Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore Parabol Konu Anlatımlı Soru Bankası - Ahmet Çelen

Parabol Konu Anlatımlı Soru Bankası - Ahmet Çelen

Published by ahmetbey124, 2020-11-12 02:06:38

Description: Parabol Konu Anlatımlı Soru Bankası - Ahmet Çelen

Keywords: parabol pdf,parabol,parabol ayt pdf

Search

Read the Text Version

www.ahmetcelen.com.tr

 Parabolle alakalı görebileceğiniz AYT Sınavı için soru kalıplarının %80`ı belki daha fazlası bu fasikülde yer alıyor. Bu fasikül geçmiş yıllarda ÖSYM`nin sorduğu sorulara bakılırsa fazlasıyla yeterli gelecektir fakat işi riske atmayın ilave bir kaynak daha çözün. Sorular Kunduz programına gönderilip profesyonel nitelikli eğitmenler tarafından cevap anahtarını teyit etmek amaçlı çözdürülmüştür. ÖSYM gibi bir kurumda bile bu tarz hataların çıktığını belirtelim. Hatalı olduğunu düşündüğünüz kısmı bize iletin. www.ahmetcelen.com.tr



Test 1 Çözümler Test 2 Çözümler Test 3 Çözümler Test 4 Çözümler Yeni Nesil Sorular Çözümleri Türev İlişkisi Çözümler ÖSYM Tadında Konu Anlatımı YouTube Kanalı Soruların Çözümler Videoları (Açarsam ) Bilgi Blog Bu Dokümanın Web Sitemiz ve Güncel Paylaşım Sayfamız Direkt Bağlantısı Diğer İçerikler Bu sayfada tüm QR kod direkt bağlantılarını bulabilirsiniz. QR Kod okutmayı bir önceki sayfamızda detaylıca öğrettik. Bu sayfayı bağlantılara hızlıca erişebilmeniz ve tek bir sayfadan tüm QR kodları seri bir şekilde kullanabilmeniz amaçlanmıştır video çözümler için QR kodlar zaten tüm testlerin sağ üst kısmında bulunmaktadır. Faydalı ve zamanınızdan tasarruf olması dileğiyle :) QR kodların yönlendirmeleri ahmetcelen.com.tr sitesi üzerinden sağlanmaktadır.

Ön Söz – Sunuş Tarih : 10 Kasım 2020 (Atatürk`ü Sevgiyle anıyoruz ∞ ) Baskı : 1. (Bu doküman baskı niteliği taşımaktadır) Güncellik : Güncellik kontrolünü www.ahmetcelen.com.tr üzerinden yapabilirsiniz. Eğer web sitesinden indirdiğiniz dosya aynıysa herhangi bir güncelleme yapmamışızdır. Herhangi bir değişiklik ve güncelleme yaptığımda sitemden ulaşabilirsiniz. Bu dosya sizlerin hangi tarihte ulaşır bilemiyorum fakat parabol değişiklik yapılabilecek bir konu değil güncelleme yaparsam eğer ilave soru ve bilgi notları eklemiş olurum. Hata varsa onları düzeltirim. Bu fasikülün herhangi bir formatta içeriğinin bir kelimesi dahi değiştirilmesi yasaktır. PDF tanıtım ve telegram grupları reklam koyabilirler. Sevgili Öğrenciler ve Öğretmenler, YKS sınavı çoğu öğrencinin hayatının dönüm noktalarından birisidir. 2.Oturum olarak AYT testinde matematik alanında parabol konusundan her sene soru neredeyse gelmektedir. Bir hazırlık öğrencisi olarak ücretsiz olarak kendi deneyimlerimi bu fasiküle aktardım. Konu pekiştirme ve öğrenme olarak kolay , orta , ÖSYM soruları kadar zorlukta bölümlerden oluşan ufak bir eser çıkardım. İlave olarak çıkıp çıkmayacağı pandemi nedeniyle büyük bir belirsizlik taşıyan türev konusunun parabolle ilişkisine de bu fasikülde siz değerli öğrenci ve öğretmenlerimizin takdirine bırakarak yer verdim. Online eğitimin pandemi nedeniyle büyük bir önem kazanmasının ardından bende küçük veya büyük ne kadar kitleye ulaşırsa bir faydamın olmasını istedim ve ücretsiz şekilde yayımladım. Elimden geldiği kadar video çözümlerini de bizzat kendim yaptım. Herhangi bir yayınevi veya kurum ile yayımladığım içeriklerin hiçbir alakası, anlaşma reklam vb. yoktur. Basım olarak kurumsal bir baskı söz konusu değildir, kırtasiyenizden veya kendi cihazlarınızdan çıktısını alıp fasikülü değerlendirip çözebilirsiniz. Yapamadığınız soruları video çözümünden öğrenebilirsiniz. Not : Türev ilişkisi bölümü sizi zorluyorsa bilmiyorsanız çözmek zorunda değilsiniz, türevi işleyip daha sonra veya konu anlatım videolarımı izledikten sonra bakabilirsiniz. Sadece parabol bilgisiyle çözülmesi zor sorular da var içerisinde o yüzden canınızı sıkmaya gerek yok fakat analitik geometri bilgisi ile çoğu soru türevsiz de çözülebilir, türev pratiklik sağlamaktadır. Ama ön yargılı yaklaşmadan tüm sorulara bakmanızı ve yapabildiğinizi yapmanızı, yapamadığınızı video çözümden dinlemenizi önemle rica ediyorum. Ücretsiz olarak vaktim olduğunda bu tür çalışmalar hayatım boyunca severek yapacağım. Henüz bir üniversiteye yerleşememiş bir öğrenci olarak hazırladığım bu üniversite hazırlık fasikülü alanında benle aynı şartları sağlayan yazarlar kategorisinde ilk eserlerden biri olduğunu düşünüyorum. Umarım tüm hazırlık öğrencilerine faydalı olur ve arkadaşlarınıza da faydalı olması için tavsiyenizi esirgemezsiniz. Bu fasikülü hazırlamamda emeği geçen tam ismini paylaşmamı istemediği Seda Nur Arkadaşıma ve Zeki Kara öğretmenime çok teşekkür ediyorum. Aynı zamanda desteklerinden dolayı Onur Türe arkadaşıma da ayrıca teşekkürlerimi iletiyorum. ALLAH hepimize vatanımıza milletimize yararlı bireyler olmayı ve mutlu olacağımız işimizi severek en iyisini yapabileceğimiz meslekler nasip etsin  Her türlü bilgi, soru, öneri, Fasikülün faydalı olması dileğiyle İstek ve arzularınız için : paylaşmayı esirgemeyelim, herkes faydalansın  Sağlıklı günler dilerim, şen ve esen kalın.  bilgi@ahmetcelen.com.tr  ahmetbey124@gmail.com  Web : www.ahmetcelen.com.tr

İLGİLİ KONU VE İÇERİK SAYFA NUMARASI Parabol Konu Anlatımı 1-9 Altın Tüyolar (Sorulara Yardımcı) 10 - 12 Parabol Testleri [1,2,3,4] 13 - 21 Parabol ÖSYM Tadında Sorular 22 - 26 Parabol Yeni Nesil Sorular 27 - 32 Parabol Türev İlişkisi Testi 33 - 36 Son Sunuş ve Önemli Uyarılar 37

