Important Announcement
PubHTML5 Scheduled Server Maintenance on (GMT) Sunday, June 26th, 2:00 am - 8:00 am.
PubHTML5 site will be inoperative during the times indicated!

Home Explore Wonders of Visible light Part 3&4 DIGITAL MAGAZINE

Wonders of Visible light Part 3&4 DIGITAL MAGAZINE

Published by Science Mash, 2020-11-16 16:56:28

Description: Wonders of Visible light Part 3&4 DIGITAL MAGAZINE

Search

Read the Text Version

Wonders of Visible light BapJw D≈-S°w Digital Supporting material 3. ........................................................ Edited, Designed and prepared by 4F¥mWiv mk{v Xw? ........................................................ C. G.Santhosh 10{]Imi- h- nk- av b- ß- ƒ ............................................................. Naduvattom VHSS, Pallipad (`mK- w˛3) {i≤n-t°≠ Imcy-߃ CXn¬ \\¬In-bn-cn-°p∂ Nn”-߃ 14{]Imi- h- nk- av b- ß- ƒ............................................................. hoUntbm HmUntbm (`mK- w˛4) A[n-I-hm-b\\ A Science Mash Publication E-mail: [email protected]



F¥mWv imkv{Xw? Fgp¯v: hnt\\mZv dbv\\, Un ]n kn§v F´msW¶tÃ? sIm«mc¯n hfcp¶ sIm¨p Nn{X§Ä: kXy\\mcmb¬ em IÀ®v cmPIpamcs‚ tNmZyßfmWv At±lØn?vsd ]cn`mj: Pbv tkma\\mY³ DZmko\\Xbv°p ImcWambXv. cmPmhv aIs\\ hfsctbsd kvt\\ln®ncp∂p. Ahs‚ Hcp cmPmhp≠mbncp∂p. At±lØns‚ GXm{Klßfpw km[n®p sImSp°m≥ At±lw B{Kl߃°\\pkcn®v F√mw e`yambncp∂p. X¬∏c\\mbncp∂p. F∂m¬ cmPIpamc≥ at\\mlcamb sIm´mcw, kzmZn„amb `£Ww, tNmZnbv°p∂ tNmZy߃°v DØcw hneIqSnb h¿Æ∏In´p≈ hkv{X߃ ,cmPmhns‚ ]dbm\\dnbmsX B ]nXmhv Ipgßn. GXv B{Klßfpw km[n®p sImSp°m\\mbn C\\n cmPIpamc≥ Fs¥ms°bmWv tNmZnbv°p∂sX∂v t\\m°mw. ìA—m, ]£nIsfß\\m ]d-°-WXv ? F√m hkvXp°fpw Xmtgm´v hogp∂Xv F¥psIm≠mWv? Rm\\nXm Cu I√v tatem´v Fdnbp∂p. It≠m AXt∏m? Xs∂ Xmtgm´v h∂p, AsX¥m?î tPmen°mcpsS hensbmcp \\nc PmKcqIcmbn Cu hn[ØnemWv cmPIpamcs‚ tNmZy߃. Xøm¿. IqSmsX sIm´mcØn¬ hfcp∂ kpµc\\mb H∂pc≠v h¿jw apºmsW¶n¬ am\\Øv t\\m°n cmPIpamc≥ N{µt\\bpw, \\£{Xßtfbpw Nq≠n°m´n AsX¥mWv F∂v tNmZnbv°pambncp∂p. C{Xsbms° D≠mbn´pw cmPmhns\\mcp Djmdn√mbva.Gt¥m Hcp Nn¥ At±lsØ Cu tNmZy߃s°√mw Fßns\\ DØcw Ae´p∂p≠mbncp∂p. sImSp°pw?- CXmbncp∂p cmPmhns\\ hnjan∏n®Xv. cmPmhns‚ Dt∑jw C√mXm°nbXns‚ ImcWw Nnet∏mƒ cmPIpamcs‚ tNmZy߃ [mc t]mse {]hln®psIm≠ncnbv°pw. At∏mƒ cmPmhn\\p tZjyw hcnIbpw hg°v ]dbpIbpw sNøpw. ]n∂oSv cmPmhv AtXm¿Øv Zp:Jnbv°pw. Znhk߃ Ignbpt¥mdpw cmPIpamcs‚ tNmZyßfpw IqSn IqSn kb≥kv amjv 4

