Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore Motor_Control___Learning

Motor_Control___Learning

Published by LATE SURESHANNA BATKADLI COLLEGE OF PHYSIOTHERAPY, 2022-05-31 05:52:58

Description: Motor Control Learning By Mark L. Latash

Search

Read the Text Version

154 IV. DEVELOPMENT AND AGING that help alleviate the detrimental effects (DeVita and Acknowledgments Hortobagyi 2000; Shinohara et al. 2003a). This study was supported in part by NIH grants However, the finding of disproportional losses of AG-018751, NS-035032, AR-048563, and M01 force at the two sites, PP and DP, suggests poten- RR10732. We are grateful to Ning Kang, Brendan tially detrimental effects on muscle synergies involved Lay, and Sheng Li for their help in performing the ex- in finger force production. Most everyday tasks in- periments at different stages of this project, to the per- volve force application by the fingertips. These forces sonnel of the General Clinical Research Center at The generate moments in finger joints that need to be bal- Pennsylvania State University for screening the sub- anced by muscle action. In particular, intrinsic muscles jects, and to the staff and participants at the Foxdale are required to balance moments in the MCP joints. Village (State College, PA) for their cooperation. Hence, commands to extrinsic and intrinsic muscles need to be accurately balanced to prevent joint motion References under fingertip force production. Such combinations of commands are probably elaborated and refined by An KN, Kwak, BM, Chao EY, Morrey BF (1984) Deter- the central nervous system (CNS) based on the in- mination of muscle and joint forces: a new technique to dividual person’s anatomy and the range of everyday solve the indeterminate problem. J Biomech Eng, 106: tasks. 364–367. If the force-generating capabilities of muscles in- Arimoto S, Nguyen PTA (2001) Principle of superposi- volved in a synergy change disproportionately, previ- tion for realising dexterous pinching motions of a pair ously elaborated combinations of neural commands of robot fingers with soft-tips. IEICE Trans Fundament to the muscles are likely to become suboptimal. If Elec Comm Comp Sci E84A: 39–47. such changes in the muscle properties are permanent, as with aging, previously elaborated muscle synergies Arimoto S, Tahara K, Yamaguchi M, Nguyen PTA, Han likely need to be adjusted. This may not be a simple HY (2001) Principles of superposition for controlling task for the CNS resulting in the application of inad- pinch motions by means of robot fingers with soft tips. equate muscle synergies and decreased motor perfor- Robotica 19: 21–28. mance of the hand (Connelly et al. 1999; Grabiner and Enoka 1995; Shinohara et al. 2003a). Atkeson CG (1989) Learning arm kinematics and dynamics. Ann Rev Neurosci 12: 157–183. One may suggest two ways of dealing with this problem. First, massive practice may help the CNS Basmajian JV, De Luca CJ (1985) Muscles Alive, 5th ed. revise the inadequate muscle synergies and elaborate Williams & Wilkins, Baltimore. new ones. However, the continuing changes in the muscle properties with age may prevent the CNS Baud-Bovy G, Soechting JF (2001) Two virtual fingers in from elaborating new optimal sets of commands to the control of the tripod grasp. J Neurophysiol 86: 604– hand muscles. Alternatively, efforts can be directed at 615. restoring the balance between the force-generating ca- pabilities of the intrinsic and extrinsic muscles. This Baud-Bovy G, Soechting JF (2002) Factors influencing vari- goal may be more realistic with the help of specifically ability in load forces in a tripod grasp. Exp Brain Res 143: focused training programs. 57–66. Effects of training have been documented in many Bemben MG. Age-related alterations in muscular en- studies of elderly subjects. In particular, training has durance. Sports Med 25: 259–269, 1998. been shown to lead to higher forces and lower antag- onist coactivation. Since muscle cross-sectional area Bernstein NA (1947) On the Construction of Movements. showed only minor enlargements in the process of Moscow: Medgiz (In Russian). training, neural adaptations were likely to play a ma- jor role in bringing about these effects (e.g., Hakkinen Bernstein NA (1967) The co-ordination and regulation of et al. 1998). A recent report has suggested that the im- movements. Oxford: Pergamon Press. paired ability of elderly to control pinch force accu- rately can be improved with specialized training (Ran- Bickerton LE, Agur AM, Ashby P (1997) Flexor digitorum ganathan et al. 2001). It remains to be seen whether superficialis: locations of individual muscle bellies for bo- tasks that require coordination of digits to produce tulinum toxin injections. Muscle Nerve 20: 1041–1043. combinations of force and moment can also show im- provement with practice in elderly. This is a challenge Bigland-Ritchie B, Johansson R, Lippold OC, Woods JJ for future studies. (1983) Contractile speed and EMG changes during fa- tigue of sustained maximal voluntary contractions. J Neurophysiol 50: 313–324. Bigland-Ritchie BR, Dawson NJ, Johansson RS, Lippold OC (1986) Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. J Physiol 379: 451–459.