 X1 = −������+ ������2−4������������ 2������ X2 = −������− ������2−4������������ şitlik olarak = b2 − 4ac Δ 2������  −b a c  a  = Δ |������| 2.DERECEDEN DENKLEMLERİN TARİHÇESİ (Meraklısına ) MÖ 2000’lerde Mezopotamyalılar ikinci dereceden denklemlerin pozitif kökünü (çözümünü) bulmak için algoritma geliştirmişlerdi. Mısırlıların da MÖ 2160-1700 tarihleri arasında ikinci dereceden denklemlerin kökünü bulmayı bildikleri Berlin papirüsünden anlaşılıyor. Ama o zamanlar daha \"denklem\" kavramı gelişmemişti ve gerçek yaşamdan alınan problemlerde ortaya çıkan, dolayısıyla pozitif kökleri (genellikle bir uzunluk) olan denklemlerle uğraşılırdı. Yunanlılar MÖ 300 yıllarında ikinci dereceden bir denklemi geometrik yöntemlerle çözebiliyorlardı.Yunanlılar için de bir sayı daha çok bir uzunluktu. Yunanlı Diofantus ikinci dereceden denklemleri çözebiliyordu, ama köklerden sadece birini buluyordu, köklerin her ikisi de pozitif olduğu zaman bile. Hintli Aryabhata her iki kökü birden bulmasını biliyodu.Ama bu bilgi daha sonra unutulmuşa benziyor, çünkü Brahmagupta köklerden sadece birini bulabiliyormuş gibi bir intiba bırakmıştır. Mahavira en azından pozitif kökü bulmayı mutlaka biliyordu, Sridhara da öyle.Türk Harizmi ve İranlı Ömer Hayyam da pozitif kökü bulmayı biliyorlardı. Ömer Hayyam ayrıca üçüncü dereceden bir denklemin birden fazla kökü olabileceğini de biliyordu. 1000 yıllarında Araplar ax2n+bxn+c=0 denklemini ikinci dereceden bir denkleme indirgeyebiliyorlardı. İspanyol Abraham bar Hiyya- Ha-Nasi ya da Savasorda ikinci dereceden denklemlerin çözümünü Batı’da ilk kez yayımlayan kişi olarak bilinir (Liber Embadorum kitabında.) Viéte (1540-1603), geometrik yöntemler yerine cebirsel yöntemleri kullanan ilk Batılı matematikçi olmuştur.Al-Harazmi bunu çok daha önceden biliyordu. … https://prezi.com/p/6dxxgwslt5mw/2dereceden-denklemler/ (Yazı Kaynağı)

������2 ������2 • •

• • • • • • • • • = = Δ |������|

• y  G fonksiyonun kökleri X1 ve X2 dir.  r tepe noktasının x = apsis değeridir.  Tepe noktasından indirilen dikme tabanı iki eş parçaya böler.  Tepe noktasının köklere olan uzaklıkları daima aynıdır çünkü ikisinin X1 r X2 x orta noktasıdır. Analitik geometriden hatırladığımız üzere orta nokta formülünü bir parabolde düşünürsek kökler toplamının yarısı şeklinde değerlendirebiliriz. Formülde zaten g(x) buradan türemektedir. -b/a kökler y toplamı, -b/2a yani 2 ye bölmemiz tepe noktasının apsisini vermektedir. 1 34 57  Tepe noktasının apsisine simetri ekseni denmesinin sebebi parabolü iki simetrik eş parçaya bölmesidir.Apsis değeri en küçük veya en büyük değeri belirler. x  F fonksiyonu üzerinden inceleyelim. -2  F(4) = -5 olduğunu yani en küçük değeri aldığını görüyoruz tepe noktası f(x) kollayı yukarı bir parabolde en küçük -5 değeri ifade eder. T(4,-5)  Tepe noktasına eşit uzaklıkta olan apsis değerlerini bulalım.  Tepe noktasına aynı uzaklıkla apsisler seçelim. 1 br uzak (3,5), 2 br uzak (2,6)  3 ve 5 1 br uzaklıkta, 1 ve 7 ise 3 br uzaklıkta.  Bu seçtiğimiz apsis değerlerinin toplamı kökler toplamımıza simetri eksenininden  Dolayısıyla F(3) = F(5) = -2 dolayı eşit olmaktadır.  Benzer şekilde F(1) = F(7) = 0  3+5 = 2+6 = 1+7 = 8  1 ve 7 kök olduğundan y değeri 0  1+7 burada kökler toplamıdır. 3,5 ve 2,6 olur. simetri eksenimizin simetrik apsisli değerlerdir.

• •• • • • • • •

Δ = b - 4ac ) y Δ>0 • Parabol x eksenini 2 farklı noktada keser. • 2 Farklı kök bulunur. • Bulunan kökler gerçel sayılar x kümesine ait köklerdir. y Δ= 0 • Parabol x eksenini sadece 1 yerde keser. • Çift katlı köktür.Yani 2 tane aynı kök bulunur. x • Sorularda delta = 0 demez, teğet diye nitelendirir. y Δ< 0 • Parabol x eksenini kesmez. • Parabolün kökü vardır fakat gerçel sayılarda değildir. Bu kökler imajinerdir. Karmaşık x sayılarda tanımlı 2 kök vardır. • Sorularda bize anlatmak istediği : reel kökü yoktur.

y Ortak Denklemin : Δ > 0 A f(x) • Paraboller 2 farklı noktada (A g(x) Bx ve B) kesişirler. • Ortak çözüm denkleminde delta 0 dan büyük olmalıdır. y f(x) Ortak Denklemin : Δ = 0 g(x) • Paraboller sadece bir noktada kesişirler ve bu nokta teğet x değme noktasıdır. • Ortak çözüm denkleminde delta = 0 olarak bulunur. y g(x) Ortak Denklemin : Δ < 0 f(x) x • Parabollerin birbirlerini kestiği hiçbir nokta yoktur. • Ortak çözüm yapıldığında delta 0 dan küçük olmalıdır ki kök gelmesin.

   Δ>0 Δ= 0 0 Δ< 0

• A ( x1,y1) . B ( x2,y2) C ( x0,y0) Orta Nokta Orta noktanın Orta noktanın ������1+������2 ������1+������2 apsisi = x0 = 2 ordinatı = y0 = 2 Ahmet Çelen // www.ahmetcelen.com.tr Ahmet Çelen // www.ahmetcelen.com.tr // A ( x1,y1) B ( x2,y2) |AB| = (x1 − x2)2+ (y2 − y1)2 İki nokta arası Uzaklık X lerin farkı ve Y lerin farkının bize |AB| arasındaki uzaklığı verecektir. Sırasının hiçbir önemi yok bu durumda çünkü karesi alınacağından aynı sonuç gelir. d1 d1 // d2 doğrusu paraleldir. Paralel doğruların eğimleri Paralel Doğrular eşit olur. // paralellik d2 sembolüdür. Diklerse eğimleri çarpımı -1 olur. Ahmet Çelen // www.ahmetcelen.com.tr Ahmet Çelen // www.ahmetcelen.com.tr //  İki noktası bilinen doğrunun eğimi Eğim Bulma A(x1,y1) ve B (x2,y2) biliniyor olsun. Tanjant = Karşı / Komşu  ������2−������1 = ������1−������2 =m İşaretlere dikkat ������2−������1 ������1−������2 Doğru Denklemi İçler dışlar yaptığımızda yukarıdaki denklemde  y2-y1 = m (x2-x1) eşitliği bulunmuş olur.  Doğrunun x ekseniyle yaptığı pozitif yönlü açıda eğimi verir. Geniş açıysa negatif, dar açıysa eğim pozitiftir. y ������ + ������ = 1 ������ ������ ax b

Altın Tüyolar Bir nokta x (apsis) ekseni Parabolde en büyük ve en küçük üzerindeyse y (ordinat) değeri değerler tepe noktasıdır. Yeni 0 olmalıdır. y ekseni nesil sorularda çoğunluk bu üzerindeyse x değeri 0`dır. kalıpta sorulur. Tepe noktasından indirilen dikme Bir fonksiyonda sabit terim için kenarortaydır. Tabanları iki eşit bilinmeyen değişkene = 0, parçaya böler. Bu sayede katsayılar toplamını bulmak için grafikten kök tespiti yapılabilir. Bilinmeyen değişkene = 1 yazılır. Parabolün tepe noktası y ekseni Parabolün y eksenini kestiği üzerindeyse b kısmı 0 olmalıdır. noktanın ordinatı ilgili İspatı –b/2a = 0 eşitliğindendir. fonksiyonun sabit terimine eşittir. www.ahmetcelen.com.tr Parabolün y eksenini kestiği www.ahmetcelen.com.tr noktanın ordinatı ilgili fonksiyonun sabit terimine Paraboller çift fonksiyon eşittir. eğilimindedirler. Fakat hepsi çift fonksiyon değillerdir. Denklemde Paraboller ötelemeler tepe tek dereceli terim varsa olmaz. noktası üzerinden yapılır. YKS sınavlarında genelde öteleme Parabolün simetri ekseni tepe soruları sorulmuştur. noktasının x (apsis) noktasıdır. Simetri ekseni x=1 derse mesela Parabollerde sağ ve sola öteleme ; Tepe noktasının apsisi 1`dir. X ekseni boyunda + , - yönde Tepe noktasından ötelenir. Parabollerde yukarı ve aşağı ; Ahmetcelen.com.tr Y ekseni boyunda + , - yönde Tepe noktasından ötelenir. Yandaki QR Kodu oturarak Konu anlatım videolarımıza ücretsiz erişebilirsiniz.