“ Cu tNmZy߃s°√mw \\Ωƒ Pnhnbv°p∂ Cu temIhpambn _‘ap≠v. temIsØ ∂∂mbn Adnbm\\p≈ B{Klßfn¬ \\n∂mWv Cu tNmZyßfpsSsb√mw D¤hw ” h∂p, AX\\pkcn®v cmPmhn\\v tZjyhpw h¿≤n®p. CXns‚ DØcw ]dbp∂Xn\\p apºv AßbptSbpw, cmPIpamcs‚bpw tNmZyßfn¬ CXnßs\\ Bbt∏mƒ cmPIpamc\\v Fs¥ms° kam\\XIfmWp≈Xv F∂dn™m¬ ]nXmhpambp≈ ASp∏w Ipdbm≥ ImcWambn. sIm≈mw”. î aIs‚ tNmZy߃ tI´v tI´v Ct∏mƒ cmPmhns‚ “Cu tNmZy߃s°√mw \\Ωƒ Pnhnbv°p∂ Cu a\\ nepw ]e tNmZyßfpw cq]s∏Sm≥ temIhpambn _‘p≠v. temIsØ ∂∂mbn XpSßnbncnbv°p∂p.F∂m¬ Cu Adnbm\\p≈ B{Klßfn¬ \\n∂mWv Cu tNmZyß?s°ms° DØcw AdnbmsX At±lw hnjan®p. Gsd BtemNn® tijw cmPmhv Xs‚ tNmZyßfpsSsb√mw D¤hw. a{¥namcpsS Iq´Øn¬G‰hpw _p≤nam\\mb ì almcmPmth, Adnbm\\p≈ B{Klßfn¬ Bsf hnfn∏n®p. \\n∂mWv imkv{XØns‚bpw D¤hw. sXm´pw, cmPmhv ]d™p, aWØpw, cpNn®pw, tI´psams°bmWv ìa{¥n, cmPIpamc≥ Ft∂mSv \\nc¥cambn Hmtcm∂ns\\°pdn®pw \\Ωƒ a\\ nem°p∂Xv. tNmZy߃ tNmZn®p sIm≠ncn°p∂p. Adnbm\\p≈ Cu B{Klßfn¬ \\n∂mWv F\\nbv°Xns\\m∂pw DØcw ]dbm≥ Ignbp∂n√. tNmZy߃ Db¿∂p hcp∂Xv.Aßs\\ Db¿∂p Fs‚ a\\ nepw \\nch[n tNmZy߃ Dbcp∂p≠v. hcp∂ tNmZy߃°mWv imkv{XØns‚ Cu tNmZy߃s°√mw DØcw imkv{XØns‚ coXnbneqsS DØcw Is≠Øm≥ {ianbv°p∂Xv. coXnbneqsS am{Xsa e`yamhp F∂v Nne¿ \\ap°p Np‰pap≈ Cu temIsØ Ipdn®dnbm≥ ]dbp∂Xv tI´p. Xm¶ƒ henb ]finX\\pw Aßns\\ imkv{Xw \\sΩ klmbn°p∂p”.î _p≤nam\\pamWs√m. ]dbp,î F√mw tI´ cmPmhv tNmZn®p. F¥mWv Cu imkv{Xw? “F√mw icn Xs∂, F∂m¬ Cu cmPmhv ]d™Xv tI´v a{¥n Nn¥maKv\\\\mbn. tNmZy߃s°√mw imkv{Xw Fßns\\bmWv icnbmWv. Ipds®ms° imkv{Xw At±lw DØcw \\¬Ip∂Xv ?”î ]Tn®n´p≠v. F∂m¬, F¥mWv imkv{Xw? “CXp a\\ nem°Wsa¶n¬ \\ap°v CXns\\°pdn®v CXphsc At±lw Nn¥n®ncp∂n√. imkv{X⁄cpsS {]h¿Ø\\ coXnIƒ as‰mcp {]iv\\hpap≠v, imkv{XsØ°pdn®v Hcp {i≤nt°≠n hcpw”î -a{¥n XpS¿∂p. [mcWbpan√mØ cmPmhn\\v Fßns\\bmWXv “{]iv\\hpambn _‘s∏´ F√m hnjbßfpw ]d™v a\\ nem°ns°mSp°pI F∂p≈XmWXv. Hcmgv®tbmfw a{¥n C°mcysØ°pdn®v hfsc Imcyambn Xs∂ BtemNn®p. Ahkm\\w At±lw Hcp Xocpam\\saSpØp. ASpsØmcp Znhkw At±lw cmPmhns\\ sN∂p I≠p. a{¥n ]d™p. “ almcmPmth, F¥mWv imkv{Xw? F∂ hensbmcp tNmZyamWv Aßv tNmZn®ncn°p∂Xv. kb≥kv amjv 5

“ {]iv\\hpambn _Ôs¸«v IqSpX bYmÀ° hkvXpXIÄ Is-¯m\\pÅ At\\zjW§Ä \\S¯pI. bpàn]chpw kw`mhyhpamsbmcp [mcWmNn{Xw e`nbv¡pIbpw, {]iv\\¯n\\v IrXyamsbmcp D¯cw In«pIbpw sN¿p¶Xp hsc ”Cu {Iaw XpSÀ¶psIm-ncnbv¡pw. \\nco£n®v AXns‚ F√m bmYm¿∞yßfpw \\ap°v In´nbXv ”v.î î H∂n®v tN¿Øv shbv°pI F∂XmWv BZyw C{Xbpambt∏mtg°pw Xs∂ cmPmhn\\v Xm¬∏cyw sNøp∂Xv. F∂n´v B bmYm¿∞yßsfsb√mw h¿≤n®ncp∂p. Hcpan®v tN¿Øv a\\ n¬ Hcp [mcWmNn{XØn\\v “F¥mbncp∂p B DØcw?”cmPmhn\\v AX dnbm≥ cq]w sImSp°p∂p. Hcpan®v tN¿Ø bYm¿∞ BImw£bmbn. hkvXpXIƒ a\\ n¬ cq]s∏SpØnb a{¥n ]d™p “DØcw efnXamWv. `qan [mcWmNn{XØn\\v A\\pKpWamhWsa∂n√. hkvXp°sf BI¿jn°p∂Xv sIm≠mWv F∂n´v ]co£WØnte°v IS°pI. hkvXp°ƒ Xmtgm´v hogp∂Xv”î.î B {]iv\\hpambn _‘s∏´v IqSpX¬ bYm¿∞ cmPmhn\\v B›cyambn. hkvXpXIƒ Is≠Øm\\p≈ At\\zjW߃ “AXv icnbmWs√m. Rms\\¥mWv CXp hsc CXv \\SØpI. bp‡n]chpw kw`mhyhpamsbmcp {i≤n°msX t]mbXv?”îî [mcWmNn{Xw e`nbv°pIbpw, {]iv\\Øn\\v a{¥n ]d™p. “almcmPmth, DØc߃ s]mXpsh IrXyamsbmcp DØcw In´pIbpw sNøp∂Xp efnXamWv, F∂m¬ AXntebvs°Øm\\p≈ hsc Cu {Iaw XpS¿∂psIm≠ncnbv°pw.î At\\zjW {]{InbIƒ ]et∏mgpw A{X cmPmhn\\v H∂pw a\\ nembn√.” Ffp∏amImdn√. hfsctbsd \\nco£Wßfpw, At±lw ]d™p. ]co£Wßfpw, A]{KY\\ßfpsa√mw \\SØn “a{¥n, Xm¶ƒ]d™Xv F\\nbv°v bXn\\p tijw am{Xsa A¥na^ehpw, a\\ nembn´n√. t\\sc sNms∆ Hcp \\nbaßfpsa√mw ]pdØv hnSm\\mhpî. DZmlcWklnXw hy‡am°nØcmsam?î” Nnet∏mƒ imkv{X⁄¿°v DØcw e`nbv°p “ Xo¿®bmbpw almcmPmth!”îa{¥n XpS¿∂p. ∂Xn\\mbp≈ At\\zjW߃°p th≠n Hcp “\\ap°v cmPIpamcs‚ Hcp tNmZyw Xs∂ FSp°mw. PohnXImew apgph≥ sNehgnt°≠n ht∂bv F√m hkvXp°fpw Xmtgm´p hogp∂Xv °mw.Aßns\\ At\\zjW߃ \\SØn D¯cw F¥psIm≠msW∂v At±lw tNmZn®p.Cu Is≠Øm\\mhmsX imkv{X⁄≥ acWs∏´v \\nco£Ww F√m ÿeßfnepw F√m hkvXp°sf F{Xsbm Imetijamhmw AhcpsS imkv{Xm kw_‘n®pw icnbmtWm? CXdnbm≥ \\ap°v hyXykvX hkvXp°ƒ hyXyÿ ÿeßfn¬ ]co£n®v t\\mt°≠n hcpw. \\Ωfßns\\ sNbvXv t\\m°nbm¬ F√m hkvXp°fpw AXmbXv I√v, \\mWbw, kqNn, XpWn, ISemkvIjvWw XpSßnb, AXv `mcap≈sXm, `mcw Ipd™sXm BIs´ Xmtgm´v Xs∂bmWv hogp∂Xv F∂v a\\ nemhpw. CØcØnsemcp ]co£Ww Hcp ]mSv h¿j߃°v apºv Hcp imkv{X⁄≥ \\SØnbncp∂p, Aßns\\bmWv Cu tNmZyØn\\v IrXyamb DØcw kb≥kv amjv 6