13. CHANGES IN FINGER COORDINATION WITH AGE 155 Binder-Macleod SA, McDermond LR (1992) Changes in Cole KJ, Abbs JH (1986) Coordination of three-joint digit the force-frequency relationship of the human quadri- movements for rapid finger-thumb grasp. J Neurophysiol ceps femoris muscle following electrically and voluntarily 55: 1407–1423. induced fatigue. Phys Ther 72: 95–104. Cole KJ, Abbs JH (1987) Kinematic and electromyographic Boatright JR. Kiebzak GM. O’Neil DM. Peindl RD. Mea- responses to perturbation of a rapid grasp. J Neurophysiol surement of thumb abduction strength: normative data 57: 1498–1510. and a comparison with grip and pinch strength. J Hand Surg (Amer). 22: 843–848, 1997. Cole KJ, Johansson RS (1993) Friction at the digit- object interface scales the sensorimotor transformation Burnett RA, Laidlaw DH, Enoka RM. Coactivation of the for grip responses to pulling loads. Exp Brain Res 95: antagonist muscle does nto covary with steadiness in old 523–532. adults. J Appl Physiol 89: 61–71, 2000. Cole KJ, Rotella DL (2002) Old age impairs the use of Burstedt MK, Edin BB, Johansson RS (1997) Coordina- arbitrary visual cues for predictive control of fingertip tion of fingertip forces during human manipulation can forces during grasp. Exp Brain Res 143: 35–41. emerge from independent neural networks controlling each engaged digit. Exp Brain Res 117: 67–79. Connelly DM, Rice CL, Roos MR, Vandervoort AA (1999) Motor unit firing rates and contractile properties in tib- Burstedt MK, Flanagan JR, Johansson RS (1999) Control of ialis anterior of young and old men. J Appl Physiol 87: grasp stability in humans under different frictional con- 843–852. ditions during multidigit manipulation. J Neurophysiol 82, 2393–2405. Contreras-Vidal JL, Teulings HL, Stelmach GE (1998) El- derly subjects are impaired in spatial coordination in fine Campbell MJ, McComas AJ, Petito F (1973) Physiological motor control. Acta Psychol (Amst) 100: 25–35. changes in aging muscles. J Neurol Neurosurg Psychiat 36: 174–182. Cooke JD, Brown SH, Cunningham DA (1989) Kinematics of arm movements in elderly humans. Neurol Aging 10: Cavanaugh JT, Shinberg M, Ray L, Shipp KM, Kuchibhatla 159–165. M, Schenkman M (1999) Kinematic characterization of standing reach: comparison of younger vs. older subjects. Cooper S, Eccles JC (1930) The isometric responses of Clin Biomech 1999 14: 271–279. mammalian muscles. J Physiol 69: 377–385. Chao EY, An KN (1978) Graphical interpretation of the Danion F, Latash ML, Li ZM, Zatsiorsky VM (2000) The solution to the redundant problem in biomechanics. J effect of fatigue on multi-finger coordination in force Biomech Eng 100: 159–167. production tasks. J Physiol 523: 423–532. Chao EY, Opgrande JD, Axmear FE (1976) Three dimen- Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2001) The sional force analysis of finger joints in selected isometric effect of a fatiguing exercise by the index finger on single- hand function. J Biomech 19: 387–396. and multi-finger force production tasks. Exp Brain Res 138: 322–329. Chaput S, Proteau L (1996a) Aging and motor con- trol. J Gerontol. Ser B, Psychol Sci & Social Sci. 51: Danion F, Scho¨ner G,Latash ML,Li S, Scholz JP, Zatsiorsky 346–355. VM (2003) A force mode hypothesis for finger inter- action during multi-finger force production tasks. Biol Chaput S, Proteau L (1996b) Modifications with aging in Cybern 88: 91–98. the role played by vision and proprioception for move- ment control. Exp Aging Res 22: 1–21. Darling WG, Cooke JD, Brown SH (1989) Control of sim- ple arm movements in elderly humans Neurobiol Aging Christ CB, Boileau RA, Slaughtr MH, Stillman RJ, 10: 149–157. Cameron JA, Massey BH (1992). Darling WG, Cole KJ, Miller GF (1994) Coordination of Maximal voluntary isometric force production characteris- index finger movements. J Biomech 27: 479–491. tics of six muscle groups in women aged 25 to 74 years. Am J Human Biol 4: 537–545. Denny Brown DE (1966) The cerebral control of move- ment. Liverpool Univ. Press, UK. Cole KJ (1991) Grasp force control in older adults. J Mot Behav 23: 251–258. DeVita P, Hortobagyi T (2000) Age causes a redistribution of joint torques and powers during gait. J Appl Physiol Cole KJ, Rotella DL, Harper JG (1998) Tactile impaire- 88: 1804–1811. ments cannot explain the effect of age on a grasp and lift. Exp Brain Res 121: 263–269. Doherty TJ. Brown WF (1997) Age-related changes in the twitch contractile properties of human thenar motor Cole KJ, Rotella DL, Harper JG. Mechanisms for age- units. J Appl Physiol 82: 93–101. related changes of fingertip forces during precision grip- ping and lifting in adults. J Neurosci 19: 3238–3247, Duchateau J, Hainaut K (1990) Effects of immobilization 1999. on contractile properties, recruitment and firing rates of human motor units. J Physiol 422: 55–65.

156 IV. DEVELOPMENT AND AGING Edin BB, Westling G, Johansson RS (1992) Independent Hackel ME, Wolfe GA, Bang SM, Canfield JS (1992) control of human finger-tip forces at individual digits Changes in hand function in the aging adult as deter- during precision lifting. J Physiol 450: 547–564. mined by the Jebsen Test of Hand Function. Phys Ther 72: 373–377. Eliasson AC, Forssberg H, Ikuta K, Apel I, Westling G, Johansson, R. (1995) Development of human precision Hager-Ross C, Cole KJ, Johansson RS (1996) Grip-force grip. V. Anticipatory and triggered grip actions during responses to unanticipated object loading: load direction sudden loading. Exp Brain Res 106: 425–433. reveals body- and gravity-referenced intrinsic task vari- ables. Exp Brain Res 110: 142–150. Enoka RM, Christou EA, Hunter SK, Kornatz KW, Semmler JG, Taylor AM, Tracy BL (2003) Mechanisms Hakkinen K, Newton RU, Gordon SE, McCormick M, that contribute to differences in motor performance be- Volek JS, Nindl BC, Gotshalk LA, Campbell WW, tween young an old adults. J Electromyogr Kinesiol 13: Evans WJ, Hakkinen A, Humphries BJ, Kraemer WJ 1–12. (1998) Changes in muscle morphology, electromyo- graphic activity, and force production characteristics Era P, Lyyra AL, Viitasalo JT, Heikkinen E (1992) Deter- during progressive strength training in young and minants of isometric muscle strength in men of different older men. J Gerontol. Ser A, Biol Sci Med Sci 53: ages. Eur J Appl Physiol Occup Physiol 64: 84–91. B415–423. Flanagan JR, Wing AM (1995) The stability of precision Harding DC, Brandt KD, Hillberry BM (1993) Finger joint grip forces during cyclic arm movements with a hand- force minimization in pianists using optimization tech- held load. Exp Brain Res 105: 455–464. niques. J Biomech 26: 1403–1412. Flanagan JR., Burstedt MK, Johansson RS (1999) Control Hermsdorfer J, Marquardt C, Philipp J, Zierdt A, Nowak of fingertip forces in multidigit manipulation. J Neuro- D, Glasauer S, Mai N (1999) Grip forces exerted against physiol 81: 1706–1717. stationary held objects during gravity changes. Exp Brain Res. 126: 205–214. Fleckenstein JL, Watumull D, Bertocci LA, Parkey RW, Peshock RM. Finger-specific flexor recruitment in hu- Hughes S, Gibbs J, Dunlop D, Edelman P, Singer R, Chang mans: depiction by exercise-enhanced MRI. J Appl Phys- RW (1997) Predictors of decline in manual performance iol 1992; 72: 1974–1977. of older adults. J Am Geriatr Soc 45: 905–910. Francis KL, Spirduso WW (2000) Age differences in the Iberall T (1997) Human prehension and dexterous robot expression of manual asymmetry. Exp Aging Res 26: 169– hands. International J Robot Res 16: 285–299. 180. Ikeda ER, Schenkman ML, Riley PO, Hodge WA (1991) Galganski ME, Fuglevand AJ and Enoka RM (1993) Re- Influence of age on dynamics of rising from a chair. Phys duced control of motor output in a human hand mus- Ther 71: 473–481. cle of elderly subjects during submaximal contractions. J Neurophysiol 69: 2108–2115. Jeneson JA, Nelson SJ, Vigneron DB, Taylor JS, Murphy- Boesch J, Brown TR (1992) Two-dimensional 31P- Gelfand IM, Tsetlin ML (1966) On mathematical model- chemical shift imaging of intramuscular heterogeneity ing of the mechanisms of the central nervous system. In: in exercising human forearm muscle. Am J Physiol 263: Gelfand IM, Gurfinkel VS, Fomin SV, Tsetlin ML (Eds.) C357–364. Models of the structural-functional organization of cer- tain biological systems. , pp. 9–26, Nauka: Moscow (in Johansson RS (1996) Sensory and memory information in Russian, a translation is available in 1971 edition by MIT the control of dexterous manipulation. In: Lacquaniti Press: Cambridge MA.) F, Viviani P (Eds.) Neural Bases of Motor Behavior, pp. 67–79, Kluwer Acad.Publ.: Amsterdam. Giampaoli S, Ferrucci L, Cecchi F, Lo Noce C, Poce A, Santaquilani A, Vescio MF, Menotti A (1999) Hand-grip Kamen G, Sison SV, Du CC, Patten C (1995) Motor unit strength predicts insident disability in non-disabled older discharge behavior in older adults during maximal-effort men. Age Aging 28: 283–288. contractions. J Appl Physiol 79: 1908–1913. Gilles MA, Wing AM (2003) Age-related changes in grip Kenshalo DR (1979) Sensory function of the skin. Plenum force and dynamics of hand movement. J Mot Behav 35: Press: New York. 79–85. Kernell D, Eerbeek O, Verhey BA (1983) Relation between Grabiner MD, Enoka RM (1995) Changes in movement isometric force and stimulus rate in cat’s hindlimb motor capabilities with aging. Exer Sport Sci Rev 23: 65–104. units of different twitch contraction time. Exp Brain Res 50: 220–227. Grimby G, Danneskold-Samsoe B, Hvid K, Saltin B (1982) Morphology and enzymatic capacity in arm and leg mus- Kilbreath SL, Gandevia SC (1994) Limited independent cles in 78–81 year old men and women. Acta physiol flexion of the thumb and fingers in human subjects. J scand, 115: 125–134. Physiol 479: 487–497.

