ﻤﻭﺍﻀﻴﻊ ﺍﻹﺭﺴﺎل ﺍﻟﺜﺎﻨﻲ ﻴﺘﻀﻤﻥ ﻫﺫﺍ ﺍﻹﺭﺴﺎل ﺍﻟﻤﻭﺍﻀﻴﻊ ﺍﻟﺘﺎﻟﻴﺔ : -ﺃﻨﺸﻁﺔ ﺤﻭل ﺍﻟﻨﻬﺎﻴﺎﺕ ﻭﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻟﺔ -ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻭﺍﺘﺠﺎﻩ ﺍﻟﺘﻐﻴﺭ -ﻤﻔﻬﻭﻡ ﺍﻟﻨﻬﺎﻴﺔ -ﺩﺭﺍﺴﺔ ﺩﻭﺍل ﻜﺜﻴﺭﺍﺕ ﺍﻟﺤﺩﻭﺩ ﻭﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ -ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ ﺤﻭل ﺍﻟﺩﻭﺍل -ﺤﻠﻭل ﺍﻟﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ
ﺍﻟ ﺩﻭﺍل ﺍﻟﻌﺩﺩﻴﺔ ﺃﻨﺸﻁﺔ ﺤﻭل ﺍﻟﻨﻬﺎﻴﺎﺕ ﻭ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻟﺔ ﺍﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﻤﺴﺘﻬﺩﻓﺔ : • ﺘﻌﻴﻴﻥ ﺍﺘﺠﺎﻩ ﺍﻟﺘﻐﻴﺭ ﺒﺎﺴﺘﻌﻤﺎل ﺇﺸﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ • ﺍﻟﺭﺒﻁ ﺒﻴﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﻭﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ • ﺍﺴﺘﻌﻤﺎل ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺤل ﻤﻌﺎﺩﻻﺕ ﻭﻤﺘﺭﺍﺠﺤﺎﺕ • ﻤﻨﺎﻗﺸﺔ ﻤﻌﺎﺩﻟﺔ ﺒﻴﺎﻨﻴﺎ • ﺘﻌﻴﻴﻥ ﻨﻘﻁﺔ ﺍﻻﻨﻌﻁﺎﻑ ﻟﻤﻨﺤﻥ • ﺍﺴﺘﻌﻤﺎل ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﻟﺘﺨﻤﻴﻥ ﺍﻟﻨﻬﺎﻴﺎﺕ ﻋﻨﺩ ∞ +ﻭ ∞ −ﻭﺘﺤﺩﻴﺩﻫﺎ ﺘﻌﻴﻴﻥ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻭﺘﻔﺴﻴﺭﻫﺎ ﺒﻴﺎﻨﻴﺎ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﻤﻘﺩﻤﺔ -ﺍﻟﻨﺸﺎﻁ ﺍﻷﻭل )ﺍﻟﻨﻬﺎﻴﺔ ﺒﺠﻭﺍﺭ ∞ -ﺃﻭ ﺒﺠﻭﺍﺭ ∞( + -ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻨﻲ -ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻟﺙ -ﺍﻟﻨﺸﺎﻁ ﺍﻟﺭﺍﺒﻊ )ﺍﻟﺭﺒﻁ ﺒﻴﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﻭﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ(
ﻤﻘﺩﻤﺔ ﻤﺎﺩﺓ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﺍﻟﺒﻨﻴﺔ ﺍﻟﺭﻴﺎﻀﻴﺔ ﺘﺅﺜﺭ ﻋﻠﻰ ﺍﻟﺒﻨﻴﺔ ﺍﻟﺫﻫﻨﻴﺔ ﻟﻠﻤﺘﻌﹼﻠﻡ ﻷﻥ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻭﺴﻴﻠﺔ ﻟﺘﻜﻭﻴﻥ ﺍﻟﻔﻜﺭ ﻭﺃﺩﺍﺓ ﻻﻜﺘﺴﺎﺏ ﺍﻟﻤﻌﺎﺭﻑ. ﺘﺴﺎﻫﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻤﻊ ﺍﻟﻤﻭﺍﺩ ﺍﻷﺨﺭﻯ ﻓﻲ ﺤﺼﺭ ﻤﻠﻤﺢ ﺍﻟﺘﻠﻤﻴﺫ ﻋﻨﺩ ﻨﻬﺎﻴﺔ ﻤﺭﺤﻠﺔ ﺩﺭﺍﺴﻴﺔ. ﺍﻟﺒﺭﻨﺎﻤﺞ ﺍﻟﺠﺩﻴﺩﺘﻡ ﺒﻨﺎﺀ ﺒﺭﻨﺎﻤﺞ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻟﻠﺴﻨﺔ ﺍﻟﺜﺎﻟﺜﺔ ﺜﺎﻨﻭﻱ ﺸﻌﺒﺘﻲ ﺁﺩﺍﺏ ﻭﻓﻠﺴﻔﺔ ،ﺁﺩﺍﺏ ﻭﻟﻐﺎﺕ ﻭﻓﻕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﺒﺎﻟﻜﻔﺎﺀﺍﺕ ﺍﻟﺘﻲ ﻤﻥ ﺃﺒﻌﺎﺩﻫﺎ ﺍﻷﺴﺎﺴﻴﺔ ﺍﻟﺘﻜﻴﻑ ﻤﻊ ﺍﻟﺠﺩﻴﺩ ﻭﺍﻟﻭﺍﻗﻊ ﺍﻟﻤﻌﺎﺼﺭ ﺍﻟﻤﺘﺤﻭل ﺒﺎﺴﺘﻤﺭﺍﺭ ﺤل ﺍﻟﻤﺸﻜﻼﺕ ﺤل ﺍﻟﻤﺸﻜﻼﺕ ﻓﻲ ﺘﻌﹼﻠﻡ ﺍﻟﺭﻴﺎﻀﻴﺎﺕ ﻴﺴﺎﻫﻡ ﻓﻲ ﺒﻨﺎﺀ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻭﻀﺎ ﻋﻥ ﺇﻋﻁﺎﺌﻬﺎ ﺠﺎﻫﺯﺓ ،ﻓﻌﻠﻴﻪ ﺭﺒﻁ ﺍﻟﻤﻌﺎﺭﻑ ﺒﺎﻟﻭﻀﻌﻴﺎﺕ ﻴﺠﻌل ﺍﻟﻤﺘﻌﹼﻠﻡ ﻴﺅﺜﺭ ﻓﻲ ﺍﻟﻭﺴﻁ ﺍﻟﺩﺍﺨﻠﻲ ﻭﺍﻟﻭﺴﻁ ﺍﻟﺨﺎﺭﺠﻲ ﻟﻠﻤﺩﺭﺴﺔ. ﺘﺤﺘﻭﻱ ﻜل ﻭﺤﺩﺓ ﻤﻥ ﻭﺤﺩﺍﺕ ﻫﺫﺍ ﺍﻟﻜﺘﺎﺏ ﻋﻠﻰ :ﺃﻨﺸﻁﺔ ﺘﻤﻬﻴﺩﻴﺔ ﺃﻭ ﻟﻠﻤﺭﺍﺠﻌﺔ ﺘﺘﺒﻌﻬﺎ ﻤﻼﺤﻅﺎﺕ ﺘﻬﻴﺊ ﺇﻟﻰ ﺍﻟﺩﺭﺱ 1 ﺍﻟﺩﺭﺱ ﺒﻨﺘﺎﺌﺠﻪ ﺍﻟﻨﻅﺭﻴﺎﺕ ﻭ ﺃﻤﺜﻠﺔ 2ﺘﻤﺎﺭﻴﻥ ﻤﺤﻠﻭﻟﺔ ﺤﻼ ﻤﻔﺼﻼ ﺘﻤﻜﻥ ﻤﻥ ﺘﻁﺒﻴﻕ ﻨﺘﺎﺌﺞ ﺍﻟﺩﺭﺱ ﻭ ﺘﺴﻠﻁ ﺍﻷﻀﻭﺍﺀ ﻋﻠﻰ ﻁﺭﺍﺌﻕ 3 ﻭ ﻤﻨﻬﺠﻴﺎﺕ 4 /ﺘﻤﺎﺭﻴﻥ ﺒﺴﻴﻁﺔ ﺘﻤﻜﻥ ﻤﻥ ﺍﻟﺘﻤ ﺭﻥ ﻭ ﺍﺨﺘﺒﺎﺭ ﺍﻟﻤﻌﻠﻭﻤﺎﺕ 5 ﺘﻤﺎﺭﻴﻥ ﻭﻤﺸﻜﻼﺕ ﻟﻠﺒﺤﺙ ﻭﺍﻟﺘﻌﻤﻕ ﻗﻠﻴﻼ ﻭﻓﻲ ﻤﺅﺨﺭﺓ ﺍﻟﻭﺤﺩﺓ ﺍﻟﺤﻠﻭل )ﺃﻭ ﻨﺘﺎﺌﺞ ( ﻟﺘﻤﺎﺭﻴﻥ ﺃﻭ ﻤﺸﻜﻼﺕ ﻤﺨﺘﺎﺭﺓ
ﺍﻟﻨﺸﺎﻁ ﺍﻷﻭل )ﺍﻟﻨﻬﺎﻴﺔ ﺒﺠﻭﺍﺭ ∞ -ﺃﻭ ﺒﺠﻭﺍﺭ ∞( + f(x)=2x2 ♦ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭ ﺍﻷﺴﺌﻠﺔ ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﻜﻤﺎ ﻴﻠﻲ : - 1ﺸﻜل ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f - 2ﺃﻜﻤل ﺠﺩﻭل ﺍﻟﻘﻴﻡ ﺍﻟﻤﻭﺍﻟﻲ:x 10 102 103 104 105)f(xf ′(x) = 4x ﻤﺎﺫﺍ ﺘﻼﺤﻅ ؟ - 3ﺃﻋﺩ ﻨﻔﺱ ﺍﻟﺠﺩﻭل ﻤﻥ ﺃﺠل ﻗﻴﻡ -105،-104، -103، -102، -10: x ﻤﺎﺫﺍ ﺘﻼﺤﻅ؟ • ﺍﻷﺠﻭﺒﺔ - 1ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ f، IRﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻭﺩﺍﻟﺘﻬﺎ ﺍﻟﻤﺸﺘﻘﺔ f ′ﻤﻌﺭﻓﺔ ﺒـ ﺇﺸﺎﺭﺓ : ﺇﺫﺍ ﻜﺎﻥ x〉 0ﻓﺈﻥ f ′( x)〉 0 : ﺇﺫﺍ ﻜﺎﻥ x〈0 :ﻓﺈﻥ f ′( x)〈0 :
x ﻭﻤﻨﻪ ﻨﻠﺨﺹ ﺇﺸﺎﺭﺓ ) f ′( xﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : )f ′(x ∞-∞ 0 + -+ x ∞- ﺠﺩﻭل ﺍﻟﺘﻐﻴــﺭﺍﺕ : )f ′(x - ∞0 + )f(x +x 10 102 103 0 ﺤﻴﺙ f(0) =0 : 2ﺇﻜﻤﺎل ﺠﺩﻭل ﺍﻟﻘﻴﻡ : 104 105)f(x) 400=4(10 40000 4000000 400000000 40000000000 = = = 2 = 4(10)4 4(10)6 4(10)8 4(10)10 *ﺍﻟﻤﻼﺤﻅﺔ : ﻋﻨﺩﻤﺎ ﻴﺄﺨﺫ xﻗﻴﻤﺎ ﺃﻜﺒﺭ ﻓﺄﻜﺒﺭ ﻓﻲ ﺍﻟﻤﺠﺎل[ ∞ ] 0 ،+ﻓﺈﻥ ﻗﻴﻡ ) f(xﺘﺼﺒﺢ ﺃﻜﺒﺭ ﻓﺄﻜﺒﺭ - 3ﺠﺩﻭل ﺍﻟﻘﻴﻡ ﻓﻲ ﺍﻟﻤﺠﺎل [ ] -∞ ، 0x -10 -102 -103 -104 -105=f(x) 400=4(10)2 40000= 4000000= 400000000= 40000000000 4(10)10 4(10)4 4(10)6 4(10)8 * ﺍﻟﻤﻼﺤﻅﺔ : ﻋﻨﺩﻤﺎ ﻴﺄﺨﺫ xﻗﻴﻤﺎ ﺃﺼﻐﺭ ﻓﺄﺼﻐﺭ ﻓﻲ ﺍﻟﻤﺠﺎل [ ] -∞ ، 0ﻓﺈﻥ ﻗﻴﻡ ) f(xﺘﺼﺒﺢ ﺃﻜﺒﺭ ﻓﺄﻜﺒﺭ ﺍﻟﺘﺨﻤﻴﻥ : ﻭﺒﺘﺨﻤﻴﻥ ﻨﻘﻭل ﺇﻥ ﻨﻬﺎﻴﺔ ) f(xﻫﻲ ∞ +ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ ∞+ ﻜﺫﺍﻟﻙ :ﻨﻘﻭل ﺇﻥ ﻨﻬﺎﻴﺔ ) f(xﻫﻲ ∞ +ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ ∞-
ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻨﻲ ♦ ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭ ﺍﻷﺴﺌﻠﺔ)g(x = 3x+2 ﻨﻌﺭﻑ ﺍﻟﺩﺍﻟﺔ gﻋﻠﻰ } IR-{0ﻜﻤﺎ ﻴﻠﻲ x - 1ﺒﻴﻥ ﺃﻨﻪ ﻴﻤﻜﻥ ﻜﺘﺎﺒﺔ ) g(xﺘﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل g ( x)=a + b x ﺤﻴﺙ b ; aﻋﺩﺩﻴﻥ ﺤﻘﻴﻘﻴﻴﻥ ﻴﻁﻠﺏ ﺘﻌﻴﻴﻨﻬﻤﺎ - 2ﺃﺤﺴﺏ ) g ′( xﻭﺃﺩﺭﺱ ﺇﺸﺎﺭﺘﻬﺎ ﺜﻡ ﺸﻜل ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ g x -10 -103 -105 -107 - 3ﺃﻜﻤل ﺠﺩﻭل ﺍﻟﻘﻴﻡ ﺍﻟﺘﺎﻟﻲ :)g(x 10 103 105 107 • ﺍﻷﺠﻭﺒﺔ - 1ﻤﻥ ﺃﺠل ﻜل xﻤﻥ } IR-{0ﻟﺩﻴﻨﺎ :ﻭﻤﻨﻪ b=2 , a= 3 : g(x) = 3 + 2 ﻭﻤﻨﻪ : )g (x = 3 x/ + 2 x x/ x - 2ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ): g ′( xﺍﻟﺩﺍﻟﺔ gﻫﻲ ﺤﺎﺼل ﻗﺴﻤﺔ ﺩﺍﻟﺘﻴﻥ ﻗﺎﺒﻠﺘﻴﻥ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ *، IRﻓﻬﻲ ﻗﺎﺒﻠﺔ) g '( x ) = ( 3 x + 2 )' ( x ) − ( x )' ( 3 x + 2 ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ * IRﻭﻟﺩﻴﻨﺎ : x2g '( x ) = − 2 ﻭﻤﻨﻪ ) g '( x ) = 3 ( x ) − 1 ( 3 x + 2ﺇﺫﻥ x2 x2 ﺇﺸﺎﺭﺓ ): g ′( x g '( x)〈0 ﻤﻥ ﺃﺠل ﻜل xﻤﻥ } IR-{0ﻟﺩﻴﻨﺎ :ﻭﻤﻨﻪ ﺍﻟﺩﺍﻟﺔ gﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎﻟﻴﻥ [ ] 0 ،+∞ [ ، ] -∞ ، 0 ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ : g