“At\\zjW {]{InbIƒ ]et∏mgpw A{X Ffp∏amImdn√. hfsctbsd \\nco£W ßfpw, ]co£Wßfpw, A]{KY\\ ßfp sa√mw \\SØn bXn\\p tijw am{Xsa A¥na^ehpw, \\nb aßfpsa√mw ]pdØv ”hnSm\\mhp t\\zjW߃°v ^e{]m]vXnbnseØm\\mhpI“.î Cu Imgv®bn√mØ a\\pjy¿°pw, B\\bv°psams° imkv{Xhpambn F¥v _‘amWp≈Xv?”î cmPmhv Ct∏mƒ imkv{Xhpambn _‘s∏´p≈ Nne tNmZn®p. Imcy߃ cmPmhn\\p a\\ nembn XpSßn “almcmPmth, CXp Xamib√”î bncn°p∂p. IqSpX¬ Adnbm\\p≈ Xm¬ ∏cy a{¥n ]d™p XpSßn. hpap≠v. “Cu Imgv®bn√mØ a\\pjy¿°v ChnsS B\\ ASpØ Znhkw cmPmhv a{¥ntbmSv ]d™p. Ds≠∂v Adnbn√. Adnbphm\\p≈ B{Klw “imkv{XsØ°pdn®v Xm¶ƒ CXphsc ]d™ At\\zjWßfnte°pw, Is≠ØepIfnte °psams° Fßs\\bmWv \\bn°p ∂sX∂v Ct∏mƒ Imcy߃ tI´v Rm≥ k¥p„\\mbncn°p∂p. It≠mfp”.î Fs¥¶nepw Hcp ]co£WØn¬ IqSn ]d™p F∂n´v a{¥n B Imgv®bn√mØ a\\pjytcmSv XcnIbmsW¶n¬ H∂p IqSn hy‡amhpambncp∂p. HmtcmcpØtcmSpw AhnsSbp≈ Pohnsb sXm´v AØcsamcp ]co£WØn¬ ]s¶Sp°m≥ t\\m°n AXns\\°pdn®v hnhcn°m\\mbn F\\nbv°v B{Klap≠v. Xm¶ƒ°v AXn\\mbn Bhiys∏´p. cs≠m aqt∂m ZnhksØ kabsaSp°mw ”.î BZysØ Bƒ B\\bpsS hmenemWv t]mbn ]nSn®Xv. \\∂mbn X∏n t\\m°n ]cntim[n® tijw CXnt∏mƒ ]pXnsbmcp IpSp°mbs√m F∂v Abmƒ ]d™p. a{¥nbv°v tXm∂n. icnbv°pw CsXmcp henb “CsXmcp Ibdv t]msebp≠v”.î sh√phnfn Xs∂.î F∂m¬ a{¥n _p≤nam\\pw At\\zjWX¬∏c\\pw c≠masØ Bƒ kv]¿in®Xv Xpºn ss°bn Bbncp∂p. \\∂mbn BtemNn® tijw At±lw Hcp Xocpam\\saSpØp. embncp∂p. Abmƒ ]d™p. aq∂v A‘cmb a\\pjytcbpw Hcp B\\tbbpw “]mºns\\ t]mse tXm∂p∂p”.î Iq´nbmWv ASpØ Znhkw a{¥n cmPmhns\\ ImWms\\ØnbXv. Cu Imgv® I≠v cmPmhpw, aq∂masØ Bƒ t]mbn sXm´Xv B\\bpsS cmPIpamc\\pw IqsSbp≈hcpw AZv`pXs∏´p. sIm´mcØnep≈hsc√mw AhnsS HØpIqSn. sImºnembncp∂p. almcmPmhv Aßv A\\paXn X∂m¬ Rm≥ “CXv acØns‚ XmbvØSnbmsWm?”î ]co£Ww XpSßmwî Cu a{¥n CsX¥v ]co£WamWv sNøm≥ AXv tI´v AhnsSbp≈h¿ Nncn®p.B ]mhw t]mIp∂sX∂v cmPmhn\\p a\\ nembn√. At±lw tNmZn®p. a\\pjy¿ Aºc∂p t]mbn.a{¥n F√mhtcmSpw “a{¥n, Xm¶ƒ CsX¥v XamibmWv ImWn bv°p∂Xv?. im¥cmIm≥ Bhiys∏´p. C\\n F¥mWv a{¥n sNøm≥ t]mIp∂Xv?, F∂Xnembncp∂p F√mhcptSbpw {i≤. a{¥n ]d™p. “Htc Pnhnsb°pdn®v Cu aq∂p ]ckv]cw Is≠Ønb Adnhp Isf°pdn®v ]ckv]cw N¿® sNbvXp.HmtcmcpØcpw a‰p≈hcpsS kb≥kv amjv 7