Altın Tüyolar Parabol tanım olarak Parabol eğer tanım olarak sınırlandırılmamışsa grafik sınırlandırılmışsa verilen tanıma sonsuza doğru ilerler. göre grafik çizilir ve sorular o tanım kriterine göre çözülür. Parabolün tanımlı olduğu aralıkta tepe noktası yoksa en büyük veya Kapalı ve açık parantezler küçük değerleri tanımlı olduğu sınırlar için önem taşımaktadır. ilk ve son sayılar belirler. Sorularda kapalı ve açık parantezlere dikkat edilmelidir. Kapalı parantez [ ] işaretleri Dahil olduğu anlamına gelir. Açık parantez ( ) işaretleri Örneğin : [1,3] aralığı tam sayı Dahil olmadığı anlamına gelir. 1,2,3 sayılarını içerir. 1 ve 3 dahil. Örneğin : (4,7) aralığı tam sayılar 5,6 sayılarını içerir. 4 ve 7 dahil www.ahmetcelen.com.tr değildir. [4,7) aralığı tam sayı olarak www.ahmetcelen.com.tr 4 kapalı parantez 7 açık parantez 4 dahil 7 dahil olmayacaktır. Yeni nesil parabol sorularında 4,5,6 sayılarını içerir. parabolün başlangıç noktasını orijin olarak almak büyük Parabolün tepe noktası ve bir kolaylık sağlayabilir. kökü verilmişse diğer kök simetri ekseni yardımıyla tespit edilir. Tepe noktası T (r,k) Tepe noktası her iki köke eşit Birinci kök a, ikinci kök b olsun uzaklıktadır. |r-a| = |r-b| sağlanır. r = 5 olsun b= 10 ise a = 0 apsisli noktadır. Y lerin farkı / x lerin farkından Eğim bulunabilir. Eğim bir nevi Paraboller ikinci dereceden Tanjant yani karşı / komşudur. denklemlerdir. O yüzden ikinci Doğrunun x ekseniyle yaptığı dereceden denklemlerde eksiğiniz Pozitif yönlü açı eğimi verir. varsa konu anlatımlarımıza bakın. Ahmetcelen.com.tr Yandaki QR Kodu oturarak Konu anlatım videolarımıza ücretsiz erişebilirsiniz.

Parabol & Türev İlişkisi Tüyoları Parabolün eğimi denklemin Parabol türevi alınıp sıfıra bilinmeyen değişkenine göre türevi eşitlenerek ekstremum yani en alınarak bulunur. Bulunan denklemde büyük, en küçük değerler bulunur. yazılan x değeri o noktadan çizilen Ekstremum nokta türevin köküdür. teğetin eğimini verir. Parabolün tepe noktası ekstremum Tepe noktasının apsisi : –b/2a ile noktası olduğundan türev alıp sıfıra Ordinatı ise bulunan apsis değerini eşitleyerek aynı r (tepe noktasının fonksiyonda yazılır. -b/2a apsis) değerini bulabilir. formülünün ispatı 5. ve 6. numarada. a x2+ b x + c parabolünün x`e göre 2ax + b = 0 , x`i bulmak için yalnız türevi alınır. Sonra türevin kökü bırakalım. -b/2a formülü geldi bir bulunur. Bu kök ekstremum noktadır. yerlerden sanki tanıdık  2 Numarada açıklanmıştır. www.ahmetcelen.com.tr www.ahmetcelen.com.tr Yani parabol testleri çözüyorsanız En büyük ve en küçük şeklinde türev içinde biraz antrenman sorulan kalıplar aslında türev yapmışsınızdır demektir  maksimum-minimum problemleriyle doğrudan ilişkilidir diyebiliriz. Bir parabole orijinden çizilen Bir parabole X ekseni üzerinden teğetler birbirine dikse Δ = -1 çizilen teğetler dikse Δ = 1  %100 Ücretsiz İçerik Konu anlatım videomuzdan  Sonra ki kazanımlarınız aBluannaınKVbdeoiadnlaedzyoeenrEÇermöimşzaiületemevbmeliülaektnoiknPuDF 0,25x – 4x  Basit Düzey Türev Alma Kuralı anlatıMfmorüfmafrsaeiktdıünaltldeaaruidiyçogisnuynalar  Parabol Türev İlişkisi  Bazı Formüllerin ispatı sorular opsiyonunda  Bu fasiküldeki soruların daha  Yeni Nesil Tarzda izleyebileceğiniz fazlasını çözdürecek kadar bilgi Sorular Eğer meraklıysanız parabol türev  ahmetcelen.com.tr `de video çözümleri İlişkisine sağda bulunan qr kodu okutun.

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 1. Bilgi : Bir ifadenin parabol belirtmesi için 3. x2 + 10x - 24 parabolünün sabit terimi İkinci dereceden bir denklem olması gerekir. ile aşağıdaki verilen fonksiyonların hangisinin sabit terimiyle çarpılırsa pozitif sonuç elde Aşağıdaki ifade bir parabol belirtmektedir. edilir? A) B) (a-4) x 4+ (b+2) x3 + (c-1) x 2 + 10x + 24 = 0 C) D) Buna göre a + c . b = 0 eşitliğinin sağlanması için c kaç olmalıdır? A) -1 B) 0 C) 1 D) 2 E) 4 2. Aşağıdaki grafiklerden hangisi bir E) Bilgi : Bir parabolün sabit terimi y Parabol grafiği olabilir? eksenini kestiği A) B) noktadan tespit edilebilir. C) C) ++ E) 4. Bilgi : Parabolün 2 adet kolu vardır. Kollar yukarı ise başkatsayısı pozitif, aşağı doğru ise başkatsayısı negatiftir. Aşağıdaki verilen parabol denklemlerinden hangisinin kolları aşağıdır? A) x2+ 10x - 24 B) x2 - 10x - 24 C) x 2 + 45x + 13 D) 2x2 + 10x - 24 E) -4 x2+ 10x - 24 1.D 2.C 3.D 4.E 13

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 5. (a-4) x2 + 6 x + 2a-4 = 0 8. x2 + 10x eğrisinin grafiği aşağıdakilerden hangisi olabilir? Yukarıda verilen parabolün baş katsayısı 3`tür. A) B) Buna göre bu parabol y eksenini kestiği noktanın ordinatı ile a sayısının toplamı nedir? A) 4 C) D) B) 8 C) 14 D) 17 E) 20 6. A (3,12) x 2 + (b-4) x + 12 parabolü A noktasından E) geçmektedir. Buna göre parabolün sabit terimi ile b sayısının çarpımı kaçtır? A) 8 Ahmet Çelen 9. Aşağıda verilen ifadelerden hangisi B) 12 C) 16 (x+4) ile çarpılırsa bir +parabol e+lde edilir? D) 20 E) 25 7. Parabolün tepe noktası (r,k) ile gösterilir. A) (x-1) B) 4 C) (x+4) 2 r= -b/2a , k = f(r) (Fonksiyonda yerine yazılır) D) x2 E) x3- 8 Tepe noktasını bulmak için denklemin bilinmeyen değişkene göre türevi alınıp sıfıra 10. I. Bir parabol 3.derece olabilir. eşitlenebilir. Ek bilgidir şuanlık bilmeniz zorunlu değildir, ilerde ki konulardandır. II. Parabol y eksenini kesmek zorundadır. III. Parabol x eksenini kesmeyebilir. x2 + 4x + 12 parabolünün tepe noktası IV. Parabol x eksenine teğet olabilir. koordinatları nedir? V. Parabolün sabit terimi bilinmeyen değişkene A) ( -2,8 ) 0 verilerek bulunur. B) ( -2,-8 ) VI. Bir parabolün minimum veya maksimum C) ( 2,8 ) noktalarını tepe noktası belirler. D) ( 4,-8 ) VII. Parabolün katsayılar toplamı bilinmeyen E) ( 2,-4 ) değişkene 1 verilerek bulunur. Yargılarından kaç tanesi doğrudur? A) 3 B) 4 C) 5 D) 6 E) 2 5.D 6.B 7.A 8.E 9.A 10.C 14 Doğru : Yanlış : Net : Süre:

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 1. y = x2 + (-2m + 4 )x + 12 4. x2 + 8x+7 eğrisinin grafiği aşağıdakilerden Parabolünün simetri ekseni x=4 doğrusu hangisi olabilir? olduğuna göre m kaçtır? A) B) A) 4 B) 0 C) 6 D) -6 E) 12 C) D) 2. Kökleri 3 ve 4 olan bir parabol M ( 6,8) noktası E) üzerinden geçmektedir. Buna göre parabolün Ahmet Çelen denklemindeki başkatsayı nedir? A) 8 B) 4 C) 3 33 2 D) 3 E) 4 5. Baş katsayısı 1, kökler toplamı -6, kökler çarpımı 3. Aşağıda f(x) fonksiyonun grafiği verilmiştir. 12 olan parabolün denk+lemi han+gisidir? A) x2 + 6x + 12 B) x2 - 6x + 12 C) x 2 + 6x +4 D) 12x 2 + 4x -6 2 E) 4x - 6x + 12 -4 6. I. Parabol x eksenine teğetse çift katlı kök olur. I. X eksenine teğettir. II. Sabit terimi baş katsayından büyük olmalıdır. II. Denklemin 2 farklı kökü vardır. III. Baş katsayı 0 olabilir. III. Orijinden geçmiştir. IV. Parabolün daima gerçel kökü olmalıdır. IV. Denklemin başkatsayısı pozitiftir. V. Ötelemeler sadece tepe noktası kullanılarak V. Grafikten kökler tespit edilebilir. yapılabilir. Yukarıda bir parabolle ilgili durumlardan hangileri her zaman kesinlikle doğrudur? Veriler yargılardan hangileri doğrudur? A) I,III,V B) I ve IV C) III,IV, V A) I,III, V B) Yalnız III C) I ve V D) II,IV,V E) Yalnız I D) II, III, IV, V E) Hepsi 1.C 2.B 3.D 4.D 5.A 6.E 15

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım 7. Tepe noktası koordinatları (4,2) olan 10. yandaki QR kodu okutabilirsiniz. başkatsayısı 1 olan parabol denklemini hangisidir? B A) (x-4)2 + 2 B) (x+4)2 + 4 C) (x-2) 2+ 4 A 2 3 D) (x-4) + 1 E) (x-4) + 2 8. f(x) = x2 + 4(m-4)x +14 parabolü tepe noktası B A y ekseni üzerinde ise m kaçtır? Yukarıda bir atış oyun+una ait gö+rseller A) 4 B) 2 C) 3 verilmiştir. Atış parabolik bir rotasyon 2 izlemektedir. Oyun algoritmasına göre tavana Ahmetcelen.com.tr ulaştığında teğet olarak geri dönmektedir. D) 2 E) 6 Buna göre aşağıdakilerden hangisi doğrudur? 7 A) x ekseni tavan olarak alınırsa 2 farklı kök 9. Aşağıda f(x) fonksiyonun grafiği verilmiştir. bulunur. -4 -2 B) İki parabolünde baş katsayısı pozitiftir. C) B noktasını 2 parabolde sağlar. f(x) ikinci dereceden bir paraboldür. Y eksenini D) Alttaki şekilde A noktasının ordinatını 2 kestiği noktanın ordinatı 8 olduğuna göre tepe farklı apsis değeri sağlar noktasının apsisi ile ordinatının çarpımı kaçtır? E) İki parabolde A noktasına teğettir. A) 3 B) 4 C) 8 D) -12 E) -9 7. A 8. A 9. A 10. D 16 Doğru : Yanlış : Net : Süre:

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 1. h(x) = x2 + 8x + 22 4. I. Hepsi çift fonksiyondur. Yukarıdaki fonksiyon bir parabol II. Tepe noktası maksimum veya minimum değerleri belirtir. belirtmektedir. Bu parabolün tepe noktaları III. Paraboller 2.dereceden olmak zorundadır. kullanılarak yazıldığı bilindiğine göre ifadenin Yukarıdaki yargılardan hangileri bütün paraboller için doğru kabul edilemez? eşiti nedir? 2 2 2 A) (x+4) + 8 B) (x+4) + 6 C) (x-2) + 2 2 2 A) Yalnız III B) Yalnız II C) Yalnız I D) (x-7) + 4 E) (x-5) + 1 2. Gerçel katsayılı ikinci dereceden denklemin D) I ve II E) I ve III bir kökü 2+i `dir. Baş katsayısı 1`dir. 5. En büyük dereceli terimin önündeki çarpan 1, Bu denklem bir parabol olduğuna göre bu parabolün kökler farkının y eksenini kestiği Tepe noktası (2,9) olan parabolün denklemi noktanın ordinatına oranı kaçtır? (i2= -1) aşağıdakilerden hangisidir? A) 2������ B) 4������ C) 4 5 5 5 A) x2 + 2x + 9 B) x2 + 6x + 12 C) x2 - 4x +13 D) 8 E) 4 D) 12x 2 + 4x -6 E) 4x2 - 6x + 9 33 + 3. Aşağıda f(x) fonksiyonu ve d1 doğrusu verilmiştir. A f(x) 6. x2 + 2x + m parabolü ile mx+2 doğrusu d1 teğettir. Buna göre m`nin en büyük tam sayı I. Doğru ile parabol ortak çözüm yapılabilir. II. Doğru ve parabol 2 noktada kesişmişlerdir. değeri nedir? III. Ortak çözüm yapıldığında Δ > 0 olur. IV. A noktasını sadece doğru denklemi sağlar. A) 2 B) 6 C) 12 D) 18 E) 14 Veriler yargılardan hangileri yanlıştır? A) Yalnız III B) Yalnız IV C) I ve IV D) III ve IV E) II ve III 1. B 2. A 3.B 4. C 5. C 6. B 17

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 7. h(x) = 2x2 + 8x + a+4 10. x2 -9x + 6 denkleminin kökleri a ve b `dir. Buna göre ; Fonksiyonun en küçük değeri 6 olduğuna göre 42 + 9b+9a + (a.b) işleminin sonucu nedir? a kaçtır? A) 6 B) 8 C) 10 A) 48 B) 56 C) 72 D) 12 E) 14 D) 91 E) 103 8. h(x) = 2x2 + ax + 4 parabolü ile x+2 doğrusu İle kesişmemektedir. Buna göre a`nın alabileceği tam sayı değerler toplamı nedir ? A) -3 B) 2 C) 5 11. Tepe noktası (4,5) olan baş katsayısı 4 olan Ahmet Çelen parabolün katsayılar toplamı kaçtır? A) 14 B) 21 C) 23 D) 7 E) 16 D) 37 E) 41 ++ 9. Aşağıda f(x) fonksiyonun grafiği verilmiştir.. 10 f(x) 12. x2 - m x + 1 denkleminin 2 farklı kökü vardır. 2 5 Verilen denklemin kökler toplamı aşağıdaki denklemin bir köküdür. f(x) fonksiyonun denklemi aşağıdakilerden hangisidir? x 2+ 6x + 5 A) x2 -7x + 10 B) x2 + 6x + 12 C) x2 - 4x +13 Buna göre m gerçek sayısı kaçtır? A) -5 B) -1 C) 0 D) - 14 D) x2+ 12x + 15 E) x 2 + 12x + 15 E) 14 7.C 8.D 9.A 10.E 11.E 12.A 18 Doğru : Yanlış : Net : Süre:

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 1. f(x) = x2- 6x + 12 4. -6x2 -5x + 6 parabolü [0,3] aralığında tanımlı Fonksiyonu grafiği m birim sağa, n birim aşağı olduğu bilindiğine göre alabileceği en büyük ve Ötelenerek x2- 8x + 6 parabolü elde ediliyor. en küçük tam sayı değerinin toplamı kaçtır? Verilen bilgilere göre |m| + |n| kaçtır? A) - 79 B) -63 C) -57 A) 3 B) 7 C) 9 D) -35 E) 6 D) 14 E) 18 2. h(x) = 2x2 + 4x + 12 parabolü [-10,0) aralığında tanımlıdır. Buna göre parabolün tanımlı olduğu aralıkta alabileceği en küçük değer kaçtır? 5. y (m) A) 0 B) 10 C) 12 D) - 228 E) -20 Ahmet Çelen ++ 3. B x (m) AB Tsubasa orijin noktasından topu havaya doğru dikmiş ve çadırın üstünü aşırtarak B noktasında Wakabayashi yakalamıştır. Topun yatay mesafede aldığı yol x(m) , düşey mesafede aldığı yok y(m) Yukarıda x 2 + x + a-4 fonksiyonun grafiği olmak üzere bu parabolün denklemi verilmiştir. |AB| = 3 birim olduğuna göre a kaçtır? y = ������ ������ = − x2 + ������ şeklinde modellenmiştir. 200 5 A) -2 B ) -3 C) -4 K : Topun yatay olarak aldığı mesafe kaç metredir? D) 3 E) 2 L : Topun wakabayashi`ye ulaşması için topun en çok kaç metre yüksekliğindeki bir çadırın boyunu aşması gerekir? K ve L sorularının doğru cevaplarının toplamı kaçtır? A) 39 B) 40 C) 41 D) 42 E) 43 1 .D 2. B 3.E 4 . C 5 . D 19