x ∞- 0 ∞+)g′(x - -)g(x -3ﺇﻜﻤﺎل ﺠﺩﻭل ﺍﻟﻘﻴﻡ : x -10 -103 -105 10 103 105 g(x) 2.8 2.9998 2.99998 3.2 3.002 3.00002 *ﺍﻟﻤﻼﺤﻅﺔ :ﻜﻠﻤﺎ ﻴﺄﺨﺫ xﻗﻴﻤﺎ ﺃﺼﻐﺭ ﻓﺄﺼﻐﺭ ﻓﻲ ﺍﻟﻤﺠﺎل[ ] -∞ ، 0ﻓﺈﻥ ﻗﻴﻡ ) g(xﺘﻘﺘﺭﺏ ﻤﻥ ﺍﻟﻌﺩﺩ 3ﻜﻠﻤﺎ ﻴﺄﺨﺫ xﻗﻴﻤﺎ ﺃﻜﺒﺭ ﻓﺄﻜﺒﺭ ﻓﻲ ﺍﻟﻤﺠﺎل[ ∞ ] 0 ،+ﻓﺈﻥ ﻗﻴﻡ ) g(xﺘﻘﺘﺭﺏ ﻤﻥ ﺍﻟﻌﺩﺩ 3 *ﻨﺘﻴﺠﺔ : 2 ﺍﻟﻌﺩﺩ 2ﻴﻘﺘﺭﺏ ﻤﻥ ﺍﻟﻌﺩﺩ 0ﻷﻥ g (x) = 3 + x x ﺍﻟﻨﺸﺎﻁ ﺍﻟﺜﺎﻟﺙ ♦ ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭ ﺍﻷﺴﺌﻠﺔ ﻨﻌﺘﺒﺭ ﺍﻟﺩﻭﺍل fﺒﺘﻤﺜﻴﻼﺘﻬﺎ ﺍﻟﺒﻴﺎﻨﻴﺔ ،ﻓﻲ ﺍﻟﻤﺴﺘﻭﻯ ﺍﻟﻤﻨﺴﻭﺏ ﺇﻟﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ ) ) (O ; I ; Jﺃﻨﻅﺭ ﺍﻟﺸﻜل ( y xa f (x)=x3 8 7 6 5 4 )(Cf 3 2 →1 J →I-8 -7 -6 -5 -4 -3 -2 -1 0 12345678 x -1 -2 -3 -4
y xa ( x)= 18 x7 f654 (Cf)321 J→ I→-8 -7 -6 -5 -4 -3 -2 -1 0 12345678 x-1-2-3-4y87 xa f (x)=x2654 (Cf)321 J→ →I-8 -7 -6 -5 -4 -3 -2 -1 0 12345678 x-1-2-3-4y xa f (x)=−x24 (Cf)321J→ I→-8 -7 -6 -5 -4 -3 -2 -1 0 12345678x-1-2-3-4-5-6-7-8
ﺍﻷﺴﺌﻠﺔ : ﺇﺫﺍ ﻜﺎﻥ xﻋﻨﺼﺭﺍ ﻤﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ } {102 , 104 , 106ﺃﺤﺴﺏ ) f(xﻓﻲ ﻜل ﺤﺎﻟﺔ.ﺒﺎﻟﻨﺴﺒﺔ ﻟﻜل ﺩﺍﻟﺔ ﻤﻥ ﺍﻟﺩﻭﺍل ﺍﻟﻤﻘﺘﺭﺤﺔ ﻓﻲ ﻫﺫﻩ ﺍﻷﻤﺜﻠﺔ ،ﻭﻤﻥ ﺒﻴﻥ ﺍﻹﺠﺎﺒﺎﺕ 1، 2، 3ﻤﺎ ﻫـﻲ ﺍﻹﺠﺎﺒـﺔ ﺍﻟﺘﻲ ﺘﺨﺘﺎﺭﻫﺎ ﻹﺘﻤﺎﻡ ﺍﻟﺠﻤل ﺍﻟﺘﺎﻟﻴﺔ : -ﻋﻨﺩﻤﺎ ﻴﺄﺨﺫ xﻗﻴﻤﺎ ﺃﻜﺒﺭ ﻓﺄﻜﺒﺭ ﻓﻲ ﺍﻟﻤﺠﺎل[ ∞ ] 0 ،+ﻓﺈﻥ ﻗﻴﻡ ) f(xﺘﺼﺒﺢ : 1ﺃﻜﺒﺭ ﻓﺄﻜﺒﺭ 2ﺘﻘﺘﺭﺏ ﻤﻥ ﻋﺩﺩ ﻤﻌﻴﻥ ،ﺤﺩﺩ ﻓﻲ ﻫﺫﻩ ﺍﻟﺤﺎﻟﺔ ﻫﺫﺍ ﺍﻟﻌﺩﺩ 3ﺴﺎﻟﺒﺔ ،ﻭﻟﻜﻥ ﻗﻴﻤﺘﻬﺎ ﺍﻟﻤﻁﻠﻘﺔ ﻜﺒﻴﺭﺓ • ﺍﻷﺠﻭﺒﺔ 3 1ﺍﻟﺩﺍﻟﺔ x a f ( x) = x x 102 104 106 f(x) 106 1012 1018 ﻨﺨﺘﺎﺭ ﺍﻟﺠﻭﺍﺏ ﺍﻷﻭل 1 xa = )f (x 1 ﺍﻟﺩﺍﻟﺔ 2 xx 102 104 106)f(x 0.01 0.0001 0.000001 ﻨﺨﺘﺎﺭ ﺍﻟﺠﻭﺍﺏ ﺍﻟﺜﺎﻨﻲ 2ﻭﺍﻟﻌﺩﺩ ﺍﻟﺫﻱ ﺘﻘﺘﺭﺏ ﻤﻨﻪ ﻫﺫﻩ ﺍﻟﺩﺍﻟﺔ ﻫﻭ 0ﺒﻘﻴﻡ ﻤﻭﺠﺒﺔ 2 3ﺍﻟﺩﺍﻟﺔ x a f ( x) = x x 102 104 106 f(x) 104 108 1012 ﻨﺨﺘﺎﺭ ﺍﻟﺠﻭﺍﺏ ﺍﻷﻭل 1 2 4ﺍﻟﺩﺍﻟﺔ x a f ( x) = − x x 102 104 106 f(x) -104 -108 -1012
ﻨﺨﺘﺎﺭ ﺍﻟﺠﻭﺍﺏ ﺍﻟﺜﺎﻟﺙ 3 ﻭﺒﺘﺨﻤﻴﻥ ﻨﻘﻭل -1ﺍﻟﺩﺍﻟﺔ fﺘﺅﻭل ﺇﻟﻰ ∞ +ﻤﻥ ﺃﺠل xﻴﺅﻭل ﺇﻟﻰ ∞+ -2ﺍﻟﺩﺍﻟﺔ fﺘﺅﻭل ﺇﻟﻰ 0ﺒﻘﻴﻡ ﻤﻭﺠﺒﺔ ﻤﻥ ﺃﺠل xﻴﺅﻭل ﺇﻟﻰ ∞+ -3ﺍﻟﺩﺍﻟﺔ fﺘﺅﻭل ﺇﻟﻰ ∞ +ﻤﻥ ﺃﺠل xﻴﺅﻭل ﺇﻟﻰ ∞+ -4ﺍﻟﺩﺍﻟﺔ fﺘﺅﻭل ﺇﻟﻰ ∞ -ﻤﻥ ﺃﺠل xﻴﺅﻭل ﺇﻟﻰ ∞+ﺍﻟﻨﺸﺎﻁ ﺍﻟﺭﺍﺒﻊ )ﺍﻟﺭﺒﻁ ﺒﻴﻥ ﺍﻟﺘﻤﺜﻴل ﺍﻟﺒﻴﺎﻨﻲ ﻟﺩﺍﻟﺔ ﻭﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ( ♦ ﺍﻟﻤﻌﻁﻴﺎﺕ ﻭ ﺍﻷﺴﺌﻠﺔ 1ﻨﻌﺘﺒﺭ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﺒﺎﻟﺩﺴﺘﻭﺭ f(x)=x3-3x+2 :ﻤﻥ ﺒﻴﻥ ﺍﻟﻤﻨﺤﻨﻴﻴﻥ ﺍﻟﺒﻴﺎﻨﻴﻴﻥ )ﺃﻨﻅﺭ ﺍﻟﺸﻜل( ،ﺤﺩﺩ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺠﺩﻭل ﺘﻐﻴﺭﺍﺘﻬﺎ ﺍﻟﺘﺎﻟﻲ :X -∞ -2 -1 1 ∞+ + +- +)f ′(xf(x) 4 ∞+ -∞ 0
y 6 5 4 3 )(y=2 2 1 ﺍﻟﺸﻜل)(1 →J→ I-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9x -1 -2 -3 -4 )(Cf -5 -6 y 6 5 4 3 ﺍﻟﺸﻜل)(2 )(y=2 2 1 J→ →I-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9x -1 -2 -3 -4 )(Cf -5 -6 2ﺤل ﺒﻴﺎﻨﻴﺎ ﻤﺎ ﻴﻠﻲ f ( x)〈0, f ( x)〉 0, f ( x)=0, f ( x)=2 : 3ﻭﺒﺼﻔﺔ ﻋﺎﻤﺔ ،ﻨﺎﻗﺵ ﺒﻴﺎﻨﻴﺎ ﺤﻠﻭل ﺍﻟﻤﻌﺎﺩﻟﺔ f(x)=mﺤﻴﺙ m∈IR • ﺍﻷﺠﻭﺒﺔ 1ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﺍﻟﻤﻭﺍﻓﻕ ﻟﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﺃﻋﻼﻩ ﻫﻭ ﺍﻟﻤﻨﺤﻨﻰ )ﺍﻟﺸﻜل (2 2ﺍﻟﺤل ﺍﻟﺒﻴﺎﻨﻲ : • f(x)=0 ﻻﺤﻅ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ) (Cfﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻴﻘﻁﻊ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻓﻲ ﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ ،-2ﻭﺍﻟﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ 1ﺇﺫﻥ f(x)=0ﺘﻜﺎﻓﺊ ) (x=-2ﺃﻭ )(x=1• f ( x)〉 0ﻤﻌﻨﺎﻩ ﺍﻟﻤﻨﺤﻨﻰ) (Cfﻴﻘﻊ ﻓﻭﻕ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ،ﻭﻤﻥ ﺍﻟﺒﻴﺎﻥ ﻓﺈﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻭ ﺍﻟﻤﺠﺎل [∞] - 2 ،1 [∪]1,+• f ( x)〈 0ﻤﻌﻨﺎﻩ ) (Cfﻴﻘﻊ ﺘﺤﺕ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ،ﻭﻤﻥ ﺍﻟﺒﻴﺎﻥ ﻓﺈﻥ ﻤﺠﻤﻭﻋـﺔ ﺍﻟﺤﻠـﻭل ﻫـﻭ ﺍﻟﻤﺠﺎل [ ] -∞ ، - 2 • f ( x)=2ﺃﻱ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻴﻘﻁﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ )∆(
ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ ، y=2ﻭﻤﻥ ﺍﻟﺒﻴﺎﻥ ﻓﺈﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺤﻠﻭل ﻫﻲ : x=0ﺃﻭ x= 3ﺃﻭ x=− 3 *ﻤﻼﺤﻅﺔ : ﻴﻤﻜﻥ ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ f ( x)=2ﺠﺒﺭﻴﺎ ﻟﻠﺘﺄﻜﺩ ﻤﻥ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ : f ( x) = 2ﻴﻜﺎﻓﺊ x3-3x+2 =2 ﻭﻤﻨﻪ x3-3x =0 :ﺃﻱ x(x2-3)=0 : ﻭﻤﻨﻪ (x=0):ﺃﻭ ) (x2-3=0ﻴﻜﺎﻓﺊ x=0ﺃﻭ x= 3ﺃﻭ x=− 3 ﺇﺫﻥ f ( x) = 2ﻴﻜﺎﻓﺊ { }x∈ − 3,0, 3 3ﺍﻟﻤﻨﺎﻗﺸﺔ ﺍﻟﺒﻴﺎﻨﻴﺔ :ﺇﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ f(x)=mﺤﻴﺙ m∈IRﻴﺅﻭل ﺤﻠﻬﺎ ﻓﻲ ﺇﻴﺠﺎﺩ ﻓﻭﺍﺼل ﻨﻘﻁ ﺘﻘـﺎﻁﻊ ﺍﻟﻤﻨﺤﻨـﻰ ) (Cfﻤـﻊ ﺍﻟﻤﺴﺘﻘﻴﻡ )’∆( ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y=m : m∈]-∞,0[(1ﻴﻜﺎﻓﺊ ﻟﻠﻤﻌﺎﺩﻟﺔ f(x)=mﺤﻼ ﻭﺍﺤﺩﺍ ﺴﺎﻟﺒﺎ m=0 (2ﻴﻜﺎﻓﺊ ﻟﻠﻤﻌﺎﺩﻟﺔ f(x)=mﺤﻼﻥ ﻫﻤﺎ ) x=1:ﺤل ﻤﻀﺎﻋﻑ(x=-2، m∈]0,2[ (3ﻴﻜﺎﻓﺊ ﻟﻠﻤﻌﺎﺩﻟﺔ f(x)=mﺜﻼﺜﺔ ﺤﻠﻭل :ﺤﻼﻥ ﻤﻭﺠﺒﺎﻥ ﻭﺤل ﺴﺎﻟﺏ m=2(4ﻴﻜﺎﻓﺊ ﻟﻠﻤﻌﺎﺩﻟﺔ f(x)=mﺜﻼﺜﺔ ﺤﻠﻭل ﻫﻲ : x=0ﺃﻭ x= 3ﺃﻭ x=− 3 m∈]2,4[ (5ﻴﻜﺎﻓﺊ ﻟﻠﻤﻌﺎﺩﻟﺔ f(x)=mﺜﻼﺜﺔ ﺤﻠﻭل :ﺤﻼﻥ ﺴﺎﻟﺒﺎﻥ ﻭﺤل ﻤﻭﺠﺏ m=4(6ﻴﻜﺎﻓﺊ ﻟﻠﻤﻌﺎﺩﻟﺔ f(x)=mﺤﻼﻥ ﻫﻤﺎ) x= -1:ﺤل ﻤﻀﺎﻋﻑ(،ﻭﺤل ﻤﻭﺠﺏ m∈]4,+∞[ (7ﻴﻜﺎﻓﺊ ﻟﻠﻤﻌﺎﺩﻟﺔ f(x)=mﺤﻼ ﻭﺍﺤﺩﺍ ﻤﻭﺠﺒﺎ
ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﻭﺍﺘﺠﺎﻩ ﺍﻟﺘﻐﻴﺭ fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻭﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﻤﺠﺎل I ﻨﻘﺒل ﺍﻟﻤﺒﺭﻫﻨﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺩﻭﻥ ﺒﺭﻫﺎﻥ ﻤﺒﺭﻫﻨﺔ ﺃ• ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ f '( x)〉 0 ، Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I ﺏ• ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ f ' ( x)〈0 ، Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ I ﺝ• ﺇﺫﺍ ﻜﺎﻥ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ f ' ( x) = 0 ، Iﻓﺈﻥ ﺍﻟﺩﺍﻟﺔ fﺜﺎﺒﺘﺔ ﻋﻠﻰ I ﺃﻤﺜﻠﺔ 1ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﺒﺎﻟﺩﺴﺘﻭﺭ ﺍﻟﺘﺎﻟﻲ f(x)=2x2+2x-5 :ﺍﻟﺩﺍﻟﺔ ' fﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ f '( x)=4 x + 2ﻭﺇﺸﺎﺭﺓ ) f ' ( xﺘﻠﺨﺹ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ :x −1 ∞+ ∞- 2)f ' (x - + x=−1 f '( x)=0ﻴﻜﺎﻓﺊ 2 ⎤ − ∞ ,− 1 ⎡ ﻋﻠﻰ ﺘﻤﺎﻤﺎ ﻤﺘﻨﺎﻗﺼﺔ f ﻓﺈﻥ ∈x ⎤ − ∞ ,− 1 ⎡ ﻤﻥ ﺃﺠل ⎥⎦ 2 ⎢⎣ ⎦⎥ 2 ⎣⎢ ⎤ − ∞1 , + ⎡ ﻋﻠﻰ ﺘﻤﺎﻤﺎ ﻤﺘﺯﺍﻴﺩﺓ f ﻓﺈﻥ ∈x ⎤ − ∞1 ,+ ⎡ ﻤﻥ ﺃﺠل ⎦⎥ 2 ⎢⎣ ⎥⎦ 2 ⎣⎢ ﺍﻟﻘﻴﻤﺔ f ( − 1 ) = − 11ﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻋﻅﻤﻰ ﻟﻠﺩﺍﻟﺔ f 22 f 2ﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﺒﺎﻟﺩﺴﺘﻭﺭ ﺍﻟﺘﺎﻟﻲ f(x)= -x3 +3x +4 : fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ IRﻭﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎ : f '( x ) = −3 x 2 + 3ﻭﻤﻨﻪ ﺇﺸﺎﺭﺓ ) f '( xﻤﻠﺨﺼﺔ ﺒﺎﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ :
x +∞ 1 -1 ∞-)f ' (x -+ - • fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎﻟﻴﻥ [ ]-∞,-1ﻭ[∞]1,+ • fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل []-1 , +1 • f '( x)=0ﻤﻥ ﺃﺠل x=-1ﺃﻭ x=1 *ﻤﻼﺤﻅﺔ :ﺍﻟﺩﺍﻟﺔ fﺘﻘﺒل ﻗﻴﻤﺘﻴﻥ ﺤﺩﻴﺘﻴﻥ ﻋﻨﺩ ﺍﻟﻔﺎﺼﻠﺘﻴﻥ -1ﻭ 1ﻫﻤﺎ) f(-1ﻭ) f(1ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﺒﺤﻴﺙ : f(1)=6, f(-1)=2 ﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺩﺍﻟﺔ ﻋﻠﻰ ﻤﺠﺎل ﻁﺭﻴﻘﺔ fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل Iﻤﻥ IR ﻟﺩﺭﺍﺴﺔ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل I -ﻨﺩﺭﺱ ﻗﺎﺒﻠﻴﺔ ﺍﻻﺸﺘﻘﺎﻕ ﻟﻠﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل I -ﺇﻴﺠﺎﺩ ﻋﺒﺎﺭﺓ ) f '( xﻭﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ ﺍﻟﻤﺠﺎل I -ﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ )f ' ( x -ﺍﺴﺘﻨﺘﺎﺝ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل If ( x)= − 1 x3 + x 2 − x +1 ♦ ﺘﻤﺭﻴﻥ : 1 3 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﺒﺎﻟﺩﺴﺘﻭﺭ : ﺃﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ IR •ﺍﻷﺠﻭﺒﺔ : f ( x)= − 1 x3 + x 2 − x +1 ﻟﺩﻴﻨﺎ : 3 ﺍﻟﺩﺍﻟﺔ fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ IRﻷﻨﻬﺎ \" ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ \" ﻭﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎ f ' ( x ) = − x 2 + 2 x − 1 : )f '( x ) = − ( x 2 − 2 x +1 ﻭﻤﻨﻪ f '( x ) = − ( x −1) 2 ﺇﺫﻥ : 2 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎ: ( x − 1) ≥ 0 2 ﻓﺈﻥ : − ( x − 1) ≤ 0
f '( x)≤0 ﺃﻱ ﺃﻥ : ﻭﺒﺎﻟﺘﺎﻟﻲ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ IR ♦ ﺘﻤﺭﻴﻥ : 2 fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻟﻤﺠﺎل −1,2ﺒﺎﻟﺩﺴﺘﻭﺭ [ ]f(x)=2x3-3x2+2 1ﺃﺩﺭﺱ ﺍﺘﺠﺎﻩ ﺘﻐﻴﺭ ﺍﻟﺩﺍﻟﺔ fﻋﻠﻰ ﺍﻟﻤﺠﺎل ][ −1,2 2ﻋﻴﻥ ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ ﻟﻠﺩﺍﻟﺔ f 3ﺸﻜل ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f 4ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﻟﻠﻤﻤﺎﺱ )∆( ﻟﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ x = 1 2 •ﺍﻷﺠﻭﺒﺔ 1ﺍﻟﺩﺍﻟﺔ fﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ IRﻷﻨﻬﺎ \" ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ \" ،ﺇﺫﻥ ﻓﻬﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠـﻰ ﺍﻟﻤﺠـﺎل ][ −1,2ﻷﻨﻪ ﺠﺯﺀ ﻤﻥIR f '( x )= 6 x 2 − 6 x ﻭﻟﺩﻴﻨﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ ﺍﻟﻤﺠﺎل :ﺇﺫﻥ ) (x= 0ﺃﻭ )(x=1 ﻭﻟﺩﻴﻨﺎ : 6x2-6x=0ﺘﻜﺎﻓﺊ 6x(x-1)=0 ﻭﺇﺸﺎﺭﺓ ) f '( xﻨﻠﺨﺹ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : x -1 0 12)f ' (x +- + 2ﺍﻟﻘﻴﻡ ﺍﻟﺤﺩﻴﺔ ﻟﻠﺩﺍﻟﺔ f ﻟﺩﻴﻨﺎ f '( x)=0 :ﻴﻜﺎﻓﺊ ) (x=0ﺃﻭ )(x=1 ﻭﻟﺩﻴﻨﺎ f(1)= 1 ، f(0)=2 :ﺇﺫﻥ : ﺍﻟﻘﻴﻤﺔ 2ﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻜﺒﺭﻯ ﻤﻥ ﺃﺠل x=0 ﺍﻟﻘﻴﻤﺔ 1ﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﺼﻐﺭﻯ ﻤﻥ ﺃﺠل x=1
x -1 0 3ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ : + ﻟﺩﻴﻨﺎ f(2)= 6 ، f(-1)= -3 : )f ' (x 12 )f(x -+ 2 6 1 -3 x=1 ﺍﻟﻔﺎﺼﻠﺔ Aﺫﺍﺕ ﺍﻟﻨﻘﻁﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻤﻨﺤﻨﻰ 4 2 ﻁﺭﻴﻘﺔ ﻟﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻟﻤﻨﺤﻨﻰ ﻋﻨﺩ ﻨﻘﻁﺔ fﺩﺍﻟﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ ﻤﺠﺎل Iﻤﻥ ، IRﻭﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻴﻪ a،ﻋﻨﺼﺭ ﻤﻥ I ﻟﺘﻌﻴﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ a ﻨﺤﺴﺏ ) f '(a) ، f(aﻭﻨﻌﻭﺽ ﻓﻲ ﺍﻟﻤﻌﺎﺩﻟﺔ )y = f '(a)( x−a)+ f (aﻭﻤﻨﻪ ﻨﺤﺼل ﻋﻠﻰ ﺍﻟﻤﻌﺎﺩﻟﺔ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻟﻠﻤﻤﺎﺱ ﻟﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ a f '( 1 )= − 3; f ( 1 )= 3 ﻟﺩﻴﻨﺎ : 2 2 22 ﻭﻤﻨﻪ : ﺇﺫﻥ : y=−3(x−1)+ 3=−3 x+ 3+ 3 2 2 2 2 42 y=− 3 x+ 9 24
ﻤﻔﻬـﻭﻡ ﺍﻟﻨﻬﺎﻴـﺔﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -ﻨﻬﺎﻴﺔ ﺩﻭﺍل ﻤﺄﻟﻭﻓـﺔ -1ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ \"ﻤـﺭﺒﻊ\" -2ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ \"ﻤﻜﻌﺏ\" -3ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ \"ﻤـﻘﻠﻭﺏ\" -4ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻋﻨﺩ ∞ +ﺃﻭ ∞−
ﻨﻬﺎﻴﺔ ﺩﻭﺍل ﻤﺄﻟﻭﻓـﺔ :ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ \"ﻤـﺭﺒﻊ\" f(x)= x2 ﺍﻟﺩﺍﻟﺔ ﻤﺭﺒﻊ ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﻜﻤﺎ ﻴﻠﻲ : ﻋﻨﺩﻤﺎ ﻴﺄﺨﺫ xﻗﻴﻤﺎ ﻜﺒﻴﺭﺓ ﺠﺩﺍ ﻓﺈﻥ ) f(xﺘﺄﺨﺫ ﻗﻴﻤﺎ ﺃﻜﺒﺭ ﻓﺄﻜﺒﺭ،ﻨﻘﻭل ﻋﻨﺩﺌﺫ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ xa x 2ﻫﻲ ∞ +ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ∞+ ∞lim ( x 2 ) = + ∞ lim x a f ( x ) = +ﺃﻱ : ﻭﻨﻜﺘﺏ ∞x a + ∞+ x aﻫﻲ ∞ +ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ∞ - 2 ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ xlim 2 ﻭﻨﻜﺘﺏ lim x a f ( x ) = +∞ :ﺃﻱ :∞x a − ∞( x ) = + ∞− ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ \"ﻤﻜﻌﺏ\" ﺍﻟﺩﺍﻟﺔ ﻤﻜﻌﺏ ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﻜﻤﺎ ﻴﻠﻲ f(x)= x3 : ﻤﻥ ﺃﺠل ﻗﻴﻡ xﺍﻟﻜﺒﻴﺭﺓ ﺠﺩﺍ ﻓﻲ ﺍﻟﻤﺠﺎل [∞ ]0 , +ﻓﺈﻥ ) f(xﺘﺄﺨﺫ ﻗﻴﻤﺎ ﺃﻜﺒﺭﻤﻥ ﺃﺠل ﻗﻴﻡ xﺍﻟﺼﻐﻴﺭﺓ ﺠﺩﺍ ﻓﻲ ﺍﻟﻤﺠﺎل [ ]-∞ , 0ﻓﺈﻥ ) f(xﺘﺄﺨﺫ ﻗﻴﻤﺎ ﺃﺼﻐﺭ ﻓﺄﺼﻐﺭ ﻨﻘﻭل ﻋﻨﺩﺌﺫ : 3 ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ x a xﻫﻲ ∞ +ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ∞+ lim ( x 3 ∞) = + ∞ lim x a f ( x ) = +ﺃﻱ : ﻭﻨﻜﺘﺏ ∞x a + ∞+ xﻫﻲ ∞ -ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ∞ - a 3 ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ x 3 ﺃﻱ : xa ∞f ( x ) = − ﻭﻨﻜﺘﺏ : ∞lim ( x ) = −∞x a − lim ∞−
ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ \"ﻤـﻘﻠﻭﺏ\"،ﻤﻨﺤﻨﺎﻫﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻴﺴﻤﻰ ﻗﻁﻌﺎ = )f (x ﺍﻟﺩﺍﻟﺔ ﻤﻜﻌﺏ ﻫﻲ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ } IR-{0ﺒﺎﻟﺩﺴﺘﻭﺭ 1 : x ﺯﺍﺌﺩﺍ ،ﻓﻲ ﺍﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﻭﺍﻟﻤﺘﺠﺎﻨﺱ ) (O , I , J • ﺍﻟﻨﻬﺎﻴﺔ ﻋﻨﺩ ∞ +ﺃﻭ ∞-ﻋﻨﺩﻤﺎ ﻴﺄﺨﺫ xﻗﻴﻤﺎ ﺃﻜﺒﺭ ﻓﺄﻜﺒﺭ ﻓﻲ ﺍﻟﻤﺠﺎل[∞ ]0 , +ﻓﺎﻟﻌﺩﺩ 1ﻤﻭﺠﺒﺎ ﻭﻴﻘﺘﺭﺏ ﺃﻜﺜﺭ ﻓﺄﻜﺜﺭ ﻤﻥ ﺇﻟﻰ 0 xﻋﻨﺩﻤﺎ ﻴﺄﺨﺫ xﻗﻴﻤﺎ ﺃﺼﻐﺭ ﻓﺄﺼﻐﺭ ﻓﻲ ﺍﻟﻤﺠﺎل 0[ ]-∞ ,ﻓﺎﻟﻌﺩﺩ 1ﺴﺎﻟﺒﺎ ﻭﻴﻘﺘﺭﺏ ﺃﻜﺜﺭ ﻓﺄﻜﺜﺭ ﻤﻥ ﺇﻟﻰ 0 x ﻨﻘﻭل ﻋﻨﺩﺌﺫ : 1 ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ x a xﻫﻲ 0ﻋﻨﺩﻤﺎ ﻴﺅﻭل xﺇﻟﻰ∞+ lim ( 1 ) = limﺃﻱ 0 : a ﻭﻨﻜﺘﺏ f ( x ) = 0 : ∞x a + x ∞+ x - ﺇﻟﻰ∞ x ﻴﺅﻭل ﻋﻨﺩﻤﺎ 0 ﻫﻲ x a 1 ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ x lim 1 = limﺃﻱ 0 : ﻭﻨﻜﺘﺏ f ( x ) = 0 : ∞x a − )(x a ∞− x • ﺍﻟﻨﻬﺎﻴﺔ ﻋﻨﺩ 0 ﺇﻟﻴﻙ ﺠﺩﻭل ﺍﻟﻘﻴﻡ ﺍﻟﺘﺎﻟﻲ :X -0.1 -0.01 -0.001 -0.0001 -0.000011 -10 -100 -1000 -10000 -100000xX 0.00001 0.0001 0.001 0.01 0.11 100000 10000 1000 100 10x x aﻏﻴﺭ ﻤﻌﺭﻓﺔ ﻋﻨﺩ ﺍﻟﻌﺩﺩ 0 1 ﺍﻟﺩﺍﻟﺔ ﺇﻥ x ﺍﻟﻤﺠﺎل 0ﻓﻲ ﺍﻟﻌﺩﺩ xﺍﻟﻘﺭﻴﺒﺔ ﻤﻥ ﻤﻥ ﺃﺠل ﻗﻴﻡ 1 ﺤﺴﺎﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ ﻋﻨﺩ x
1 [∞ ]0 , +ﻨﺤﺼل ﻋﻠﻰ ﻗﻴﻡ xﻜﺒﻴﺭﺓ ﺠﺩﺍ. 1ﻋﻨﺩ ﺤﺴﺎﺏ ﻗﻴﻡ ﺍﻟﻌﺩﺩ xﻤﻥ ﺃﺠل ﻗﻴﻡ xﺍﻟﻘﺭﻴﺒﺔ ﻤﻥ ﺍﻟﻌﺩﺩ 0ﻓﻲ ﺍﻟﻤﺠﺎل 1 [ ]-∞ , 0ﻨﺤﺼل ﻋﻠﻰ ﻗﻴﻡ xﺼﻐﻴﺭﺓ ﺠﺩﺍ.ﻨﻘﻭل ﻋﻨﺩﺌﺫ : 1 ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ x a xﻫﻲ ∞ +ﻋﻨﺩﺍﻟﻌﺩﺩ 0ﻋﻠﻰ ﺍﻟﻴﻤﻴﻥ 1ﺃﻱ x :ﻴﺅﻭل ﺇﻟﻰ∞ +ﻋﻨﺩﻤﺎ ﻴﺅﻭل ) xﺍﻟﻤﻭﺠﺏ ﺘﻤﺎﻤﺎ( ﺇﻟﻰ 0∞lim( 1 ) = + ﻭﻨﻜﺘﺏ : x 〉 xa 0 1ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ x a xﻫﻲ ∞ -ﻋﻨﺩﺍﻟﻌﺩﺩ 0ﻋﻠﻰ ﺍﻟﻴﺴﺎﺭ 1ﺃﻱ x :ﻴﺅﻭل ﺇﻟﻰ∞ -ﻋﻨﺩﻤﺎ ﻴﺅﻭل ) xﺍﻟﺴﺎﻟﺏ ﺘﻤﺎﻤﺎ( ﺇﻟﻰ 0∞lim( 1 ) = + ﻭﻨﻜﺘﺏ : x 〈 xa 0
ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ﻤﻘﻠﻭﺏ ﻤﻥ ﺃﺠل ﻜل xﻤﻥ } IR-{0ﻟﺩﻴﻨﺎ f '( x ) = − 1 : x2 ﺇﺫﻥ :ﻤﻥ ﺃﺠل ﻜل xﻤﻥ } IR-{0ﻟﺩﻴﻨﺎ − 1 〈 0 : x2 ﺃﻱ :ﻤﻥ ﺃﺠل ﻜل xﻤﻥ } IR-{0ﻟﺩﻴﻨﺎ f '( x)〈0 : ﻭﻤﻨﻪ :ﺍﻟﺩﺍﻟﺔ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎﻟﻴﻥ]0 , +∞[، ]-∞ , 0[ : ﻨﻠﺨﺹ ﺍﻟﻨﺘﺎﺌﺞ ﺍﻟﺴﺎﺒﻘﺔ ﻓﻲ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f x ∞- 0 ∞+ - - )f ′(x ∞0 +)f(x -∞ 0 ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ﻋﻨﺩ ∞ +ﺃﻭ ∞− ♦ﻤﺜﺎل ﺘﻤﻬﻴﺩﻱ : f(x)=2x3-x2+3x-1 ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ : ﺃﺤﺴﺏ ﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ fﻋﻨﺩ ∞−∞ ، + ﺍﻷﺠﻭﺒﺔ :ﻟﺩﻴﻨﺎ : 32 + 3 x − 1 ) = lim x 3 13 1 lim ( 2 x −x ∞x → − ) (2 − x + x2 − x3∞x → − ∞lim x 3 = − ﻭﻨﻌﻠﻡ ﺃﻥ : ∞x → − lim ( − 1 ) = lim ( 3 ) = lim ( − 1 ) = 0 ﻭx → −∞ x x → −∞ x 2 x → −∞ x 3 lim (2− 1 + 3 − 1 )= 2 ﺇﺫﻥ : ∞x → − x x2 x3 ﻭﻤﻨﻪ : 3 13 1 lim x ∞( 2 − x + x 2 − x 3 ) = −∞x → −
32 3 *ﻨﺘﻴﺠﺔ : ) lim ( 2 x − x + 3 x − 1 ) = lim ( 2 x ∞x → − ∞x → −ﺫﻭ ﺍﻷﻜﺒﺭ ﺩﺭﺠﺔ ﻓﻴﻪ ﺘﺨﻤﻴﻥ :ﻨﻬﺎﻴﺔ ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺍﻟﺔ ﺃﻋﻼﻩ ﻫﻲ ﻨﻬﺎﻴﺔ ﺍﻟﺤﺩ ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ،ﻓﻲ ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺔ ﻋﻨﺩ ∞ +ﻨﺠﺩ 32 3 ) lim ( 2 x − x + 3 x − 1) = lim ( 2 x ∞x → + ∞x → + ﻤﺒﺭﻫﻨــﺔﻨﻬﺎﻴﺔ ﺍﻟﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ fﻋﻨﺩ ∞ −∞ ، +ﻫﻲ ﻨﻬﺎﻴﺔ ﺍﻟﺤﺩ ﺫﻭﺍ ﻷﻜﺒﺭ ﺩﺭﺠﺔ ﻓﻲ ﺘﻌﺭﻴﻑ ﺩﺴـﺘﻭﺭ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺒﺭﻫﺎﻥ : ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭ ﺍﻟﺘﺎﻟﻲ ﻋﻠﻰ : IR f(x)= anxn +an-1 xn-1+an-2 xn-2 +….+a1x+a0ﻤﻊ an=0 lim f ( x ) = lim xn (an + an −1 + an − 2 + ... + a0 ) ﻟﺩﻴﻨﺎ∞x → + ∞x → + x x2 xn lim ( an −1 ) = lim ( an−2 ) = ... = lim ( a0 ) = ﻭ0 ∞→ + x ∞x → + x2 ∞x → + xnx lim n + an −1 + an−2 + ... + a1 + a0 ) ﺇﺫﻥ ∞x → + x (a x x2 x n −1 xn n lim ) (an xn ﻫﻲ ∞x → + ﺍﻟﺘﻲ ﺘﺘﺤﺩﺩ ﺤﺴﺏ ﺇﺸﺎﺭﺓ ﺍﻟﻌﺩﺩ ، anﻭﻟﺩﻴﻨﺎ : n an 〉 0ﺇﺫﻥ : ∞lim ( a x ) = + x → +∞ n n ﺇﺫﻥ : a 〈0 ∞lim ( a x ) = − n x → +∞ n ﻭﺒﻨﻔﺱ ﺍﻟﻁﺭﻴﻘﺔ ﻨﺒﺭﻫﻥ ﻋﻠﻰ ﺍﻟﻨﻬﺎﻴﺔ ﻤﻥ ﺃﺠل ∞x→− ﺃﻤﺜﻠـﺔ f(x)= 2x2-x+1 (1
lim ( 2 x 2 − x + 1 ) = lim ( 2 x 2 ) = +∞ : ﻟﺩﻴﻨﺎ x → +∞ x → +∞ 2 lim 2 = +∞ : ﻭﻜﺫﺍﻟﻙ lim ( 2 x − x + 1) = (2x ) x → −∞ x → −∞ f(x)=-x3+2x-3 (2lim f ( x ) = lim ( − x 3 + 2 x − 3 ) = lim ( − x 3 ) = +∞ : ﻟﺩﻴﻨﺎx → −∞ x → −∞ x → −∞ 33lim f ( x ) = lim ( − x + 2 x − 3 ) = lim ( − x ) = −∞x → +∞ x → +∞ x → +∞ f(x)= 3x3+x2+4 (3 :ﻟﺩﻴﻨﺎlim f ( x)= lim (3x3 + x2 +4)= lim (3x3 )=−∞x → −∞ x → −∞ x → −∞ 32 3lim f ( x ) = lim ( 3 x + x + 4 ) = lim ( 3 x ) = +∞x → +∞ x → +∞ x → +∞
ﺩﺭﺍﺴﺔ ﺍﻟﺩﻭﺍل ﻜﺜﻴﺭﺍﺕ ﺍﻟﺤﺩﻭﺩ ﺘﺼﻤﻴﻡ ﺍﻟﺩﺭﺱ -1ﺩﺭﺍﺴﺔ ﺍﻟﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ - 2ﺩﺭﺍﺴﺔ ﺍﻟﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻟﺜﺔ xaax3+bx2 +cx+dﺤﻴﺙ a≠0 -3ﺩﺭﺍﺴﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ
ﺩﺭﺍﺴﺔ ﺍﻟﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻨﻴﺔ xa f ( x)=ax2 +bx+cﺤﻴﺙa≠0:ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﻭﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ، IRﻨﻤﻴﺯ ﺤﺎﻟﺘﻴﻥ ﻓﻲ ﺩﺭﺍﺴﺘﻨﺎ ﻟﻬﺫﻩ ﺍﻟﺩﺍﻟﺔa 〈 0 a〉 0 ، a〈0 a〉0 (1ﺍﻟﻨﻬﺎﻴﺎﺕ (1ﺍﻟﻨﻬﺎﻴﺎﺕ∞lim f ( x ) = lim (ax 2 ) = − ∞lim f ( x ) = lim ( ax 2 ) = +∞x → − ∞x → − ∞x → − ∞x → − ﻭﻜﺫﻟﻙ ﻭﻜﺫﻟﻙ 2 ∞lim f (x) = lim (ax2 ) = +∞lim f ( x) = lim (ax ) = −∞x → + ∞x → + ∞x→+ ∞x→+ (2ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ (2ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔﻤﻥ ﺃﺠل ﻜل xﻤﻥ IRﻟﺩﻴﻨﺎ f '(x)=2ax+b : ﻤﻥ ﺃﺠل ﻜل xﻤﻥ IRﻟﺩﻴﻨﺎ f '(x)=2ax+b : ﺇﺸﺎﺭﺓ )f '( x ﺇﺸﺎﺭﺓ )f '( x∞x - ∞ − b + ∞x - ∞ − b + 2a 2af′(x) + - f′(x) - + ⎤ −b ⎡ ﻋﻠﻰ ﺘﻤﺎﻤﺎ ﻤﺘﻨﺎﻗﺼﺔ f ⎤ − b ∞, + ⎡ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ⎦⎥ 2a ⎢⎣ ⎥⎦ 2 a ⎣⎢ ∞, + ⎤ − ∞ , −b ⎡ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ⎤⎥⎦−∞, ⎡−b ﻋﻠﻰ ﺘﻤﺎﻤﺎ ﻤﺘﻨﺎﻗﺼﺔ f ⎦⎥ 2a ⎣⎢ ⎣⎢2a ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ∞x - ∞ − b + ∞x - ∞ − b + 2a 2af′(x) + - f′(x) - +)f(x ∞ f(x) +∞ + ∞- − b 2 + 4 ac − b 2 + 4 ac 4a 4a ∞-