A`n{]mb߃ k{i≤w tI´p. kabsaSpØv ChnsS Ahkm\\n®ncnbv°p∂p. imkv{XØns‚ Imcyambn BtemNn®p.Xncn®pw adn®pw tNmZy߃ {]h¿Ø\\coXntb°pdn®v Atßbv°v Ipsdtbsd tNmZn®p. CsX¥mhm\\mWv km[yXIƒ Imcy߃ a\\ nembn´p≠mhpsa∂v {]Xo Hc¿∞Øn¬ t\\m°ptºmƒ ì R߃ At\\zjn®v £nbv°p∂p” . a\\ nem°m≥ {ian®Xv Hcp Pohnsb°pdn®v C{Xbpw tI´t∏mƒ Xs∂ almcmPmhv Bhm≥ km[yXbp≠v. Cu PohnbpsS aq°v D’ml`cnX\\mbn. ]pXnb Imcy߃ a\\ nem°nbXns‚ kt¥mjw \\o≠XmWv, AXv aÆn¬ sXm´v \\n¬°p∂p≠v. B apJØv Zriyambncp∂p. AXns‚ ImepIƒ i‡amWv. icocw hfsc At±lw a{¥ntbmSp ]d™p. hep∏ap≈XmWv. RßfpsS c≠p ssIIƒ sIm≠v “imkv{XsØ°pdn®v F{X efnXambmWv Xm¶ƒ FØn ]nSnbv°m≥ ]‰mØ{X hnimeamWv. Rßsfsbms° At]£n®v Cu Pohnbv°v Dbcw R߃°v ]d™p X∂Xv. a{¥n A`n\\µ IqSpXep≠v. AXpsIm≠pXs∂ Cu PnhnbpsS \\a¿ln°p∂p. F¶nepw ChnsSbp≈h¿°p th≠n apIƒ`mKsØ°pdn®v IqSpX¬ At\\zjn®v Cu ]co£WsØ°pdn®p≈ Hcp hnebncpج a\\ nem°m≥ R߃°v Ign™n´n√. IqSn Xm¶ƒ°v \\SØmhp∂XmWv” . Cu PohnbpsS ]n≥`mKØv Ibdpt]msebp≈ a{¥n ]d™p,- “almcmPmth, ChnsS \\SØnb Hcp hkvXp D≠v, Hcp ]s£ AXXns‚ hmemhmw. F∂meXv Dd∏n®v ]dbm≥ Ignbn√. ]co£WØns‚ kmcmwiw CXmWv- imkv{X RßfpsS Dula\\pkcn®v Cu Pohn B\\sbm ⁄∑m¿ ÿncambn A\\ph¿Øn°p∂ coXn AXnt\\mSv kmayap≈ at‰sX¶nepw Pohnsbm Xs∂bmWv Cu A‘cmb aq∂p a\\pjy¿ Bbncn°mw. ImcWw P∑\\m A‘cmb R߃ ChnsSbpw {]tbmKn®Xv. AhtcmcpØcpw BfpIƒ ]d™v tI´ Adnhv sh®mWv XßfpsS At\\zjWßfn¬ \\n∂p e`n® sXfn hp CXns\\°pdns®ms° C{Xbpw Imcyßsf¶nepw Iƒ Hcpan®p tN¿Øp. AXns‚ ASnÿm\\Øn¬ hy‡am°nbXvî”. Ah¿°v AdnbmØ B Pohnsb°pdn®p≈ Hcp a{¥n ]d™p, km¶¬∏nI Nn{Xw a\\ n¬ cq]s∏SpØm≥ {ian®p. “almcmPmsh, Cu coXnbn¬ Cu ]co£Ww Imgv® \\„s∏´hcmbXn\\m¬ Ah¿°v e`n® sXfnhpIƒ°v ]cnanXnIfp≠mbncp∂p. GXmbmepw e`yamb sXfnhpIƒ sh®v a\\ n¬ Hcp km¶¬∏nI Nn{Xw cq]s∏SpØm\\p≈ {iaw Ah¿ \\SØn. AXv icnbmbncp∂n√. AXp sIm≠v Xs∂ Cu Ahÿbn¬ XßfpsS A\\p`hßfpsS ASnÿm\\Øn¬ IqSpX¬ At\\zjWßfpw, ]co£Wßfpw \\SØm≥ Ah¿ {ian®p. AXn\\p tijw XßtfmtcmcpØcpw a\\ nem°nb AdnhpIsf Ah¿ Hcpan®p tN¿Øp. AhtcmtcmcpØcpw Xs∂ B PohnbpsS icoc Øns‚ hnhn[ `mKßsf°pdn®p hyhÿm]nXamb coXnbnep≈ At\\zjWßfpw, ]cntim[\\Ifpw kb≥kv amjv 8

e`nbv¡p¶ hnebncp¯epIsf ]co£W§fneqsS {]ISam ¡p¶ XmWv imkv{X¯nsâ coXn, CXm Wv imkv{Xw. \\SØn. At\\zjW{]{InbbpsS Hmtcm IrXyamsbmcp DØcØnte°v Ah¿°v L´Ønepw X߃ a\\ nem°nb Imcy߃ FØm\\mbXv. a‰p≈hcpambn ]¶psh®p.AXns\\°pdn®p ]ckv]cw a‰p≈hcpambn N¿®Iƒ \\SØn. BfpIfpambn apºv \\SØnb h¿Øam\\ßfnse , Aßs\\ AhcpsS a\\ n¬ B B\\sb°pdn®p≈ GItZi Nn{Xw AhcpsS Pohnsb°pdn®p≈ Ipsd IqSn IrXyamsbmcp a\\ n¬ ]Xn™p InS∏p≠mbncp∂p. Nn{Xw cq]s∏´p h∂p. AXnt∏mƒ icnbmsW∂p sXfn™p. e`nbv°p∂ \\o≠ aq°v, hm¬, ImepIƒ.. F∂nßs\\ B hnebncpØepIsf ]co£WßfneqsS PohnsbbpsS icoc `mKßsf°pdn®v Ah¿ {]ISam°p∂XmWv imkv{XØns‚ coXn, t\\Snb AdnhpIfneqsSbmWv Gsd°psd CXmWv imkv{Xw. (IS∏mSv: GIehy imkv{X kwLS\\) kb≥kv amjv 9