13. CHANGES IN FINGER COORDINATION WITH AGE 157 Kinoshita H, Francis PR (1996) A comparison of prehension Li S, Latash ML, Zatsiorsky VM (2003) Finger interaction force control in young and elderly individuals. Eur J Appl during multi-finger tasks involving finger addition and Physiol 74: 450–460. removal. Exp Brain Res 150: 230–236. Kinoshita H, Kawai S, Ikuta K (1995) Contributions and Li Z-M, Latash ML, Zatsiorsky VM (1998) Force sharing co-ordination of individual fingers in multiple finger pre- among fingers as a model of the redundancy problem. hension. Ergonomics 38: 1212–1230. Exp Brain Res. 119: 276–286. Kirkendall DT, Garrett WE Jr (1998) The effects of aging Li Z-M, Zatsiorsky VM, Latash ML (2000) Contribution of and training on skeletal muscle. Amer J Sports Med 26: the extrinsic and intrinsic hand muscles to the moments 598–602. in finger joints. Clin Biomech 15: 203–211. Laidlaw DH, Hunter SK, Enoka RM (2002) Nonuniform Long C (1965) Intrinsic-extrinsic muscle control of the fin- activation of the agonist muscle does not covary with gers. J Bone Joint Surg Am 50: 973–984. index finger acceleration in old adults. J Appl Physiol 93: 1400–1410. McDonagh MJ, White MJ, Davies CT (1984) Differential effects of ageing on the mechanical properties of human Landsmeer JM, Long C (1965) The mechanism of finger arm and leg muscles. Gerontology, 30: 49–54. control, based on electromyograms and location analysis. Acta Anat 60: 330–347. MacKenzie CL, Iberall T (1994) The Grasping Hand. North Holland, Amsterdam. Larsson L, Ansved T (1995) Effects of ageing on the motor unit. Prog Neurobiol 45: 397–458. Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber Latash ML (1993) Control of Human Movement. Human characteristics. Eur J Appl Physiol Occup Physiol 66: Kinetics: Urbana, IL. 254–262. Latash ML (1996) How does our brain make its choices? Mussa Ivaldi FA, Morasso P, Zaccaria R (1989) Kinematic In: Latash ML, Turvey MT (Eds.) Dexterity and Its De- networks. A distributed model for representing and reg- velopment, pp. 277–304, Erlbaum Publ.: Mahwah, NJ. ularizing motor redundancy. Biol Cybern 60: 1–16 Latash ML, Li ZM, Zatsiorsky (1998) A principle of error Nakao M, Inoue Y, Murkami H (1989) Aging process of compensation studied within a task of force production leg muscle endurance in males and females. Eur J Appl by a redundant set of fingers. Exp Brain Res 122:131– Physiol, 59: 209–214. 138. Ohtsuki T (1981) Inhibition of individual fingers during Latash ML, Scholz JF, Danion F, Scho¨ner G (2001) Struc- grip strength exertion. Ergonomics 24: 21–36. ture of motor variability in marginally redundant multi- finger force production tasks. Exp Brain Res 141: 153– Owings TM. Grabiner MD (1998) Normally aging older 165. adults demonstrate the bilateral deficit during ramp and hold contractions. J Gerontol Ser A, Biol Sci & Med Sci. Latash ML, Scholz JP, Scho¨ner G (2002a) Motor control 53: B425–429. strategies revealed in the structure of motor variability. Exer Sport Sci Rev 30: 26–31. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by Latash ML, Li S, Danion F, Zatsiorsky VM (2002b) Central electrical stimulation. Brain 37: 389–443. mechanisms of finger interaction during one- and two- hand force production at distal and proximal phalanges. Penfield W, Rasmussen T (1950) The Cerebral Cortex of Brain Res 924: 198–208. Man, New York: MacMillan. Latash ML, Scholz JF, Danion F, Scho¨ner G (2002c) Finger Pratt J, Chasteen AL, Abrams RA (1994) Rapid aimed coordination during discrete and oscillatory force pro- limb movements: Age differences and practice ef- duction tasks. Exp Brain Res 146: 412–432. fects in component submovements. Psychol Aging 9: 325–334. Latash ML, Shim JK, Zatsiorsky VM (2004) Is there a tim- ing synergy during multi-finger production of quick force Prilutsky BI, Zatsiorsky VM (2002) Optimization-based pulses. Exp Brain Res 159: 65–71. models of muscle coordination. Exer Sport Sci Rev 30: 32–38. Leijnse JN, Snijders CJ, Bonte JE, Landsmeer JM, Kalker JJ, Van der Meulen JC, Sonneveld GJ, Hovius SE (1993) Ranganathan VK, Siemionow V, Sahgal V, Liu JZ, Yue GH The hand of the musician: the kinematics of the bidigital (2001) Skilled finger movements exercise improves hand finger system with anatomical restrictions. J Biomech 26: function. J Gerontol A Biol Sci Med Sci 56: M518– 1169–1179. M522. Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2000) Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille Characteristics of finger force production during one- S, Curb JD, White L (1999) Midlife hand grip and two-hand tasks. Hum Move Sci 19: 897–924. strength as a predictor of old age disability. JAMA 281: 558–560.