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım 6. 7. yandaki QR kodu okutabilirsiniz. K LM Ahmet Çelen Yukarıda parabol şeklinde bir manzara resmi verilmiştir. ������, ������, ������ ∈ ������ - x2 + 2x + 15 parabolü modellenmiştir. Bu parabolün denklemi a x2 + b x + c üzere aşağıdaki ifadelerden hangisi Yukarıda bir topuklu ayakkabı görseli ve kesinlikle doğrudur? bilgisayar ortamında çizilen bir parabol görseli verilmiştir. |KL| = 3|LM| eşitliği A) Kökler toplamı çift bir sayıdır. sağlanmaktadır. Parabolün kökleri arasındaki mesafe 8 birim ölçülmüştür. Topuklu B) ∀ x sayısı için görüntü pozitif çıkar. ayakkabının topuğunun yüksekliğini L noktasının apsis değeri sağlamaktadır. C) b>0 ve b>c eşitsizliği sağlanır. ++ Buna göre, topuklu ayakkabının yüksekliği kaç birimdir? D) a negatif bir sayıdır. A) 10 B) 11 C) 12 E) Kökler arası uzaklık b sayısının yarısı kadardır. D) 13 E) 14 8. f(x) = x2– x - 5 parabolü ile y = 3x – 4 doğrusunun oluşturacağı kirişin orta noktasının koordinatlar çarpımı kaçtır? A) -1 B) -2 C) 4 D) -6 E) 3 4 6.C 7.D 8.C 20

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım 9. x2 + mx + 2m – n parabolünün her x gerçek 11. yandaki QR kodu okutabilirsiniz. sayısı için gerçek sayılarda tanımlı kökü A olmadığı biliniyor. Buna göre n gerçek D sayısının alabileceği en büyük tam sayı B değeri kaçtır? PC A) 0 B) 1 C) 2 D) 3 E) 4 10. Yukarıdaki şekilde gösterilen turuncu renkli top bulunduğu yerden belli bir açıyla fırlatılıyor ve gösterilen yolda parabolik bir rotasyon izliyor C noktasında yere düşüyor. D noktası parabolün tepe noktasıdır. f(x) = ax2 + bx + c a,b,c ∈ R Ders : Matematik Ahmet Çelen D noktasının dik izdüşümü P noktası olmak üzere ;  Parabolü orijinden geçmemektedir. |AB|= 15 m, |DP| = 16 m , |BP| = 4  Parabolünün eksenleri kestiği noktalar bir olduğuna göre topun fırlatıldığı noktayla yere düştüğü nokta arası kaç metredir? dik üçgen belirttiğine göre aşağıdakilerden hangisi kesinlikle doğrudur? I. b2 > ac A) 21 B) 25 C) 24 I. Kökün birisi negatiftir. II. İkizkenar üçgen belirtir. D) 17 E) 13 Ahmet Öğretmenin tahtaya yazdığı soruyu 12. f(x) = (a-3) x4 + (b-5) x3+ (c-1) x2 öğrencisi Hande doğru yanıtlamıştır. Hande aşağıdakilerden hangi cevabı vermiştir? Fonksiyonu bir parabol belirttiğine göre a+b+c işleminin sonucu aşağıdakilerden A) Yalnız III B) II ve III C) Yalnız I hangisi kesinlikle olamaz? A) 3 B) 8 C) 9 D) I ve III E) I ve II D) 5 E) 0 9.D 10. E 11. B 12. C 21 Doğru : Yanlış : Net : Süre:

1. a ve b gerçel sayılar olmak üzere ; Video çözümlerine ulaşmak için f(x)= x2 + a x + b parabolü 2 birim sağa, 3 birim yukarı öteleniyor. Öteleme sonucunda yandaki QR kodu okutabilirsiniz. g(x) = x2 + 4x + 12 parabolü elde ediliyor. Buna göre a + b ifadesi nedir? 4. y ������ −2 d1 A) 8 B) 16 C) 29 D) 34 E) 41 Şekilde verilen y = a x2 + (a+c) x + c parabolü ve d1 doğrusu teğettir. Doğrunun x ekseni ile 2. h(x) = x2 - 9x + 7 parabolünün y eksenini yaptığı pozitif yönlü açı 45 derecedir. Verilen bilgilere göre c`nin alabileceği değerlerin kestiği noktalar ile x eksenini kestiği noktaları çarpımı kaçtır? köşe kabul eden üçgenin alanı nedir? A) 7 53 B) 3 37 C) 53 A) 7 B) 11 C) 13 2 2 Ahmet Çelen D) 17 E) 19 D) 4 39 E) 2 17 3. f(x) = mx 2+ ( m2 - 4)x – 12 bir parabol olmak üzere, ABC üçgenin alanını hangisidir? f(x) 5. f(x) = x 2+ (m-2)x + (m-7) parabolünün simetri AB ekseni x=2 doğrusudur. Buna göre verilen denklemdeki parabolün x eksenini kestiği noktalar arası uzaklık kaç birimdir? A) 2 13 B) 5 C) 2 17 T (Tepe noktası) D) x eksenini kesmez E) 0 A) 4 6 B) 6 3 C) 12 6 D) 8 E) 16 1.C 2.A 3.C 4.D 5.A 22

VidueolaçşAmöhzaümkmiçleeintricnee len.com.tr yandaki QR kodu okutabilirsiniz. 6. f (x) = x 2- 4x + 7 fonksiyonun Z (2,3) noktasına 8. 2 +1 , 5 birim sağ, 2 birim aşağı göre simetrisinin y eksenini kestiği noktanın f (x) = ( x + 4 ) ordinatı kaçtır? 2 g(x) = ( x – 4 ) +8 , 4 birim sağ, 4 birim aşağı A) -3 B) -1 C) 2 2 h(x) = ( x + 2 ) -4 , 2 birim sol, 8 birim yukarı D) 3 E) 7 Ötelenerek yeni fonksiyonlar elde ediliyor. Bir parabolün tepe noktası koordinatları çarpımı veya toplamları bir ötelenme sonucunda da aynıysa bu parabollere `` mekatronik hareketli paraboller `` denir. 7. T Verilen bilgilerle yapılan ötelemeler sonucu hangi fonksiyonlar mekatronik hareketli A 4B parabol tanımına uyar? DC A) f ve g B) Hiçbiri C) g ve h D) Yalnız h E) Yalnız g Yukarıda verilen grafiğin denklemi 9. 2 f(x) = mx2 + (m2-1)x + (m+9) parabolüdür. ABCD Yamuğunun alanı kaçtır? f(x) = (x-m) parabolünün x eksenine negatif tarafta bir tam kare olabilmesi için m değeri A) 8 ( 2 + 1) B) 4 ( 2 + 1) C) 8 2 kaç olabilir? A) 1 B) 9 C) 4 D) 4 ( 2 -1) E) 4 ( 1 2 ) D) 0 E) -7 6.B 7.A 8. E 9. E 23