Xøm-dm-°n-bXv kn.-Pn.-k-t¥mjv imkv{Xm-≤ym-]-I≥ {]nb-s∏´ Ip´n-Isf s\\-bmWv ImWp-∂Xv? C\\n he-XpssI Db¿Øn- \\mw c≠m-asØ A≤ym-b-Ønse aq∂m-asØ ¢m n- bmtem? {]Xn-_nw_w hn]-coX Zni-I-fn-et√ ImW- te°v IS-°p-I-bm-Wv. H∂pw c≠pw `mK-߃ s∏-Sp-∂-Xv. CXmWv ]m¿iznI hn]cybw (Lateral \\∂mbn a\\- n-em-bn-´p-≠m-Ip-sa∂p Icp-Xp-∂p. Inversion) . F√m-h¿°pw \\∂mbn a\\- n-em-bnt√? \\ap°v aq∂m-asØ ¢m n-te°v t]mImw. v\\ap-°-dn-bm-hp∂ as‰mcp DZm-l-c-W-ap-≠v. \\¬In-bn- \\Ωƒ Ign™ ¢m n¬ Hcp ka-Xe Z¿∏-W-Øn¬ cn-°p∂ Nn{X-Øn-te°v t\\m°p. Hcp Bw_p- {]Imiw ]Xn-°p-tºm-gp-≠m-Ip∂ ]X-\\-tIm¨ , e≥kn¬ {]Xn-]-X-\\-tIm¨ ,]-X-\\-tImWpw {]Xn-]-X-\\- ‘Ambulance ‘ F∂v tcJs- ∏S- pØ- nb- nc- n°- p∂- Xv Fß- tImWpw Xpey-amWv F∂o Imcy-߃ ]Tn-®p. AXv s\\-bmWv? F¥mWv CXp-sIm-≠p≈ {]tbm-P\\w? \\n߃ Hm¿°p-∂p-≠m-Ip-sat√m? C\\n \\ap°v Btem-Nn®p t\\m°p C\\n hoUntbm \\nco-£n-°p-I. ASpØ ¢m n-te°v t]mImw. BZyw hoUntbm CXn-\\p≈ ImcWw \\nß-fpsS t\\m´v _p°n¬ tcJ- {i≤n-°p-I. amjv Hcp ka-Xe Z¿∏-W-Øn¬ cq]- s∏-Sp-Øp-sat√m? s∏-Sp∂ {]Xn-_nw_Øns‚ {]tXy-I-X-tb-∏‰n ]d- bp-∂p. F¥mWv ]d-bp-∂-sX∂v \\ap°v C\\n \\ap°v sNdn-sbmcp ]co-£Ww t\\m°mw.F¥mWv \\mw a\\- n-em-°n-bXv? Hcp ka- sNbvXp t\\m°n-bmtem? Hcp IÆm-Sn-bv°p-ap-∂n¬ Xe Z¿∏-W-Øn¬ Hcp hkvXp-hns‚ {]Xn-_nw_w Hcp hkvXp sh®p-t\\m-°p. \\nco-£n-°p. Fs¥-√m- cq]-s∏-Sp-tºmƒ Ah-bpsS hi߃ XΩn¬ ]c- amWv \\nco-£-W-Øn-eqsS \\n߃°v Is≠-Øm≥ kv]cw amdp-∂p. AXm-bXv hkvXp-hns‚ CS-Xp-hiw Ign-bp-∂Xv? \\nß-fpsS Dulw t\\m´p-_p-°n¬ tcJ- Z¿∏-W-Øn¬ he-Xp-h-i-ambpw hkvXp-hns‚ he-Xp- s∏-Sp-Øp. C\\n hoUntbm {i≤n-°mw. amjv Hcp ]co- hiw Z¿∏-W-Øn¬ CS-Xp-h-i-ambpw ImW-s∏-Sp-∂p. £Ww ImWn-°p-∂nt√? Cu ]co-£-W-Øn-eqsS C{]-Imcw ~Hcp ka-Xe Z¿∏-W-Øn¬ ImW-s∏-Sp∂ Fs¥-√m-amWv \\n߃ a\\- n-em-°n-bXv? C\\n {]Xn-_nw-_-Øns‚ ]m¿iz-`mKw hn]-coX Zni-I-fn¬ \\n߃ sNbvX ]co-£-W-hp-ambn a\\- n-em-°nb ImW-s∏-Sp-∂-Xns\\ ]m¿iznI hn]cybw (Lateral hnh-c-ßsf Xmc-Xayw sNbvXp t\\m°p. F¥v \\nK- Inversion) F∂p ]d-bp∂p. a-\\-Øn-emWv(Inference )v\\n߃ FØn-t®¿∂Xv? \\nß-fpsS \\nK-a\\w t\\m´p-_p-°n¬ tcJ-s∏-Sp-Øm≥ The shift of the lateral sides of the image ad-°n-√t√m? ChnsS hkvXp-hn-t‚bpw {]Xn-_nw-_-Øn-t‚bpw formed in a plane mirror in the opposite direction is hen∏w Xmc-X-ay-s∏-Sp-Øn-bmtem? F¥mWv \\n߃°v a\\- n-em-°m-\\m-bXv? called Lateral inversion . AXm-bXv hkvXp-hn-t‚bpw {]Xn-_nw-_-Øn-t‚bpw \\n߃ ho´nse IÆmS- nb- v°pa- p∂- n¬ t]mbn\\- n∂v CS- XpssI Db¿Øn t\\m°p. {]Xn-_nw-_-Øn¬ Fß- kb≥kv amjv 10