158 IV. DEVELOPMENT AND AGING Rosenbaum DA, Loukopoulos LD, Meulenbroek RGM, Shinohara M, Scholz JP, Zatsiorsky VM, Latash ML (2004) Vaughan J, Engelbrecht SE (1995) Planning reaches by Finger interaction during accurate multi-finger force pro- evaluating stored postures. Psychol Rev 102: 28–67. duction tasks in young and elderly persons. Exp Brain Res 156: 282–292. Rouiller EM (1996) Multiple hand representations in the motor cortical areas. In: Wing AM, Haggard P and Flana- Smith RJ (1974) Balance and kinetics of the fingers under gan JR (Eds.) Hand and Brain. The Neurophysiology and normal and pathological conditions. Clin Orthop 104: Psychology of Hand Movements. pp. 99–124. Academic 92–111. Press, San Diego, CA. Spiegel KM. Stratton J. Burke JR. Glendinning DS. Enoka Santello M, Soechting JF (2000) Force synergies for multi- RM (1996) The influence of age on the assessment of mo- fingered grasping. Exp Brain Res 133: 457–67. tor unit activation in a human hand muscle. Exp Physiol 81: 805–819. Schieber MH (1991) Individuated finger movements of rhe- sus monkeys: a means of quantifying the independence Stelmach GE, Goggin NL, Garcia-Colera A (1987) Move- of the digits. J Neurophysiol 65: 1381–1391. ment specification time with age. Exp Aging Res 13: 39– 46. Schieber MH (2001) Constraints on somatotopic organi- zation in the primary motor cortex. J Neurophysiol 86: Stelmach GE, Goggin NL, Amrheim PC (1988) Aging and 2125–2143. the restructuring of precued movements. Psychol Aging 3: 151–157. Scholz JP, Scho¨ner G (1999). The uncontrolled manifold concept: Identifying control variables for a functional Thomas CK, Bigland-Richie B, Johansson RS (1991) Force- task. Exp Brain Res 126, 289–306. frequency relationships of human thenar motor units. J Neurophysiol 65: 1509–1516. Scholz JP, Danion F, Latash ML, Scho¨ner G (2002) Understanding finger coordination through analysis Tuite DJ. Renstrom PA. O’Brien M (1997) The aging ten- of the structure of force variability. Biol Cybern 86: don. Scand J Med Sci Sp 7: 72–77. 29–39. Turvey MT (1990) Coordination. Amer Psychol 45: 938– Seidler-Dobrin RD, He J, Stelmach GE (1998) Coactiva- 953. tion to reduce variability in the elderly. Motor Control 2: 314–330. Vaillancourt DE, Larsson L, Newell KM (2003) Effects of aging on force variability, single motor unit discharge Semmler JG, Steege JW, Kornatz KW, Enoka RM (2000) patterns, and the structure of 10, 20, and 40 Hz EMG Motor-unit synchronization is not responsible for larger activity. Neurobiol Aging 24: 25–35. motor-unit forces in old adults. J Neurophysiol 84: 358– 366. Vaillancourt DE, Newell KM (2003) Aging and the time and frequency structure of force output variability. J Appl Serlin DM, Schieber MH (1993) Morphologic regions of Physiol 94: 903–912. the multitendoned extrinsic finger muscles in the monkey forearm. Acta Anat 146: 255–266. Viitasalo JT, Era P, Leskinen AL, Heikkinen E (1985) Mus- cular strength profiles and anthropometry in random Shim JK, Latash ML, Zatsiorsky VM (2003a) Prehension samples of men aged 31–35, 51–55 and 71–75 years. synergies: Trial-to-trial variability and hierarchical orga- Ergonomics 28: 1563–1574. nization of stable performance. Exp Brain Res 152: 173– 184. Welford AT (1984) Psychomotor performance. Ann Rev Gerontol Geriatr, 4: 237–273. Shim JK, Latash ML, Zatsiorsky VM (2003b) The central nervous system needs time to organize task- Weeks DL, Sherwood DE, Noteboom JT (2002) Anticipa- specific covariation of finger forces. Neurosci Lett 353: tory modulation of precision grip force with variations 72–74. in limb velocity of a curvilinear movement. J Mot Behav 34: 59–66. Shim J.K., Lay B., Zatsiorsky V.M., Latash M.L. (2004) Age-related changes in finger coordination in static pre- Winegard KJ. Hicks AL. Vandervoort AA (1997) An evalu- hension tasks. J Appl Physiol 97: 213–224. ation of the length-tension relationship in elderly human plantarflexor muscles. J Gerontol Ser A, Biol Sci Med Sci. Shinohara M, Li S, Kang N, Zatsiorsky VM, Latash ML 52: B337–343. (2003a) Effects of age and gender on finger coordination in maximal contractions and submaximal force matching Woollacott M, Inglin B, Manchester D (1988) Response tasks. J Appl Physiol 94: 259–270. preparation and posture control. Neuromuscular changes in the older adult. Ann New York Acad Sci 515: 42–53. Shinohara M, Latash ML, Zatsiorsky VM (2003b) Age ef- fects on force production by the intrinsic and extrinsic Zatsiorsky VM, Li Z-M, Latash ML (1998) Coordinated hand muscles and finger interaction during maximal con- force production in multi-finger tasks. Finger interac- traction tasks. J Appl Physiol 95: 1361–1369. tion, enslaving effects, and neural network modeling. Biol Cybern 79: 139–150.