f (− b )= a ( b 2 )+ b(− b )+ c ﻭﻟﺩﻴﻨﺎ : 2a 4a2 2af ( − b ) = b 2 − b 2 + c = − b 2 + 4 ac2a 4a 2a 4a ♦ﺘﻤﺭﻴﻥ 1 f(x)= 3x2-6x+3 ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﺒﺎﻟﺩﺴﺘﻭﺭ : ﻭﻟﻴﻜﻥ ) (Cfﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻬﺎ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ ) (O , I , J ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f 1 ﻋﻴﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f 2 ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ f(x)=0ﺜﻡ ﺃﺤﺴﺏ )f(0 3 ﺃﻨﺸﺊ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻓﻲ ﺍﻟﻤﻌﻠﻡ ) (O , I , J 4 •ﺍﻷﺠﻭﺒﺔ : 1ﺩﺭﺍﺴﺔ ﺍﻟﺘﻐﻴﺭﺍﺕ • ﻟﺩﻴﻨﺎ :ﺍﻟﺩﺍﻟﺔ fﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﻭﻤﻨﻪ [∞Df=]-∞, + ∞lim f ( x ) = lim ( 3 x 2 ) = + • ﺍﻟﻨﻬﺎﻴﺎﺕ ∞x → − ∞x → − 2∞lim f ( x ) = lim ( 3 x ) = +∞x → + ∞x → + •ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ fﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ،ﻓﻬﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ، IR f′(x)= 6x - 6 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎ: ﻭﺇﺸﺎﺭﺓ ) f′(xﺘﻠﺨﺹ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : ∞x - - ∞1 +)f′(x + ﺍﻟﺩﺍﻟﺔ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل []-∞ , 1 ﺍﻟﺩﺍﻟﺔ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل [∞]1 , + ﻭﺍﻟﻘﻴﻤﺔ ) f(1ﻫﻲ ﻗﻴﻤﺔ ﺤﺩﻴﺔ ﻜﺒﺭﻯ ﺒﺤﻴﺙ f(1)=0 :
∞x - - 2ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f)f′(x ∞1 +∞f(x) + + ∞+ 0 3ﺤل ﺍﻟﻤﻌﺎﺩﻟﺔ f(x)=0 ﺘﻜﺎﻓﺊ 3x2-6x+3=0 f(x)=0 • ﻟﺩﻴﻨﺎ ﺤﺴﺎﺏ ﺍﻟﻤﻤﻴﺯ ∆ ﻟﺩﻴﻨﺎ ∆=b2-4ac = (-6)2-4(3)(3) =36-36=0 x ′ = − b = − ( − 6 ) = 6 = 1ﻭ ﻟﺩﻴﻨﺎ ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤل ﻤﻀﺎﻋﻑ ، x′ﺒﺤﻴﺙ : f(0)=3(0)2-6(0)+3 = 3 2a 2×3 6 4ﺇﻨﺸﺎﺀ ﺍﻟﻤﻨﺤﻨﻰ )(Cf y 8 7 6 5 4 )(Cf 3 2 →1 J →I-8 -7 -6 -5 -4 -3 -2 -1 0 12345678 x -1 -2 -3 -4 ♦ﺘﻤﺭﻴﻥ 2 ﺍﻟﺩﺍﻟﺘﺎﻥ fﻭ gﺍﻟﻤﻌﺭﻓﺘﺎﻥ ﻋﻠﻰ IRﺒﺎﻟﺩﺴﺘﻭﺭﻴﻥ : g(x)=-2x2-2x+12 ، f(x)= x2+x-6ﻭﻟﻴﻜﻥ ) (Cfﻭ ) (Cgﻤﻨﺤﻨﻴﻬﻤﺎ ﺍﻟﺒﻴﺎﻨﻲ ﻋﻠﻰ ﺍﻟﺘﺭﺘﻴﺏ ﻓﻲ ﺍﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﻭﺍﻟﻤﺘﺠﺎﻨﺱ ) (O , I , J 1ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺘﻴﻥ fﻭg 2ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻨﺤﻨﻴﻴﻥ ) (Cfﻭ )(Cg
3ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺴﻴﻥ ﻟﻠﻤﻨﺤﻨﻴﻴﻥ ) (Cfﻭ ) (Cgﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ 2 4ﺃﻨﺸﺊ ﺍﻟﻤﻨﺤﻨﻴﻴﻥ ) (Cfﻭ ) (Cgﻭﺍﻟﻤﻤﺎﺴﻴﻥ ﻓﻲ ﻨﻔﺱ ﺍﻟﻤﻌﻠﻡ • ﺍﻷﺠﻭﺒﺔ : 1ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f • ﻟﺩﻴﻨﺎ Df=IRﺃﻱ [∞Df=]-∞ , + • ﺍﻟﻨﻬﺎﻴﺎﺕ ∞lim f ( x ) = lim ( x 2 ) = + ∞x → − ∞x → − 2 ∞lim f ( x ) = lim ( x ) = + ∞x → + ∞x → + • ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ fﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ،ﻓﻬﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ، IR f′(x)= 2x + 1 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎ: ﻭﺇﺸﺎﺭﺓ ) f′(xﺘﻠﺨﺹ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : x −1 ∞+ ∞- 2 -)f′(x + ⎤ ∞− ,− 1 ⎡ ﺍﻟﻤﺠﺎل ﻋﻠﻰ ﺘﻤﺎﻤﺎ ﻤﺘﻨﺎﻗﺼﺔ f ﺍﻟﺩﺍﻟﺔ ⎥⎦ 2 ⎣⎢ ⎤ − 1 ∞, + ⎡ ﺍﻟﺩﺍﻟﺔ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ⎥⎦ 2 ⎢⎣ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ fx ∞− 1 + ∞- 2f′(x) - +∞f(x) + ∞+ 25 −4
1 11 1 − 2 − 24 − 25 f (− 2 ) = 4 − 2 − 6 = 4 = 4 ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ g • ﻟﺩﻴﻨﺎ Dg=IRﺃﻱ [∞Dg=]-∞ , + 2 • ﺍﻟﻨﻬﺎﻴﺎﺕ∞lim g ( x ) = lim ( − 2 x ) = −∞x → − ∞x → − 2 ∞lim g ( x ) = lim ( − 2 x ) = −∞x → + ∞x → + • ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ gﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ،ﻓﻬﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ، IR g′(x)= -4x - 2 ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎ: ﻭﺇﺸﺎﺭﺓ ) g′(xﺘﻠﺨﺹ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ : x −1 ∞+ ∞- 2 +)g′(x - ⎤ − ∞ ,− 1 ⎡ ﺍﻟﺩﺍﻟﺔ gﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ⎥⎦ 2 ⎢⎣ ⎤ − 1 ∞, + ⎡ ﺍﻟﺩﺍﻟﺔ gﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل ⎥⎦ 2 ⎣⎢ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ g x ∞− 1 + ∞- 2g′(x) - +)g(x 25 ∞- 2 ∞-g ( − 1 ) = − 2 ( 1 ) + 1 + 12 = − 1 + 13 = − 1 + 26 = 25 24 2 22
2ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻨﺤﻨﻴﻴﻥ ) (Cfﻭ )(Cg )f(x)=g(x ﻟﺘﻜﻥ ﺍﻟﻤﻌﺎﺩﻟﺔ : x2+x-6= -2x2-2x+12 ﻭﻤﻨﻪ : 3x2+3x-18 =0 ﻭﻤﻨﻪ : x2+x-6=0 ﺒﺎﻟﻘﺴﻤﺔ ﻋﻠﻰ 3ﻨﺠﺩ : ﺤﺴﺎﺏ ﺍﻟﻤﻤﻴﺯ ∆ ﻟﺩﻴﻨﺎ ∆=b2-4ac=(1)2-4(1)(-6)=1+24=25: ﻭﻤﻨﻪ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺤﻠﻴﻥ ﻤﺘﻤﺎﻴﺯﻴﻥ ﻫﻤﺎ :x = ∆ −b− = −1− 5 = −6 = − 3 ، x1 = − b+ ∆ = −1+ 5 = 4 = 2 2 2a 2 ×1 2 2a 2×1 2 })(Cf)∩(Cg)={A(2,0),B(-3,0 ﺇﺫﻥ : 3ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺴﻴﻥ ﻟﻠﻤﻨﺤﻨﻴﻴﻥ ) (Cfﻭ )(Cg ﻟﻴﻜﻥ )∆( ﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ) (Cfﻋﻨﺩ A )y=f′(2)(x-2)+f(2 ﻭﻤﻨﻪ ﻭﺒﻤﺎ ﺃﻥ f(2)=0 ، f′(2)=5 y=5(x-2)+0 ﺇﺫﻥ ﺃﻱ )∆( ﻤﻌﺎﺩﻟﺘﻪ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻫﻲ y= 5x – 10 ﻟﻴﻜﻥ ) (Dﺍﻟﻤﻤﺎﺱ ﻟﻠﻤﻨﺤﻨﻰ) (Cgﻋﻨﺩ A )y=g′(2)(x-2)+g(2 ﻭﻤﻨﻪ ﻭﺒﻤﺎ ﺃﻥ g(2)=0 ، g′(2)=-10 y= -10(x-2)+0 ﺇﺫﻥ ﺃﻱ ) (Dﻤﻌﺎﺩﻟﺘﻪ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ ﻫﻲ y= -10x + 20 y )∆( 4ﺇﻨﺸﺎﺀ ﺍﻟﻤﻨﺤﻨﻴﻴﻥ ) (Cfﻭ )(Cg 13 )12 (Cf 11 10 9 8 7 6 5 4 3 2 1 -17-16-15-14-13-12-11-10-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 x -1 )(D -2 -3 -4 -5 -6 -7 -8 )(Cg -9 -10 -11