hen∏w H∂p-Xs∂bmbn-cn°pw F∂t√? F∂mepw efn-X-ambn \\ap°v H∂p-IqSo ]d-bmw. \\ap-°-Xns\\ Cßs\\ t{ImUo-I-cn°mw C{X-bp-ta-bp-≈p-Im-cyw. Hcp ka-Xe Z¿∏-W-Øn-\\p-ap-∂n¬ Hcp hkvXp h®n-cp-∂m¬ hkvXp- hn-t‚bpw {]Xn-_nw-_-Øn-t‚bpw hen∏w H∂p-X-s∂-bm-bn-cn-°pw. An object is placed in front of a plane mirror, the size of the image is same as that of the object. C\\n \\ap°v hoUntbm {i≤n-°mw. Hcp Z¿∏-W-Øn- Hcp hkvXp-hns‚ {]Xn-_nw-_sØ kv{Io\\ntem at‰- \\p-ap-∂n¬ Hcp hkvXp h®n-cp-∂m¬ hkvXphpw Z¿∏- sX-¶nepw {]X-e-Øntem ]Xn-∏n-°m≥ Ig-bp-sa-¶n¬ Whpw XΩn-ep≈ AIetØ°p-dn-®p-≈- ]co-£-W- AXv bYm¿∞ {]Xn-_nw-_w ( Real image ). Ign-bm- amWv \\ap°v ImWm≥ Ign-bp-∂-Xv. CXn\\p kam-\\- ØXv Ab-Ym¿∞ {]Xn-_nw-_w ( Virtual image ). Hcp IÆm-Sn-bpsS ( Z¿∏-Ww) ap∂n¬ Hcp hkvXp sh®-Xn-\\p-tijw AXnse {]Xn-_nw-_sØ GsX- ¶nepw {]X-e-Øn¬ ]Xn-∏n-°m≥ {ian®p t\\m°n- bmtem? ImWm≥ Ign-bp-∂pt≠m? ChnsS {]Xn- _nw_w aYytbm bYm¿∞tam? C\\n hoUntbm ImWm≥ {ian-°q. \\nß-fpsS [mcWbv°v Ipd-®p- IqSn hy‡-X-bp-≠m-Ipw. \\Ωƒ Hcp Imcyw IqSn ]Tn-®p. amb as‰mcp ]co-£-W-Øns‚ hoUntbm IqSn Hcp ka-X-e-Z¿∏-W-Øn-ep-≠m-Ip∂ {]Xn- \\ap°v ImWmw. CsX√mw \\nco-£n-°p-tºmƒ F¥v _nw_w anYy-bm-bn-cn°pw \\nK-a-\\Øn-emWv \\n߃ FØn-t®¿∂Xv? \\nßfpsS \\nK-a\\w t\\m´p-_p-°n¬ tcJ-s∏-SpØn hbv°p. The image will be virtual Cu ]co-£Ww efn-X-ambn as‰mcp coXn-bnepw sNbvXp-IqsS? Hcp sh≈-t]-∏-dn¬ Xpey-hep∏-Øn¬ . t{ImUo-I-cWw NXpc߃ hc®v AXn¬ hyXykvX \\nd-߃ \\¬In- b-Xn-\\p-tijw Hcp ka-Xe Z¿∏-W-Øn\\p ap∂n¬ 1.Hcp kaX- e Z¿∏W- Ø- n¬ ImWs- ∏S- p∂ {]Xn- t]∏¿ hbv°pI. AXn\\p-tijw GsX-¶nepw Hcp _nw_- Ø- ns‚ ]m¿iz`- mKw hn]c- oX ZniI- f- n¬ tImf-Øn¬ hkvXp-h-bv°p-I. hkvXp-hn¬ \\n∂v ImWs- ∏S- p∂- X- ns\\ ]m¿iznI hn]cybw (Lateral Z¿∏-W-Øn-te°p≈ tImf-ß-fpsS FÆhpw Z¿∏- Inversion) F∂p ]db- p∂p W-Øn¬ ImW-s∏-Sp∂ {]Xn-_nw-_Ønte°v Z¿∏- (The shift of the lateral sides of the image formed in a W-Øns‚ {]X-e-Øn¬ \\n∂pw F{X-tImfw AI-e- plane mirror in the opposite direction is called Lateral ap-s≠∂pw \\nco-£n-°p-I. \\nß-fpsS \\nco-£Ww inversion ) tcJ-s∏-Sp-Øp. F¥mWv \\n߃°v a\\- n-em-°m-\\m- 2. Hcp kaX- e Z¿∏W- Ø- n\\- pa- p∂- n¬ Hcp hkXv p bXv? h®n-cp-∂m¬ hkvXp-hn-t‚bpw {]Xn-_nw-_-Øn- t‚bpw hen∏w H∂pX- s- ∂b- mb- nc- n°- pw. hkvXphpw Z¿∏-Whpw XΩn-ep≈ AI-ehpw (An object is placed in front of a plane mirror, the size Z¿∏-Whpw {]Xn-_nw-_hpw XΩn-ep≈ of the image is same as that of theobject.) AIew Xpey-amWv 3.hkvXphpw Z¿∏-Whpw XΩn-ep≈ AI-ehpw The distance between the image and mirror is Z¿∏W- hpw {]Xn_- nw_- hpw XΩne- p≈ AIew equal to the distance between the object and Xpeya- mWv mirror (The distance between the image and mirror is equal to the distance between the object and mirror) bYm¿∞ {]Xn-_nw-_w ,A-b-Ym¿∞ {]Xn-_nw_w 4. Hcp ka-X-e-Z¿∏-W-Øn-ep-≠m-Ip∂ {]Xn- F∂nh- t- b°- pd- n®v \\n߃°v Adnb- ms- a∂p IcpX- p∂- p. _nw_w anYy-bm-bn-cn°pw (The image will be virtual ) kb≥kv amjv 11

ka-Xe Z¿∏-W-Øn¬ ImWp∂ {]Xn-_nw-_-tØ-°p- Bd∑- pf IÆmSn dn®v \\mw a\\- n-em-°n. IÆm-Sn, an\\p-k-ap≈ Xhn F∂nh \\ΩpsS hoSp-I-fn-ep-≠m-hp-sat√m? BZyw tIcf¯nse ]¯\\wXn« PnÃbnse IÆm-Sn-bn¬ \\nß-fpsS apJw ImWm-\\m-hp-∂pt≠m Bd·pfsb¶ {]ikvXamb {Kma¯n F∂p t\\m°p. ]n∂oSv Xhn-bpsS ]pdØpw AIØpw ]c¼cmKXambn \\nÀ½n¨p hcp¶ t\\m°p. \\n߃ F¥v {]tXy-I-X-bmWv {]Xn-_nw_w I®mSnbmWv Bd·pf¡®mSn. ckw cq]-s∏-Sp-∂-Xn¬ ImWm-\\m-hp-∂Xv? \\nß-fpsS \\nco- D]tbmKn¨p-m¡p¶ ZÀ¸W§fn £Ww t\\m´p-_p-°n¬ tcJ-s∏-Sp-Øp. \\n¶v hyXykvXambn kv^SnI¯n\\p ]Icw {]tXyI teml¡q«n BWv- D≠m-Ip∂ {]Xn-_nw-_-Øns‚ kz`mhw Bd·pf I®mSn \\nÀ½n¡p¶Xv . CXnsâ (Nature of image formed) Hcp hiw Dc¨p an\\p¡nsbSp¯mWv ZÀ¸W kz`mhw hcp¯p¶Xv. Z¿∏Ww Xhn-bpsS Xhn-bpsS tIcf¯nsâ ss]XrI _nw_§ (Mirror) Dƒ`mKw ]pdw-`mKw fnsem¶mbn CXns\\ IW¡m¡p¶p-v (Inside the (Outer side of .asämcp {]tXyIX CXnsâ ap³ {]XeamWv- {]Xn^en¡p¶Xv F¶XmWv- steel ladle) the steel ladle) km[mcW kv^SnI ¡®mSnIfn ]n³ {]XeamWv- {]Xn ^en¡pI. C\\n \\ap°v hoUntbm H∂p {i≤n-°mw. ]mT-]p-kvX- I-Ønse t]Pv.29 Dw {i≤n-°p-I. Fß-s\\-bmWv 12 ]mT-]p-kvX-I-Ønse ]co-£Ww sNøp-∂-sX∂v hoUntbm hniZ- oI- c- n°- p∂- p. ]co£- Ww sNbvXpt- \\m- °n-b-Xn-\\p-tijw ]mT-]p-kvX-I-Øn¬ \\¬In-bn-cn- °p∂ ]´nI ]qcn-∏n®v t\\m´p-_p-°n-se-gp-Xm≥ ad- t°-≠-Xn-√. C\\n \\ap°v ]mT-]p-kvXIw t]Pv.29 se BZyw \\¬Inb- nc- n°- p∂ ]co£- Ww sNøm≥ {ian°- mw. CXv sNøp-∂-Xn\\p apºmbn hoUn-tbm-bnse hni-Zo-I- kb≥kv amjv