13. CHANGES IN FINGER COORDINATION WITH AGE 159 Zatsiorsky VM, Gregory RW, Latash ML (2002a) Force Zatsiorsky VM, Gao F, Latash ML (2003) Pre- and torque production in static multi-finger prehension: hension synergies: Effects of object geometry and Biomechanics and Control. Part I. Biomechanics. Biol prescribed torques. Exp Brain Res 148: 77–87, Cybern 87: 50–57. 2003. Zatsiorsky VM, Gregory RW, Latash ML (2002b) Force Zimmerman SD, McCormick RJ, Vadlamudi RK and and torque production in static multi-finger prehension: Thomas DP (1993) Age and training alter collagen char- Biomechanics and Control. Part II. Control. Biol Cybern acteristics in fast- and slow- twitch rat limb muscle. J 87: 40–49. Appl Physiol 75: 1670–1674.

AUTHOR INDEX A Bickerton LE, 143 Abbott T, 56 Bigland-Ritchie BR, 153 Abbs JH, 149 Binder-McLeod SA, 153 Abend W, 21 Biscoe TJ, 116, 121 Albus JA, viii, 106, 108 Bizzi E, 21, 98, 135 Alexander RM, 15 Blatt GJ, 116, 121 Alexandrov AV, 42 Boatright JR, 145 Amazeen EL, 78 Bo¨ck O, 81, 86 Amblard B, 133 Bootsma R, 77 An KN, 143 Borghese NA, 129 Andre-Thomas, 29 Bouisset S, vii, 28–32, 34, 37, 41 Ansved T, 146 Bracewell RM, 52 Arbib MA, 105 Breniere Y, 133 Arimoto S, 150 Brenner E, 23 Armstrong DM, 98 Bril B, 133 Aruin AS, 42 Brashers-Krug T, 92 Asanuma H, 98, 100 Browman CP, 66, 68, 69, 70 Asatryan DG, 5, 6, 20 Brown WF, 145 Aschersleben G, 50, 51 BÅhler M, 55, 57 Assaiante C, 133 Bullock D, 66 Athenes S, 10, 11 Bunz H, 48, 68, 78 Atkeson CG, 20, 58 Burke R, 51 Burnett RA, 152, 153 B Burnod Y, 105 Bailly G, 66, 67 Burstedt MK, 150 Baker SM, 98 Byrd D, vii, 65, 66, 68, 70, 72 Balasubramaniam R, vii, 47–50, 52, 79 Baraduk P, 106, 112 C Baranyi A, 108 Caddy KWT, 116, 121 Bardy BG, viii, 77, 78, 81–83, 86 Caldwell, 13, 14 Barin K, 79 Caminiti R, 98, 101 Barnes HG, 11, 12, 18–20 Campbell MJ, 153 Basmajian JV, 142 Capaday C, 98 Baud-Bovy G, 150 Carello C, 10 Beckers MC, 116 Carlso¨o¨ S, 28 Beek PJ, 48, 52, 56, 81 Carson RG, 50, 52, 81 Bembem MG, 145 Caston J, 117 Bengoetxea A, viii Cavagna GA, 133 Bennet-Clark HC, 15 Cavanaugh P, 149 Bennett KM, 98 Cebolla A, viii Berger W, 133 Chao EY, 142 Bernstein NA, vii, 40, 86, 128, 141 Chaput S, 144 Bianchi L, 129, 131–133 Cheney PD, 59, 97, 98, 100, 101 161

162 AUTHOR INDEX Cheng S-W, 116 Dufosse M, viii, 108, 112 Cheron G, viii, 128, 129, 130, 131, 132, 133, 134, 135, Dugas C, 10, 11 136 E Christ CB, 147 Eccles J, 146 Cioni G, 133 Edelman GM, 135 Clark JE, 133 Edin BB, 150 Clifton RK, 10 Eisenman LM, 116, 121 Cohen RG, vii, 16–18, 21 Eliasson AC, 150 Coker CH, 66 Enoka RM, 152, 153, 154 Cole KJ, 144, 145, 149, 150, 152, 153 Era P, 147, 153 Colter JD, 97 Evarts EV, 97, 98, 101 Conditt MA, 135 Connelly DM, 154 F Conner JM, 90 Farley CT, 80 Contreras-Vidal JL, 145, 153 Farmer JD, 64 Cooke DW, 98, 101, 133, 144 Faugloire E, viii, 81, 85, 86 Cooper S, 146 Feher, 108 Corcos DM, 29, 41 Feldman AG, vii, viii, 3–7, 20, 21, 106, 135 Cordo PJ, 30 Fetz CE, 50, 97, 98 Courville J, 112 Flanagan JR, 21, 28, 150 Cowan WM, 116 Flash T, 49, 112 Crepel F, 108 Fleckenstein JL, 143 Foerster O, 97 D Fontaine RJ, 81, 86 D’Arcangelo G, 116 Forssberg H, 127, 133 Daffertshofer A, 48, 52 Fourcade P, viii, 81 Dan B, viii, 133 Francis PR, 145, 153 Daniel H, 108 Fraser, 10 Danion F, 142, 143, 144, 146 Friedli WG, 29 Darling WG, 142, 144 Friston KG, 90 Das P, 128 Frolov AA, viii, 106, 112 Dawson A, 21 Fulton JF, 97 Deiss V, 118, 121 Delcolle, 48 G Deliagina T, 127 Gachoud JP, 23 Delignieres D, 49 Galganski ME, 145, 153 Delong MR, 51 Gandevia SC, 51, 142 De Ko¨ning JJ, 28 Garrett WE Jr, 145 DeLuca CJ, 142 Gatter KC, 98 Dempster WT, 28, 39 Gaudez C, 40 Denny Brown DE, 145 Gaughran GRL, 28, 39 De Rugy A, 56, 60 Gelfand IM, 41, 142 DeVita P, 154 Georgopoulos AP, 98, 101, 107, 108 De Vries JIP, 133 Ghafouri M, 7 De Zeeuw CL, 112 Ghez C, 20, 29, 41 Diedrichsen J, 49 Ghilardi MF, 20 Dietz V, 133 Ghosh S, 98 Dijkstra TMH, 56–59, 79 Giampaoli S, 145 Dmitrijevic M, 127 Gibson JJ, 10 Dimov M, 6 Gielen CCAM, 79 Doherty TJ, 145 Gilbert PFC, 108, 112 Donoghue JP, 97 Gilles MA, 153 Doya K, 133 Goffinet AM, 116 Doyon J, 92 Goldstein L, vii, 66, 68, 69, 70 Draye JP, 133 Golub GH, 109 Drew T, 98 Gonzalez-Lima, F 118 Drewing, 51 Goodale MA, 10 Duarte M, 56 Gordon J, 20, 29, 41 Duchateau J, 145