ﺩﺭﺍﺴﺔ ﺍﻟﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺍﻟﺤﺩﻭﺩ ﻤﻥ ﺍﻟﺩﺭﺠﺔ ﺍﻟﺜﺎﻟﺜﺔ xaax3+bx2+cx+dﺤﻴﺙ a≠0 ♦ ﻨﺸﺎﻁ ﺘﻤﻬﻴﺩﻱ : fﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ ﺫﺍﺕ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺤﻘﻴﻘﻲ xﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﺒﺎﻟﺩﺴﺘﻭﺭ: f(x)=x3+3x2-4 ﻭﻟﻴﻜﻥ ) (Cfﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻬﺎ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ ) (O , I , J 1ﺒﻴﻥ ﺃﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻓﺈﻥ) f(xﺘﻜﺘﺏ ﻋﻠﻰ ﺍﻟﺸﻜل f(x)=(x-1)(x+2)2 2ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f 3ﻋﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻤﻊ ﺤﺎﻤﻠﻲ ﻤﺤﻭﺭﻱ ﺍﻹﺤﺩﺍﺜﻴﺎﺕ 4ﺃﺤﺴﺏ ) f ' ' ( xﺜﻡ ﺃﺩﺭﺱ ﺇﺸﺎﺭﺘﻬﺎ 5ﻋﻴﻥ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ Aﺫﺍﺕ ﺍﻟﻔﺎﺼﻠﺔ -1 6ﺃﻨﺸﺊ ) (Cfﻭﺍﻟﻤﻤﺎﺱ ﻓﻲ ﺍﻟﻤﻌﻠﻡ ) (O , I , J •ﺍﻷﺠﻭﺒﺔ : ﻟﺩﻴﻨﺎ Df=IR:ﺃﻱ [∞Df=]-∞ , + 1ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎ : f(x)=(x-1)(x+2)2 )=(x-1)(x2+4x+4 = x3 +4x2+4x-x2-4x-4 =x3+3x2-4 ﻭﻤﻨﻪ x3+3x-4 = (x-1)(x+2)2 : 2ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f ∞lim f ( x ) = lim ( x 3 ) = − ﺍﻟﻨﻬﺎﻴﺎﺕ ∞x → − ∞x → − lim 3∞x → + ∞f ( x ) = lim ( x ) = + ∞x → +
ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ﺍﻟﺩﺍﻟﺔ fﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ،ﻓﻬﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ، IR ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎ f '( x)=3x2 +6 x : )f '( x)=3x( x+2 ﻭﻤﻨﻪ : ﻟﺩﻴﻨﺎ f′(x)=0ﻴﻜﺎﻓﺊ 3x(x+2)= 0 ﻭﻤﻨﻪ ) (3x=0ﺃﻭ ) (x+2 = 0ﺇﺫﻥ ) (x = 0ﺃﻭ )(x = -2 ﻨﻠﺨﺹ ﺇﺸﺎﺭﺓ ) f '( xﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ :∞x - -2 0 ∞+f′(x) + - +∞x - -2 0 ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ∞+f′(x) + - +f(x) 0 ∞+-∞ -4 ﻭﻟﺩﻴﻨﺎ f(-2)=0 ، f(0)=-4 : 3ﺘﻌﻴﻴﻥ ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Cfﻤﻊ ﺤﺎﻤﻠﻲ ﺍﻟﻤﺤﻭﺭﻴﻥ • ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Cfﻤﻊ ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ )(Cf) ∩(x′ox f(x)=0 ﻨﻀﻊ (x+2)2(x-1)=0 ﻭﻤﻨﻪ ) (x+2=0ﺃﻭ )(x-1=0 ﻭﻤﻨﻪ : ) (x=-2ﺃﻭ )(x=1 ﺇﺫﻥ : ﻭﻤﻨﻪ })(Cf) ∩(x′ox) ={B(-2 ,0),B′(1,0
• ﻨﻘﻁ ﺘﻘﺎﻁﻊ ) (Cfﻤﻊ ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﻨﺒﺤﺙ ﻋﻥ ﺍﻟﻤﺠﻤﻭﻋﺔ )(Cf) ∩ (y′oy ﻨﻀﻊ x=0 :ﻭﻤﻨﻪ f(0)=(0)3+3(0)-4 = 0 : ﺇﺫﻥ (Cf) ∩ (y′oy)={c(0 ,-4)} : 4ﺤﺴﺎﺏ ) f′′(xﻭﺇﺸﺎﺭﺓ )f′′(x ﺍﻟﺩﺍﻟﺔ f′ﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ،ﻓﻬﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ، IR ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎf′′(x)=6x+6 : ﻨﻠﺨﺹ ﻓﻲ ﺍﻟﺠﺩﻭل ﺍﻟﺘﺎﻟﻲ ﺇﺸﺎﺭﺓ )f′′(x x - ∞ -1 ∞+)f′′(x -+ ﻭﻟﺩﻴﻨﺎ f(-1)=-2 : 5ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻤﺎﺱ ﻋﻨﺩ ﺍﻟﻨﻘﻁﺔ )A(-1 , -2 ﻭﻟﻴﻜﻥ )∆( ﻫﻭ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻤﺎﺱ )y=f′(-1)(x+1)+f(-1 ﻟﺩﻴﻨﺎ : ﻭﺒﻤﺎ ﺃﻥ f(-1)= -2 :ﻭ f′(-1)= -3 y= -3(x+1) -2 ﻓﺈﻥ : ﻭﻤﻨﻪ ﺍﻟﻤﺴﺘﻘﻴﻡ )∆( ﻤﻌﺎﺩﻟﺘﻪ ﺍﻟﺩﻴﻜﺎﺭﺘﻴﺔ y = -3x -5 ﺠﺩﻭل ﻤﺴﺎﻋﺩ ﻟﺭﺴﻡ ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻤﺎﺱx -1 0y -2 -5 6ﺇﻨﺸﺎﺀ ﺍﻟﻤﻨﺤﻨﻰ )(Cf y )5 (Cf 4)∆( 3 2 1 →J →I-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10x -1 -2 -3 -4 -5 -6 -7
ﻨﺘﺎﺌﺞ ﻭﻤﻼﺤﻅﺎﺕ (1ﻻﺤﻅ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻴﺨﺘﺭﻕ ﺍﻟﻤﻤﺎﺱ ﻓﻲ ﺍﻟﻨﻘﻁﺔ )A(-1 ,-2 f′′(x) (2ﻴﻨﻌﺩﻡ ﻭﻴﻐﻴﺭ ﺇﺸﺎﺭﺘﻪ ﻤﻥ ﺃﺠل x=-1 ﺘﻌﺭﻴﻑ ﻨﻘﻁﺔ ﺍﻻﻨﻌﻁﺎﻑ Fﺩﺍﻟﺔ ﻋﺩﺩﻴﺔ ﻤﻌﺭﻓﺔ ﻋﻠﻰ Dfﻭﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻤﺭﺘﻴﻥ ﻋﻠﻰ ﺍﻷﻗل ﻋﻠﻰ ﻜل ﻤﺠﺎل ﻤﻥ Df ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻴﻘﺒل ﻨﻘﻁﺔ ﺍﻨﻌﻁﺎﻑ ﻓﺎﺼﻠﺘﻬﺎ x0ﻤﻥ Dfﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﺘﺤﻘﻕ : ) f′′(xﻴﻨﻌﺩﻡ ﻋﻨﺩ x0ﻤﻐﻴﺭﺍ ﺇﺸﺎﺭﺘﻪ ﺇﺫﻥ :ﺍﻟﻨﻘﻁﺔ )) A(x0 , f(x0ﻫﻲ ﻨﻘﻁﺔ ﺍﻨﻌﻁﺎﻑ ﻟﻠﻤﻨﺤﻨﻰ )(Cf (3ﺍﻟﻨﻘﻁﺔ ) A(-1 , -2ﻫﻲ ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻰ )(Cf ﻤﺭﻜﺯ ﺍﻟﺘﻨﺎﻅﺭﺍﻟﻨﻘﻁﺔ )) A(x0 , f(x0ﻫﻲ ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ fﺍﻟﻤﻌﺭﻓﺔ ﺒﺎﻟﺩﺴﺘﻭﺭf(x)= ax3+bx2+cx+d : ) (a≠0 ﻁﺭﻴﻘﺔ ﻟﻠﺒﺭﻫﺎﻥ ﻋﻠﻰ ﻤﺭﻜﺯ ﺍﻟﺘﻨﺎﻅﺭ )) A(x0 , f(x0ﻫﻲ ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ f ﻨﻀﻊ ) y0=f(x0ﻭﻨﻐﻴﺭ ﺍﻟﻤﻌﻠﻡ ) (O , I , Jﺇﻟﻰ ﺍﻟﻤﻌﻠﻡ ) (A , I , J {x= X + x0 y=Y + y0 ﺤﻴﺙ ﻨﻀﻊ : ﻭﻨﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ fﻓﻲ ﺍﻟﻤﻌﻠﻡ ﺍﻟﺠﺩﻴﺩ ،ﺜﻡ ﻨﺒﻴﻥ ﺃﻥ ﺍﻟﺩﺍﻟﺔ) Y=f(Xﻫﻲ ﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ،ﻭﻋﻠﻴﻪ ﻓﺈﻥ ﺍﻟﻨﻘﻁﺔ)) A(x0 , f(x0ﻫﻲ ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻰ )(Cff(x)=x3-3x+1 ♦ﻤﺜــﺎل ﻟﺘﻜﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻌﺩﺩﻴﺔ fﺫﺍﺕ ﺍﻟﻤﺘﻐﻴﺭ ﺍﻟﺤﻘﻴﻘﻲ xﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ IRﺒﺎﻟﺩﺴﺘﻭﺭ: ﻭﻟﻴﻜﻥ ) (Cfﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻬﺎ ﻓﻲ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻭﻤﺘﺠﺎﻨﺱ ) (O , I , J 1ﺒﻴﻥ ﺃﻥ ﻟﻠﻤﻨﺤﻨﻰ ) (Cfﻨﻘﻁﺔ ﺍﻨﻌﻁﺎﻑ Aﻴﻁﻠﺏ ﺘﻌﻴﻴﻥ ﺇﺤﺩﺍﺜﻴﺎﻫﺎ 2ﺒﻴﻥ ﺃﻥ ﺍﻟﻨﻘﻁﺔ Aﻫﻲ ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻰ )(Cf
•ﺍﻷﺠﻭﺒــﺔ 1ﺍﻟﺩﺍﻟﺔ fﺩﺍﻟﺔ ﻜﺜﻴﺭ ﺤﺩﻭﺩ ،ﻓﻬﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ﺍﻷﻗل ﻤﺭﺘﻴﻥ ﻋﻠﻰ ، IRﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ x ﻤﻥ IRﻟﺩﻴﻨﺎ f′(x)= 3x2-3 :ﻭﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ IRﻟﺩﻴﻨﺎf′′(x)= 6x : x ∞- - ﺇﺸﺎﺭﺓ )f′′(x)f′′(x ∞+ - +ﺇﻥ ) f′′(xﺘﻨﻌﺩﻡ ﻤﻥ ﺃﺠل x0=0ﻭﺘﻐﻴﺭ ﺇﺸﺎﺭﺘﻬﺎ ،ﻓﺈﻥ ﺍﻟﻨﻘﻁﺔ )) A(0,f(0ﻫﻲ ﻨﻘﻁﺔ ﺍﻨﻌﻁﺎﻑ ﻟﻠﻤﻨﺤﻨﻰ)(Cf ﻭﺒﻤﺎ ﺃﻥ f(0)=1ﻓﺈﻥ )A(0,1 A(0 , 1) 2ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻰ)(Cf ﻨﻜﺘﺏ ﻤﻌﺎﺩﻟﺔ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻓﻲ ﺍﻟﻤﻌﻠﻡ) ، (A , I , Jﺃﻱ ﻨﻀﻊ { {: x=X +1 ﻭﻤﻨﻪ x= X + x0 y =Y y=Y + y0 ﻟﺩﻴﻨﺎ f(x)=y :ﻭﻤﻨﻪ )Y+1=f(X Y+1=X3-3X+1 ﺃﻱ Y=X3-3X ﻭﻤﻨﻪ ﻨﻀﻊ g(X)=X3-3Xﻭﻨﺒﺭﻫﻥ ﺃﻥ gﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ﻋﻠﻰ IR ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ Xﻤﻥ IRﻓﺈﻥ ) (-Xﻤﻥ IRﻭﻤﻨﻪ g(-X)=(-X)3-3(-X)=-X3+3X )g(-X)=-(X3-3X)=-g(X ﺇﺫﻥ :ﺃﻱ ﺃﻥ gﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ،ﻭﻤﻨﻪ ﻨﺴﺘﻨﺘﺞ ﺃﻥ ﺍﻟﻨﻘﻁﺔ ) A(0 , 1ﻫﻲ ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟﻠﻤﻨﺤﻨﻰ)(Cf
ﺩﺭﺍﺴﺔ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ ﺘﻌﺭﻴﻑ ﺤﻴﺙ a,b,c,d x a ax + b ﺍﻟﺸﻜل ﻤﻥ f ﻜل ﺩﺍﻟﺔ ﻨﺴﻤﻲ ﺩﺍﻟﺔ ﺘﻨﺎﻅﺭﻴﺔ cx + d ﺃﻋﺩﺍﺩ ﺤﻘﻴﻘﻴﺔ ﺜﺎﺒﺘﺔ ،ﻤﻊ c≠0ﻭad-cb≠0 ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ • ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ fﺘﻜﻭﻥ ﻤﻌﺭﻓﺔ ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻜﺎﻥ cx+d≠ 0ﺃﻱ x ≠ − d c D f = ⎤ − ∞ ,− d ⎡ U ⎤ − d ∞, + ⎡ ﻭﻤﻨﻪ ⎦⎥ c ⎣⎢ ⎦⎥ c ⎢⎣ • ﺍﻟﻨﻬﺎﻴﺎﺕ a+b ax + b ) x/ ( a + b x ﻭﻤﻨﻪ cx + d x ﻟﺩﻴﻨﺎ f ( =)x d )f (x = = ) x/ ( c + d c+ x x ﻭﺒﻤﺎ ﺃﻥ lim ( b ) = lim ( d ) = 0ﻓﺈﻥ lim f ( x ) = a c x → −∞ x x → −∞ x ∞x → − a limﻓﺈﻥ b d ﻭﻜﺫﻟﻙ lim f (x) = c (x ) = lim ( ) = 0∞x → + ∞x → + ∞x → + x ﻓﻲ ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺔ ) lim ( ax + bﻓﺈﻥ : x → − d cx + d c (− d ad c ﺍﻟﺒﺴﻁ ax+bﻴﺴﺎﻭﻱ ﺍﻟﻘﻴﻤﺔ )− c + b ﻋﻨﺩ ﺘﻌﻭﻴﺽ xﺒﺎﻟﻌﺩﺩ ﻭﺍﻟﻤﻘﺎﻡ cx+dﻴﻨﻌﺩﻡ ﻤﻥ ﺍﺠل ﺍﻟﻘﻴﻤﺔ − dﻭﻤﻨﻪ ﻓﺈﻥ ﺍﻟﻜﺴﺭ ﻴﺅﻭل ﺇﻟﻰ ﻤﺎ ﻻﻨﻬﺎﻴﺔ . c
*ﻤﻼﺤﻅﺔ dﻨﺩﺭﺱ ﺇﺸﺎﺭﺓ ﺍﻟﻤﻘﺎﻡ ﻟﺘﻌﻴﻴﻥ ﺍﻟﻨﻬﺎﻴﺘﻴﻥ) xﻴﺅﻭل ﺇﻟﻰ − cﻗﻴﻡ ﺃﻜﺒﺭ( ﻭ) xﻴﺅﻭل ﺇﻟﻰ − dﺒﻘﻴﻡ ﺃﺼﻐﺭ( c • ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔﺍﻟﺩﺍﻟﺔ fﻫﻲ ﺤﺎﺼل ﻗﺴﻤﺔ ﺩﺍﻟﺘﻴﻥ ﻗﺎﺒﻠﺘﻴﻥ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ، Dfﻓﻬﻲ ﻗﺎﺒﻠﺔ ﻟﻼﺸﺘﻘﺎﻕ ﻋﻠﻰ ، Dfﻭﻤﻨﻪ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ Dfﻟﺩﻴﻨﺎ :) f '( x ) = ( ax + b ) ′( cx + d ) − ( cx + d )' ( ax + b ( cx + d ) 2f '( x ) = a ( cx + d ) − c ( ax + b ) = ac/ x + ad − ca/ x − cb ﻭﻤﻨﻪ:( cx + d ) 2 ( cx + d ) 2ﻭﺇﺸﺎﺭﺓ ) f′(xﻤﻥ ﺇﺸﺎﺭﺓ ﺍﻟﺒﺴﻁ f (' x =) ad −cb ﺇﺫﻥ: (cx+d )2ﻷﻥ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ Dfﻟﺩﻴﻨﺎ (cx+ d )2 〉 0 : ﻤﺒﺭﻫﻨـﺔa ax + b cx + d{ }x ﺒﺎﻟﺩﺴﺘﻭﺭ ﺍﻟﻤﻌﺭﻓﺔ ﺍﻟﺩﺍﻟﺔ ﻫﻲ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ ﺍﻟﺩﺍﻟﺔﺤﻴﺙ c≠0ﻭ ad-cb≠0ﻭﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ IR − − dﻭﻟﺩﻴﻨﺎ cﺇﺫﺍ ﻜﺎﻥ ad − cb〉 0ﻓﺈﻥ fﻤﺘﺯﺍﻴﺩﺓ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ Dfﺇﺫﺍ ﻜﺎﻥ ad − cb〈0ﻓﺈﻥ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻤﻥ ﺃﺠل ﻜل ﻋﺩﺩ xﻤﻥ Df
∞x - −d ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ)f′(x c ﺇﺫﺍ ﻜﺎﻥ ad −bc〉 0ﻟﺩﻴﻨﺎ)f(x + ∞+ a ∞+ c + a c ∞- ﺇﺫﺍ ﻜﺎﻥ ad − bc〈0ﻟﺩﻴﻨﺎ∞x - −d ∞+ c)f′(x - - a ∞+ c)f(x a -∞ c ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﺍﻟﻤﺴﺘﻭﻱ ﻤﻨﺴﻭﺏ ﻟﻤﻌﻠﻡ ) (O , I , J ﺃ(ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻟﻤﻭﺍﺯﻱ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﺘﻌﺭﻴﻑ aﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕﺍﻟﻤﺴﺘﻘﻴﻡ )∆( ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ x=aﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ fﻴﻌﻨﻲ ∞ lim f ( x) = +ﺃﻭ ∞lim f ( x) = − x→a x→a
y ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﺒﻴﺎﻨﻲ )(Cf x1 )(x=a→J→ I 01ﻻﺤﻅ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻴﺤﺼﺭ ﻓﻲ ﺸﺭﻴﻁ ﻴﺸﻤل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ x=aﻤﻥ ﺃﺠل xﻗﺭﻴﺏ ﻗﺩﺭ ﺍﻹﻤﻜﺎﻥ ﻤﻥ ﺍﻟﻌﺩﺩ aﺏ(ﺍﻟﻤﺴﺘﻘﻴﻡ ﺍﻟﻤﻘﺎﺭﺏ ﺍﻟﻤﻭﺍﺯﻱ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﺘﻌﺭﻴﻑ bﻋﺩﺩ ﺤﻘﻴﻘﻲ ﺜﺎﺒﺕﺍﻟﻤﺴﺘﻘﻴﻡ )∆( ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y=bﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻟﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ fﻴﻌﻨﻲ lim f ( x) = bﺃﻭ lim f ( x) = b∞x → + ∞x → − y ﺍﻟﺘﻔﺴﻴﺭ ﺍﻟﺒﻴﺎﻨﻲ )(Cf x1→J →I 01 )(y=b
ﻻﺤﻅ ﺃﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻴﺤﺼﺭ ﻓﻲ ﺸﺭﻴﻁ ﻴﺸﻤل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y=bﻤﻥ ﺃﺠل xﻜﺒﻴﺭ ﺠﺩﺍ،ﺃﻭ x ﺼﻐﻴﺭ ﺠﺩﺍ ﻗﺩﺭ ﺍﻹﻤﻜﺎﻥ *ﻨﺘﺎﺌـﺞ (1ﻤﻥ ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ ﻭﺠﺩﻨﺎ lim ax + b = a ﻭ lim ax + b = a ∞x → + cx + d c x → −∞ cx + d cﻜﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻭﺍﺯﻱ ﻟﺤﺎﻤل ﻤﺤﻭﺭ y=a ﺇﺫﻥ ﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ ﻴﻘﺒل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ c ﺍﻟﻔﻭﺍﺼل . ax + b ﺃﻭ (2ﻭﻜﺫﻟﻙ cx + d lim ∞= − ∞lim ax + b = +x→ − d x → − d cx + d c cﻜﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻭﺍﺯﻱ ﻟﺤﺎﻤل x = − d ﺇﺫﻥ ﻤﻨﺤﻨﻰ ﺍﻟﺩﺍﻟﺔ ﺍﻟﺘﻨﺎﻅﺭﻴﺔ ﻴﻘﺒل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ c ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ♦ﺃﻤﺜﻠـﺔ ♦ﻤﺜـﺎل1 fﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ} IR-{2ﺒﺎﻟﺩﺴﺘﻭﺭ، f ( x ) = 4 : x−2 ﻭﻟﻴﻜﻥ) (Cfﻤﻨﺤﻨﺎﻫﺎ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻬﺎ ﻓﻲ ﺍﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﻭﺍﻟﻤﺘﺠﺎﻨﺱ ) (O , I , J lim ( 4 ) = 0 ﻟﺩﻴﻨﺎ lim ( 4 ) = 0 :ﻭx → −∞ x − 2 x → −∞ x − 2ﺇﺫﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻴﻘﺒل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y = 0ﻜﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻭﺍﺯﻱ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﺇﺸﺎﺭﺓ ﺍﻟﻤﻘﺎﻡ )(x-2 ∞x - ∞2 +x-2 + - ﻨﺤﺴﺏ ) lim f(xﻟﻤﺎ xﻴﺅﻭل ﻟﻠﻌﺩﺩ 2ﺒﻘﻴﻡ ﺃﻜﺒﺭ ﺃﻱ x ⎯⎯〉→ 2 ⎧ 4 →4 0 + ﻟﺩﻴﻨﺎ lim f ( x ) = +∞ :ﻷﻥ: ⎨ x →−2 〉 ⎩ x→2
ﻨﺤﺴﺏ ) lim f(xﻟﻤﺎ xﻴﺅﻭل ﻟﻠﻌﺩﺩ 2ﺒﻘﻴﻡ ﺃﺼﻐﺭ ﺃﻱ x ⎯⎯〈→ 2 ⎧ 4 →4 0 − ﻟﺩﻴﻨﺎ lim f ( x)=−∞ :ﻷﻥ: ⎨ x →−2 〈 ⎩ x→2 ﺇﺫﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cfﻴﻘﺒل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ x = 2ﻜﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻭﺍﺯﻱ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ♦ﻤﺜـﺎل2 3x−2 gﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﻌﺭﻓﺔ ﻋﻠﻰ} IR-{-1ﺒﺎﻟﺩﺴﺘﻭﺭ ، g ( x) = x +1ﻭﻟﻴﻜﻥ) (Cgﻤﻨﺤﻨﺎﻫﺎ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻬﺎ ﻓﻲ ﺍﻟﻤﻌﻠﻡ ﺍﻟﻤﺘﻌﺎﻤﺩ ﻭﺍﻟﻤﺘﺠﺎﻨﺱ ) (O , I , Jﻟﺩﻴﻨﺎ lim ( 3 x − 2 ) = lim ( 3 x/ ) = 3 :ﻭ lim ( 3 x − 2 ) = lim ( 3 x/ ) = 3x→ +∞ x +1 x → + ∞ x/ x→−∞ x +1 x → −∞ x/ﺇﺫﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cgﻴﻘﺒل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ y = 3ﻜﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻭﺍﺯﻱ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﺇﺸﺎﺭﺓ ﺍﻟﻤﻘﺎﻡ )(x+1 ∞x - -1 ∞+x +1 - + ﻨﺤﺴﺏ ) lim g(xﻟﻤﺎ xﻴﺅﻭل ﻟﻠﻌﺩﺩ -1ﺒﻘﻴﻡ ﺃﻜﺒﺭ ﺃﻱ x ⎯⎯〉→ −1 ⎩⎨⎧3xx+−1→2→0+−5 ﻟﺩﻴﻨﺎ l i m g ( x ) = − ∞ :ﻷﻥ: x ⎯ >⎯→ − 1 ﻨﺤﺴﺏ ) lim g(xﻟﻤﺎ xﻴﺅﻭل ﻟﻠﻌﺩﺩ -1ﺒﻘﻴﻡ ﺃﺼﻐﺭ ﺃﻱ x ⎯⎯〈→ −1 ⎧⎨⎩3xx+−1→2→0−−5 ﻟﺩﻴﻨﺎ lim g ( x)=+∞ :ﻷﻥ: 〈 x → −1ﺇﺫﻥ ﺍﻟﻤﻨﺤﻨﻰ ) (Cgﻴﻘﺒل ﺍﻟﻤﺴﺘﻘﻴﻡ ﺫﻭ ﺍﻟﻤﻌﺎﺩﻟﺔ x = −1ﻜﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻤﻭﺍﺯﻱ ﻟﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ
ﺤﻠﻭل ﻟﻠﺘﻤﺎﺭﻴﻥ ﻭﺍﻟﻤﺸﻜﻼﺕ ﺤﻭل ﺍﻟﺩﻭﺍلx -2 0 2 ﺍﻟﺘﻤﺭﻴﻥ :1 ﺇﻜﻤﺎل ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ) f '( x - + 5 -)f (x 3 1 x -3 -2 1 ﺍﻟﺘﻤﺭﻴﻥ :2) f '( x + - 3 0 +)f (x -1
ﺍﻟﺘﻤﺭﻴﻥ :3 ﻟﻴﻜﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f x -2 1 3 6) f '( x - -+f (x) 2 14 (1ﺇﺸﺎﺭﺓ ) f '(o ﻻﺤﻅ ﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ ﺃﻨﻬﺎ ﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل − 2,1ﺇﺫﻥ [ ]( )f ' o 〈o ﺇﺸﺎﺭﺓ )f (0ﺍﻟﺩﺍﻟﺔ fﻤﺘﻨﺎﻗﺼﺔ ﺘﻤﺎﻤﺎ ﻋﻠﻰ ﺍﻟﻤﺠﺎل − 2,1ﻟﻜﻥ fﺘﺄﺨﺫ ﻗﻴﻤﻬﺎ ﻓﻲ ﺍﻟﻤﺠﺎل ) 1,2ﺍﻟﻘﻴﻡ ﻜﻠﻬﺎ] [ ] [ ﻤﻭﺠﻬﺔ( ﺇﺫﻥ f (0)〉0 ( 2ﺇﺸﺎﺭﺓ) f (x ﻤﻥ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f ﻨﻼﺤﻅ ﺃﻥ ﻗﻴﻡ ﺍﻟﺩﺍﻟﺔ ﻜﻠﻬﺎ ﻤﻭﺠﻬﺔ ﻓﻲ ﺍﻟﻤﺠﺎل [ ]− 2,6 ﺇﺫﻥ ﻤﻥ ﺍﺠل ﻜل xﻤﻥ ﺍﻟﻤﺠﺎل] [− 2,6ﻓﺎﻥ f (x)〉o ﺍﻟﺘﻤﺭﻴﻥ : 4 ﻤﻌﺎﺩﻻﺕ ﺍﻟﻤﺴﺘﻘﻴﻤﺎﺕ ﺍﻟﻤﻘﺎﺭﺒﺔ ﻟﺩﻴﻨﺎlim x→ f ( x)= −∞ : −2 ﺇﺫﻥ x=-2ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺘﻴﺏ ﻜﺫﻟﻙ lim x → f ( x ) = 2 ∞− ﺇﺫﻥ y=2ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻜﺫﻟﻙlim x → f ( x ) = 3 : ∞+ ﺇﺫﻥ y=3ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل
ﻜﺫﻟﻙlim x → f ( x ) = +∞ : 0 ﺇﺫﻥ x=0ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ )ﻤﻨﻁﺒﻕ ﻋﻠﻴﻪ( ﺍﻟﺘﻤﺭﻴﻥ :5 ﻨﻔﺱ ﻤﻼﺤﻅﺎﺕ ﺍﻟﺘﻤﺭﻴﻥ ﺍﻟﺭﺍﺒﻊ ﻨﺠﺩ : y=1ﻭ y=2ﻤﺴﺘﻘﻴﻤﺎﻥ ﻤﻘﺎﺭﺒﺎﻥ ﻴﻭﺍﺯﻴﺎﻥ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ x=3ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﺍﻟﺘﻤﺭﻴﻥ : 6 ﻤﻥ ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ fﻨﺠﺩ }Df = IR-{1 [ ∞D f = ]−∞ ,1[∪ ]1,+ ⎫ lim x → f ( x ) = − 2 ﻟﺩﻴﻨﺎ ∞− ⎪ ⎬ lim →x f =)(x − 2 ⎭⎪ ∞+ ﺇﺫﻥ y=-2ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل lim xa ⎫ ∞f ( x ) = + ﻜﺫﻟﻙ 〈1 ⎪ ⎬ lim xa f ∞( x ) = − ⎪ 〉1 ⎭ ﺇﺫﻥ x=1ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f∞x - 1 ∞+f′(x) + + ∞+ -2)f(x ∞- -2
ﺍﻟﺘﻤﺭﻴﻥ : 7 ﺘﻌﻴﻴﻥ ﻤﺠﻤﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ ﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ : Df = ℜ Df = ℜ Df = ℜ } Df = ℜ − {1 ∗Df = ℜ } Df = ℜ − {− 2 ﺍﻟﺘﻤﺭﻴﻥ :8 ﺘﻌﻴﻴﻥ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ ' fﻟﻠﺩﺍﻟﺔ fﻓﻲ ﻜل ﺤﺎﻟﺔ f '(x ) = −6x + 4ﻭ Df = ℜ f '( x)=3x2ﻭ Df =ℜ f ' ( x) = −3x 2ﻭ Df = ℜ f '(x ) = x2 + x −1ﻭ Df = ℜ f ' ( x) = −3x 2 + 2ﻭ Df =ℜ Df ⎧⎨=R− 1 ⎫ ﻭ f (' )x = −1 2 ⎩ 2 ⎬ )x −1 ⎭ ( 2ﻭ} ( Df = ℜ − {− 2 −5 = ) f '(x x + 2 )2 Df = ℜ − {1 ﻭ} f (' x ) = 3 2 )−1 ( x ﺍﻟﺘﻤﺭﻴﻥ :9 (1ﻤﺠﻭﻋﺔ ﺍﻟﺘﻌﺭﻴﻑ D xa f =)(x 2 x −1 x−2 } Df = {x ∈ℜ : x ≠ 2 } Df = {x ∈ℜ : x − 2 ≠ 0ﻭﻤﻨﻪ [ ∞D = ]− ∞ , 2[ ∪ ]2 , + ﻭﻤﻨﻪ } Df = ℜ −{ 2ﺃﻱ f
(2ﺍﻟﻨﻬﺎﻴﺎﺕlim x → f ( x ) = lim 2 x = 2 ، lim x a f ( x ) = lim 2x =2+ ∞ x → +∞ x ∞− ∞x → − x ﺇﺫﻥ y=2ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﺇﺸﺎﺭﺓ )(x-2 ∞x - ∞2 +x-2 -+ x 2 x −1→ 3 ∞ lim x → f ( x ) = −ﻷﻥ) f '( x 〈2 {x − 2→ 0 − ﻭ ∞ lim x → f ( x ) = −ﻷﻥ {2 x−1→3 〉2 x−2→0+ ﺇﺫﻥ x=2ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ f (' x =) −3 (3ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ −2)2 ﻤﻥ ﺍﺠل ﻜل xﻤﻥ Dfﻟﺩﻴﻨﺎ ( x ﻟﺩﻴﻨﺎ ﻤﻥ ﺍﺠل ﻜل xﻤﻥ Dfﻓﺈﻥ f '(x)〈0 (4ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ∞−∞ 2 + --f (x) 2 ∞+ −∞ 2
(5ﻨﻘﺎﻁ ﺘﻘﺎﻁﻊ ) (Cfﻤﻊ ﺤﺎﻤﻠﻲ ﺍﻟﻤﺤﻭﺭﻴﻥ ﻨﻘﺎﻁ ﺘﻘﺎﻁﻊ Cfﻤﻊ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل)( )(x′ox ﻨﻀﻊ f (x ) = 0ﺃﻱ 2 x = 0 x−2 x = 1 ﺃﻱ 2x −1 = 0 ﺇﺫﻥ 2 (C f ) ∩ ( x 'ox ) = ⎨⎧ A ( 1 ,0 ) ⎬⎫ ﺇﺫﻥ ⎩ 2 ⎭ ﻨﻘﺎﻁ ﺘﻘﺎﻁﻊ Cfﻤﻊ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ )( )(y′oy (C f ∩) ( y 'oy ) = ⎧ B (0, 1 ) ⎫ ﺇﺫﻥ f ( 0 ) = 1 x = 0ﻭﻤﻨﻪ ﻨﻀﻊ ⎨⎩ 2 ⎭⎬ 2 (6ﺇﻨﺸﺎﺀ) (Cf y 6 5 )(Cf 4 )(y=2 3 2 1 →→J I-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8x -1 -2 -3 -4 -5 )(x=2 -6 xa f =)(x −x ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ x+2 y 6 5 4 )(x=-2 3 2 1 →J →I-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8x)(Cf -1 )(y=-1 -2 -3 -4 -5 -6
xa )f (x = 3x−6 ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ x y 8 7 6 )(Cf 5 4 )(y=3 3 2 1 →J →I-8 -7 -6 -5 -4 -3 -2 -1 0 12345678 x -1 -2 -3 4-4 ﺍﻟﻤﻨﺤﻨﻰ ﺍﻟﺒﻴﺎﻨﻲ ﺍﻟﻤﻤﺜل ﻟﻠﺩﺍﻟﺔ x a f ( x) = 2 − x+1 y 7 6 )(Cf 5 4 3 )(y=2 2 1 →→J I-8 -7 -6 -5 -4 -3 -2 -1 0 12345678 x -1 )(x=-1 -2 -3 -4 ﺍﻟﺘﻤﺭﻴﻥ :10 f (x ﻟﺩﻴﻨﺎ) = 2 x : x −1 (1ﻤﺠﻤﻭﻋﺔ ﺘﻌﺭﻴﻑ ﺍﻟﺩﺍﻟﺔ f } Df = {x ∈ ℜ : x −1 ≠ 0 } Df = {x ∈ ℜ : x ≠ 1 ﻭﻤﻨﻪ [∞Df =] −∞,1[ ∪]1,+ -ﺘﻌﻴﻴﻥ ﺍﻟﺜﻭﺍﺒﺕ aﻭ bﺒﺤﻴﺙ :ﻤﻥ ﺍﺠل xﻤﻥ Dfﻟﺩﻴﻨﺎ f (x )= a + b x −1 f (x () = a x − 1 )+ b = ax − a + b x −1 x−1
⎧a = 2 ⎧a = 2 ⎨⎩b = 2 ﺒﺎﻟﻤﻁﺎﺒﻘﺔ ﻟﺩﻴﻨﺎ ⎩⎨− a + b = 0ﻭﻤﻨﻪ ﺃﻱ a = b f (x )= 2 + 2 ﺇﺫﻥ: x −1 (2ﺩﺭﺍﺴﺔ ﺘﻐﻴﺭﺍﺕ ﺍﻟﺩﺍﻟﺔ f ﻟﺩﻴﻨﺎ [∞Df =] −∞,1[ ∪]1,+ •ﺤﺴﺎﺏ ﺍﻟﻨﻬﺎﻴﺎﺕ : lim x → f ( x ) = lim 2 x = 2 − ∞ x → −∞ x → lim x )f (x = lim 2x = 2 ∞+ ∞x → + x{2 x→ 2 ∞ lim x → f ( x ) = −ﻷﻥ x −1→ 0 − 〈1{2 x → 2 ∞ lim x → f ( x ) = +ﻷﻥ x −1→ 0 + 〉1 ﺤﻴﺙ ﺇﺸﺎﺭﺓ ) (x-1ﻜﻤﺎ ﻴﻠﻲ ∞x - ∞1 +x-1 -+ ﻟﺩﻴﻨﺎ y=2ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﻔﻭﺍﺼل ﻭ x=1ﻤﺴﺘﻘﻴﻡ ﻤﻘﺎﺭﺏ ﻴﻭﺍﺯﻱ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ •ﻋﺒﺎﺭﺓ ﺍﻟﺩﺍﻟﺔ ﺍﻟﻤﺸﺘﻘﺔ:= ) (f ' ( x −2 ﻤﻥ ﺍﺠل ﻜل xﻤﻥ Dfﻟﺩﻴﻨﺎ x − 1 )2 ﻤﻥ ﺍﺠل ﻜل xﻤﻥ Dfﻟﺩﻴﻨﺎ f '(x )〈0
∞x - •ﺠﺩﻭل ﺍﻟﺘﻐﻴﺭﺍﺕ ∞1 +)f′(x - 2 - ∞+)f(x 2 ∞- (3ﺍﻟﻨﻘﻁﺔ ) w(1,2ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭ ﻟـ ) (Cf f (x )= y ﻤﻊ ⎧x = X +1 ﻨﻀﻊ ⎨ = Y +2 ⎩ y Y + =2 (2 )X +1 ﻭﻤﻨﻪ ﺇﺫﻥ )Y + 2 = f ( X + 1 + 1) −1 (X Y= 2 Y + 2 = 2 ( X ) + 2 = 2 + 2ﻭﻤﻨﻪ X xX Xa a ﺩﺍﻟﺔ ﻓﺭﺩﻴﺔ ﻤﻥ ﺍﻟﺸﻜل ﻫﻲ X a 2 ﺍﻟﺩﺍﻟﺔ X X ﻭﻤﻨﻪ ﺍﻟﻨﻘﻁﺔ ) w(1,2ﻤﺭﻜﺯ ﺘﻨﺎﻅﺭﻟـ ) (Cf (4ﻨﻘﺎﻁ ﺘﻘﺎﻁﻊ Cfﻤﻊ ﺤﺎﻤل ﻤﺤﻭﺭ ﺍﻟﺘﺭﺍﺘﻴﺏ) ( ﻟﺩﻴﻨﺎ f(0)=0ﺇﺫﻥ Cfﻴﻘﻁﻊ ﺤﺎﻤﻠﻲ ﺍﻟﻤﺤﻭﺭﻴﻥ ﻓﻲ ﺍﻟﻤﺒﺩﺃ) ( (5ﺇﻨﺸﺎﺀ) (Cf
Search