10. f (x) = (a+2) x 2+ 6x + 4 VidueolaçşAmöhzaümkmiçleeintricnee len.com.tr g(x) = (a-1) x 2+ 4x + c yandaki QR kodu okutabilirsiniz. parabolleri x eksenini aynı noktalarda kestiklerine göre c/a kaçtır? 12. m,n,k 0 sayısından farklı gerçek sayılardır. • P(2m) = P(2m+k) • P(n) = P (n+k) • P(3m) = P (3k) A) 8 B) 21 C) 3 Eşitliği P parabolünde sağlanmaktadır. D) 8 E) 49 Buna göre P (3m) nin eşiti nedir? 21 4 A) P(n-k) B) P(3k+n) C) P(m+n+k) D) P(3k+n) E) P(3m+2k) 11. Bir servis sağlayıcısı 250 kişilik stoklarla sınırlı ++ bir kampanya oluşturmuştur. Bu sağlayıcı ilk 13. f(x) = x2 parabolü ile y = -2x+3 doğrusu 50 müşterisi için kişi başı 70 TL, 50 müşteriden fazla her bir müşteriye karşılık arasında kalan sınırlı bölgenin üzerindeki (x,y) her müşterisine 1 TL indirim uygulamıştır. noktaları için ������������ + ������������ ifadesinin alabileceği en büyük değer kaçtır? Bu servis sağlayıcısı en fazla ciro elde ettiğine göre kampanyaya kaç kişi katılamamıştır? A) 73 B) 58 C) 37 D) 90 E) 101 A) 175 B) 185 C) 190 D) 75 E) 120 10.D 11.C 12.A 13.D 24

VidueolaçşAmöhzaümkmiçleeintricnee len.com.tr yandaki QR kodu okutabilirsiniz. 14. + y = ax2 + bx + c 16. y A ve B ������, ������, ������ ∈ ������ A noktalarının O orijine olan B uzaklıkları eşittir. 2 Parabol x= 3 olduğunda fonksiyonun en x küçük değerini Yukarıda grafiğinin bir kesiti verilen y fonksiyonun x almaktadır. eksenini ������1 ve ������2 farklı noktalarında kesiyor. Buna göre aşağıdaki ifadelerden hangisinin doğruluğu Fonksiyonun kökleri x1 ve x2 dir ve x2>x1 dir. Parabolün denklemi (x-x1). (x-x2) bağıntısı ile bulunmaktadır. kesin değildir? (Tepe noktası bilinmiyor) Buna göre bu fonksiyonun sabit terimi aşağıdakilerden hangisidir? c A) 1 B) 2 C) 4 a 3 3 3 A) a2 > ������1 . ������2 B) <0 C)c>a 3 D) ������1 + ������2 > 0 E) |������1 - ������2 | ≥ 0 D) 1 E) 2 + 15. a,b ve c gerçek sayılar olmak üzere 17. a,b ve c gerçek sayılar olmak üzere f(x) = y = ax2 + bx + c y = ax2 + bx + c parabolü y = -2 doğrusunda B ve C noktalarında, y = -4 doğrusunda parabolünün grafiğinden bir kesit sadece A noktasında kesmektedir. A,B,C 2020 AYT Benzer Soru noktaları dik koordinat sisteminde aşağıda solda monotorize edilmiştir. verilmiştir. y Denklemin kökleri X1 ve X2 olmak üzere X1 < X2 B C y=2 eşitsizliği sağlandığı biliniyor. Buna göre Ox aşağıdakilerden hangisi doğru olamaz? y = -4 A A) Denklemi a. (x-R) 2+ 8 olabilir. B) |R - X2| = X1 - R C) X1 + X2 =R a,b,c sayılarının işaretleri sırasıyla nedir? 2 A) +,-,+ B) +,+,+ C) +,+,- D) f −1(8) = R D) -,+,+ E) -,+,- E) f(X1 ) = f (X2 ) 14.D 15.C 16.A 17.B 25

18. y 20. Video çözümlerine y = f(x) x ulaşAmhamk içeintcelen.com.tr yandaki QR kodu okutabilirsiniz. y 5 5 12 -4 Yukarıda yeşil ile boyanan bölgeyi ifade eden Sarı ile taranan bölgeyi aşağıdaki eşitsizliklerden eşitsizlik hangisi olabilir? hangisi sağlar? A) 0 > −������ + x2 A) y + 5 ≤ x2 - 6x B) y ≥ x2 - 6x+5 B) y + 3 < x2 + 2x y < 2������ + 4 y - x ≥ ������ − 4 C) y ≤ x2 - 4x -1 C) y ≤ x2 - 4x -1 D) y ≤ x2 - 6x+5 y > 4x-2 y + 3 < x2 + 2x D) y > x2 - x – 2 E) y ≥ x2 + x – 1 E) y ≤ x2 - 4x -1 y + 4 ≥ 2������ 19. G noktası ağırlık merkezi olan çevre A G uzunluğu 36 cm olan bir eşkenar C üçgen biçimindeki üçgen tabelanın üstünde bir karına sadece köşelere doğru gitmektedir. Örneğin A noktasından B ve C ye gidebilir. B Karıncanın x birim yol aldığında G noktasına uzaklığı f fonksiyonu ile modelleniyor. Buna göre I. f(12) = f(24) II. Minimum değeri 2 3 III. Maksimum değeri 6 3 Hangileri doğrudur? A) Yalnız III B) II ve III C) Yalnız I D) I ve III E) I ve II 18.D 19.E 20.B 26 Doğru : Yanlış : Net : Süre:

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 1. 2. Aşağıda maske takan bir kadının görseli verilmiştir. y = - x2 + 6x + 5 2 A1 3B A B C Ok numaraları. Yukarıda bir hareketli 1,2,3 numaralı oklarla Ali, öğretmenine aşağıdaki önermelerini söylüyor. sırasıyla yol almaktadır. A Noktasından yani 1 Numaralı oktan başlayıp 2 numaralı okla devam Analitik düzlemde sarı şekli parabol olarak etmiştir. Yukarı çıktığında tekrardan 2 numaralı varsayıp incelediğimizde ; ok ile geri dönmüş ve 3 numaralı ok ile devam etmiştir. Bitiş olarak B noktasına ulaşmıştır. Eğer 1. Denklemi 2.dereceden olmalıdır. bu hareketli 2 numaralı ok yerine parabolün 2. A ve B noktalarının koordinatlarını bilirsek bu tepe noktasının ordinatına eş değer olarak dümdüz 2.ok boyunca ilerlemiş ve tekrar geri B parabolün denklem+ini kesinli+kle yazabiliriz. (bitiş noktasına) gelmiş olsaydı yolunu kaç birim 3. Tepe noktası bu parabolde fonksiyonun kadar uzatmış olurdu ? maksimum noktasını belirtir. A) 9 B) 18 C) 21 4. C noktasının ordinatını iki farklı apsis değeri D) 28 E) 7 5 sağlar. 5. Kolları yukarı olduğundan baş katsayısı pozitif bir sayıdır. Öğretmeni Veysel Bey Ali`nin her doğru önermesine 20 puan vermektedir. Yanlış önermeleri için ilk yanlışına 10 puan, diğer söyleyeceği her yanlış yanlış önerme için 5 puan kaybetmektedir. Buna göre aşağıdakilerden hangisi doğrudur? A) 2 doğru önermesi vardır. B) Toplamda 45 puan almıştır. C) 2.önermesi doğrudur. D) Toplamda 65 puan almıştır. E) 4 doğru önermesi vardır. 1.B 2. B 27

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 3. Aşağıda alanı 36m2 ABCD karesi verilmiştir. y 4. AK B Park L Tarla Havuz B DM C O D B A CP Bx Görsel temsilidir, uzunluklar ile şeklin doğrudan Yukarıda f(x) = -x 2 + 12x fonksiyonu ile modellenmiş bağlantısı yoktur. Dikdörtgen şeklinde ayrılmış parabol analitik düzlemde verilmiştir. Güneş panelinin bölgelere üstünde yazan birim inşa edilecektir. aydınlattığı siyah daire bölgenin alanı 16π dir. 3|AK| = |LC| olduğuna göre Havuz için ayrılan en P noktası C ve D noktalarının orta noktasıdır. fazla kaç birimkare olabilir? D tepe noktasının apsisini belirtmektedir. |AC|= 2 birim olmak üzere, P noktasının apsisi m`dir. Buna A) 9 B) 18 C) 27 göre f(m) + m kaçtır? ( O noktası orijindir ) A) 12 B) 28 C) 32 D) 36 E) 48 D) 36 E) 42 3.C 4. D 28