AUTHOR INDEX 163 Gottlieb GL, 135 Ito M, viii, 106, 108, 111, 112 Gould HJ 3rd, 97 Ivry RB, 49 Grabiner MD, 145, 154 Gracco VL, 66 J Grafton ST, 90, 92 Jaillard D, 108 Grasso R, 129, 133 Jankowska E, 97, 98 Graziano MSA, viii, 20, 98, 100, 101 Jansen C, 10, 20, 21, 22, 23 Gribble PL, 4, 66, 106, 135 Jeannerod M, 10, 11, 21 Grieve DW, 28, 30, 40 Jenkins IH, 90 Grill S, 51 Jensen JL, 133 Grillner S, 127 Jeneson JA, 143 Grimby G, 145 Johansson RS, 28, 39, 42, 150 Gross CG, 101 Jones EG, 98 Grossberg S, 66 Jones D, 118 Guastavino G-M, 116, 118 Jordan MI, 66, 67, 98, 106 Guckenheimer J, 56 Jorgensen MJ, 11, 12, 15, 16, 18–21 Gunther M, 6 K H Kakei S, 98, 101 Hack I, 116 Kalaska JF, 98, 101 Hackel ME, 145 Kalil K, 98 Hadders-Algra M, 128, 133 Kamen G, 145, 153 Hager-Ross C, 150 Kang Y, 98 Hainaut K, 145 Karni A, 90 Hallett M, viii, 51 Kashiwabuchi N, 116 Haken H, 48, 68, 78 Katsumata H, 56 Hakkinen K, 154 Kawato M, 22, 106, 111, 112, 133 Hamilton BA, 116 Kay BA, 50, 79 Hammar I, 98 Kearney RE, 80 Harding DC, 143, 153 Kelso JAS, 47, 48, 50, 52, 67, 68, 78, 81, 83, 86, 133 Harris CM, 53 Kenshalo DR, 145, 152 Hauert CA, 23 Kernell D, 145 He SQ, 97, 101 Kilbreath SL, 142 Heckroth JA, 116, 121 Kindlmann PJ, 55 Heinz N, 116 Kinoshita H, 142, 145, 153 Hermsdorfer J, 150 Kirkendall DT, 145 Herrup K, 116 Kitazawa S, 112 Hibbard LS, 97 Klatzky RL, 21 Hirschfeld H, 127, 133 Klein C, 112 Hogan N, 21, 49, 112 Kleweno DG, 14 Holcombe HH, 93 Kluin KK, 122 Holderfer RN, 97, 101 Koditschek DE, 55, 57 Hollerbach JM, 3, 20 Koike Y, 133 Holmes P, 56 Koppell N, 128, 131 Honda M, 91, 93 Koozekanani SH, 79 Horak FB, 41 Kremarik P, 117, 118, 121 Hornik K, 133 Kristofferson AB, 48, 50 Hortobagyi, T 154 Kroemer KHB, 28, 40 Huang GB, 65 Kro¨ger B, 66 Huang CH, 112 Kuang RZ, 98 Hughes S, 145 Kumamoto M, 133 Hunter IW, 80 Kuo AD, 79 Huntley GW, 98 Kuperstein, M 106 Kwan HC, 97, 98 I Iberall T, 150 L Ikeda ER, 149 Laboissiere R, 66, 67 Inhoff AW, 112 Laidlaw DH, 147 Iriki A, 90, 108 Lalonde R, viii, 115–118, 121, 122

164 AUTHOR INDEX Lalouette A, 116, 118 Miller AE, 153 Lacquaniti F, 21, 41 Miller LE, 97, 101 Landgren S, 97 Milner AD, 10 Landis DMD, 116 Mitnitski AB, 21 Landry P, 98 Mitra S, 67 Landsend AS, 115 Mittelstaedt H, 5 Landsmeer JM, 142, 143 Moore T, 20 Lanshammar H, 28 Morgenroth DC, 80 Larsson L, 146 Morrow MM, 97 Lasko-McCarthey P, 133 Mounoud P, 23 Latash ML, viii, 4, 5, 42, 141–144, 148, Morasso P, 21 Muellbacher W, 93 152 Mullen RJ, 116 Lathroum A, 66 MÅller H, 60 Le Bozec S, vii, 28, 32, 33, 37, 41 Munhall KG, 64–66 Le Veau B, 80 Murray EA, 97 Leavitt JL, 10 Mussa Ivaldi, FA 135, 141 Ledebt A, 133 Lee TD, 81, 86 N Lee WA, 30 Nagasaki H, 49 Leijsne JL, 142 Nakagawa S, 116 Leiner HC, 112 Nakano E, 112 Lemon RM, 97, 98, 101 Nakao M, 145 Leonard CT, 133 Nam H, vii, 68 Lestienne F, 6 Nashner LM, 30, 79 Leurs F, viii Newell KM, 86, 145 Levin MF, 6, 7 Nigg BM, 28, 80 Li S, 143, 146 Li Z-M, 141, 142, 143 O Liepert, 89 Ohtsuki, T 142 Lino F, 31, 37, 39 Okamoto, T 133 Litovsky, RY10 Olivier E, 97 Lo¨fqvist A, 67 Opgen-Rhein C, 66 Long C, 142, 143 Ostry DJ, 3–6, 66 Oullier O, 78 M Owings TM, 144 Mackenzie CL, 10, 11, 150 Oyama E, 106 MacMahon TA, 15 Macpherson JM, 40 P Maier MA, 97 Pagulayan RJ, 77 Maioli C, 41 Pananceau M, 108 Mano NL, 112 Park MC, 97 Marchak F, 11 Pascual-Leone A, 89, 90, 91 Mariani J, 116 Patton JL, 30 Marin L, 77, 78, 83 Penfield W, 142 Marr D, viii, 21, 22, 106, 108 Penhune V, 92 Marteniuk RG, 10, 11 Perris EE, 10 Matsuda S, 116 Phillips SJ, 133 Matsumura M, 98 Pigeon P, 21 Matthews PBC, 51 Porter R, 98 McCollum G, 79, 128 Prablanc C, 14 McDermott LR, 153 Pratt J, 144 McDonaugh MJ, 145 Pressing J, 51 McIntyre J, 135 Prilutsky BI, 142 McKiernan BJ, 97 Prinz W, 50, 51 Meckler C, 14 Proteau L, 144 Mefta EM, 108 Merhi O, 86 Q Meulenbroek RGJ, vii, 10, 20–23 Quartz SR, 65 Mewes K, 50