cWw {i≤n-°p-I. Fß-s\\-bmWv jo‰v Xøm-dm-°p- Ip∂ {]Xn-_nw_ cq]o-I-c-W-tØ-°p-dn-®mWv hoUn- ∂-sX∂v \\ap°v t\\m°mw. tbm-bn¬ Ip´n sNøp∂ ]co-£Ww {i≤n-°p-I. hoUn-tbm-bn¬ \\n∂pw Cu ]co-£Ww Fßs\\ \\n߃ Fs¥-√m-amWv a\\- n-em-°n-bXv? sNøm-sa∂v \\n߃ a\\- n-em-°n. C\\n \\ap°v ]co- a\\- n-em-°nb Imcy-߃ t\\m´p-_p-°n¬ tImfw £Ww sNømw. \\nß-fpsS \\nco-£Ww \\nß-fpsS hc®v tcJ-s∏-Sp-ØWw t\\m´v _p°n¬ tcJ-s∏-Sp-Ø-Ww. \\ap°v ho≠pw hoUntbm {i≤n-°mw. Z¿∏Ww tIm¨tIhv tIm¨shIvkv hoUn-tbm-bn¬ {][m-\\-ambpw N¿® sNøp-∂Xv tKmfnb Z¿∏-W-߃ ( Sperical mirrors) F∂-Xn-t\\- Z¿∏Ww Z¿∏Ww °p-dn-®m-Wv. l-F¥p-sIm-≠mWv Ahsb Cßs\\ hnfn-°p-∂Xv? CXn¬ \\n∂pw ka-X-e-Z¿∏-Ww, tIm¨tIhv Z¿∏- hyXykvX Z¿∏-W-߃ GsX-√m-amWv? Ww, tIm¨shIvkv Z¿∏Ww F∂n-h-bpsS {]tXy- l Hmtcm Z¿∏-W-Øn-t‚bpw {]Xew F{X-am{Xw I-X-Iƒ a\\- n-em-°n. hyXym-k-s∏-´n-cn-°p-∂p? tIm¨tIhv Z¿∏Ww D]-tbm-Kn®v bYm¿∞ {]Xn- lAh-bn¬ D≠m-Ip∂ {]Xn-_nw-_-Øns‚ {]tXy- _nw_w D≠m°mw F∂pw \\Ωƒ ]Tn-®p. I-X-Iƒ Fs¥-√m-amWv? CXp-hsc ]Tn® Imcy-߃ Fs¥-√m-sa∂v Hm¿Øp- Cu Imcy-ßfpw N¿®-sN-øp-∂p-≠v. t\\m-°p. lF¥mWv tKmfob Z¿∏Ww? Hcp Imcyw ho≠pw ChnsS Hm¿an-∏n-°m-\\p-≈Xv \\ap- °vsN-øm-\\m-hp∂ efn-X-ambn ]co-£-W-߃ ka-Xe Z¿∏-Ww, tIm¨shIvkv Z¿∏-Ww, sNøm≥ {ian-°-Ww. AXv Imcy-ßsf t\\cn´v tIm¨tIhv Z¿∏Ww F∂nhtb°p-dn®v ]mT-]p- t_m≤y-s∏-Sp-Øm≥ klm-bn-°pw. kvXIw t]Pv .29 ¬ \\¬In-bn-cn-°p∂ Nn{X-߃ t\\m´v _p°n¬ hc®v hni-Z-am-°-Ww. C\\n \\mw N¿® sNøp-∂Xv Cu Z¿∏-W-ß-fn¬ D≠m- B¿°-sa-Uokv C‰enbnse knknenbn¬ _n kn.287-¬ P\\n® hniz{]kn≤\\mb KWnX imkv{X⁄\\mWv B¿°nanUokv. KWnX imkv{XØn \\p]pdsa D¿÷X{¥w,F©n\\nb¿,tPymXn»mkv{- X⁄≥ F∂nßs\\ a‰p ]e taJeIfnepw IgnhpsXfnbn® hy‡n bmbncp∂p At±lw. KWnXØntebpw PymanXnbntebpw Is≠ØepIƒ, B¿°n anUokv XXzw, B¿°nanUokv kv{Iq F∂n ßs\\ H´\\h[n I≠p]nSpØ߃ At±lw \\SØnbn´p≠v. Ct±lØns‚ PohnX sØ°pdn®v imkv{Xobamb IqSpX¬ hnhc߃ e`ya s√¶nepw ]pcmX\\ImesØ {][m\\s∏´ imkv{XImc∑mcn¬ Hcmfmbn B¿°nanUokv IW°m°s∏Sp∂p. kb≥kv amjv 13