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım 5. 6. yandaki QR kodu okutabilirsiniz. AD MB Yukarıda eski bir geleneğimiz halinde olan ve hala bazı yerlerde devam eCtmekte olan iftar topu bulunmaktadır. Yanan bir binaya itfaiye ekipleri müdahale etmişlerdir. Binada Bu topun saniyeye göre aldığı yol aşağıdaki gibi parabolik şekilde modellenmiştir. 1 kız bulunmaktadır, itfaiyenin merdiveni uzunluğu kızı 2 kurtarmak yetersizdir. Görevliler suyun parabolik bir rotasyon y = - 2 s -10s + 200 izlediğini görmüşler ve binanın başlangıcı A noktasına kadar ilerleyebileceklerini düşünmüşlerdir. Topu fırlatmakta görevli olan Recep Bey ezan okunduktan sonra topu fırlatmaya başlamıştır. |AB| = 20 dm , |MB| = 5 dm , |AD| = 7 dm uzunluğuna Topun ilk fırlatıldığındaki yüksekliği : M sahiptirler. Takviyeye gelecek olan araç merdiven uzunluğu Topun alabileceği en fazla yükseklik : K dışında hiçbir farkı bulunmamaktadır. Gelecek ve şimdiki Topun 6.saniyedeki yüksekliğ+i ise : L ile+ifade ediliyor. itfaiye aracının boyu 75 dm . Merdiven boyunu İstasyona Buna göre M,K,L için verilen değerler aşağıdakilerden hangisinde doğru olarak verilmiştir? bildirip yeni araç gelmiş ve kurtarma operasyonuna başlamıştır. Aşağıda kırmızı doğru ile merdiven gösterilmiştir. |DM| = |KL| KL M KL A) 0 232 68 K ve L noktaları doğrusal ve görevlilerin düşündüklerine göre desimetre cinsinden takviye için gelen merdiven boyu kaçtır? B) 200 232 72 C) 200 212,5 68 D) 0 212,5 72 A) 8 3 B) 8 5 C) 14 E) 200 212,5 72 B) 18 D) 16 5. B 6. C 29

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 7. cx2 bx2 ax2 y 8. Aşağıda f(x) ve u (x) fonksiyonu denklemleri verilmiştir. u(x) = mx f(x) = a x2 + b x + c x dx2 ex2 a,b,c,m, ∈ ������ ������������������C������������ ü������������������������, I. a pozitif bir sayıdır. Murat x ekseni üzerinde kalan paraboller çizmiş, Beyza II. c – 4 + ac = 0 X ekseninin altında kalan paraboller çizmiştir. III. a x2+ (b-m) x + c denkleminde Buna göre a,b,c,d,e gerçel sayılarının büyükten (b-m)2< 4ac eşitsizliği sağlanır. küçüğe doğru sıralaması aşağıdakilerden hangisidir? A) a>b>c>d>e çIVö.zümf vdeeunkfolenmksiikyuornulalarmı kae+zs.işmedikle+ri için ortak B) a>b>c>e>d Verilen yargılardan hangileri kesinlikle doğrudur? C) e>d>a>b>c A) Yalnız I B) I ve IV C) Yalnız III D) d>e>a>b>c D) II ve III E) II ve IV E) c>a>b>e>d 7.A 8. C 30

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım 9. C T yandaki QR kodu okutabilirsiniz. B A 10. Şematize edilen algoritmadaki talimatları izleyiniz. M1 Tepe noktası apsisi büyük olana öncelik ver. A B C D x 2+ 5x x2 - 4x + 12 x2+ 12 2 2x + 3x + 1 D Çift fonksiyonsa işlemini bitir. Değilse oklara M2 (M3`e yönlendir) Denkleminden M3 x çıkar. Yukarıda parabolik şekilde bir yüzme havuzu verilmiştir. M1,M2,M3 birbirlerine doğru gönderilen fonksiyon edilmiştir. |AB| arasına atlama tahtası yerleştirilmiştir. işlemlerinde 1 hamle gitmektedir. Örneğin M2 ye uygun T noktası C ve A noktasının orta noktasıdır. olmayan fonksiyon M3 e gönderilir 1 hamle yapılmış olur. Tekrar M2 ye gönderildiğinde 2.hamle olur. |AB| = 2 metre , |BC| = |DB| = 4 metre Verilenlere göre havuzun en derin noktasının Uzunluğu kaç metredir? A) 7,2 B) 4,5 C) 6 5 Örneğin : x 2+ x + 4 fonksiyonu çift fonksiyon değildir,denklemden x çıkarıldığında x + 4 olur ve D) 12 3 E) 18 tanıma uyar. Tanıma uyguduğundan işlem sonlanır. M2 , M3 aynı anda tüm fonksiyonlarla işlem yapabilmektedirler, M1 tepe noktası büyük olan fonksiyonu seçip 1 dakika beklettikten sonra diğer büyük olanı seçiyor. 1 Dakika da M1 ve M2, M3 ve M2 arasında yapılacak her hamlenin süresidir. Örneğin A fonksiyonu işleme ilk başlarsa diğer fonksiyon 1 dakika bekleyecek bu süre de A fonksiyonu M2 kuralına uygunluğu kontrol ediliyor eğer uygunsa işlemi bitiriyor eğer uygun değilse M3 kuralına gönderiyor. Gönderildiğinde 2.en büyük tepe noktasına sahip fonksiyon M2 kuralında değerlendiriliyor bu şekilde devam etmektedir. Çift fonksiyon olamayan fonksiyonlar sonuncu kabul edecektir, sonuncular birbirine eşittir. Buna göre bu parabollerin işlemlerinin bitme hızının ilkten sonra doğru sıralaması aşağıdakilerden hangisinde verilmiştir? A) C,D,A,B B) D,A,B=C C) A,B,C,D D) C,D,B=A E) D,A,B,C 9.B 10. A 31

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 11. Ahmet Bey baş katsayısı 1 olan ikinci 12. Z P dereceden bir fonksiyonu tahtaya çizmiş K tenefüse çıkıp geldiğinde bazı kısımlarının silindiğini görmüştür. #EVDEKAL MN -3 1 AOB T Yukarıda parabolik bir tünele bir tabela asılmıştır. Görselde tam çıkmayan parabolün Parabolün tepe noktası T olduğuna göre başlangıç noktası A, bitiş noktası B noktasıdır. Ahmet Bey`in çizdiği fonksiyonun en küçük O noktası A ve B noktalarının orta noktasıdır. değeri kaçtır? Asılan levha yere paralel olacak şekilde tünelin girişine K ve P noktalarında değmektedir. |AB|= 8 m, |AO|=|OB|, |ZO|= 6m A) -15 B) -9 C) -13 Tabela |ZO| doğrusuna göre simetriktir. Tabelanın yatay uzunluğu 6 metredir. Buna D) -22 E) -16 göre tabelanın yerden yüksekliği kaç metredir? A) 1,50 B) 2 C) 2,50 21 D) 3 E) 8 11.E 12.E 32 Doğru : Yanlış : Net : Süre:

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 1. 8 3. f(x) = x2 + 4 x + 12 parabolü ile h(x) = 4 – mx doğrusu birbirine teğettir. 24 Verilenlere göre m`nin alabileceği değerlerin toplamı kaçtır? Yukarıda verilen parabolde x=1 noktasından A) -8 B) -5 C) 4 çizilen teğetin eğimi kaçtır? D) 8 E) 16 A) -8 B) 0 C) -4 D) 4 E) 8 2. Aşağıda y fonksiyonunda x=1 noktasından çizilen teğet ile doğru ile dik kesişmiştir. y . d = - 1 x+4 10 + 4. f(x) 2x 2+ 4 x + 12 parabolü x=2 noktasından çizilen teğetin eğimi y = ax + b doğrusunun eğimine eşittir. Buna göre a kaçtır? Buna göre parabolün denklemi aşağıdakilerden A) 3 B) 6 + b C) 9 hangisi olabilir? D) 12 E) 12 + b A) y = x 2+ 4 x –12 B) y = -2x 2+ 4 x + 12 C) 2y = 2 x 2+ 4 x +16 D) 2y = -2x 2+ 4 x – 12 E) y = 2 x2 + 6 x + 4 1.C 2. E 3. A 4.D 33

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 5. f(x) = x2 + (ax) + 19 parabolüne orijinden 7. f(x) = 2 (a-8) x + 15 parabolüne x ekseni 4 4 x+ çizilen teğetler dikse a`nın alabileceği pozitif üzerinden çizilen teğetler birbirine dikse a`nın değer kaçtır? alabileceği en küçük değer kaçtır? A) 2 3 B) 3 2 C) 2 13 A) -2 B) 2 C) 4 D) 2 21 E) 2 17 D) -4 E) 12 + 6. f(x) = x2 + 5 x + 12 parabolünün 8. y = x2 + x + 6 parabolünün 0 = -2y -6 x +2 y = x+1 doğrusuna en yakın olan noktanın doğrusuna en yakın olan noktanın koordinatları toplamı nedir? koordinatları çarpımı nedir? A) -12 B) 12 C) -16 A) 1 B) 2 C) 3 D) -24 E) 24 D) 4 E) 5 5.B 6.D 7.C 8.C 34

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. y 10. f(x) = x2 + 8 x + 15 parabolünün x=a 9. Teğet Değme Noktası noktasındaki teğetin eğimi fonksiyonun o ������ d noktadaki değerinin ������ katıdır. Buna göre a`nın 8 alabileceği değerlerin çarpımı kaçtır? A) -4 B) log4 5 C) 39 g(x) 5 6 D) E) -9 f(x) 5 x 2 Teğet Değme Noktası 11. f(x) = a x2 + bx + c Yukarıda f (x) = -x2 + 2x + 4 fonksiyonu x=2 . apsisli noktasında , g(x) = x 2+ mx + n fonksiyonu x=5 apsisli noktada doğrusuna A (2,-4) teğettir. Buna göre n-m kaçtır=? d A) 12 B) 21 C) 33 D) 45 E) 55 A ( 2 , -4 ) noktasından geçen değme doğrusu, x ekseni ile yaptığı pozitif yönlü açı 45 derecedir. Buna göre a kaçtır? A) 3 B) 6 C) 4 2 7 3 D) 8 E) 9 3 5 9.D 10.E 11.A 35

TYT/AYT Matematik AHMET ÇELEN VidueolaçşYmöezaünkmiiçlNeinreinseil Sorularım yandaki QR kodu okutabilirsiniz. 12. ������������ + mx + c parabolüne x=a noktasından bir 14. Bir cihaz üzerinden test yapan bilim adamları teğet çizilmiştir. Bu teğetin eğiminin pozitif bir sistemin düzeneği ve kapasitesi hakkında gerçel sayı olduğu biliniyor. Buna göre aşağıdaki bilgilere sahiptirler. aşağıdakilerden hangisinin doğruluğu kesin değildir? (m,c,a gerçel sayılardır.) Parça Sayısı Birim Parça Kapasite A) 2a + m eşitliği eğimi verir. En fazla 1000 30 mAh B) x=a noktasından çizilen teğet x ekseni ile Her 5 mAh arttıldığında 5 parça kendini programı yaptığı pozitif yönlü açı d° olmak üzere 0 < d < 90 eşitsizliği sağlanır. sebebiyle yok etmektedir. Buna göre bu cihaza C) Parabolünün sabit terimi olan c eğim ters yüklenebilecek en büyük mAh değeri için cihazdan işaretlidir. Eğim pozitifse c negatif bir sayıdır. kaç parça yok olmuştur? (Dikkat  ) (mAh = miliamper / hours  saat anlamındadır ) D) x=a noktasından çizilen teğet doğrusu sağa yatık olur. A) 515 B) 485 C) 225 D) 97 E) 70 E) Parabolün 1.türevinde x yerine a yazılırsa bulunan değer eğimdir. 13. Bir malın alış fiyatı 2x lira, satış fiyatı y lira 15. y = k x2 + p x fonksiyonu x=2 apsisli noktadan olmak üzere x ile y arasındaki ilişki çizilen teğetin eğimi fonksiyonun o noktadaki y = −x2 + 12 x + 45 biçiminde veriliyor. Değerinin 5 katına eşittir. Buna göre üründen en fazla kaç lira kar elde ������ edilir? Verilen bilgilere göre ������ kaçtır? A) - 9 B) 16 C) - 9 25 25 16 A) 78 B) 81 C) 45 D) 13 E) 16 16 9 D) 439 E) 70 12.C 13.E 14.B 15.C 36 Doğru : Yanlış : Net : Süre:

TYT/AYT Matematik AHMET ÇELEN HSaitkekmımedYuaelavnşemiinaNtkeeirçnsineitl Sorularım yandaki QR Kodu okutabilirsiniz. Soruların Paylaşımı ve Yayımlanması Hakkında Genel Sunum Merhaba, değerli öğrenci arkadaşlarım ve Ahmet Çelen Ekipmanlarımın, bilgimin ve vaktimin olduğu öğretmenlerim. Soruların yazımı, tasarımı görsel kadarıyla konu anlatımı ve soruların çözümünü olarak tamamen benim emeğim sonucu yapmaya çalıştım. Ekipmanlarımın çok iyi oluşturulmuştur. Maske sorusu fotoğrafı hariç ki olmadığını belirterek çok profesyonel bir kayıt ben bu dokümandan para kazanmıyorum. Amacım işlemi aldığımı ne yazık ki söyleyemem. Bir eğitim ve öğretime bu yıllarda bir nebze olsa da yayıncı kadar ekipmanım yok fakat olduğu katkı sunabilmektir. kadarıyla soru çözümleriyle destekleme çalıştım. Soruların paylaşımı ve herhangi bir yerde Video Çözümleri ve Sürdürülebilirliği yayımlanması, yayılması, düzenlenerek ismimin veya logomun iyi veya kötü niyet olarak Video çözümleri kendime ait bir sunucuda kaldırılmasına izin vermiyorum. Bu şekilde barınarak yayın yapmakta sitemde aynı şekilde. amacınız iyi olsa da hakkımı da helal etmem. Sitem yurt dışı lokasyon sunucuda barınıyor Eğitim veya öğretim herhangi bir gerekçe sebebi ise performansı yüksek oluşudur. Aylık nedeniyle soruları herhangi bir platformda kaynak dövize bağlı olarak değişen bir ödemem mevcut belirterek dilediğiniz şekilde kullanabilirsiniz. sizler için  Maddi ve manevi durumum Sizden tek isteğim sorularımı herhangi bir yerde elverişli olacağı zamana kadar daimli olarak kullanacaksanız referans kaynağı belirterek video çözümleri ve buna benzer dokümanların kullanmanızdır. Kaynak belirterek gerek eğitim, yayımladığım siteyi aktif tutmaya devam öğretim gerekse ticari amaçlı bile kullanmanıza edeceğim. Şayet bir gün insanlık hali durumum izin veriyorum. kötü olursa siteyi kapatmak durumunda kalabilirim ve video çözümleri de ne yazık ki Soruların yazılması kurgulanması cevap kapatılmış olur ama Allah`ın izniyle böyle bir şey anahtarının teyit edilmesi, şıkların cevaba göre olmaz diye umuyorum. Dilerseniz bu fasikülü konfigüre edilmesi gerçekten zor işler. Bu yüzden çözmeden önce bunu okuyorsanız video verdiğim emeğimin çalınmasını veya ismimin bu çözümlerini bir kontrol edin ondan sonra fasikülün yazarı olarak örtpas edilmesini tekrar çözmeye başlamanızı tavsiye ediyorum. belirtmek istiyorum amacınız iyi olsa da yapmayınız, kaynak belirterek paylaşım yapınız, Video Çözümleri Sistemi iznim vardır bu şekilde paylaşımlara. Video çözüm sistemini kendim kullanacak gibi Kırtasiye gibi yerlerde dokümanın çıktısı hızlı bir sistem şeklinde yapmaya çalıştım. alınması veya kopyalanması hakkında : Bilgisayar bilgimi kullanarak kimseden yardım almadan böyle bir sistem kurdum. Çözümleride Kırtasiye gibi kopyalama merkezlerinde kağıt kısa tutup hemen bitmesi yerine olabildiğinde olarak çıktısı alınabilir hiçbir mahsuru yok. uzattım ki bunuda düşünerek 4x e kadar Gönül rahatlığı ile çıktınızı alıp soruları hızlandırma opsiyonu ekledim. Her detayı çözebilir, çözemediklerinizi video dinleyen kişi bilmiyor diyerek anlatmaya çalıştım çözümlerinden veya çevrenize uygun kişilere ve fasikülün yazarı olarak çözümleri de bizzat ben çözdürebilirsiniz. Arkadaşınıza paylaşabilirsiniz. yaptım ki bir kitabın yazarı çözümlemeli bence. Umarım bu çalışmam faydalı olmuştur ve çok kişiye ulaşır herkes ücretsiz şekilde faydalanmış olur. Sağlıkla kalın esen kalın, iyi çalışmalar  Başarının ilk etabı inanmaktır. 37 İnanmadan başarılı olmayı bekleme..