AUTHOR INDEX 165 R Sim M, 56 Raibert M, 56 Slotta J, 11 Rantanen T, 145 Smeets JBJ, 23 Rasmussen T, 142 Soechting JF, 21, 149, 150 Reilly J, 56 Smart LJ, 77 Reina GA, 98, 101 Smethurst CJ, 81 Repp BH, 48 Smith LB, 131 Resibois A, 116 Smith RJ, 143 Rho MJ, 98 Smyth MM, 21 Ribrean C, vii Sotelo C, 116 Riek P, 50 Spencer RM, 49, 52 Riley MA, 48, 79 Spiegel KM, 145 Rispal-Padel L, 108 Spirduso WW, 145 Rizek, 106, 112 Sporns O, 135 Rochat P, 10 St-Onge N, 6 Roffler-Tarlov S, 116 Steinmayr M, 116 Roland PE, 90 Stelmach GE, 144 Rosenbaum DA, vii, 10–23, 142 Stephanishin DJ, 80 Rosenthal G, 122 Sternad D, vii, 47, 56–58, 60, 78 Rossetti Y, 14 Stevens LT, 48 Rotella, 145, 149 Stockwell CW, 79 Roudeix S, 81 Stoffregen TA, viii, 77, 81, 86 Roullier EM, 142 Strandberg L, 28, 39 Ruder H, 6 Strazielle C, viii, 115–118, 121 Rumelhart DE, 106 Sundararajan N, 65 Sutherland DH, 133 S Swinnen SP, 48, 81 Saint-Cyr JA, 112 Saltzman EL, vii, 64, 65, 66, 67, 68 T Sanes JN, 97, 98 Taga G, 79 Santello M, 149, 150 Tantisira B, 98 Saratchandran, P 65 Taylor CSR, 20, 101 Sashihara S, 121 Terashima T, 116 Schaal S, 58 Thach WT, 108, 112 Schieber MH, 97, 142, 143 Thelen E, 128, 131, 133 Schlaug G, 90 Thomas CK, 146 Schneider K, 97, 98, 128 Thullier F, 116 Scholz JP, 144 Tisserand M, 28 Scho¨ner G, 47, 48, 79, 131, 142 Todorov E, 98 Schro¨der G, 66 Trommsdorff M, 116 Schwartz JL, 66, 67 Tsetlin ML, 142 Schweighofer, N 108 Tufillaro NB, 56 Scott SH, 98, 101 Tuite DJ, 145 Seidler RD, 92, 144 Tuller B, 67, 128 Seitz RG, 90 Turner RS, 51 Sejnowski TJ, 65 Turton A, 10 Selimi F, 116 Turvey MT, 10, 47, 48, 56, 78, 79, 141 Semjen A, 47 Semmler JG, 147 U Sergio LE, 98, 101 Uno Y, 112 Serlin DM, 143 Shadmehr R, 93 V Shannon C, 56 Vaillancourt DE, 145 Shaw RE, 56 Vaughn J, vii, 10, 11, 12, 18–23 Shim JK, viii, 144, 148, 150–152 Viviani P, 23 Shinoda Y, 98 Vallbo AB, 50 Shinohara M, viii, 145–149, 151, 152, 154 Van Heughten, C 14 Shojaeian H, 116, 121 Van Ingen Schenau GJ, 28 Sidman RL, 116 Van Loan CF, 109

166 AUTHOR INDEX Van Santvoord AAM, 56 Winegard KJ, 145 Vandervael F, 37 Winter DA, 79, 80 Verschueren S, 81 Winters JM, 14, 135 Viitasalo JT, 145, 147 Wolpert DM, 21, 53, 111 Von Holst E, 5 Wong-Riley MTT, 118, 122 Vogel MW, 116 Woollacott MH, 133, 144 Vogt S, 21, 22 Vorberg D, 47, 48, 50, 51 Y Yahia LH, 21 W Yang JF, 79, 133 Wachs J, 90 Yu H, 47 Wallace SA, 10 Yue GH, 50 Wann JP, 49 Yuzaki M, 116 Warren W, 79 Weeks DL, 10, 150 Z Wei K, 60 Zajac FE, 134, 135 Weiss PL, 80 Zanger TE, 127 Welford AT, 144 Zanone PG, 81, 83, 86 Wells RP, 79 Zatsiorsky VM, viii, 142, 149, 150, Wenderoth N, 81, 86 Wessberg J, 50 153 Westling G, 28, 39, 42 Zattara M, 29, 34, 37 Whitney RJ, 28, 30 Zelaznik HN, 49 Wing AM, 10, 28, 42, 47, 48, 50–52, 150, 153 Zimmerman SD, 146 Zuo J, 115

SUBJECT INDEX A Learning, 105, 106, 107 Affordances, 10 Marr-Albus-Ito theory, 105, 106 Aging effects, viii, 141–154 Metabolism, 118, 119, 120 Parallel fibers, 105, 108, 110 Accuracy, 144 Plasticity, 105–112 Force variability, 145, 153 Purkinje cells, 105, 107, 108, 110, 116, 118, Innervation ratio, 146 Kinematics, 144 119 Motor units, 145 Role in mental skills, 112 Muscles, 145, 153 Role in serial movements, 112 Safety margins, 144, 153 -thalamo-cortical projections, 105, 107, 108, 110 Sensory function, 145 Coactivation, 6 Time pressure effects, 144 Coordinate systems, 109 Training effects, 154 Coordination, 128 Alpha-motoneurons, 107 Bimanual, viii, 78, 86 Age changes, 144, 145 Dynamics, 86 Alzheimer’s disease, 91 Intersegmental, 131 Anticipatory postural adjustments, 32, 35, 42 Muscle, 134 Development, 133 Postural, 77 Apraxia, 92 Cortex, viii Ataxia Motor, 89–94, 97–102, 117 Spinocerebellar, 122 Parietal, 92, 107 Attractors, 81 Piriform, 121 Limit cycle, 48, 52, 67, 68 Prefrontal, 93 Neural hypothesis, 131 Primary, 20 Point, 48 Primary somatosensory, 121 Premotor, 20, 92, 93 B Corticospinal tract, 89 Balance, 121, 122, 127 Critical fluctuations, 78, 81 Ball bouncing, 55–62 Basal ganglia, 92, 93 D Biomechanics Damping, 52, 64, 79 Degrees-of-freedom, 128, 135, 141, 143, 149 Adherence, 28, 39, 40 Dimensionality, 64, 108, 128 Finger action, 149, 150 Divergence, 98 Friction, 28, 37, 39, 42 Dynamic systems, vii, 47, 48, 63–71, 133 Modeling, vii, 30, 31, 32, 33 Coupling, 134 C Mapping, 135 Center of pressure, 41 Dynamics, 128 Center of gravity, 41, 127 Coordination, 135 Central pattern generator, 127, 128 Graph, 63–72 Cerebellum, viii, 49, 92, 115–122 Nonlinear, 77 Parameter, 63–72 Atrophy, 115–122 Sensorimotor, 135 Cytochrome oxydase activity, 117 State, 63–72 Degeneration, 91 Stochastic, 79 Granule cells, 116, 118, 119 167