X¿m-dm-¡n-bXv kn.P- n.k- t- ´mjv im-kv{Xm-²ym-]-I³ Ign™ ¢m n¬ \\mw aq∂p-Xcw Z¿∏-W- Why is there so much images? Write down your guess ß-fmWv ]cn-N-b-s∏-´-Xv. AXm-bXv ka-X-e-Z¿∏Ww, v\\n߃ F¥v Dul-amWv Fgp-Xn-bn-´p-≠m-hp-I? tIm¨tImhv Z¿∏-Ww, tIm¨shIvkv Z¿∏Ww hoUn-tbm-bpsS ASpØ `mK-tØ°v t]mImw. amjv as‰mcp ]co-£Ww ImWn-°p-∂p-≠v. ]co-£-W- F∂n-h-b-bmWv Ah. Ch-bpsS {]tXy-I-Xbpw \\mw Øn¬ Bh¿Ø\\ {]Xn-_nw-_-߃ D≠m-Ip-∂p-≠v. F-ß-s\\-bmWv C{X-bp-a-[nIw {]Xn-_nw-_-߃ ]cnN- b- s- ∏´- nc- p∂- p.Hcp Z¿∏W- Ø- n\\- pa- p∂- n¬ Hcp sagp- D≠m-Ip-∂Xv? amjns‚ hni-Zo-I-cWw {i≤n-°p-I. amjv \\¬Inb hni-Zo-I-c-WØns‚ ASn-ÿm-\\- Ip-Xncn IØn-®p-sh-®m¬ D≠m-Ip∂ {]Xn-_nw-_w- Øn¬ \\nß-fpsS Dulw ]cn-tim-[n-°p. sX‰p-s≠- ¶n¬ Xncp-ØpI ß-fpsS FÆw F{X-bm-bn-cn°pw? H∂n-e-[nIw Z¿∏- hoUntbm ho≠pw \\nco-£n-°p-I.-amjv W-߃ tN¿Øp-h-®-Xn-\\p-tijw ]co-£Ww Bh¿Ø\\ {]Xn-]-X-\\-hp-ambn _‘-s∏´v as‰mcp ]-co-£Ww IqSn sNøp-∂p-≠v. Bh¿Øn-®p-t\\m-°p. \\ap°v hoUntbm H∂p {i≤n°mw . CXnse Nne ]co-£-W-߃ \\n߃°v ho´nepw sNbvXp-t\\m-°mw. ]co-£-W-Øn¬ \\n∂pw \\mw Fs¥√mw a\\- n-em- Fß-s\\-bmWv CXv \\n¿an-°p-∂-sX∂v \\n߃]Tn- °n? Bh¿Ø\\ {]Xn-_nw_tØ°p-dn-®mW °m≥ {ian-°p-I. CXns‚ \\n¿amW coXn t\\m´p-_p- (v Multiple reflection) {][m\\- a- mbpw \\mw N¿®s- Nb- vX- °n¬ tcJ-s∏-Sp-Øp-I. Ign-bp-∂-h¿ sNøm≥ {ian®p Xv. Z¿∏-W-ß-fpsS tImWp-Ifn¬ hyXymkw hcp- t\\m°p-I.hoUntbm XpS¿∂v ImWp-I. ∂-X-\\p-k-cn®v D≠m-Ip∂ {]Xn-_nw-_-ßfpsS FÆ- Bh¿Ø\\ {]Xn-]-X-\\w D]-tbm-K-s∏-Sp-Øp∂ a‰v Ønepw hyXymkw hcp∂p F∂pw \\man-hnsS ]Tn- D]-I-c-W-߃ GsX-√m-amWv? Ah Fßs\\ \\n¿an- ®p. °mw. c≠p ka-Xe Z¿∏-W-߃ (Plane mirrors) ChnsS BZy-ambn N¿® sNøp-∂Xv Hcp Bh¿Ø\\ {]Xn-_nw-_-ap-≠m-Ip∂ XXzsØ ASn- Imen-tUm-kvtIm∏v Fßs\\ \\n¿an°mw F∂-Xn-t\\- ÿm-\\-am°n \\n¿an-°m-hp∂ D]-I-c-W-ß-tfbpw \\mw °p-dn-®m-Wv.-ho-Untbm {i≤n-°p-I. \\n߃°pw ]cn-N-b-s∏-Sp-I-bp-≠m-bn. hoUntbm Hcn-°¬ IqSn ImWp-I. v]co-£-W-߃°p-tijw D∂-bn-°-s∏-Sp∂ tNmZyw {i≤n-®n-cn-°p-sat√m? F¥p-sIm-≠mWv Iptd {]Xn-_nw_w D≠m-bXv? Dulw Fgp-XpI kb≥kv amjv 14

hfsc Ffp-∏-Øn¬ CØ-c-Øn¬ \\n¿an-°m≥ Ign- bpw. AXv Fß-s\\-bm-sW∂v t\\m°mw. CXn-\\mbn hoUntbm {i≤n-°p-I. ImentUm kvtIm∏v s]cn-kvtIm∏v km[m-c-W-bmbn D]-tbm-K-s∏-Sp-Øp- ∂Xv apßn-I-∏-ep-I-fnencp∂v kap-t{Zm-]-cn-X-eX-Øn- ep≈ bp≤-°-∏-ep-Isf \\nco-£n-°p-∂-Xn\\pw {S©p- I-fn-en-cp∂v ]´m-f-°m¿°v Np‰p-]mSpw \\nco-£n-°p- ∂-Xn-\\p-am-Wv. s]cn-kvtIm∏v Fß-s\\-bmWv {]h¿Øn-°p-∂Xv F∂-dn-bm≥ ¢n°v sNøpI ImentUm kvtIm∏ns‚ LS\\ CtX-t]mse Z¿∏-W-ß-fp-]-tbm-Kn®v GsX-¶nepw D]- I-cWw \\n¿an®v AXv Fßs\\ {]h¿Øn-°p∂p Imen-tUm-kvtIm∏v \\n¿an-°p-∂Xv Fß-s\\-sb∂v Fs∂-gp-Xp-I. \\mw ]Tn-®p. C\\n \\ap°v s]cn-kvtIm∏v \\n¿an-°p- (Make any device using mirrors and write down how ∂Xv Fß-s\\-sb∂v t\\m°mw. Fs¥√mw hkvXp- it works?) °ƒ \\ap°v CXn-\\mbn D]-tbm-Kn°mw? c≠n-t‚bpw \\n¿amW coXn t\\m´p-_p-°n¬ tcJ-s∏-Sp-Øp-sat√m? hoUn-tbm-bn¬ \\¬In-bn-cn-°p∂ h¿°vjo‰v \\n߃ Fß-s\\-bmWv {]Imiw s]cn-kvtIm-∏n-eqsS hcp- ]q¿Øo-I-cn-°m≥ {ian-°p-sat√m? ∂Xv? v\\n߃ \\n¿an® D]-I-c-W-ß-fpsS Nn{X-߃ Ab- (How light travels through a periscope? ) °m≥ ad-°n-√t√m? hoUntbm \\nco-£- n-°pI kb≥kv amjv 15


Like this book? You can publish your book online for free in a few minutes!
Create your own flipbook