A n(x − a) dx, −ú ½YπÇ» 8Î ºÁà e¼f» ¤XÇd½e¼ Åû ÇËi¼ ú ¼XÀ©À©¤úh¼úË Ç8e Ëà ÅË ÅY½ û ½ IÇ X¼ÃÅv Ë ü 1 8e ÅSY½ Ià 0Ì º Äà }ú º ©À ú¤Ä½ à ü ½¼ ä)ü Sº ¼XÀ©ú¤i¼ ÃdÌD¼%Å Ë Xà ¼XÇiSº u¼ Ve f½ de Å ½$8Î Ád¼ i¼ Ià ÅS½ πú¤½» Ë Ì Ë Ì©i¼ ÃXDÌ ¼ e (86 7a+2π x=a f(x) A n(x − a) dx, a7©8 zq ¤¦g©}l 0Vll
l)l 7 {}z) x¦g ¤l w2lπxQ l nl©xY©l yx ¨z Û 0 Ys | Q x l 8| 4 ¤ w l l f| y l©xYg| y z )l x l xÛlq|y l | l l s| 5 l© E§ ©l x ylh ll £ [−π, π] Q ) | x = y − 2π a Pxl | xl |a a+2π f(x) n(x − a) dx = f(y − 2π) n(y − a − 2π) dy−π π a+2π xl |= f(y) n(y − a) dy, wlDu l l y ¦
8 l | 7y ls gw x 8| ©lz xYy s π x l | x l |π a π a+2π f(x) n(x − a) dx = + = f(x) n(x − a) dx . −π −π a aûûºX¼÷X¼ À©ÀÀuXǽYvÀ佤úÇu½DÀÅVÌübv¼Ë¼ÀSººªÁÃH½úüüËÀ)ü¼¤úºf»ú¤Ãi¼©À½¤½Ã ú¤X¼¦üeh¼DÌÀ©Ë¼i¼i¼Ã¿ú¤ÌÃÄÇ ¼úËË»!2ËûSÅ /Ã%¼iÁ˼ÃÊnÀÃ8κ À©ËûdÁûäú¼hû˼D̼âÀǽYÎ8¼ÇüË¿ÇÁºË¼Ë¼üÅÅÅSâÅSÀËŽ¼i¼iËeÃÀËÃû ÃX8Îü2û½ËhY½ÁπÇXvÀg iǽ¼R½Y/ÇXûÌD$ǼinÁd¼Y½Ã À½YûÇ ÅÃüËý˽üºSÀ©½ºüvªÅDÌÀ½ËË ÇiºËÀ©üX¼»ºú}À©f˽SºÊËúÌÀci¼ËËÃ8ÎÌ©Ì Á˼ Î8Êuf¼XºÁge©ÀÅ(˼ÅxDÌú¼Ã¼)üÇÁ »¼Ë ÀRÅSËËY½ üÃÃÁÁÁÀ¼DÌ XÇ˺¼ÌDÀ©û½ú¤SÅ X¼½½üÇüÀÇ ½ü ˺ÀºªÅS½XúÊf½ ÀRÁÅeËÌ g»¨D¾ ºËVºÅÊûÃË Á ½ËûÊ7à ú¤ÅÁ¼Ä¼i)λÃË ºÁ7wÃË ¼'e2âÀπÌDÃX˼¿¼/8În¾i¼ ÁÃÄË ú¼$üe˼ ÃX¼ Å 2π n (86 7a+(s+1) f(x) A n(x − a) dx . a+s 2π nfÃXD̽÷ ¼(ËDÆX¼8ÅxSÅÅV}úÌDY½ÃXºS)ºw¼ÇX¼i¼À©¦e©ÀéÀ ú¤ûº½¼i¼¼0 CýÇÀi¼Çn2ËÃüË Å(mÅSûËû½MǽY½Y½sgHÃÇ sºb8Îú¤ûMX¼º−Á½qÀ ¼½¿Ç smÅÅX¼−ËË ÀvË smºÅû À©)Å iÇ»dËúsºhe¼»fhËûggǼiǼVe Y½ÀºËÇ f»¼ÇËÅ ÀÅ ¼ËË »Ç¼ËÁ ÃXË8ÅÅSh»fºªh¼Y½VúÃXV»Ç˼X¼ÁÁÌÀ©ªºÀ©DÌ©Àúú¤Ì©¼ËgËÌ e½ÌËfÃû (º8ÌD»Y½xÃX¼XǼdºª)VÅ ún2ºË−éÀX¼Ì¢(ÁÄRÀú¤MmYÃe¼Cú}gǼibºsYÃsú Î8Ëú¤Á −¼ÅSg7Á½¤X¼ ¼%¼ºÀueM©À gÅf¤úËż(ËCs©ÀÇxºh)À©¼XÃ)ˤúh¼hý¼SÅVËû½ ¤úÁÇY½ºÀ©sËÇ Ì½}Å|~MËÌ0X¼sýºvÀ Ãs»e÷Å Ëg¼XºÀuÀdÀvXà ûÁh¼X¼ ÅgVY½ÅË e¼ÇÁûûÀ©ÃmÇÇÌ)ºººf»ËÃX»s¼Iý ¼¼XÇÃöËÇ YÁÅËÁüÃÄh»f¼Ë»¿ú}DÃXºªf¼X½Xú5½ªºdeÀ©Áú ËgýÃXºÌ¼¼Ç
Search
Read the Text Version
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146