168 SUBJECT INDEX E K EEG (electroencephalography), viii, 89 Kinematics, 66, 128 Coherence 89 Parallel chains, 141 EMG (electromyography), viii, 3, 6, 128, 129, Serial chains, 141 133–137 L Elasticity, 14, 15 Lambda-model, 6 Equilibrium, 4, 128 Locomotion, viii, 121, 122 Dynamic, 55, 128, 133 Development, 127–137 State, 108 Long-term depression (LTD), 108 Equilibrium-point, 48 Long-term potentiation (LTP), 90, 108 Hypothesis, vii, 20, 106, 107, 112 M F Mass-spring model, 64 Feedback, 98, 133 Motor cortex, 89–94, 97–102 Proprioceptive, 98, 99, 101 Body part representations, 89, 97 Feed-forward Lateral connections, 98 Plasticity, 105–112 Control, 42, 64, 133 Projections on alpha-motoneurons, 89 Modeling, 21 Remapping, 97–102 Finger coordination, viii, 141–154 Motor coordination, 116, 117 Changes with age, 145 Motor development, viii, 116, 127–137 Finger interaction, 142, 143 Of posture, 127, 128 Changes with age, 143, 146, 147 Of sitting, 128 Gender effects, 146 Motor equivalence, 86 Force control, 3 Motor learning, viii, 63, 77–86, 89–94, 105–112, 133 Forward model, 106 Babbling, 108, 109 Frames of reference (coordinate systems), 7, 30, Cerebral-cerebellar, 105–112 Consolidation, 89, 92 40 Dynamical theory, 81 Functional magnetic resonance imaging (fMRI), Error back propagation, 106 Error curve, 134, 135 90 Explicit, 91, 92 Hebbian, 106, 108, 109 G Implicit, 92 Grasping, viii, 12, 13, 21, 22, 141 Supervised, 109 Grip Motor planning, vii, 10, 18, 19, 20, 22, 40 Motor redundancy, vii, 6, 141, 142 Overhand, 11, 16 Motor skill, 63 Underhand, 11, 16 Multi-joint movements, viii Mutations, 115–122 H Hand N Neural Function, 141–154 changes with age, 145 Networks, 64, 105, 106, 128, 133–137 Plasticity, 77–86 Muscles, viii Nuclei extrinsic, 142, 143, 146 Cerebellar, 117, 120, 121 intrinsic, 142, 143, 146 Dorsal raphe, 117, 121 Magnocellular, red 121 Head control, 133 Pontine, 117, 121 Hierarchical control, 21, 48 Vestibular, 117 Huntington’s disease, 91 Hysteresis, 15, 78, 81 O Optimization, 142 I Inferior olives, 106, 112, 116, 117, 121 End-state comfort, 10–12 Mechanical energy, 132, 133 Climbing fibers, 106, 108, 112 Minimum jerk, 49, 50, 52, 112 Information processing, 47, 48 Minimum torque change, 112 Inverse model, 106, 111, 112 Inverted pendulum, 79 J Jacobian, 106, 112 Pseudo-inverse, 106, 111 Juggling, 56, 57

SUBJECT INDEX 169 Oscillators, 67, 68 Spasticity, 133 Coupled, 68, 69, 128 Speech, viii, 65–71 Mechanical, 133 Spike triggered averaging, 98, 100 Neural, 133 Spinal cord, 98 Stability, vii, 48, 50, 55–60, 70, 82 P Parkinson’s disease, 91, 133 Lyapunov, 58, 59 PET (positron emission tomography), viii, 89, 91 Passive, 56, 57, 58 Perception Stiffness, 52, 79 Supplementary motor area, 92 -action coupling, 55 Sway, 131 Auditory, 10 Synaptic plasticity, 106, 108 Haptic, 10, 42 Synergetics, 128 Visual, 61 Synergy, 143, 144, 148, 149 Phase transitions, 78, 83 Changes with age, 151, 153 Plasticity, viii, 105–112 Pointing, 29 T Postural control, vii, 27–45, 77 Tapping, 143 Posture (postural) TMS (transcranial magnetic stimulation), viii, 89, 91, Chain, 29, 30, 33, 35, 37, 40, 41 -kinetic capacity, 34 143 Modes, 78, 84 Trajectory -movement problem, 4 Sitting, 29 Virtual, 106 Stability, 77, 83–85, 128 Transcranial direct current stimulation (TDC), 92 Prehension, 9, 10, 21, 142 Transformation Synergies, 148, 149 Principle Motor-visual, 112 of abundance, 142 Sensorimotor, 107 of minimal interaction, 6 Visuo-motor, 106, 107, 108, 109, 112 of superposition, 150 Thalamus, viii, 105–112, 117, 121 Progressive supranuclear palsy, 91 Threshold control, 4, 5 Pronation/supination, 148 Thumb, 150 Proprioceptive feedback, viii, 106 Timing, 47 Role in timing, 51, 52 In musical performance, 47 Pyramidal tract, 97, 107 In rhythmic action, 47 Role of the cerebellum, 49, 52 R Synchronization, 50 Reaching, 105, 107, 108 Syncopation, 50 Red nucleus, 117, 1221 Wing-Kristofferson model, 48–53 Redundancy, 106, 111, 112, 128 Trajectory formation, 49 Reflex U Stepping, 128 Uncontrolled manifold hypothesis, 142, 143, 144, 148 Relative phase, 68, 69, 70, 71, 80, 81 Representations, 135 V Rhythmic actions, vii, 55–62 Variability, 58–60, 70–72, 128 Robotics, 9, 55, 57 Force, 145 S Timing, 48 Self-organization, 81 Variables Singular value decomposition, 109 Control, 3, 4, 41 Elemental, 143, 148, 149, 150 Performance, 143, 148, 150 State, 3, 4


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook